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Abstract

In this paper, we propose a family of structures, namellgcalized minimum spanning tree (LM for
topology control and broadcasting in wireless ad hoc ndtaidVe give an efficient localized method to construct
LMST}, using onlyO(n) messages under the local-broadcast communication moelelthie signal sent by each
node will be received by all nodes within the node’s transinis range. We also analytically prove that the node
degree of the structure LMSTis at mosts, LMST,, is connected and planar, and more importantly, the totat edg
length of the LMST, is within a constant factor of that of the minimum spannirggtwvhenk > 2 (calledlow
weightedhereafter). We then propose another structure, cdtleident MST and RNG GrapiMRG), that can
be locally constructed using at mastn messages under the local broadcast communication modstl rémults
are corroborated in the simulation study. We study the perdmce of our structures in terms of the total power
consumption for broadcasting, the maximum node power ried®aintain the network connectivity. We theoret-
ically prove that our structures are asymptotically thet pessible for broadcasting among all locally constructed
structures. Our simulations show that our new structurgsestorm previous locally constructed structures in terms
of the broadcasting and power assignment for connectivity.
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|. INTRODUCTION

We consider a wireless ad hoc network composed wireless devices (calledodeshere-
after) distributed in a two-dimensional plane. Assume Hiktvireless nodes have distinctive
identities, quasi-static, and each wireless node knowgeitenetry position information either
through a low-power Global Position System (GPS) receivéhimugh some other way. More
specifically, it is enough for our protocols when each nodewksthe distance to each of its
one-hop neighbors, which can be estimated bystrength of signal\We assume that each wire-
less node has an omni-directional antenna and a singlentissisn of a node can be received
by any node within its vicinity which, under a common assumptiorthia literature, is a unit
disk centered at this node. A wireless node can receive gmalkfrom another node if it is
within the transmission range of the sender. Otherwise, toenmunicate through multi-hop
wireless links by using intermediate nodes to relay the agess Consequently, each node in
the wireless ad hoc network also acts as a router, forwardttg packets for other nodes. By
one-hop broadcasting, each nadean gather the location information of all nodes within its
transmission range. Consequently, all wireless nodeshegdefine a unit-disk graph (UDG),

which has an edgev iff the Euclidean distancguv|| is less than one unit.



A wireless ad hoc network needs some special treatmentrasiisically has its own special
characteristics and some unavoidable limitations contpai¢gh wired networks. For exam-
ple, wireless nodes are often powered by batteries only leddften have limited memories.
So wireless ad hoc networks prefer localized algorithms mer-efficient network topolo-
gies. Unlike the wired networks, a transmission by a wirelgsvice will be received by all
nodes within its vicinity. Thus, we model the communicatibaracteristics asroadcastingoy
assuming that the message sent by a nodealvilhysbe received bwll nodes within its trans-
mission range. We can utilize this broadcasting propergaie the communications needed to
send some information. Throughout this papdncal broadcasby a node means it sends the
message to all nodes within its transmission ranggphbal broadcasby a node means it tries
to send the message to all nodes in the network by the posslaigng of other nodes.

Due to the limited power and memory, a wireless node preteosity maintain the informa-
tion of a subset of neighbors it can communicate, which ikeddabpology contral In recent
years, there is a substantial amount of research on topotwgyol for wireless ad hoc networks
[1], [2], [3], [4], [5]. These algorithms are designed fofffdrent objectives: minimizing the
maximum link length while maintaining the network conneityi [3]; bounding the node de-
gree [5]; bounding the spanning ratio [1], [2]; construgtplanar spanner locally [1]. Here a
structureH is a spanner of UDG if, for any two nodes, the length of the &stipath connecting
them in H is no more than a constant factor of the length of the shept&i$t connecting them
in the original UDG. Planar structures are used by sevecallired routing algorithms [6]. In
[7], Wang and Li proposed the first localized algorithm to stonct a bounded degree planar
spanner.

Recently, Li, Hou and Sha [8] proposed a novel MST-based oafitr topology control and
broadcasting. Each nodeuses its one-hop neighbors to buildb@al minimum spanning tree
and an edge:w is kept if it belongs to this local minimum spanning tree. Yipeoved that
the final graph, calletbcal minimum spanning tre@MST), is connected, and has a bounded
degrees. However,we will show that LMST is not a low weight structwaned the broadcasting
based on it can still consume pow@(n?) times of the minimum in the worst case.

Minimum-energy broadcast/multicast routing in ad hoc meking environment has been

addressed in [9], [10]. Three centralized greedy heusstlgorithms were presented in [10]:



MST (minimum spanning tree), SPT (shortest-path tree), Biftd(broadcasting incremental
power). Wanet al. [11] showed that the approximation ratio of the MST-basepraach is

betweert and12 by assuming that the power needed to support auinis ||uv||®, where||uw||

is the Euclidean distance betweerandv, [ is a real constant betwe@nand5 dependent on
the wireless transmission environment. The best disethatgorithm [12] can compute MST
in O(n) rounds using)(m + nlogn) communications for a general graph withedges and
n nodes. Obviously, MST cannot be constructed in a localizadnr, i.e., each node cannot
determine which edge is in the defined structure by purelggutie information of the nodes
within some constant hops. Thus, several localized stresftsuch as RNG [13], have been
used for broadcasting. As shown in [14], the total energyluseRNG based approach could
be abouD(n”) times optimum.

The main contributions of this paper are as follows. Firstly propose a family of structures,
namely,k-localized minimum spanning tree (LM$g)Ifor topology control and broadcasting in
wireless ad hoc networks. We analytically prove that theendelgree of the structure LM$T
is at most, LMST,, is connected and planar, and more importantly, the totas éelggth of the
LMST,, is within a constant factor of that of the minimum spanniregtwhent > 2. We give
an efficient localized method to construct the LM31sing onlyO(n) messages under a local
broadcast communication model, i.e., the message sentdyeaisireceived by all nodes within
its transmission range. Secondly, we propose anothertstajcalledincident MST and RNG
Graph (IMRG), that can be constructed using at mb%t messages under the local broadcast
communication model. Every node only uses its partial twp-mformation to construct the
structure IMRG. Notice that it was shown in [14] that some4wap information is necessary
to construct any low-weighted structure for UDG. Thirdlye wtudy the application of these
structures for efficient broadcasting in wireless ad hoavaets. Notice that Waret al. [11]
proved that the broadcasting based on the MST consumesyemigngn a constant factor of the
optimum whenonly consider the energy consumed by the senders. However, ¢tiqgarathe
receiver node also consumes energy to receive the sigriaisipaper, we adopt the later model
and assume that the energy consumed by the receiver noderiere tharthe energy consumed
by the sender. We then prove that the approximation ratin@MST-based approach is still

a constant when this more practical energy model is usedceSins expensive to construct



MST in a distributed way, we will use our newly proposed dmues LMST, and IMRG to
approximate it. Although a low-weighted structure cann@mgntee that the broadcasting based
on it consumes energy within a constant factor of the optinnuithe worst case, the energy
consumptions using our new structures LMS% > 2), and IMRG are withinO(n’~1) of the
optimum theoretically in the worst case. This improves ttejpusly known “lightest” structure
RNG and LMST byO(n) factor. We show that these structures are asymptoticaliynojn
for broadcasting among all locally constructed structursst results are corroborated in the
simulation study. Our extensive simulations show that thergy consumption of broadcasting
based on these structures is within a small constant fattbabbased on the MST for randomly
deployed wireless networks.

