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Abstract

In this paper, we propose a family of structures, namely,k-localized minimum spanning tree (LMSTk) for

topology control and broadcasting in wireless ad hoc networks. We give an efficient localized method to construct

LMSTk using onlyO(n) messages under the local-broadcast communication model, i.e., the signal sent by each

node will be received by all nodes within the node’s transmission range. We also analytically prove that the node

degree of the structure LMSTk is at most6, LMSTk is connected and planar, and more importantly, the total edge

length of the LMSTk is within a constant factor of that of the minimum spanning tree whenk ≥ 2 (called low

weightedhereafter). We then propose another structure, calledIncident MST and RNG Graph(IMRG), that can

be locally constructed using at most13n messages under the local broadcast communication model. Test results

are corroborated in the simulation study. We study the performance of our structures in terms of the total power

consumption for broadcasting, the maximum node power needed to maintain the network connectivity. We theoret-

ically prove that our structures are asymptotically the best possible for broadcasting among all locally constructed

structures. Our simulations show that our new structures outperform previous locally constructed structures in terms

of the broadcasting and power assignment for connectivity.
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I. INTRODUCTION

We consider a wireless ad hoc network composed ofn wireless devices (callednodeshere-

after) distributed in a two-dimensional plane. Assume thatall wireless nodes have distinctive

identities, quasi-static, and each wireless node knows itsgeometry position information either

through a low-power Global Position System (GPS) receiver or through some other way. More

specifically, it is enough for our protocols when each node knows the distance to each of its

one-hop neighbors, which can be estimated by thestrength of signal. We assume that each wire-

less node has an omni-directional antenna and a single transmission of a node can be received

by any node within its vicinity which, under a common assumption inthe literature, is a unit

disk centered at this node. A wireless node can receive the signal from another node if it is

within the transmission range of the sender. Otherwise, they communicate through multi-hop

wireless links by using intermediate nodes to relay the messages. Consequently, each node in

the wireless ad hoc network also acts as a router, forwardingdata packets for other nodes. By

one-hop broadcasting, each nodeu can gather the location information of all nodes within its

transmission range. Consequently, all wireless nodes together define a unit-disk graph (UDG),

which has an edgeuv iff the Euclidean distance‖uv‖ is less than one unit.



A wireless ad hoc network needs some special treatment as it intrinsically has its own special

characteristics and some unavoidable limitations compared with wired networks. For exam-

ple, wireless nodes are often powered by batteries only and they often have limited memories.

So wireless ad hoc networks prefer localized algorithms andpower-efficient network topolo-

gies. Unlike the wired networks, a transmission by a wireless device will be received by all

nodes within its vicinity. Thus, we model the communicationcharacteristics asbroadcastingby

assuming that the message sent by a node willalwaysbe received byall nodes within its trans-

mission range. We can utilize this broadcasting property tosave the communications needed to

send some information. Throughout this paper, alocal broadcastby a node means it sends the

message to all nodes within its transmission range; aglobal broadcastby a node means it tries

to send the message to all nodes in the network by the possiblerelaying of other nodes.

Due to the limited power and memory, a wireless node prefers to only maintain the informa-

tion of a subset of neighbors it can communicate, which is called topology control. In recent

years, there is a substantial amount of research on topologycontrol for wireless ad hoc networks

[1], [2], [3], [4], [5]. These algorithms are designed for different objectives: minimizing the

maximum link length while maintaining the network connectivity [3]; bounding the node de-

gree [5]; bounding the spanning ratio [1], [2]; constructing planar spanner locally [1]. Here a

structureH is a spanner of UDG if, for any two nodes, the length of the shortest-path connecting

them inH is no more than a constant factor of the length of the shortest-path connecting them

in the original UDG. Planar structures are used by several localized routing algorithms [6]. In

[7], Wang and Li proposed the first localized algorithm to construct a bounded degree planar

spanner.

Recently, Li, Hou and Sha [8] proposed a novel MST-based method for topology control and

broadcasting. Each nodeu uses its one-hop neighbors to build alocal minimum spanning tree

and an edgeuv is kept if it belongs to this local minimum spanning tree. They proved that

the final graph, calledlocal minimum spanning tree(LMST), is connected, and has a bounded

degree6. However,we will show that LMST is not a low weight structureand the broadcasting

based on it can still consume powerO(n2) times of the minimum in the worst case.

Minimum-energy broadcast/multicast routing in ad hoc networking environment has been

addressed in [9], [10]. Three centralized greedy heuristics algorithms were presented in [10]:



MST (minimum spanning tree), SPT (shortest-path tree), andBIP (broadcasting incremental

power). Wanet al. [11] showed that the approximation ratio of the MST-based approach is

between6 and12 by assuming that the power needed to support a linkuv is ‖uv‖β, where‖uv‖

is the Euclidean distance betweenu andv, β is a real constant between2 and5 dependent on

the wireless transmission environment. The best distributed algorithm [12] can compute MST

in O(n) rounds usingO(m + n log n) communications for a general graph withm edges and

n nodes. Obviously, MST cannot be constructed in a localized manner, i.e., each node cannot

determine which edge is in the defined structure by purely using the information of the nodes

within some constant hops. Thus, several localized structures, such as RNG [13], have been

used for broadcasting. As shown in [14], the total energy used by RNG based approach could

be aboutO(nβ) times optimum.

The main contributions of this paper are as follows. Firstly, we propose a family of structures,

namely,k-localized minimum spanning tree (LMSTk) for topology control and broadcasting in

wireless ad hoc networks. We analytically prove that the node degree of the structure LMSTk

is at most6, LMSTk is connected and planar, and more importantly, the total edge length of the

LMSTk is within a constant factor of that of the minimum spanning tree whenk ≥ 2. We give

an efficient localized method to construct the LMSTk using onlyO(n) messages under a local

broadcast communication model, i.e., the message sent by a node is received by all nodes within

its transmission range. Secondly, we propose another structure, calledIncident MST and RNG

Graph (IMRG), that can be constructed using at most13n messages under the local broadcast

communication model. Every node only uses its partial two-hop information to construct the

structure IMRG. Notice that it was shown in [14] that some two-hop information is necessary

to construct any low-weighted structure for UDG. Thirdly, we study the application of these

structures for efficient broadcasting in wireless ad hoc networks. Notice that Wanet al. [11]

proved that the broadcasting based on the MST consumes energy within a constant factor of the

optimum whenonly consider the energy consumed by the senders. However, in practice, the

receiver node also consumes energy to receive the signal. Inthis paper, we adopt the later model

and assume that the energy consumed by the receiver node isno more thanthe energy consumed

by the sender. We then prove that the approximation ratio of the MST-based approach is still

a constant when this more practical energy model is used. Since it is expensive to construct



MST in a distributed way, we will use our newly proposed structures LMSTk and IMRG to

approximate it. Although a low-weighted structure cannot guarantee that the broadcasting based

on it consumes energy within a constant factor of the optimumin the worst case, the energy

consumptions using our new structures LMSTk (k ≥ 2), and IMRG are withinO(nβ−1) of the

optimum theoretically in the worst case. This improves the previously known “lightest” structure

RNG and LMST byO(n) factor. We show that these structures are asymptotically optimum

for broadcasting among all locally constructed structures. Test results are corroborated in the

simulation study. Our extensive simulations show that the energy consumption of broadcasting

based on these structures is within a small constant factor of that based on the MST for randomly

deployed wireless networks.

