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Abstract—In this paper, we investigate capacity scaling laws of wireless social networks under the social-based session formation. We
model a wireless social network as a three-layered structure, consisting of the physical layer, social layer, and session layer ; and we
introduce a cross-layer distance&density-aware model, called the population-based formation model, under which: 1) for each node vk,
the number of its friends/followers, denoted by qk, follows a Zipf’s distribution with degree clustering exponent γ; 2) qk anchor points
are independently chosen according to a probability distribution with density function proportional to

(
Ek,X

)−β , where Ek,X is the
expected number of nodes (population) within the distance |vk − X| to vk, and β is the clustering exponent of friendship formation;
3) finally, qk nodes respectively nearest to those qk anchor points are selected as the friends of vk. We present the general density
function of social relationship distribution, with general distribution of physical layer, serving as the basis for studying general capacity of
wireless social networks. As the first step of addressing this issue, for the homogeneous physical layer, we derive the social-broadcast
capacity under both generalized physical and protocol interference models, taking into account general clustering exponents of both
friendship degree and friendship formation in a 2-dimensional parameter space, i.e., (γ, β) ∈ [0,∞)2. Importantly, we notice that the
adopted model with homogenous physical layer does not sufficiently reflect the advantages of the population-based formation model
in terms of realistic validity and practicability. Accordingly, we introduce a random network model, called the center-clustering random
model (CCRM) with node distribution exponent δ ∈ [0,∞), highlighting the clustering and inhomogeneity property in real-life networks,
and discuss how to further derive more general network capacity over 3-dimensional parameter space (δ, γ, β) ∈ [0,∞)3 based on
our results over (γ, β) ∈ [0,∞)2.

Index Terms—Scaling Laws, Social Networks, Wireless Networks, Network Capacity.
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1 INTRODUCTION

Wireless networks are generally the wireless communication
implementations for real-life networking applications. Then,
research issues of wireless networks usually come from and
aim at the challenges of wireless technology in specific ap-
plications, e.g., wireless sensor networks, wireless local area
networks, and wireless social networks, a wireless implemen-
tation of social networks, which is the focus of this work. In
social networks, the relationship/edge between users/vertices
represents a specific interdependency, such as co-authorship,
citationship, or friendship, and so on. Based on massive
datasets of large-scale real-world online social networks, such
as Myspace [1], Twitter [2], Flickr [3], LiveJournal [4], and
Facebook [5], extensive studies validate respectively that these
two most representative features of complex networks, i.e., the
small-world phenomenon and scale-free degree distribution,
nearly hold in online social networks. Wireless social networks
can be analyzed from a layered perspective, i.e., the social
network of users can be regarded as an overlay network
over their physical communication network. Therefore, it is
necessary for studying wireless social networks to take the
property of social networks into account.
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As online social networking services are becoming more
and more popular and the adoption rates of smart wireless
devices like smartphones are increasing aggressively, wireless
social network applications will be recognized as the typical
instances of large-scale wireless networks. Therefore, it is
significant to investigate the fundamental limits of such a
large-scale wireless system. As an important metric of fun-
damental limits, capacity scaling laws of wireless networks,
i.e., the scaling of the throughput capacity in the limit when
the size of network gets large, have been extensively studied
in depth from both theoretical and practical perspectives, [6]–
[12], since Gupta and Kumar [13] took the lead to study the
unicast capacity for homogeneous wireless random and arbi-
trary networks. In wireless social networks, source-destination
associations depend on their social relationships that had been
shown to be inhomogeneous, however, traffic sessions are tra-
ditionally assumed to be formed independently in a uniformly
random fashion in the literature, which makes the existing
results not applicable to wireless social networks. Accordingly,
this paper aims to introduce the social-based session formation
model conforming with wireless social networks, and derive
the corresponding capacity scaling laws.

Main Challenges and Our Solutions: We list the following
three main challenges in addressing the problem.