The rest of the paper is organized as follows. In Section #,review the related works
on network topology control and minimum energy broadcagstiin Section Ill, we present
our communication and computation efficient localized rodththat can construct connected,
planar, bounded degree, low-weighted structures LM&Td IMRG. The total communication
costs of our methods ar@(n) (at most13n for IMRG). We then study the applications of
our structures in broadcasting and topology control by canimg the performances of these
structures with previously best-known structures in &ctl. We conclude our paper in Section
VI.

Il. RELATED WORK

Before reviewing the related works, we first introduce therfal definition oflow weight
Given a geometric structui@ over a set of points, let(G) be the total length of the links in
G andws(G) = > .cc lluwv|?. Then, a structur€ is calledlow weightif w(G) is within a
constant factor ob (M ST).

A. Topology Control

Recently, topology control for wireless ad hoc networks ditaismcted considerable attentions
[3], [15], [17], [18], [19], [20]. Rajaraman [21] conductath excellent survey. Several geometri-
cal structures have been used in topology control, and besithg in wireless ad hoc networks,
whose definitions are reviewed as follows.

A disk centered at a point with a radius-, denoted bylisk(z, r), is the set of points whose



distance tac is at mostr. Let lune(u, v) defined by two points andv be the intersection of two
disks with radiug|uv|| and centered at andv respectively, i.e.lune(u, v) = disk(u, ||uv||) N
disk(v, ||uv||). Letdisk(u,v) be the disk with diameterv. Therelative neighborhood graph
[22], denoted by RNG, consists of all edgessuch that thénterior of lune(u, v) contains no
nodew € V. TheGabriel graph(GG) [23] contains an edgev if and only if disk(u, v) contains
no other nodew inside. It is easy to show that RNG is a subgraph of the Gagregbh. For
unit disk graph, the relative neighborhood graph and the@lajraph only contain the edges in
UDG and satisfying the respective definitions.

Notice that, traditionally, the relative neighborhoodrawvill always select an edgey even
if there is some node on the boundarylefie(u, v). Thus, RNG may have unbounded node
degree, e.g., considering— 1 points equally distributed on the circle centered atrittepoint
v, the degree of) is n — 1. Notice that for the sake of lowing the weight of a structuhe
structure should contain as less edges as possible witheakibhg the connectivity. Li [14] then
extended the traditional definition of RNG as follows.

Themodified relative neighborhood graglnsists of all edgesv such that (1) thenterior of
lune(u, v) contains no pointv € V" and, (2) there is no point € V with ID(w) < ID(v) on
the boundary ofune(u, v) and||wv|| < |Juv||, and (3) there is no point € V' with I D(w) <
ID(u) on the boundary ofune(u, v) and||wu|| < ||uv||, and (4) there is no point € V on
the boundary ofune(u, v) with ID(w) < ID(u), ID(w) < ID(v), and|wul|| = ||uv||. See
Figure 1 for anillustration when an edge is notincluded in the modified relative neighborhood

graph. Li called such structure RNG’. Obviously, RNG’ is d&grtaph of RNG and still can be
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Fig. 1. Four cases when edges are not in the modified RNG.

constructed using messages. It was proved in [14] that RNG’ has a maximum nodgesdé
and still contains a MST as a subgraph.
The Yao graphwith an integer parametér > 6, denoted bw_(fk, is defined as follows. At

each node:, anyk equally-separated rays originateduatefinek cones. In each cone, choose



the shortest edgev, if there is any, and add a directed liak. Ties are broken arbitrarily or by
the smallest ID. The resulting directed graph is called the §raph. Some researchers used a
similar construction namegtgraph [24]. Recently, the Yao structure has been re-deseavby
several researchers for topology control in wireless adnedworks of directional antennas.

Li et al. [25] extended the definitions of these structures on top gfgaven graphGG. Wat-
tenhoferet al. [20] also proposed a two-phased approach that consistsariation of the Yao
graph followed by a variation of the Gabriel graph.

Li et al. [18] proposed a structure that is similar to the Yao struetor topology control.
Each node: finds a powep, ., such that in every cone of degreesurrounding., there is some
node thatu can reach with powep, ,. Notice that the number of cones to be considered in
the traditional Yao structure is a const@ntHowever, unlike the Yao structure, for each node
u, the number of cones needed to be considered in the methpdgwd in [18] is aboutn,
where each node could contribute two cones on both side of segmeantThen the grapld-,
contains all edgesv such that: can communicate with using powemp, .. They proved that, if
a < %’r and the UDG is connected, théh, is a connected graph. On the other hand, if 2T,
they showed that the connectivity Gf, is not guaranteed by giving some counter-example [18].
Unlike the Yao structure, the final topology, is not necessarily a bounded degree graph.

Li et al.[25] also proposed another structure caMawYao graphf—}}k by applying areverse
Yao structure orY_ka. They proved that the directed gra]ff_h}k is strongly connected if UDG
is connected and > 6. In [5], Wanget al. considered another undirected structure, called
symmetric Yao graph’S,. An edgeuw is selected if and only if both directed edgesanduvt
are in theﬁk. Then it is obvious that its maximum node degreé.isThey showed that the
graphYsS, is strongly connected if UDG is connected ant 6.

Recently, Li, Hou and Sha [8] proposed an MST-based methotbfimlogy control. Each
nodeu first collects its one-hop neighboh§ (u). Nodeu then computes its minimum spanning
tree M ST(N,(u)) of the induced unit disk graph on its one-hop neighliéy&:). Nodeu keeps
a directed edgew if and only if uv is an edge iMV/ ST (N, (u)). They called the union of all
directed edges thiecal minimum spanning treelenoted byG,. If only symmetric edges are
kept, then the graph is called,, i.e., it has an edgev iff both directed edge:v and directed

edgevu exist. If ignoring the directions of the edgesdh, the graph is calleds{, i.e., it has



an edgeuw iff either directed edgewv or directed edgew exists. They proved that the graph is
connected, and has bounded degree

Here, we prove that grapfi, is also planar. For the sake of contradiction, assumedijat
is not planar and two edges andzxy intersect each other. Assume that the clockwise order
of these four nodes arg y, v, x. Obviously, one of the four anglesuxv, Zzvy, Zvyu, and
Zyux is at leastr /2. Without loss of generality, assume thatzv > 7/2. Then, edgew is the
longest edge among triangfeuvz. Thus, in the local minimum spanning trééST' (N, (u)),
edgeuwv cannot appear since there is already a path whose edges are all shorter than
Similarly, graphG{ is a planar graph (by replacing the undirected edges witlctiid edges in
the above proof).