The rest of the paper is organized as follows. In Section II, we review the related works

on network topology control and minimum energy broadcasting. In Section III, we present

our communication and computation efficient localized methods that can construct connected,

planar, bounded degree, low-weighted structures LMSTk and IMRG. The total communication

costs of our methods areO(n) (at most13n for IMRG). We then study the applications of

our structures in broadcasting and topology control by comparing the performances of these

structures with previously best-known structures in Section V. We conclude our paper in Section

VI.

II. RELATED WORK

Before reviewing the related works, we first introduce the formal definition oflow weight.

Given a geometric structureG over a set of points, letω(G) be the total length of the links in

G andωβ(G) =
∑

uv∈G ‖uv‖β. Then, a structureG is calledlow weightif ω(G) is within a

constant factor ofω(MST ).

A. Topology Control

Recently, topology control for wireless ad hoc networks hasattracted considerable attentions

[3], [15], [17], [18], [19], [20]. Rajaraman [21] conductedan excellent survey. Several geometri-

cal structures have been used in topology control, and broadcasting in wireless ad hoc networks,

whose definitions are reviewed as follows.

A disk centered at a pointx with a radiusr, denoted bydisk(x , r), is the set of points whose



distance tox is at mostr. Let lune(u, v) defined by two pointsu andv be the intersection of two

disks with radius‖uv‖ and centered atu andv respectively, i.e.,lune(u, v) = disk(u, ‖uv‖) ∩

disk(v , ‖uv‖). Let disk(u, v) be the disk with diameteruv. The relative neighborhood graph

[22], denoted by RNG, consists of all edgesuv such that theinterior of lune(u, v) contains no

nodew ∈ V . TheGabriel graph(GG) [23] contains an edgeuv if and only ifdisk(u, v) contains

no other nodew inside. It is easy to show that RNG is a subgraph of the Gabrielgraph. For

unit disk graph, the relative neighborhood graph and the Gabriel graph only contain the edges in

UDG and satisfying the respective definitions.

Notice that, traditionally, the relative neighborhood graph will always select an edgeuv even

if there is some node on the boundary oflune(u, v). Thus, RNG may have unbounded node

degree, e.g., consideringn − 1 points equally distributed on the circle centered at thenth point

v, the degree ofv is n − 1. Notice that for the sake of lowing the weight of a structure,the

structure should contain as less edges as possible without breaking the connectivity. Li [14] then

extended the traditional definition of RNG as follows.

Themodified relative neighborhood graphconsists of all edgesuv such that (1) theinterior of

lune(u, v) contains no pointw ∈ V and, (2) there is no pointw ∈ V with ID(w) < ID(v) on

the boundary oflune(u, v) and‖wv‖ < ‖uv‖, and (3) there is no pointw ∈ V with ID(w) <

ID(u) on the boundary oflune(u, v) and‖wu‖ < ‖uv‖, and (4) there is no pointw ∈ V on

the boundary oflune(u, v) with ID(w) < ID(u), ID(w) < ID(v), and‖wu‖ = ‖uv‖. See

Figure 1 for an illustration when an edgeuv isnot included in the modified relative neighborhood

graph. Li called such structure RNG’. Obviously, RNG’ is a subgraph of RNG and still can be
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Fig. 1. Four cases when edges are not in the modified RNG.

constructed usingn messages. It was proved in [14] that RNG’ has a maximum node degree6

and still contains a MST as a subgraph.

TheYao graphwith an integer parameterk ≥ 6, denoted by
−−→
Y Gk, is defined as follows. At

each nodeu, anyk equally-separated rays originated atu definek cones. In each cone, choose



the shortest edgeuv, if there is any, and add a directed link−→uv. Ties are broken arbitrarily or by

the smallest ID. The resulting directed graph is called the Yao graph. Some researchers used a

similar construction namedθ-graph [24]. Recently, the Yao structure has been re-discovered by

several researchers for topology control in wireless ad hocnetworks of directional antennas.

Li et al. [25] extended the definitions of these structures on top of any given graphG. Wat-

tenhoferet al. [20] also proposed a two-phased approach that consists of a variation of the Yao

graph followed by a variation of the Gabriel graph.

Li et al. [18] proposed a structure that is similar to the Yao structure for topology control.

Each nodeu finds a powerpu,α such that in every cone of degreeα surroundingu, there is some

node thatu can reach with powerpu,α. Notice that the number of cones to be considered in

the traditional Yao structure is a constantk. However, unlike the Yao structure, for each node

u, the number of cones needed to be considered in the method proposed in [18] is about2n,

where each nodev could contribute two cones on both side of segmentuv. Then the graphGα

contains all edgesuv such thatu can communicate withv using powerpu,α. They proved that, if

α ≤ 5π
6

and the UDG is connected, thenGα is a connected graph. On the other hand, ifα > 5π
6

,

they showed that the connectivity ofGα is not guaranteed by giving some counter-example [18].

Unlike the Yao structure, the final topologyGα is not necessarily a bounded degree graph.

Li et al. [25] also proposed another structure calledYaoYao graph
−−→
Y Y k by applying areverse

Yao structure on
−−→
Y Gk. They proved that the directed graph

−−→
Y Y k is strongly connected if UDG

is connected andk > 6. In [5], Wanget al. considered another undirected structure, called

symmetric Yao graphYS k. An edgeuv is selected if and only if both directed edges−→uv and−→vu

are in the
−−→
Y Gk. Then it is obvious that its maximum node degree isk. They showed that the

graphYS k is strongly connected if UDG is connected andk ≥ 6.

Recently, Li, Hou and Sha [8] proposed an MST-based method for topology control. Each

nodeu first collects its one-hop neighborsN1(u). Nodeu then computes its minimum spanning

treeMST (N1(u)) of the induced unit disk graph on its one-hop neighborsN1(u). Nodeu keeps

a directed edgeuv if and only if uv is an edge inMST (N1(u)). They called the union of all

directed edges thelocal minimum spanning tree, denoted byG0. If only symmetric edges are

kept, then the graph is calledG−

0 , i.e., it has an edgeuv iff both directed edgeuv and directed

edgevu exist. If ignoring the directions of the edges inG0, the graph is calledG+
0 , i.e., it has



an edgeuv iff either directed edgeuv or directed edgevu exists. They proved that the graph is

connected, and has bounded degree6.

Here, we prove that graphG−

0 is also planar. For the sake of contradiction, assume thatG−

0

is not planar and two edgesuv andxy intersect each other. Assume that the clockwise order

of these four nodes areu, y, v, x. Obviously, one of the four angles\uxv, \xvy, \vyu, and\yux is at leastπ/2. Without loss of generality, assume that\uxv ≥ π/2. Then, edgeuv is the

longest edge among triangle△uvx. Thus, in the local minimum spanning treeMST (N1(u)),

edgeuv cannot appear since there is already a pathuxv whose edges are all shorter thanuv.