Challenge I: Modeling Social Formation Based on Geogra-
phy. On the one hand, since the distance over which data are
carried under every session is one of key factors determining
the throughput capacity of network, the session formation
model should be necessarily relevant to the geography. On the
other hand, some classical experiments showed or implied that
social relationships among users strongly depend on their geo-
graphic location, [14]–[16]. Thus, under the assumption that a
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Fig. 1. Layered System Model.

session is built only among the users with social relationships
(We also call them “friends” here.), i.e., the source chooses
its destination only from its friends, a geography-based social
relationship formation model acts as the precondition for the
session formation model. Some theoretical models have been
advanced to model the social relationship formation depending
on geography in social networks. Kleinberg [17] initiated a
distance-based social model relating geographical distance and
social friendship, in which the probability of befriending a
particular user is inversely proportional to the positive power
of the distance. In [18] and [19], the distance-based social
model had been adopted in studying the unicast capacity of
wireless social networks. Intuitively, such a session pattern
leads to a mismatch with the characteristics of data traffic
in real life social networks. Furthermore, recent experimental
studies showed that the distance-based models do not really
accord with the distribution of social relationships in social
networks, [20]. Therefor, it is necessary to derive the more
practical results on capacity scaling of wireless social networks
by introducing more realistic social models.

Liben-Nowell et al. [20] stated that the social formation
indeed depends on both distance and density, and introduced
the rank-based model, where the probability of befriending a
particular person is inversely proportional to the positive power
of the number of closer people. To the best of our knowledge,
the rank-based model is the most realistic theoretical model
for social formation. But it still has shortcoming on analyzing
capacity scaling laws in terms of the convenience of analysis
or theoretical basis and rigor, because it directly selects nodes
instead of points/positions, which leads that the distances of
sessions are dependent and then causes analysis difficulty
in bounding the sum of transport distances of sessions with
multiple destinations, [13], [21]. Then, for addressing the
capacity scaling laws of wireless networks, it should be the
first step to introduce a new distance&density-aware social
formation model that is suitable for capacity analysis, while
keeping the advantages of rank-based model.

Our Solution for Challenge I: We model a wireless so-
cial network as a three-layered structure, consisting of the
physical layer, social layer, and session layer, as illustrated
in Fig.1. On the basis of rank-based model, we present
a cross-layer distance&density-aware social model good at
the analysis of capacity scaling laws, called the population-

based formation model P(δ, γ, β), where δ, γ, and β are the
clustering exponents of node distribution, friendship degree
and friendship formation, respectively. Under P(δ, γ, β): 1)
for each node vk, the number of its friends, denoted by qk,
follows a Zipf’s distribution with friendship degree clustering
exponent γ; 2) qk anchor points are independently chosen
according to a probability distribution with density function
proportional to E−β

k,X , where Ek,X is the expected number
of nodes (population) within the distance |vk − X| to vk,
and β is the clustering exponent of friendship formation; 3)
finally, select qk nodes respectively nearest to those qk anchor
points as the friends of vk. Please refer to Section 2.2.2 for
the detailed discussion on the advantages of this model.

Challenge II: Bounding Sum of Distances for All Sessions.
The sum of transport distances for all sessions is the prereq-
uisite for bounding the capacity scaling laws, [13], [22]. The
long-tailed property of both the destination number (Zipf’s
Distribution) and destination distribution (Power Law Distri-
bution) causes the transport distances of resulted sessions to
be significantly inhomogeneous, which makes it more difficult
to bound such a sum.

Our Solution for Challenge II: We present the density
function of general social friendships distribution (Theorem
1) and bounds on length of Euclidean spanning trees over
nodes chosen according to this density function (Theorem 2).
The results can act as the basis for addressing the capacity of
wireless social networks.

Challenge III: Deriving General Results on Capacity S-
caling Laws. The complete result under the system model
includes the capacity for every point in the 3-dimensional
parameter space, i.e., (δ, γ, β) ∈ [0,∞)3. The complexity of
analysis is substantially increased due to the involvement of
multiple clustering exponents.

Our Solution for Challenge III: As the first work under
this general model, this paper derives the capacity for social-
broadcast sessions under the model P(δ = 0, γ, β), taking into
account general clustering exponents of both friendship degree
and friendship formation, i.e., (γ, β) ∈ [0,∞)2 (Theorem
3). In addition, we probe the feasibility of studying network
capacity under the social model with inhomogeneous physical
layer, by extending the basic theorem (Theorem 1) for the
general distribution of anchor points.

The rest of the paper is organized as follows. In Section 2,
we introduce the network model. In Section 3, we present
the preliminary results for the anchor points distributed in
the center-clustering random model (CCRM) according to the
proposed population-based formation scheme, which lay the
foundation for addressing capacity scaling laws for population-
based social formation model on general physical layers.
Based on these results, we derive the social-broadcast capacity
for homogeneous physical layer in Section 4, acting as the first
step of investigating general results on the capacity of wireless
social networks. Finally, we conclude the paper and discuss
some topics for future research in Section 5.