We then construct an example such that the structGigsand G are not low-weighted.
Figure 2 illustrates such an example. Since it uses onlyhapeinformation, at every node, the
algorithm only knows that there are a sequence of nodes\edattibuted with small separation,
and another node which is one-unit away from current nodés dasy to show that the final
structureGy is exactly illustrated in Figure 2. The minimum spanningtvéll only use one
horizontal link while LMST has:/2 horizontal links. Itis easy to show that the total edge langt
of Gy is O(n) times of that of MST for this example.

Fig. 2. G could consumes arbitrarily large power for broadcastinggared with the optimum.

Inspired by the local minimum spanning tree structure in [B]this paper, we propose a
sequence of structures callédocal minimum spanning tree (LMSJ. To improve the com-
munication cost, we further propose another structuréed@RG. Our structures have an ad-
ditional property: they are low-weighted. We also show thatstructures are always subgraphs
of the structures?; andG, constructed in [8]. Locally constructed low-weighted sture was

first proposed by us in [14]. We will show that our new struetiare subgraphs of that structure



and our structures have less computational cost. We do relyraain theorem proved in [14]

to show that our structures are low-weighted.

B. Power Assignment

A transmission power assignment on the verticeg iis a function? from V' into real num-
bers representing the node power. Tirected(or calledasymmetridy some researchersym-
munication graphdenoted bﬁp, induced by a transmission power assignnins a directed
graph withV as its vertices and has a directed edgg if and only if ||v;v;||? < P(v;). The
undirected(or calledsymmetridy some researchersmmunication graptdenoted by p, in-
duced by a transmission power assignnfens a undirected graph witi as its vertices and has
an edgey;v; if and only if ||v;v,]|? < P(v;) and||vv;]|? < P(v;). Given a graphd = (V, E),
we say the power assignmeftis induced by, denoted byPy, if P(v) = max, u)er [|vul]”.

In other words, the power assigned to a nods the largest power needed to reach all neigh-
bors ofv in H. The maximum-cosfandtotal-cos) of a transmission power assignménts
defined asnc(P) = max,,cy P(v;) (@ndsc(P) = >

assignment (andmin-total assignment) problem is to find a transmission power assignment

wev P(vi) respectively). Themin-max
P whose costnc(P) (andsc(P) respectively) is minimized while the induced communicatio
graph is connected.

Let EMST(/) be the Euclidean minimum spanning tree over a point/sédoth [3] and [26]
use the power assignment induced by EMB) (It was proved in [3] that power assignment
induced by EMSTY) is optimum for themin-max assignment problem. Using the fact that
RNG, GG andy' G, haveO(n) edges and contain EMST as a subgrapim-max assignment
problem can be solved i®(nlogn) time complexity by a centralized algorithm and solved
usingO(n logn) messages in a distributed manner.

Kiroustiset al. [27] first proved that thenin-total assignment problem isNP-hardwhen the
mobile nodes are deployed in a three-dimensional spacemplsR-approximation algorithm
based on the Euclidean minimum spanning tree was also gij&i]. The algorithm guarantees
the same approximation ratio in any dimensions. Clengdrdl. [28], [29] proved that thenin-
total assignment problem is still NP-hard when nodes are deployed in a two dsimaal space.

For the symmetric communication, several methods alsoagiee a good performance. It

is easy to show that the minimum spanning tree method stidggthe optimum solution for



the min-max assignment and a2-approximation for themin-total assignment. Recently,
Calinescuet al. [30] gave a method that achieves better approximation @t'my using idea
from the minimum Steiner tree. Like the minimum spanning treethod, it works for any
power definition.

Since it is expensive to construct the Euclidean MST in aitisied manner, we would like
to approximate the Euclidean MST efficiently in a distriltitgay. We thus will study the
performance of our structures for power assignment. Nokiaeour structures do approximate
the total edge length of the Euclidean minimum spanning té@er simulations show that our
locally constructed structures outperform the previouscstires in terms of both the maximum

assigned power and the total assigned power while guartirde®twork connectivity.

C. Minimum Energy Broadcasting

Minimum-energy broadcast/multicast routing in a simpldad networking environment has
been addressed in [9], [10]. Any broadcast routing is vieagdn arborescence (a directed tree)
T, rooted at the source node of the broadcasting, which splamsdes. LetPr (v) denote the
transmission power of the noderequired by the tre&. For any leaf node of T, Pr (v) =
0. For any internal node of 7', let Pr (v) denote the minimum power needed to reach its
farthest children irl". The total energy required B is ) _, Pr (v). Itis known [31] that
the minimum-energy broadcast routing problem cannot beegoin polynomial time ifP #
NP. Three greedy heuristics were proposed in [10] for the mimmvenergy broadcast routing
problem: MST, SPT, and BIP. By assuming that the power nesapport a linkuv is ||uv||°.

It was proved in [11] that, for any point sét in the plane, the total energy required by any
broadcasting amony is at leastuz(M ST)/C,yst, Where6 < C,,; < 12 is a constant related
to the Euclidean minimum spanning tree. In addition, they} Ehowed that the approximation
ratio of MST based approach is betwegmand 12 and the approximation ratio of BIP based
approach is betwee@ and12; on the other hand, the approximation ratio of SPT is at Iast
wheren is the number of nodes.

Unfortunately, all these structures cannot be construicteally. Thus, several locally con-
structed structures have been proposed for broadcastiwgetess ad hoc networks, such as
RNG [13]. The ratio of the weight in RNG over the weight of MS®utd be O(n) for n

points set [25]. By assuming that the power needed to supplatk uv is ||uv||®, an example




was given in [14] to show that the total energy used by brostitoga on RNG could be about
O(n?) times of the minimum-energy used by an optimum method. Theesexample can be
used to show that the structut® [8] could consumes powed(n”) times of the optimum for
broadcasting. On the other hand, we will prove that/ M RG) < O(n°~!) - ws(MST), and
ws(LMST},) < O(nP~1) - wg(MST) for k > 2. In other words, the power consumption for
broadcasting based on our newly proposed structures aréxgnP—!) times of the optimum in
the worst case, which improves the previously known stmecRNG byO(n) factor. When we

assume that the receivers do consume power for receivinglsigl the statements still hold.

[1l. k-LOCAL MINIMUM SPANNING TREE (LMST,)

In this section, we define a sequence of structures, namdbgal minimum spanning tree
(LMST,,), which can be constructed locally using oiilyn) messages. All these structures are

connected, low-weighted (whén> 2), planar and have a bounded degree.