Similarly, graphG+
0 is a planar graph (by replacing the undirected edges with directed edges in

the above proof).

We then construct an example such that the structuresG−

0 andG+
0 are not low-weighted.

Figure 2 illustrates such an example. Since it uses only one-hop information, at every node, the

algorithm only knows that there are a sequence of nodes evenly distributed with small separation,

and another node which is one-unit away from current node. Itis easy to show that the final

structureG+
0 is exactly illustrated in Figure 2. The minimum spanning tree will only use one

horizontal link while LMST hasn/2 horizontal links. It is easy to show that the total edge length

of G0 is O(n) times of that of MST for this example.

v

Fig. 2. G0 could consumes arbitrarily large power for broadcasting compared with the optimum.

Inspired by the local minimum spanning tree structure in [8], in this paper, we propose a

sequence of structures calledk-local minimum spanning tree (LMSTk). To improve the com-

munication cost, we further propose another structure, called IMRG. Our structures have an ad-

ditional property: they are low-weighted. We also show thatour structures are always subgraphs

of the structuresG+
0 andG−

0 constructed in [8]. Locally constructed low-weighted structure was

first proposed by us in [14]. We will show that our new structures are subgraphs of that structure



and our structures have less computational cost. We do rely on a main theorem proved in [14]

to show that our structures are low-weighted.

B. Power Assignment

A transmission power assignment on the vertices inV is a functionP from V into real num-

bers representing the node power. Thedirected(or calledasymmetricby some researchers)com-

munication graph, denoted by
−→
GP , induced by a transmission power assignmentP, is a directed

graph withV as its vertices and has a directed edge−−→vivj if and only if ||vivj||
β ≤ P(vi). The

undirected(or calledsymmetricby some researchers)communication graph, denoted byGP , in-

duced by a transmission power assignmentP, is a undirected graph withV as its vertices and has

an edgevivj if and only if ||vivj||
β ≤ P(vi) and||vivj||

β ≤ P(vj). Given a graphH = (V, E),

we say the power assignmentP is induced byH, denoted byPH , if P(v) = max(v,u)∈E ||vu||β.

In other words, the power assigned to a nodev is the largest power needed to reach all neigh-

bors ofv in H. Themaximum-cost(and total-cost) of a transmission power assignmentP is

defined asmc(P) = maxvi∈V P(vi) (andsc(P) =
∑

vi∈V P(vi) respectively). Themin-max

assignment (andmin-total assignment) problem is to find a transmission power assignment

P whose costmc(P) (andsc(P) respectively) is minimized while the induced communication

graph is connected.

Let EMST(V ) be the Euclidean minimum spanning tree over a point setV . Both [3] and [26]

use the power assignment induced by EMST(V ). It was proved in [3] that power assignment

induced by EMST(V ) is optimum for themin-max assignment problem. Using the fact that

RNG, GG andY Gk haveO(n) edges and contain EMST as a subgraph,min-max assignment

problem can be solved inO(n logn) time complexity by a centralized algorithm and solved

usingO(n logn) messages in a distributed manner.

Kiroustiset al. [27] first proved that themin-total assignment problem isNP-hardwhen the

mobile nodes are deployed in a three-dimensional space. A simple2-approximation algorithm

based on the Euclidean minimum spanning tree was also given in [27]. The algorithm guarantees

the same approximation ratio in any dimensions. Clementiet al. [28], [29] proved that themin-

total assignment problem is still NP-hard when nodes are deployed in a two dimensional space.

For the symmetric communication, several methods also guarantee a good performance. It

is easy to show that the minimum spanning tree method still gives the optimum solution for



the min-max assignment and a2-approximation for themin-total assignment. Recently,

Cǎlinescuet al. [30] gave a method that achieves better approximation ratio5
3

by using idea

from the minimum Steiner tree. Like the minimum spanning tree method, it works for any

power definition.

Since it is expensive to construct the Euclidean MST in a distributed manner, we would like

to approximate the Euclidean MST efficiently in a distributed way. We thus will study the

performance of our structures for power assignment. Noticethat our structures do approximate

the total edge length of the Euclidean minimum spanning tree. Our simulations show that our

locally constructed structures outperform the previous structures in terms of both the maximum

assigned power and the total assigned power while guaranteethe network connectivity.

C. Minimum Energy Broadcasting

Minimum-energy broadcast/multicast routing in a simple adhoc networking environment has

been addressed in [9], [10]. Any broadcast routing is viewedas an arborescence (a directed tree)

T , rooted at the source node of the broadcasting, which spans all nodes. LetPT (v) denote the

transmission power of the nodev required by the treeT . For any leaf nodev of T , PT (v) =

0. For any internal nodev of T , let PT (v) denote the minimum power needed to reach its

farthest children inT . The total energy required byT is
∑

v∈V PT (v). It is known [31] that

the minimum-energy broadcast routing problem cannot be solved in polynomial time ifP 6=

NP . Three greedy heuristics were proposed in [10] for the minimum-energy broadcast routing

problem: MST, SPT, and BIP. By assuming that the power neededto support a linkuv is ‖uv‖β.

It was proved in [11] that, for any point setV in the plane, the total energy required by any

broadcasting amongV is at leastωβ(MST )/Cmst, where6 ≤ Cmst ≤ 12 is a constant related

to the Euclidean minimum spanning tree. In addition, they [11] showed that the approximation

ratio of MST based approach is between6 and12 and the approximation ratio of BIP based

approach is between13
3

and12; on the other hand, the approximation ratio of SPT is at leastn
2
,

wheren is the number of nodes.

Unfortunately, all these structures cannot be constructedlocally. Thus, several locally con-

structed structures have been proposed for broadcasting inwireless ad hoc networks, such as

RNG [13]. The ratio of the weight in RNG over the weight of MST could beO(n) for n

points set [25]. By assuming that the power needed to supporta link uv is ‖uv‖β, an example



was given in [14] to show that the total energy used by broadcasting on RNG could be about

O(nβ) times of the minimum-energy used by an optimum method. The same example can be

used to show that the structureG0 [8] could consumes powerO(nβ) times of the optimum for

broadcasting. On the other hand, we will prove thatωβ(IMRG) ≤ O(nβ−1) · ωβ(MST ), and

ωβ(LMSTk) ≤ O(nβ−1) · ωβ(MST ) for k ≥ 2. In other words, the power consumption for

broadcasting based on our newly proposed structures are only O(nβ−1) times of the optimum in

the worst case, which improves the previously known structure RNG byO(n) factor. When we

assume that the receivers do consume power for receiving signal, all the statements still hold.

III. k-LOCAL M INIMUM SPANNING TREE (LMSTk )

In this section, we define a sequence of structures, namely,k-local minimum spanning tree

(LMSTk), which can be constructed locally using onlyO(n) messages. All these structures are

connected, low-weighted (whenk ≥ 2), planar and have a bounded degree.