2 SYSTEM MODEL
We present a three-layer perspective for the wireless social
network with social-based sessions, consisting of the physical
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layer, social layer and session layer, as in Fig.1.
Throughout the paper, we let E[X] denote the mean of a

random variable X .

2.1 Physical Layer Deployment
We introduce a random network model, called the center-
clustering random model (CCRM), highlighting the clustering
and inhomogeneity property in real-life networks.

2.1.1 Center-Clustering Random Model (CCRM)
We consider the network composed of a random number of N
wireless ad hoc nodes/users distributed over a square region
of area S := n, where E[N ] = n. To avoid border effects, we
consider wraparound conditions at the network edges, i.e., the
network area is assumed to be the surface of a two-dimensional
Torus O. To simplify the description, we assume that the
number of nodes is exactly n, and denote the set of nodes
by V = {vk}nk=1, without changing our results in order sense,
[6], [7], [11].

To emulate the clustering behavior of users distribution in
wireless networks, we construct the center-clustering random
model (CCRM) by the following procedure: First, making a
center of O as the center point, denoted by O. Then, the
center point O generates a point process of nodes whose local
intensity at position X is given by d(X) = n ·κ(O,X),where
κ(O, ·) is a dispersion density function. As in the literature, we
restrict ourselves to the kernel κ(O, ·) that is invariant under
both translation and rotation, i.e., κ(O,X) = κ(|X − O|)
depends only on the Euclidean distance |X − O| of point X
from the cluster center O, [23], [24]. Moreover, we assume
that κ(O, ·) is a summable, non-increasing, bounded and
continuous function, and

∫
O κ(O,X)dX = 1. Following a

common normalizing method, the kernel can be specified
by first defining a non-increasing, bounded and continuous
function g(s) and then normalizing it over the area O:

κ(O,X) =
g(|X −O|)∫

O g(|Y −O|)dY
.

Then, we can conclude that a center-clustering random model
(CCRM) is determined by three factors/parameters, i.e., the
number of all nodes n, the area of deployment region S, and
the critical parameter of dispersion density function g(·). We
denote a CCRM by N (n, S; g(·)) in this paper.

Specifically, we define g(s) := min
{
1, s−δ

}
, where δ ∈

[0,∞) is the clustering exponent of node distribution. Note
that when δ = 0, the model degenerates into the homogeneous
random extended network, [6], [25].

We introduce an approximate real-world case of CCRM
based on Google+ dataset. Please see details in Appendix D.2.

2.1.2 Extending Generality of Physical Layer Model
In this paper, we only study the capacity scaling laws under
the CCRM with extended scaling pattern, where there is only
one center point. We notice that based on the CCRM, one
can develop more general physical layer models in terms
of clustering patterns and scaling patterns. To smoothen the
mainline of our work, we have moved the details of extended
discussion to Section 5.2.

vki

pki

vk

Fig. 2. Friendships of Source vk. Making the position of
node vk as the reference point, choose independently qk
anchor points on the torus region O, denoted by pki with
1 ≤ i ≤ qk, according to a probability density function as
in Eq.(2). The qk friends of vk are located according to the
positions of the corresponding anchor points.

2.2 Social Layer Formation
We introduce a social formation model, called population-
based social model. We will clarify the advantages of this
model later in Section 2.2.2.

2.2.1 Population-based Social Formation Model
Let D(u, r) denote the disk centered at a point u with radius
r in the deployment region O, and let N(u, r) denote the
number of nodes contained in D(u, r).

For a node vk ∈ V , construct its friendship set of qk, qk ≥
1, nodes/friends, say Fk, by the following procedure:

1. Zipf’s Degree Distribution of Social Relations: Assume
that the number of friends (or followers) of a particular node
vk ∈ V , denoted by qk, follows a Zipf’s distribution [26], i.e.,

Pr(qk = l) =

(∑n−1

j=1
j−γ

)−1

· l−γ . (1)

From Eq.(1), we can observe that the degree distribution above
depends on the specific network size (the number of users n).
Please see a numerical validation based on Google+ dataset
for the Zipf’s degree distribution in Appendix D.3.