A. k-local Minimum Spanning Tree (LM@)I

We define a sequence of structukecal minimum spanning tree (LMST as follows. Let
Ni(u) be the set of nodes that are withiirhops of node: in UDG. Here N, (u) includes node
u itself for the simplicity of notation later.

Definition 1: The k-local minimum spanning tree (LMSJ contains adirected edgeud if
edgeuv belongs toM ST (Ny(u)). We further define two undirected variations LMSTand
LMST} . Structure LMST contains an edgev if both directed edg@w and directed edgeu
belong to LMST,. Structure LMST contains an edgev if either ut or vu belongs to LMST.

Notice that one way to construct MST is to add edges in therafltheir lengths if it does
not create a cycle with previously added edges. If therevaveetiges with the same length, we
break the tie by comparing the larger ID of the two end-pdimén comparing the smaller ID of
the two-end points. We label an edgeby (||uv||, max(ID(u), ID(v)), min(ID(u), [D(v))),
and an edgew is ordered before an edge if the lexicographic order of the label ab is less
than that ofry. In this paper, we only consider the minimum spanning treestacted using
the above edge ordering.

Before we present our communication efficient method to waasthem, we first study their

properties. First of all, it is easy to prove the following nebone property of the structures.



Lemma 1:LM STy € LMSTy, LMST,,, € LMST,",andLM ST, ,, € LMST, .

Lemma 2:LMST; is a subgraph of RNG, so does LMST
Proof. We prove it by contradiction. Assume that a nadelds an edgev ¢ RNG to LMST,.
Since edgew ¢ RNG, there is a nodev inside the lune defined by segment. Remember
that the minimum spanning tree of the node Setu) can be constructed by adding edges in
ascending order whenever it does not create a cycle withqusly added edges. Clearly, when
we process the edge, there is already a path connectim@gndw and a path connecting and
v sinceuw andwwv are not longer thanv. It implies that node: cannot add the edgev to its
MST(Nk(u)). Consequently, both graphs LMSBnd LMST, are subgraphs of RNG.

Actually we can enhance Lemma 2 by showing that LNIS$ a subgraph of RNG'. The
above lemma immediately implies that the structures LMSMST, and LMST,_ are planar.
Remember that-local minimum spanning tree LMSTis proposed to approximate Euclidean
minimum spanning tree MST. We then show that MST is a subgodpMST,. for anyk.

Lemma 3:Euclidean minimum spanning tree MST is a subgraph of LMf®F anyk.

Proof. Consider any edges from MST. Assume that we add edges in ascending order of their
lengths to MST. Clearly, when we decide whether to add the edgthere is no path connecting

u andv using edges added befoe. Obviously, this property still holds when nodedecide
whether to add edgev to the minimum spanning tre&/ ST (N, (u)) of its k-hop neighbors
Ni(u). It implies that edge:v belongs toM ST (Ni(u)), and M ST (Ni(v)). Consequently,
MST is a subgraph of all structures LMSTLMST,” and LMST, for anyk.

The above lemma immediately implies that all thédecalized minimum spanning trees are
connected when the original communication graph UDG is eoted.

Since every node in the Euclidean minimum spanning tree ltegeee at mod, the out-
degree of every node in LMST, is at most6. Consequently, the degree of every nadm
LMST,, is although at modi since we keep an edge if both directed edgess andvi belong
to LMST,. We then show that the degree of every node in LM$5also at mos6.

Lemma 4:Each node in LMST has at mos6 neighbors in LMST .

Proof. We prove it by contradiction. Assume that one notlas more thaf total in-neighbors
and out-neighbors. From the pigeonhole principle, therstrhave two neighbors, say and

ug, Of v such thatZu,vus < 7/3. There are three cases: 1) bathandu, are in-neighbors; 2)



bothu; andu, are out-neighbors; 3) one is out-neighbor and one is inhixeg

We first consider the case that bathandwu, are in-neighbors. Obviously,u,vu, cannot
be the largest angle in the trianglevu,. Assume that‘vu,u, is the largest, i.eysv is the
longest edge in triangle,vu,. Thus, nodeu; cannot havesyv in its minimum spanning tree
M ST(Ny(ug)) since there is already a path (using nages N, (u5)) connecting:; andv when
we try to add edge,v. Itis a contradiction to the fact that, is an in-coming neighbor af.

Similarly, we can prove that the other two cases are also $sipte. This finishes the proofg

The above lemma immediately implies that every node in gdMST, and LMST, has
a degree at mogt. To show that the final structures LMGTLMST; and LMST, are low
weighted wherk > 2, we first review a result proved in [14].

Lemma 5[14]) A subgraphG of RNG’ is low-weighted if for any two edgesv € G and
xy € G, neitheruv nor zy is the longest edge of the quadrilateral,z.

We then prove the main result of this paper.

Lemma 6:All structures LMS'I,j are low weighted wheh > 2.
Proof. Since we showed that LM$Tis a subgraph of modified RNG for arky we will only
need prove that there are no two edgese LM ST, andzy € LMST,", such that one of
them is the longest edge of the quadrilateralz. We prove this by contradiction. Assume
that we have two edgesy € LM ST," andzy € LMST,, anduv is the longest edge of the
quadrilaterakiwyz. Clearly,x, v andy are at mosg-hops away fromu in the unit disk graph.
Then when we decide whether to add edgeo the minimum spanning tre®/ S7T'( Ny (u)) of
the k-hop neighborsVy (u) for k£ > 2, edgesru, zy, andyv have already been processed, i.e.,
there are paths using shorter edges to conméatz, x to y, andy to v. Thus, the edgev will
not be added td/ST (N, (u)) whenk > 2. Itis a contradiction tawv € LM ST,". This finishes

the proof.

B. Efficient Construction of-local Minimum Spanning Tree (LM@)T

We then discuss in detail how to construct théocal Minimum Spanning Tree (LMS])
efficiently, i.e., using onlyO(n) messages under the local broadcasting model. Since LMST
is already a low weighted structure, we will only describe method for constructing LMS;T

although the same method works for general LMST



Algorithm 1: Construct LM ST; Locally
1. Every nodeu collects the location information a¥,(u) based on an efficient method de-
scribed in [32] (reviewed in detail later).

2. Every nodeu computes the Euclidean minimum spanning thé&7'(Ny(u)) of its 2-hop
neighborsV,(u), includingu itself.

3. A nodeu proposes to add a directed edgeif uv € M ST (Ny(u)) and||uv|| < 1.

4. If LM ST, is needed, node keeps an edgev when eitheru or v proposed to add it. If
LMST; is needed, node keeps an edgev when bothu andv proposed to add it.