A. k-local Minimum Spanning Tree (LMSTk)

We define a sequence of structuresk-local minimum spanning tree (LMSTk) as follows. Let

Nk(u) be the set of nodes that are withink hops of nodeu in UDG. HereNk(u) includes node

u itself for the simplicity of notation later.

Definition 1: The k-local minimum spanning tree (LMSTk) contains adirectededge−→uv if

edgeuv belongs toMST (Nk(u)). We further define two undirected variations LMST−

k , and

LMST+
k . Structure LMST−k contains an edgeuv if both directed edge−→uv and directed edge−→vu

belong to LMSTk. Structure LMST+k contains an edgeuv if either−→uv or−→vu belongs to LMSTk.

Notice that one way to construct MST is to add edges in the order of their lengths if it does

not create a cycle with previously added edges. If there are two edges with the same length, we

break the tie by comparing the larger ID of the two end-pointsthen comparing the smaller ID of

the two-end points. We label an edgeuv by (‖uv‖, max(ID(u), ID(v)), min(ID(u), ID(v))),

and an edgeuv is ordered before an edgexy if the lexicographic order of the label ofuv is less

than that ofxy. In this paper, we only consider the minimum spanning tree constructed using

the above edge ordering.

Before we present our communication efficient method to construct them, we first study their

properties. First of all, it is easy to prove the following monotone property of the structures.



Lemma 1:LMSTk+1 ⊆ LMSTk, LMST+
k+1 ⊆ LMST+

k , andLMST−

k+1 ⊆ LMST−

k .

Lemma 2:LMST+
k is a subgraph of RNG, so does LMST−

k .

Proof. We prove it by contradiction. Assume that a nodeu adds an edgeuv 6∈ RNG to LMSTk.

Since edgeuv 6∈ RNG, there is a nodew inside the lune defined by segmentuv. Remember

that the minimum spanning tree of the node setN1(u) can be constructed by adding edges in

ascending order whenever it does not create a cycle with previously added edges. Clearly, when

we process the edgeuv, there is already a path connectingu andw and a path connectingw and

v sinceuw andwv are not longer thanuv. It implies that nodeu cannot add the edgeuv to its

MST (Nk(u)). Consequently, both graphs LMST+
k and LMST−k are subgraphs of RNG.

Actually we can enhance Lemma 2 by showing that LMST+
k is a subgraph of RNG’. The

above lemma immediately implies that the structures LMSTk, LMST+
k and LMST−k are planar.

Remember thatk-local minimum spanning tree LMSTk is proposed to approximate Euclidean

minimum spanning tree MST. We then show that MST is a subgraphof LMSTk for anyk.

Lemma 3:Euclidean minimum spanning tree MST is a subgraph of LMSTk for anyk.

Proof. Consider any edgeuv from MST. Assume that we add edges in ascending order of their

lengths to MST. Clearly, when we decide whether to add the edgeuv, there is no path connecting

u andv using edges added beforeuv. Obviously, this property still holds when nodeu decide

whether to add edgeuv to the minimum spanning treeMST (Nk(u)) of its k-hop neighbors

Nk(u). It implies that edgeuv belongs toMST (Nk(u)), andMST (Nk(v)). Consequently,

MST is a subgraph of all structures LMSTk, LMST+
k and LMST−k for anyk.

The above lemma immediately implies that all thesek-localized minimum spanning trees are

connected when the original communication graph UDG is connected.

Since every node in the Euclidean minimum spanning tree has adegree at most6, the out-

degree of every nodeu in LMSTk is at most6. Consequently, the degree of every nodeu in

LMST−

k is although at most6 since we keep an edgeuv if both directed edges−→uv and−→vu belong

to LMSTk. We then show that the degree of every node in LMST+
k is also at most6.

Lemma 4:Each node in LMSTk has at most6 neighbors in LMST+k .

Proof. We prove it by contradiction. Assume that one nodev has more than6 total in-neighbors

and out-neighbors. From the pigeonhole principle, there must have two neighbors, sayu1 and

u2, of v such that\u1vu2 < π/3. There are three cases: 1) bothu1 andu2 are in-neighbors; 2)



bothu1 andu2 are out-neighbors; 3) one is out-neighbor and one is in-neighbor.

We first consider the case that bothu1 andu2 are in-neighbors. Obviously,\u1vu2 cannot

be the largest angle in the triangleu1vu2. Assume that\vu1u2 is the largest, i.e.,u2v is the

longest edge in triangleu1vu2. Thus, nodeu2 cannot haveu2v in its minimum spanning tree

MST (Nk(u2)) since there is already a path (using nodeu1 ∈ N1(u2)) connectingu2 andv when

we try to add edgeu2v. It is a contradiction to the fact thatu2 is an in-coming neighbor ofv.

Similarly, we can prove that the other two cases are also impossible. This finishes the proof.

The above lemma immediately implies that every node in graphs LMST+
k and LMST−k has

a degree at most6. To show that the final structures LMSTk, LMST+
k and LMST−k are low

weighted whenk ≥ 2, we first review a result proved in [14].

Lemma 5([14]) A subgraphG of RNG’ is low-weighted if for any two edgesuv ∈ G and

xy ∈ G, neitheruv norxy is the longest edge of the quadrilateraluvyx.

We then prove the main result of this paper.

Lemma 6:All structures LMST+k are low weighted whenk ≥ 2.

Proof. Since we showed that LMST+
k is a subgraph of modified RNG for anyk, we will only

need prove that there are no two edgesuv ∈ LMST+
k andxy ∈ LMST+

k , such that one of

them is the longest edge of the quadrilateraluvyx. We prove this by contradiction. Assume

that we have two edgesuv ∈ LMST+
k andxy ∈ LMST+

k , anduv is the longest edge of the

quadrilateraluvyx. Clearly,x, v andy are at most2-hops away fromu in the unit disk graph.

Then when we decide whether to add edgeuv to the minimum spanning treeMST (Nk(u)) of

thek-hop neighborsNk(u) for k ≥ 2, edgesxu, xy, andyv have already been processed, i.e.,

there are paths using shorter edges to connectu to x, x to y, andy to v. Thus, the edgeuv will

not be added toMST (Nk(u)) whenk ≥ 2. It is a contradiction touv ∈ LMST+
k . This finishes

the proof.

B. Efficient Construction ofk-local Minimum Spanning Tree (LMSTk)

We then discuss in detail how to construct thek-local Minimum Spanning Tree (LMSTk)

efficiently, i.e., using onlyO(n) messages under the local broadcasting model. Since LMST2

is already a low weighted structure, we will only describe our method for constructing LMST2

although the same method works for general LMSTk.



Algorithm 1: Construct LMST2 Locally

1. Every nodeu collects the location information ofN2(u) based on an efficient method de-

scribed in [32] (reviewed in detail later).

2. Every nodeu computes the Euclidean minimum spanning treeMST (N2(u)) of its 2-hop

neighborsN2(u), includingu itself.

3. A nodeu proposes to add a directed edge−→uv if uv ∈ MST (N2(u)) and||uv|| ≤ 1.

4. If LMST+
2 is needed, nodeu keeps an edgeuv when eitheru or v proposed to add it. If

LMST−

2 is needed, nodeu keeps an edgeuv when bothu andv proposed to add it.