We then review the communication efficient method proposef®2] to collect Ny(u) for
every nodeu when the geometry information is known. Computing the seit-bbp neighbors
with O(n) messages is trivial: every node broadcasts a message ammgits ID. Computing
the 2-hop neighborhood is not trivial, as the UDG can be dehke approach in [32] is based
on the specific connected dominating set introduced in [8Bjch again is based on a max-
imal independent set (MIS). In the algorithm, each node ttsesdjacent node(s) in the MIS
to broadcast over a larger area relevant information. histeto the information about other
nodes broadcast by the MIS nodes enables a node to compgthats neighborhood. The al-
gorithm uses heavily the nodes in the connected dominaéhga example in [32] shows that
overloading certain nodes might be unavoidable.

We start from the moment the virtual backbone is alreadytcoc®d, and every node knows
the ID and the position of its neighbors. The idea of the algoris for every node to efficiently
announce its ID and position to a subset of nodes which irduts 2-hop neighbors. The
responsibility for announcing the ID and position of a nedgtaken by the MIS nodes adjacent
to v. Each such MIS node assembles a packet contairiD; positiory counter-, with the
ID and position ofv, and a counter variable being setXoThe MIS node then broadcasts the
packet.

A connector node is used to establish a link in between svairg of virtually-adjacent MIS
nodes, and will not retransmit packets which do not travélatween these pairs of MIS nodes.
Here two MIS nodes are said to be virtually-adjacent if theywvaithin 2 or 3 hops of each other.
The connector node will rebroadcast packets with nonzetmteo originated by one of the

nodes in a pair of virtually-adjacent MIS nodes, thus malgage the packet advances towards



the other MIS node in the pair. Recall that the path in betwaepair of virtually-adjacent MIS
nodes has one or two connector nodes.

When receiving a packet of typelD; positiony counter-, an MIS node checks whether this
is the first message with this ID, and if yes decreases theteouariable and rebroadcasts the
packet. A node listens to the packets broadcast by all theecadfj MIS nodes and, using its
internal list of 1-hop neighbors, checks if the node annedrin the packet is a 2-hop neighbor
or not - thus constructing the list of 2-hop neighbors.

The above approach can be extended to findkthep neighbors of every node using total
O(n) communications: the initial counter is set#o The total communications used by this

approach is at mogbk + 3)? - n after a backbone based on MIS is constructed [4].

V. STRUCTURES WITHIMPROVED COMMUNICATION COST

In the previous section, we defined a sequence of structbegsate guaranteed to be low
weighted and can be constructed in a localized manner usilyg(®n) messages. However,
the hidden constant in the communication cost could be laltp@ugh it is a constant. In this
section, we define several structures that can be conddrustag at most3n messages. All

these structures are connected, low-weighted, boundede&lgganar graphs.

A. Sparse Structure From RNG’

In [14], Li gave the first localized method to construct astuwe LRNG with weight) (w (M ST))
using totalO(n) local-broadcast messages, but the computation at eachisiedpensive. For
the completeness of presentation, we first review the lpedlalgorithm given in [14] that con-

structs a low-weighted structure using only some two hofesnmation.

Algorithm 2: [14] Construct Low Weighted Sparse Structure LRNG
1. All nodes together construct the graph RNG’ in a localizehner.
2. Each node: locally broadcasts its incident edges in RNG’ to its one-hejghbors. Node
listens to the messages from its one-hop neighbors.
3. Assume node received a message informing the existence of an egdeom its neighbor
x. For each edgev in RNG’, if v is the longest amongu, zy, ux, andvy, nodeu removes
the edgeuv. Ties are broken by the label of the edges. Here we assumethais the convex

hull of u, v, z, andy.



4. Let LRNG denote the final structure formed by all remairedges in RNG’.

Obviously, if an edgeuw is kept by node, then it is also kept by node i.e., the edges kept
by all nodes are symmetric. It was shown in [14] that the $tmecLRNG has total edge length
O(w(MST)).

Clearly, the communication cost of Algorithm 2 is at m@st initially each node spends one
message to tell its one-hop neighbors its position infolmmathen each nodetells its one-hop
neighbors all its incident edges € RNG' (there are at most tot#éhn such messages since
RNG' has at mos8n edges). The computational cost of Algorithm 2 could be hiiglees for
each linkuv € RNG’, nodeu has to test whether there is an edgec RNG' andz € Ny (u)
such thatwv is the longest amongy, xy, ux, andvy. We continue to present our new algorithms
that improve the computational complexity of each node eiiill maintain low communication

costs.

B. Incident MST and RNG Graph (IMRG)

Although the structure M ST,  and LM ST, have several nice properties such as bounded
degree, planar, and low-weighted, the communication dosbmstructing them could be very
large to save the computational cost of each node compatédswucture LRNG. The large
communication costs are from collecting the two hop neigilioformation N, (u) for each
nodeu, although the total communication of the protocol desatiime[32] is O(n), the hidden
constant is large.

We could improve the communication cost by using a subset@hiop information without

sacrificing any properties. For any nodewe define the partial two hop afas
NING (4) = {w | vw € RNG" andv € Ny (u)} U Ny (u).

Definition 2: The Incident MST and RNG Graph (IMRG) containdieectededgeu? if edge
uv belongs toM ST(NFNE (u)), the Euclidean minimum spanning tree of nodé8V%" (u).
We further define two undirected variations IMRGand IMRG". Structure IMRG contains
an edgeuv if both directed edg@v and directed edgeu belong to IMRG. Structure IMRG
contains an edgev if either v or vt belongs to IMRG.

We then describe a communication efficient algorithm todthiese structures as follows.



Algorithm 3: Construct Low Weighted Structure IMRG
1. Each node tells its position information to its one-hop neighbd¢g«) using a local broad-
cast model. All nodes together construct the graph RNG’ ocallzed manner.
2. Each node: locally broadcasts its incident edges in RNG'’ to its one-hefghbors. Node:
listens to the messages from its one-hop neighbors.
3. Each node collectsN/*V¢' (4) and computes the Euclidean minimum spanning tree, denoted
by M ST (NN (u)), of all nodesNFN (), includingu itself.
4. Nodeu proposes to add an edge € MST(NFN (u)) if |luv|| < 1.
5. If IMRG™ is needed, node keeps an edgev if both nodeu and nodev proposed to add
edgeuv. If IMRG™ is needed, node keeps an edgev if either nodeu or nodev proposed to

add edgew.

As will seen later (Lemma 7), the constructed structuresabgraphs of the modified RNG
graph. Thus, these structures are planar and have at3mestges. In addition, the total com-
munication cost of Algorithm 3 is at mo$8n when either structure IMRG or IMRGT is
needed; the total communication cost is at mosif the directed structure IMRG is needed.
We first show that these two structures IMR@nd IMRG™ are still planar, bounded degree,
and low-weighted.