We then review the communication efficient method proposed in [32] to collectN2(u) for

every nodeu when the geometry information is known. Computing the set of1-hop neighbors

with O(n) messages is trivial: every node broadcasts a message announcing its ID. Computing

the 2-hop neighborhood is not trivial, as the UDG can be dense. The approach in [32] is based

on the specific connected dominating set introduced in [33],which again is based on a max-

imal independent set (MIS). In the algorithm, each node usesits adjacent node(s) in the MIS

to broadcast over a larger area relevant information. Listening to the information about other

nodes broadcast by the MIS nodes enables a node to compute its2-hop neighborhood. The al-

gorithm uses heavily the nodes in the connected dominating set, an example in [32] shows that

overloading certain nodes might be unavoidable.

We start from the moment the virtual backbone is already constructed, and every node knows

the ID and the position of its neighbors. The idea of the algorithm is for every node to efficiently

announce its ID and position to a subset of nodes which includes its 2-hop neighbors. The

responsibility for announcing the ID and position of a nodev is taken by the MIS nodes adjacent

to v. Each such MIS node assembles a packet containing:<ID; position; counter>, with the

ID and position ofv, and a counter variable being set to2. The MIS node then broadcasts the

packet.

A connector node is used to establish a link in between several pairs of virtually-adjacent MIS

nodes, and will not retransmit packets which do not travel inbetween these pairs of MIS nodes.

Here two MIS nodes are said to be virtually-adjacent if they are within2 or 3 hops of each other.

The connector node will rebroadcast packets with nonzero counter originated by one of the

nodes in a pair of virtually-adjacent MIS nodes, thus makingsure the packet advances towards



the other MIS node in the pair. Recall that the path in betweena pair of virtually-adjacent MIS

nodes has one or two connector nodes.

When receiving a packet of type<ID; position; counter>, an MIS node checks whether this

is the first message with this ID, and if yes decreases the counter variable and rebroadcasts the

packet. A node listens to the packets broadcast by all the adjacent MIS nodes and, using its

internal list of 1-hop neighbors, checks if the node announced in the packet is a 2-hop neighbor

or not - thus constructing the list of 2-hop neighbors.

The above approach can be extended to find thek-hop neighbors of every node using total

O(n) communications: the initial counter is set tok. The total communications used by this

approach is at most(6k + 3)2 · n after a backbone based on MIS is constructed [4].

IV. STRUCTURES WITH IMPROVED COMMUNICATION COST

In the previous section, we defined a sequence of structures that are guaranteed to be low

weighted and can be constructed in a localized manner using only O(n) messages. However,

the hidden constant in the communication cost could be largealthough it is a constant. In this

section, we define several structures that can be constructed using at most13n messages. All

these structures are connected, low-weighted, bounded degree, planar graphs.

A. Sparse Structure From RNG’

In [14], Li gave the first localized method to construct a structure LRNG with weightO(ω(MST ))

using totalO(n) local-broadcast messages, but the computation at each nodeis expensive. For

the completeness of presentation, we first review the localized algorithm given in [14] that con-

structs a low-weighted structure using only some two hops information.

Algorithm 2: [14] Construct Low Weighted Sparse Structure LRNG

1. All nodes together construct the graph RNG’ in a localizedmanner.

2. Each nodeu locally broadcasts its incident edges in RNG’ to its one-hopneighbors. Nodeu

listens to the messages from its one-hop neighbors.

3. Assume nodeu received a message informing the existence of an edgexy from its neighbor

x. For each edgeuv in RNG’, if uv is the longest amonguv, xy, ux, andvy, nodeu removes

the edgeuv. Ties are broken by the label of the edges. Here we assume thatuvyx is the convex

hull of u, v, x, andy.



4. Let LRNG denote the final structure formed by all remainingedges in RNG’.

Obviously, if an edgeuv is kept by nodeu, then it is also kept by nodev, i.e., the edges kept

by all nodes are symmetric. It was shown in [14] that the structure LRNG has total edge length

Θ(ω(MST )).

Clearly, the communication cost of Algorithm 2 is at most7n: initially each node spends one

message to tell its one-hop neighbors its position information, then each nodeu tells its one-hop

neighbors all its incident edgesuv ∈ RNG′ (there are at most total6n such messages since

RNG′ has at most3n edges). The computational cost of Algorithm 2 could be high since for

each linkuv ∈ RNG′, nodeu has to test whether there is an edgexy ∈ RNG′ andx ∈ N1(u)

such thatuv is the longest amonguv, xy, ux, andvy. We continue to present our new algorithms

that improve the computational complexity of each node while still maintain low communication

costs.

B. Incident MST and RNG Graph (IMRG)

Although the structuresLMST−

2 andLMST+
2 have several nice properties such as bounded

degree, planar, and low-weighted, the communication cost of constructing them could be very

large to save the computational cost of each node compared with structure LRNG. The large

communication costs are from collecting the two hop neighbors informationN2(u) for each

nodeu, although the total communication of the protocol described in [32] is O(n), the hidden

constant is large.

We could improve the communication cost by using a subset of two hop information without

sacrificing any properties. For any nodeu, we define the partial two hop ofu as

NRNG′

2 (u) = {w | vw ∈ RNG′ andv ∈ N1(u)} ∪ N1(u).

Definition 2: The Incident MST and RNG Graph (IMRG) contains adirectededge−→uv if edge

uv belongs toMST (NRNG′

2 (u)), the Euclidean minimum spanning tree of nodesNRNG′

2 (u).

We further define two undirected variations IMRG−, and IMRG+. Structure IMRG− contains

an edgeuv if both directed edge−→uv and directed edge−→vu belong to IMRG. Structure IMRG+

contains an edgeuv if either−→uv or−→vu belongs to IMRG.

We then describe a communication efficient algorithm to build these structures as follows.



Algorithm 3: Construct Low Weighted Structure IMRG

1. Each nodeu tells its position information to its one-hop neighborsN1(u) using a local broad-

cast model. All nodes together construct the graph RNG’ in a localized manner.

2. Each nodeu locally broadcasts its incident edges in RNG’ to its one-hopneighbors. Nodeu

listens to the messages from its one-hop neighbors.

3. Each nodeu collectsNRNG′

2 (u) and computes the Euclidean minimum spanning tree, denoted

by MST (NRNG′

2 (u)), of all nodesNRNG′

2 (u), includingu itself.

4. Nodeu proposes to add an edgeuv ∈ MST (NRNG′

2 (u)) if ‖uv‖ ≤ 1.

5. If IMRG− is needed, nodeu keeps an edgeuv if both nodeu and nodev proposed to add

edgeuv. If IMRG+ is needed, nodeu keeps an edgeuv if either nodeu or nodev proposed to

add edgeuv.

As will seen later (Lemma 7), the constructed structures aresubgraphs of the modified RNG

graph. Thus, these structures are planar and have at most3n edges. In addition, the total com-

munication cost of Algorithm 3 is at most13n when either structure IMRG− or IMRG+ is

needed; the total communication cost is at most7n if the directed structure IMRG is needed.