Lemma 7:Structure IMRG is a subgraph of modified RNG.

Proof. Consider any edgev ¢ RNG'. We show that node will not proposeuv. From
the definition of RNG’, we know that there is a nodeinside the lune defined by segment
uv and edgeuw andwv has a label less thamv. Considering the process of constructing
MST(NENG (u)), when we decide whether to add edgeafter processing edges with smaller
labels, there is already a path connectingndw, and a path connecting andv. Thus, edge
uv cannot be added by nodeto M ST (NJNE (u)). This finishes the proof.

The above lemma immediately implies that all structures @tRind IMRG™ are planar, and
have a bounded node degree at nsiVe then show that IMRG and IMRG™ are connected
by proving the following lemma.

Lemma 8:MST is a subgraph of IMRG and IMRG .

Proof. We prove this by induction on the length of the edges\fMST.
Consider the shortest edge in the original unit disk graph. Clearly, the edge belongs to



MST, anduv belongs taV/ ST (NN (u)) andM ST (NFN (v)). Thus,uv belongs to IMRG.
Assume that the firstth shortest edges from MST are in IMRGThen consider thé: + 1)th
shortest edgev from MST. For the sake of contradiction, assume that nodemoves edgev
sinceuv ¢ MST(NINE (u)). Consequently, there is a path in the unit disk graph formed o
NENG' (1) connectingy andv using edges with length at mdsto|| (ties are broken by rank).
It is a contradiction to the fact thatv belongs to MST. Thus, edgev is also kept IMRG.
Therefore, MST is a subgraph of IMRGand MST is a subgraph of IMRG

We then show that the structures IMR@nd IMRG" are low-weighted.

Lemma 9:The structures IMRG and IMRG' are low-weighted.
Proof. The proofis similar to the proof that LM% low weighted. We can show that there are
no two edgesv andxy from IMRG such that one of them is the longest edge in the glaaeiral
uvyz, Which can be proved easily by contradiction. Notice thatveady proved that IMRG

and IMRG" are subgraphs of RNG'. Thus, we can use Lemma 5.

We then summarize the properties of the structure IMRG bydhewing theorem.

Theorem 10:Algorithm 3 constructs structures IMRGand/or IMRG" using at mosti3n
messages. The structures IMR@Gr IMRG™ are connected, planar, bounded degree (at )pst
and low-weighted.

It is easy to show that the structure LMSIE always a subgraph of IMRG since IMRG uses
only a partial information to construct the minimum spamniree. If an edgew is removed
from MST(NFNS (u)), it means that there is a path connectingndv using shorter edges
when we processv. By a simple induction, we can show that there is also a patinecting
u andv when we processv in constructingl ST'(N»(u)). We further show that the structure
IMRG is a subgraph of LMST. Consider any directed edge that is not proposed by node
in constructingM ST (N, (u)). It means that there is a path connectingndv in the induced
unit disk graph onV;(u), whose edges have length less thjam|. Clearly, this path is still
in the induced unit disk graph oNS*V¢ (u) since Ny (u) € NIN¢(u). Consequently, edge
uv cannot appear in the Euclidean minimum spanning Me&7'( NV (u)). It then implies
that the structure IMRG is always a subgraph of LMSTonsequently, the structure IMRG
is always a subgraph of the structu#g and the structure IMRGis always a subgraph of the

structureGy, constructed in [8].



Lemma 11:Structure IMRG is a subgraph of LMSBnd a supergraph of LMST

C. Fault-Tolerance

We have presented algorithms to build structures that areemied, planar, low-weighted and
have a bounded node degree. However, none of these stuaneréault-tolerant in the worst
case. Here we say that a structure is node fault-tolerahgigtaph is still connected when one
node breaks down. In [34], lat al. discussed how to build /fault-tolerant structure such that
each node has a degree at nfi¥stind is a spanner. In this subsection, we present a method that
transforms any structure into a fault-tolerant structyra@timost doubling the total edge length.
Notice that also this method has been used previously faowspurposes [15], [16], we will
show that it keeps the low-weight and bounded degree pieperAssume that we are given a

topology structuré that is connected.

Algorithm 4: Transform Structuré; to Fault-Tolerant
1. Each node: collects all incident edgesv € G.
2. Nodeu sorts all its incident neighbors frotd in a clockwise order and let, v, - - -, vy be its
neighbors. Node informs nodey; to add linksv;_,v; andv;v; ;. Herevy = vy anduvgy 1 = v;.

Let F'(G) be the final structure formed by all edges, including the edgen G.

Lemma 12:If structureG has bounded degrek, then graph?’(G) has degree at mo3\.
Proof. Consider any node. Notice that, only the neighbors of nodgcan add edges;_;v;
andwv;v;,; incident onv;. Nodew; has at mostA neighbors inG. Thus, there are at mo3n\
newly added edges to node Considering the previous incident edges (at mbktthe total

number of edges incident anis at mosBA.

Lemma 13:If structureG has low weight, then graph(G) has low weight.
Proof. We show that/(F(G)) < 3w(G). Consider any node and the added edgesv; ;.
v | < Juvll + uvial|. Thus, S0, [[vivial| < 2 55, [|uvi]. Clearly,w(F(G))
is at mostu(G) plus the summation of all newly added edges ,;, which is at mostw(G).
Thus,w(F(G)) < 3w(G).

Clearly,

Lemma 14:Structurel'(G) is fault-tolerant.
Proof. Consider any path that uses nadend assume that nodebreaks down. Assume that

v;u anduv; are the two links in that path. Then we can use the path, - - - v; to connect;



andv;. Thus, there is still another path connecting the sourcetl@darget without node.

This finishes the proof thdt(G) is fault-tolerant.

It is not difficult to show that the total communications odrisforming a structure into a
fault-tolerant one uses messages at m2ast wherem is the number of edges in the original
structureG. Since the structures discussed in this paper all have at 3nosdges, the total
communication cost of this transforming is at mést The price of this transforming is that the
new structureé”' () is not guaranteed to be a planar graph even if the originghgais planar.

Lemma 15:Structures F(LMST) and F(IMRG) have bounded node degree at ni®8shave
total edge length at mos¥(w(EMST)), are connected, fault-tolerant, and can be constructed
usingO(n) messages under local broadcast communication model.t@teue(IMRG) can be
constructed using at mosn messages. Each of the messages has athast: bits.

Notice that, here we implicitly assumed that the maximumgnaission power of each node
can support the additional links added by Algorithm 4. Iniidd, instead of connecting the
neighbors of a node in a clockwise order, we can connect the neighbors of each moding
the minimum spanning tree of these nodes, which will furthesrease the total edge length of

the final structure.