We first show that these two structures IMRG+ and IMRG− are still planar, bounded degree,

and low-weighted.

Lemma 7:Structure IMRG is a subgraph of modified RNG.

Proof. Consider any edgeuv 6∈ RNG′. We show that nodeu will not proposeuv. From

the definition of RNG’, we know that there is a nodew inside the lune defined by segment

uv and edgeuw and wv has a label less thanuv. Considering the process of constructing

MST (NRNG′

2 (u)), when we decide whether to add edgeuv after processing edges with smaller

labels, there is already a path connectingu andw, and a path connectingw andv. Thus, edge

uv cannot be added by nodeu to MST (NRNG′

2 (u)). This finishes the proof.

The above lemma immediately implies that all structures IMRG+ and IMRG− are planar , and

have a bounded node degree at most6. We then show that IMRG+ and IMRG− are connected

by proving the following lemma.

Lemma 8:MST is a subgraph of IMRG+ and IMRG−.

Proof. We prove this by induction on the length of the edges from MST.

Consider the shortest edgeuv in the original unit disk graph. Clearly, the edgeuv belongs to



MST, anduv belongs toMST (NRNG′

2 (u)) andMST (NRNG′

2 (v)). Thus,uv belongs to IMRG−.

Assume that the firstkth shortest edges from MST are in IMRG−. Then consider the(k+1)th

shortest edgeuv from MST. For the sake of contradiction, assume that nodeu removes edgeuv

sinceuv 6∈ MST (NRNG′

2 (u)). Consequently, there is a path in the unit disk graph formed on

NRNG′

2 (u) connectingu andv using edges with length at most‖uv‖ (ties are broken by rank).

It is a contradiction to the fact thatuv belongs to MST. Thus, edgeuv is also kept IMRG−.

Therefore, MST is a subgraph of IMRG− and MST is a subgraph of IMRG+.

We then show that the structures IMRG− and IMRG+ are low-weighted.

Lemma 9:The structures IMRG− and IMRG+ are low-weighted.

Proof. The proof is similar to the proof that LMSTk is low weighted. We can show that there are

no two edgesuv andxy from IMRG such that one of them is the longest edge in the quadrilateral

uvyx, which can be proved easily by contradiction. Notice that wealready proved that IMRG−

and IMRG+ are subgraphs of RNG’. Thus, we can use Lemma 5.

We then summarize the properties of the structure IMRG by thefollowing theorem.

Theorem 10:Algorithm 3 constructs structures IMRG− and/or IMRG+ using at most13n

messages. The structures IMRG− or IMRG+ are connected, planar, bounded degree (at most6),

and low-weighted.

It is easy to show that the structure LMST2 is always a subgraph of IMRG since IMRG uses

only a partial information to construct the minimum spanning tree. If an edgeuv is removed

from MST (NRNG′

2 (u)), it means that there is a path connectingu andv using shorter edges

when we processuv. By a simple induction, we can show that there is also a path connecting

u andv when we processuv in constructingMST (N2(u)). We further show that the structure

IMRG is a subgraph of LMST1. Consider any directed edge−→uv that is not proposed by nodeu

in constructingMST (N1(u)). It means that there is a path connectingu andv in the induced

unit disk graph onN1(u), whose edges have length less than‖uv‖. Clearly, this path is still

in the induced unit disk graph onNRNG′

2 (u) sinceN1(u) ⊂ NRNG′

2 (u). Consequently, edge

uv cannot appear in the Euclidean minimum spanning treeMST (NRNG′

2 (u)). It then implies

that the structure IMRG is always a subgraph of LMST1. Consequently, the structure IMRG+

is always a subgraph of the structureG+
0 and the structure IMRG− is always a subgraph of the

structureG−

0 constructed in [8].



Lemma 11:Structure IMRG is a subgraph of LMST1 and a supergraph of LMST2.

C. Fault-Tolerance

We have presented algorithms to build structures that are connected, planar, low-weighted and

have a bounded node degree. However, none of these structures are fault-tolerant in the worst

case. Here we say that a structure is node fault-tolerant if the graph is still connected when one

node breaks down. In [34], Liet al. discussed how to build ak-fault-tolerant structure such that

each node has a degree at most6k and is a spanner. In this subsection, we present a method that

transforms any structure into a fault-tolerant structure by at most doubling the total edge length.

Notice that also this method has been used previously for various purposes [15], [16], we will

show that it keeps the low-weight and bounded degree properties. Assume that we are given a

topology structureG that is connected.

Algorithm 4: Transform StructureG to Fault-Tolerant

1. Each nodeu collects all incident edgesuv ∈ G.

2. Nodeu sorts all its incident neighbors fromG in a clockwise order and letv1, v2 · · · , vd be its

neighbors. Nodeu informs nodevi to add linksvi−1vi andvivi+1. Herev0 = vd andvd+1 = v1.

Let F (G) be the final structure formed by all edges, including the edges fromG.

Lemma 12:If structureG has bounded degree∆, then graphF (G) has degree at most3∆.

Proof. Consider any nodevi. Notice that, only the neighbors of nodevi can add edgesvi−1vi

andvivi+1 incident onvi. Nodevi has at most∆ neighbors inG. Thus, there are at most2∆

newly added edges to nodevi. Considering the previous incident edges (at most∆), the total

number of edges incident onvi is at most3∆.

Lemma 13:If structureG has low weight, then graphF (G) has low weight.

Proof. We show thatω(F (G)) ≤ 3ω(G). Consider any nodeu and the added edgesvivi+1.

Clearly,‖vivi+1‖ ≤ ‖uvi‖ + ‖uvi+1‖. Thus,
∑d

i=1 ‖vivi+1‖ ≤ 2
∑d

i=1 ‖uvi‖. Clearly,ω(F (G))

is at mostω(G) plus the summation of all newly added edgesvivi+1, which is at most2ω(G).

Thus,ω(F (G)) ≤ 3ω(G).

Lemma 14:StructureF (G) is fault-tolerant.

Proof. Consider any path that uses nodeu and assume that nodeu breaks down. Assume that

viu anduvj are the two links in that path. Then we can use the pathvivi+1 · · · vj to connectvi



andvj . Thus, there is still another path connecting the source andthe target without nodeu.

This finishes the proof thatF (G) is fault-tolerant.

It is not difficult to show that the total communications of transforming a structure into a

fault-tolerant one uses messages at most2m, wherem is the number of edges in the original

structureG. Since the structures discussed in this paper all have at most 3n edges, the total

communication cost of this transforming is at most6n. The price of this transforming is that the

new structureF (G) is not guaranteed to be a planar graph even if the original graphG is planar.

Lemma 15:Structures F(LMSTk) and F(IMRG) have bounded node degree at most18, have

total edge length at mostO(ω(EMST )), are connected, fault-tolerant, and can be constructed

usingO(n) messages under local broadcast communication model. Structure F(IMRG) can be

constructed using at most19n messages. Each of the messages has at most2 log n bits.