D. Impossibility Results

Power assignment and topology control have been well siud@ently by various researchers.
Although most questions can be solved exactly or approxachatithin a constant factor using
a centralized approach, it is still unknown whether we cdwesor approximate some questions
using localized approaches. For example, using centdaliethods, we can minimize the max-
imum transmission power while the resulting network togglbas some properties that can be
tested in polynomial time. Such property includes the nétvi® connected, or the network is
k-connected, or the network topology is a spanner of themalgiommunication graph UDG. In
addition, using centralized methods, we can approxima&eninimum total transmission power
of all nodes within a constant factor, while the resultingvak is connected, dt-connected, or
consumes the minimum energy for broadcasting. Howevetraleaed methods are expensive
to implement in wireless ad hoc networks due to their possitdssive communications. Thus,

it is natural to ask what kind of questions we can approximéthin a constant factor using



localized approaches, and what kind of questions we cannot.

We have shown that we can construct a bounded degree plaaramesp or a bounded de-
gree planar low-weighted structure, or a bounded degfeilt tolerant spanner, or a bounded
degree fault tolerant low-weighted structure, in a loadimanner using onlg(n) messages.
In the following, we will show that several questions in ié®s ad hoc networks cannot be
approximated within a constant factor in a localized mamel.

The first such example is threin-max assignment problem. It was proved in [3] that the
longest edge of the Euclidean minimum spanning tree EMJ 1§ always the optimum solution
to themin-max assignment problem. Since itis communication expensive to construsiivh
a distributed manner, we would like to know whether we carstroict a structure in a localized
manner such that the longest edge of this structure is witlionstant factor of that of MST. We
show by example that therem® suchdeterministidocalized algorithm unfortunately. Assume
that there is such a deterministic localized algoritdnthat uses:-hop information. Figure 3
illustrates an example that algorithihcannot approximate the longest edge of the MST within
a constant factor. In the exampléyx|| > &k and||uv|| = 1. Then algorithmA will have the

R

(a) (b)
Fig. 3. No localized algorithm approximates the minimumtaf tnaximum node power while the resulting struc-

ture is connected.

same information at the nodefor both configurations illustrated in Figure 3 (a) and (b).4l
decides to keep edge, then the longest edge kept Bycould be arbitrarily larger than that of
MST for configuration (a). 1{4 decides not to keep edge, then the structure constructed by
A is not connected for configuration (b).

Figure 3 also shows that thererie deterministic localized algorithm that can find a structure

that approximates the total energy consumption of broaithgpwithin a constant factérof the

"We actually can show that no deterministic localized alyamican find a structure such that the energy consumed by-broad



optimum, or that approximates the total node power withiroastant factor of the optimum
while the network topology is connected. Similarly, we caow that there is10 deterministic
localized algorithm that can find a structure minimizing tbial node power while the structure

is node fault-tolerant.

V. APPLICATIONS OFOUR STRUCTURES INBROADCASTING AND TOPOLOGY CONTROL

After we proved some properties of our structures, we thedyshow our structures can be
used to improve the performances of broadcasting and tgpaontrol compared with some

previously developed structures.

A. Worst Case Performances

We first assume that the energy needed to support the comationibetween a linkv is
|luv||®. Li proved in [14] that, if H is a low-weighted structure, thens(H) < O(n°~1) -
ws(MST). Herews(G) = Y, luv]|. Itis easy to show that the total power consumption
of broadcasting based on any connected struadtlie at mostwg(H). LetT C H be the tree
used for broadcasting. The power consumption of each nddet most/|uv||?, whereuv is
the longest link incident on in 7. The claim follows from that any such links will be used at
most twice to define the power for a node. It is also known th@mmiim power consumption of
broadcasting is at least;(1/.57") /12. Consequently, we have the following theorem.

Theorem 16:If H is a low-weighted structure, then the power consumptionroadicasting
based orH is at mostO(n”~1!) times of the optimum.

We then show that there is a configuration of nodes such tedinbadcastings based on the
low-weighted structures M ST}, and IMRG do consume powér(n”~1) times of the optimum.
Consider the example illustrated by Figure 3 (a). Clearly; structures will keep the link
uwv. Thus, the total power consumptions based on our structwsg3(1), while the optimum
structure (without linkiv) has power consumption onlyn°~*. Notice that, this example shows
that the broadcasting based amylocally constructed structure has power consumption at lea
O(n”~1) times of the optimum in the worst case.

casting based on this structure is withifrn.® 1) of the optimum. Here assume that the power needed to supfiok av is

[uv]”.



It has been shown in [14] that the broadcastings based on RM{@ consume powed (n”)
times of the optimum. The same example can also show thatdlaeltastings based on one hop
local minimum spanning tre@, [8] could consume powed(n”) times of the optimum. Thus,
our low-weighted structures improve the performances foaticasting of previously proposed
structures byo(n) factor in the worst case.

We then consider the scenario when the receiver node dossim@na power to receive the
signal, and we assume that this power is no more than the poomsumed by the sender al-
ways. Notice that in all our structures, there are at ntostceivers. Thus, the total power
consumed by both senders and receivers in this new energglnsogdo more thart times of
the total power consumption of all senders in the previoesgnmodel. We also show that the
broadcasting based on MST is still a good approximation.Hgéf7) be the energy consumption
of the broadcasting based on a structGreshen assume that the power needed to support the
communication between a link is ||uv||” and the receiver does not consume power.(LEf,
be the optimum structure for broadcasting in this model. L€{=) be the energy consumption
of the broadcasting based on a structireshen the power consumed by each receiver is con-
sidered and this power is assumed to be no more than the peeeiby the sender. LE1PT}
be the optimum structure for broadcasting in this model. \&&al. [11] essentially proved
that Eo(MST) < 12Ey,(OPT;). We argue that, (M ST) < cE,(OPT)) for some constant
c as follows. Since MST has a node degree bounde€, iy, (M ST) < 7TE.(MST). Notice
that £, (OPT,) > Ey(OPT)) > Ey(OPTy), which implies our statement. Consequently, our
structures consume powers no more thgn’—1!) times of the optimum.

We summarize the worst case performances of out structi&sT,. and IMRG.

Theorem 17:The power consumption of broadcasting, and the total nosepaeeded to
achieve network connectivity, based on the structure LM&TMRG is at most(n’~!) times
of the optimum. Our structures are asymptotically the optimamong all locally constructed

structures.