Notice that, here we implicitly assumed that the maximum transmission power of each node

can support the additional links added by Algorithm 4. In addition, instead of connecting the

neighbors of a nodeu in a clockwise order, we can connect the neighbors of each nodeu using

the minimum spanning tree of these nodes, which will furtherdecrease the total edge length of

the final structure.

D. Impossibility Results

Power assignment and topology control have been well studied recently by various researchers.

Although most questions can be solved exactly or approximated within a constant factor using

a centralized approach, it is still unknown whether we can solve or approximate some questions

using localized approaches. For example, using centralized methods, we can minimize the max-

imum transmission power while the resulting network topology has some properties that can be

tested in polynomial time. Such property includes the network is connected, or the network is

k-connected, or the network topology is a spanner of the original communication graph UDG. In

addition, using centralized methods, we can approximate the minimum total transmission power

of all nodes within a constant factor, while the resulting network is connected, ork-connected, or

consumes the minimum energy for broadcasting. However, centralized methods are expensive

to implement in wireless ad hoc networks due to their possible massive communications. Thus,

it is natural to ask what kind of questions we can approximatewithin a constant factor using



localized approaches, and what kind of questions we cannot.

We have shown that we can construct a bounded degree planar spanner, or a bounded de-

gree planar low-weighted structure, or a bounded degreek-fault tolerant spanner, or a bounded

degree fault tolerant low-weighted structure, in a localized manner using onlyO(n) messages.

In the following, we will show that several questions in wireless ad hoc networks cannot be

approximated within a constant factor in a localized mannerat all.

The first such example is themin-max assignment problem. It was proved in [3] that the

longest edge of the Euclidean minimum spanning tree EMST(V ) is always the optimum solution

to themin-max assignment problem. Since it is communication expensive to construct MST in

a distributed manner, we would like to know whether we can construct a structure in a localized

manner such that the longest edge of this structure is withina constant factor of that of MST. We

show by example that there isno suchdeterministiclocalized algorithm unfortunately. Assume

that there is such a deterministic localized algorithmA that usesk-hop information. Figure 3

illustrates an example that algorithmA cannot approximate the longest edge of the MST within

a constant factor. In the example,||ux|| > k and‖uv‖ = 1. Then algorithmA will have the

y

u v

x y

u v

x

(a) (b)

Fig. 3. No localized algorithm approximates the minimum of the maximum node power while the resulting struc-

ture is connected.

same information at the nodeu for both configurations illustrated in Figure 3 (a) and (b). If A

decides to keep edgeuv, then the longest edge kept byA could be arbitrarily larger than that of

MST for configuration (a). IfA decides not to keep edgeuv, then the structure constructed by

A is not connected for configuration (b).

Figure 3 also shows that there isnodeterministic localized algorithm that can find a structure

that approximates the total energy consumption of broadcasting within a constant factor1 of the
1We actually can show that no deterministic localized algorithm can find a structure such that the energy consumed by broad-



optimum, or that approximates the total node power within a constant factor of the optimum

while the network topology is connected. Similarly, we can show that there isno deterministic

localized algorithm that can find a structure minimizing thetotal node power while the structure

is node fault-tolerant.

V. APPLICATIONS OFOUR STRUCTURES INBROADCASTING AND TOPOLOGY CONTROL

After we proved some properties of our structures, we then study how our structures can be

used to improve the performances of broadcasting and topology control compared with some

previously developed structures.

A. Worst Case Performances

We first assume that the energy needed to support the communication between a linkuv is

‖uv‖β. Li proved in [14] that, ifH is a low-weighted structure, thenωβ(H) ≤ O(nβ−1) ·

ωβ(MST ). Hereωβ(G) =
∑

uv∈G ‖uv‖β. It is easy to show that the total power consumption

of broadcasting based on any connected structureH is at most2ωβ(H). Let T ⊆ H be the tree

used for broadcasting. The power consumption of each nodeu is at most||uv||β, whereuv is

the longest link incident onu in T . The claim follows from that any such linkuv will be used at

most twice to define the power for a node. It is also known the minimum power consumption of

broadcasting is at leastωβ(MST )/12. Consequently, we have the following theorem.

Theorem 16:If H is a low-weighted structure, then the power consumption of broadcasting

based onH is at mostO(nβ−1) times of the optimum.

We then show that there is a configuration of nodes such that the broadcastings based on the

low-weighted structuresLMSTk and IMRG do consume powerΘ(nβ−1) times of the optimum.

Consider the example illustrated by Figure 3 (a). Clearly, our structures will keep the link

uv. Thus, the total power consumptions based on our structuresareO(1), while the optimum

structure (without linkuv) has power consumption only1/nβ−1. Notice that, this example shows

that the broadcasting based onany locally constructed structure has power consumption at least

Θ(nβ−1) times of the optimum in the worst case.

casting based on this structure is withino(nβ−1) of the optimum. Here assume that the power needed to support alink uv is

‖uv‖β .



It has been shown in [14] that the broadcastings based on RNG could consume powerΘ(nβ)

times of the optimum. The same example can also show that the broadcastings based on one hop

local minimum spanning treeG0 [8] could consume powerΘ(nβ) times of the optimum. Thus,

our low-weighted structures improve the performances for broadcasting of previously proposed

structures byΘ(n) factor in the worst case.

We then consider the scenario when the receiver node does consume a power to receive the

signal, and we assume that this power is no more than the powerconsumed by the sender al-

ways. Notice that in all our structures, there are at most6 receivers. Thus, the total power

consumed by both senders and receivers in this new energy model is no more than7 times of

the total power consumption of all senders in the previous energy model. We also show that the

broadcasting based on MST is still a good approximation. LetE0(G) be the energy consumption

of the broadcasting based on a structureG when assume that the power needed to support the

communication between a linkuv is ‖uv‖β and the receiver does not consume power. LetOPT0

be the optimum structure for broadcasting in this model. LetE1(G) be the energy consumption

of the broadcasting based on a structureG when the power consumed by each receiver is con-

sidered and this power is assumed to be no more than the power used by the sender. LetOPT1

be the optimum structure for broadcasting in this model. Wanet al. [11] essentially proved

that E0(MST ) ≤ 12E0(OPT0). We argue thatE1(MST ) ≤ cE1(OPT1) for some constant

c as follows. Since MST has a node degree bounded by6, E1(MST ) ≤ 7E0(MST ). Notice

thatE1(OPT1) ≥ E0(OPT1) ≥ E0(OPT0), which implies our statement. Consequently, our

structures consume powers no more thanO(nβ−1) times of the optimum.

We summarize the worst case performances of out structures LMSTk and IMRG.

Theorem 17:The power consumption of broadcasting, and the total node power needed to

achieve network connectivity, based on the structure LMSTk or IMRG is at mostO(nβ−1) times

of the optimum. Our structures are asymptotically the optimum among all locally constructed

structures.

B. Performances for Random Wireless Ad Hoc Networks

We then conduct extensive simulations to study the performances of our structures in terms

of the maximum transmission power used by all nodes, the total transmission power used by all

nodes, and the total length of links. Although network throughput is an important performance



metric, it is influenced by many other factors such as the MAC protocol, routing protocol and

so on. Therefore, most related works do not test the throughput performance. To study various

aspects of our structures, we will use the following metricsto compare the performances:

1. Total Messages: In wireless networks, less messages to construct the topology will save

energy consumption. We showed that the total messages of constructing IMRG is at most13n.