B. Performances for Random Wireless Ad Hoc Networks

We then conduct extensive simulations to study the perfoo®s of our structures in terms
of the maximum transmission power used by all nodes, théttatasmission power used by all

nodes, and the total length of links. Although network tlgioput is an important performance



metric, it is influenced by many other factors such as the MA&qeol, routing protocol and
so on. Therefore, most related works do not test the thrautgbgrformance. To study various
aspects of our structures, we will use the following metticcsompare the performances:
1. Total Messages. In wireless networks, less messages to construct thedgpakill save
energy consumption. We showed that the total messages straoting IMRG is at most3n.
2. Max Messages. We also test what is the maximum number of messages a notlsend
in building the structure. A large number of messages sera byde will delay the topology
updating and drain out its battery power quickly.
3. Average Node Degree: A smaller average node degree often implies less conteainal
interference for signal and thus a better frequency spagiede, which in turn will improve the
throughput of the network.
4. Max Node Degree: We also test the maximum node degree. A larger node deghezawse
more contention and interference for signal, and also mawaut its battery power quickly.
5. Max Node Power: Each node: will set its transmission range equal to the length of the
longest edge incident an A smaller node power will always save the power consumpfltme
max-node-power captures the maximum power used by all nétler®, in all our simulations,
we set the constamt = 2, so that the power needed to support a linkis ||uv||?.
6. Total Node Power: The total node power approximates the total power usedlmodkes to
keep the connectivity of the network.
7. Total Node Power for Broadcasting: This measures the total node power of all nodes that
have a degree at ledxti.e., internal nodes. This approximates the total powedusy a broad-
casting based on this structure. Notice that the nodes weiginegtl (except the possible source
node) do not relay the message in a broadcasting.
8. Total Edge Length: We proved that all our structures have a total edge lengthinva
constant factor of that of MST. We want to see the actual apmration performances.
9. Total Link Power: It was proved in [11] that the minimum total power neededlfnyad-
casting is within a constant factor of the total link poweM&T. We thus compare the total link
power used by our structures with previously known striegand especially that of MST.

In the simulations, we will only test the performances otistures LRNG, LMST and

IMRG™, and compare them with previously known structures LM&&lled GG, in [8]), and



RNG in terms of the above metrics. The reason for only selgct|, and RNG is that in [8],
their simulations already showed th@f out-performs other previously known structures in
terms of the node degree, max node power, and the total noderpdereafter, we use the term
LMST, LMST, and IMRG instead o7, , LMST; and IMRG" in the experiments, if it is clear.

A

Al

i

LMST
LMST, LRNG IMRG

Fig. 4. Different structures from a UDG.

In the first simulation, we randomly generat# nodes uniformly in £000m x 1000m region.
The maximum transmission range of each node is se5@s. The topology derived using the
maximum transmission power (UDG), MST, RNG, LMS{or calledG|), LMST,, LRNG,
and IMRG (actually IMRG) are shown in Figure 4 respectively. To make the performance
testing precise, we generalt0 sets of nodes, each of which ha¥ nodes, and compute the
performance metrics accordingly. The average degree of $D&37 and the maximum degree
is 26. The corresponding performances are illustrated in tHevihg Table V-B. Here for max
node degree, max message and max node power, we show botaximeum and average values
over thel00 sets. We found that structure LM$dutperforms all other structures in all metrics
significantly (except the number of messages used). Iniadd#tructure IMRG performs better
than LMST with slightly high communication cost to constritcFor example, structure LMST

uses about% percent more total node power than the structure IMRG foadicasting, while



RNG consumes about)% percent more total node power for broadcasting than thetsie
IMRG. We did not count the messages used to find the two hoghibers for all nodes when
computing the total messages used to construct LMSilich messages number is marked by a
star in our results).

TABLE |

THE PERFORMANCES COMPARISON OF SEVERAL STRUCTURES

MST | RNG | LMST | LMST; | LRNG | IMRG

MaxMaxMsg - 1.00 5.00 | 5.00 5.00 9.00
AvgMaxMsg - 1.00 4.50 4.50 4.92 8.42
TotMsg - 100.00( 305.72| 299.88 | 334.76| 538.68

MaxMaxDeg | 4.00 | 4.00 | 4.00 4.00 4.00 | 4.00
AvgMaxDeg 3.50 | 3.92 | 3.50 3.50 3.92 | 3.50
AvgDeg 198 | 235 | 2.06 2.00 230 | 2.04
MaxMaxNPow | 4.13 | 5.40 | 4.69 4.13 540 | 4.69
AvgMaxNPow | 2.93 | 4.17 | 3.77 3.03 4.17 | 3.55
TotNPow 79.85 | 122.80| 92.79 | 82.56 | 119.69| 90.10
TotNPowBrdcst 66.48 | 118.21| 83.26 | 70.08 | 114.74| 79.43
TotLength 132.79| 183.59| 144.86| 135.55| 175.52| 141.99
TotLPow 112.47| 187.37| 131.85| 116.56 | 177.29| 127.13

We then vary the number of nodes in the region frairto 500. The transmission range of
each node is still set &0m. We plotted the performances of all structures in Figureibalfy,
we fix the number of nodes in the region¥ and grow the transmission range of each node
from 100m to 300m. We plotted the performances of all structures in Figure 6.

All the results show that IMRG has better performances tHdST and RNG: IMRG has the
least total link length and least total node power for br@atiag; it has the least node power
to keep the connectivity. The number of messages used fatreating IMRG is slightly more
than the number of messages used to construct LMST. Theatimulresults confirm all our
theoretical analysis. Remember that, in the worst case,GMfRy spend)(n”~1) times the

total power used by the optimum broadcasting. However, imulations show that the energy



consumption of broadcasting based on IMRG is within a snwadstant factor (about;% more)
of that based on the MST and is much better than that based @ RN$ummary, IMRG is the
best among all these known local structures; additionditgn approximate MST theoretically

and be used for energy efficient broadcasting.
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Fig. 5. Results when the number of nodes in the networks #fiereiit (from50 to 500). Here the transmission

range is set a&50m.

VI. CONCLUSION

We defined a sequence of low-weighted sparse structures | M®@ presented an efficient

method to construct them locally using or}(n) messages. Here a structure is called low-
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Fig. 6. Results when the transmission range are differeatn(t00m to 300m). Here the number of nodesi80.

weighted if its total link length is within a constant factof that of the Euclidean minimum
spanning tree. We further defined a bounded degree planavéghted connected structure

IMRG that can be constructed more efficiently. The total camitation cost of our localized

method is at most3n. We showed that both structures are asymptotically thedbesttures that

can be constructed locally for broadcasting. We conductéehsive simulations to study the

performances of our structures and compared them withquislyi known localized structures.

Our structures out-perform all previously known strucsuamd structure IMRG only incurs a

small message overhead.



The constructed structures are planar, bounded degredpandeighted. Liet al. [35]
recently gave aW(n logn)-time centralized algorithm to construct a bounded degotar,
and low-weightegpanner However, it is still unknown how to make that a distributégbaithm
usingO(n) communications without sacrificing the spanner property.ti@ other hand, Lét
al. [7] showed how to construct a planar spanner with boundedegeg a localized manner
(usingO(n) messages) for unit disk graph. However, the constructedtsire does not seem to
be low-weighted. It remains open how to construct a bounégdes, planar, andw-weighted
spannerin a distributed manner using ondy(n) communications under the local broadcasting

communication model.
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