2. Max Messages: We also test what is the maximum number of messages a node will send

in building the structure. A large number of messages sent bya node will delay the topology

updating and drain out its battery power quickly.

3. Average Node Degree: A smaller average node degree often implies less contention and

interference for signal and thus a better frequency spatialreuse, which in turn will improve the

throughput of the network.

4. Max Node Degree: We also test the maximum node degree. A larger node degree will cause

more contention and interference for signal, and also may drain out its battery power quickly.

5. Max Node Power: Each nodeu will set its transmission range equal to the length of the

longest edge incident onu. A smaller node power will always save the power consumption. The

max-node-power captures the maximum power used by all nodes. Here, in all our simulations,

we set the constantβ = 2, so that the power needed to support a linkuv is ‖uv‖2.

6. Total Node Power: The total node power approximates the total power used by all nodes to

keep the connectivity of the network.

7. Total Node Power for Broadcasting: This measures the total node power of all nodes that

have a degree at least2, i.e., internal nodes. This approximates the total power used by a broad-

casting based on this structure. Notice that the nodes with degree1 (except the possible source

node) do not relay the message in a broadcasting.

8. Total Edge Length: We proved that all our structures have a total edge length within a

constant factor of that of MST. We want to see the actual approximation performances.

9. Total Link Power: It was proved in [11] that the minimum total power needed forbroad-

casting is within a constant factor of the total link power inMST. We thus compare the total link

power used by our structures with previously known structures and especially that of MST.

In the simulations, we will only test the performances of structures LRNG, LMST−2 and

IMRG−, and compare them with previously known structures LMST1 (calledG0 in [8]), and



RNG in terms of the above metrics. The reason for only selecting G−

0 and RNG is that in [8],

their simulations already showed thatG−

0 out-performs other previously known structures in

terms of the node degree, max node power, and the total node power. Hereafter, we use the term

LMST, LMST2 and IMRG instead ofG−

0 , LMST−

2 and IMRG− in the experiments, if it is clear.

UDG MST RNG LMST

LMST2 LRNG IMRG

Fig. 4. Different structures from a UDG.

In the first simulation, we randomly generate100 nodes uniformly in a1000m×1000m region.

The maximum transmission range of each node is set as250m. The topology derived using the

maximum transmission power (UDG), MST, RNG, LMST1 (or calledG−

0 ), LMST2, LRNG,

and IMRG (actually IMRG−) are shown in Figure 4 respectively. To make the performance

testing precise, we generate100 sets of nodes, each of which has100 nodes, and compute the

performance metrics accordingly. The average degree of UDGis 15.37 and the maximum degree

is 26. The corresponding performances are illustrated in the following Table V-B. Here for max

node degree, max message and max node power, we show both the maximum and average values

over the100 sets. We found that structure LMST2 outperforms all other structures in all metrics

significantly (except the number of messages used). In addition, structure IMRG performs better

than LMST with slightly high communication cost to construct it. For example, structure LMST

uses about5% percent more total node power than the structure IMRG for broadcasting, while



RNG consumes about50% percent more total node power for broadcasting than the structure

IMRG. We did not count the messages used to find the two hops neighbors for all nodes when

computing the total messages used to construct LMST2 (such messages number is marked by a

star in our results).

TABLE I

THE PERFORMANCES COMPARISON OF SEVERAL STRUCTURES.

MST RNG LMST LMST2 LRNG IMRG

MaxMaxMsg - 1.00 5.00 5.00⋆ 5.00 9.00

AvgMaxMsg - 1.00 4.50 4.50⋆ 4.92 8.42

TotMsg - 100.00 305.72 299.88⋆ 334.76 538.68

MaxMaxDeg 4.00 4.00 4.00 4.00 4.00 4.00

AvgMaxDeg 3.50 3.92 3.50 3.50 3.92 3.50

AvgDeg 1.98 2.35 2.06 2.00 2.30 2.04

MaxMaxNPow 4.13 5.40 4.69 4.13 5.40 4.69

AvgMaxNPow 2.93 4.17 3.77 3.03 4.17 3.55

TotNPow 79.85 122.80 92.79 82.56 119.69 90.10

TotNPowBrdcst 66.48 118.21 83.26 70.08 114.74 79.43

TotLength 132.79 183.59 144.86 135.55 175.52 141.99

TotLPow 112.47 187.37 131.85 116.56 177.29 127.13

We then vary the number of nodes in the region from50 to 500. The transmission range of

each node is still set as250m. We plotted the performances of all structures in Figure 5. Finally,

we fix the number of nodes in the region as500 and grow the transmission range of each node

from 100m to 300m. We plotted the performances of all structures in Figure 6.

All the results show that IMRG has better performances than LMST and RNG: IMRG has the

least total link length and least total node power for broadcasting; it has the least node power

to keep the connectivity. The number of messages used for constructing IMRG is slightly more

than the number of messages used to construct LMST. The simulation results confirm all our

theoretical analysis. Remember that, in the worst case, IMRG may spendO(nβ−1) times the

total power used by the optimum broadcasting. However, our simulations show that the energy



consumption of broadcasting based on IMRG is within a small constant factor (about15% more)

of that based on the MST and is much better than that based on RNG. In summary, IMRG is the

best among all these known local structures; additionally,it can approximate MST theoretically

and be used for energy efficient broadcasting.
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Fig. 5. Results when the number of nodes in the networks are different (from50 to 500). Here the transmission

range is set as250m.

VI. CONCLUSION

We defined a sequence of low-weighted sparse structures LMSTk, and presented an efficient

method to construct them locally using onlyO(n) messages. Here a structure is called low-
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Fig. 6. Results when the transmission range are different (from100m to 300m). Here the number of nodes is500.

weighted if its total link length is within a constant factorof that of the Euclidean minimum

spanning tree. We further defined a bounded degree planar lowweighted connected structure

IMRG that can be constructed more efficiently. The total communication cost of our localized

method is at most13n. We showed that both structures are asymptotically the beststructures that

can be constructed locally for broadcasting. We conducted extensive simulations to study the

performances of our structures and compared them with previously known localized structures.

Our structures out-perform all previously known structures and structure IMRG only incurs a

small message overhead.



The constructed structures are planar, bounded degree, andlow-weighted. Liet al. [35]

recently gave anO(n log n)-time centralized algorithm to construct a bounded degree,planar,

and low-weightedspanner. However, it is still unknown how to make that a distributed algorithm

usingO(n) communications without sacrificing the spanner property. On the other hand, Liet

al. [7] showed how to construct a planar spanner with bounded degree in a localized manner

(usingO(n) messages) for unit disk graph. However, the constructed structure does not seem to

be low-weighted. It remains open how to construct a bounded degree, planar, andlow-weighted

spannerin a distributed manner using onlyO(n) communications under the local broadcasting

communication model.
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