2. Population-Based Formation of Social Relations: Mak-
ing the position of node vk as the reference point, choose qk
points independently on the torus region O according to a
probability distribution with density function:

fvk
(X) = Φk (S, β) · (E [N(vk, |X − vk|)] + 1)

−β
, (2)

where the random variable X := (x, y) denotes the position of
a selected point in the deployment region, |X−vk| denotes the
Euclidean distance between point X and node vk, β ∈ [0,∞)
represents the clustering exponent of friendship formation; the
coefficient Φk (S, β) > 0 depends on β and S (the area of
deployment region), satisfying that:

Φk (S, β) ·
∫
O
(E[N(vk, |X − vk|)] + 1)

−β
dX = 1. (3)

3. Nearest-Principle Position of Friends: Let Ak =
{pki}

qk
i=1 denote the set of these qk points. Let vki be the
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Fig. 3. Inhomogeneity of LiveJournal Population [20].
A dot is shown for every distinct United States location
home to at least one LiveJournal user (up to Feb. 2004).
The population of each successive displayed circle (all
centered on Ithaca, NY) increases by 50,000 people. The
friendships of u → v and u → w are respectively underes-
timated and overestimated by the distance-based model.

nearest node to pki , for 1 ≤ i ≤ qk (ties are broken randomly).
Denote the set of these qk nodes by Fk = {vki}

qk
i=1. Please

see the illustration in Fig.2. We call point pki the anchor point
of vki , and define a set Pk := {vk} ∪ Ak.

Throughout this paper, we use P(δ, γ, β) to denote the
population-based social model.

2.2.2 Advantages of Population-Based Model

After Kleinberg [17] proposed a distance-based social model
relating geographical distance and social friendship, Liben-
Nowell et al. [20] introduced the rank-based model, where
the probability of befriending a particular person is inversely
proportional to the power of the number of closer people. They
validated the practicality of rank-based model by analyzing
the data of an online social network, the LiveJournal online
community. They pointed out that the weakness of distance-
based models lies in that for a particular user, it underestimates
the friendship probability of the distant nodes in the low-
density region, when the geographical distribution of users is
inhomogeneous in common occurrence, as illustrated in Fig.3.
In addition, we also give a validation of rank-based model
based on Google+ dataset in Appendix D.4.

The rank-based model states that the friendship probability
depends on both the geographic distance and node densi-
ty. Following this observation, by modifying the rank-based
model, we propose the distance&density-aware population-
based social model. We highlight that the population-based
model is more convenient and systematic for addressing the
issue of capacity scaling laws. Anchor points are usefully
introduced, in order to ensure the independence of length of
certain Euclidean spanning trees, thus makes it convenient to
bound the total length, e.g., the proof of Lemma 6. However,
under the rank-based model where the friendships are directly
built over nodes without anchor points, the corresponding
independence cannot be guaranteed, which usually brings the
difficulty on the theoretical rigor. The advantages of the point-
based model for the basis and rigor in analysis, compared to
the node-based model, had been apparent in [13], [21].

2.3 Session Layer Construction
After the social layer is formed, social sessions can be de-
fined according to the specific applications: For the social-
unicast/social-multicast, the source node delivers message to
one/multiple selected friend(s).

For the social-broadcast, the source node broadcasts mes-
sage to all its friends, such as tweets in Twitter and posts in
Facebook. Accordingly, we can define other session patterns
based on the definitions of corresponding non-social sessions,
such as social-anycast [27] and social-manycast [28].

In this work, we mainly study social-broadcast sessions.

2.4 Communication Model
We mainly adopt the generalized physical model [6], [21] due
to its generality and practicality compared to other models like
the protocol model and physical model [13]. Let Lt denote a
scheduling set of links in which all links can be scheduled
simultaneously in time slot t; let α > 2 denote the power
attenuation exponent; let B and P denote the bandwidth and
transmitting power, respectively.

Definition 1: Under the generalized physical model, when
a scheduling set Lt is scheduled, the rate of a link < u, v >∈
Lt is achieved at

Ru,v;t = B × 1 · {< u, v >∈ Lt} × log (1 + SINRu,v;t) ,

where SINRu,v;t = P ·ℓ(|u−v|)
N0+

∑
<i,j>∈Lt/<u,v> P ·ℓ(|i−v|) , N0 de-

notes the background noise, |u − v| represents the Euclidean
distance between nodes u and v; ℓ(·) denotes the power
attenuation function that is assumed to depend only on the
distance between the transmitter and receiver, to be specific,
ℓ(|·|) := |·|−α for dense networks, and ℓ(|·|) := min{1, |·|−α}
for extended networks.

2.5 Network Capacity for Social Sessions
Denote a session by Sk := {vk} ∪ Dk, where Dk ⊆ Fk =
{vki

}qki=1 is the set of destinations of vk. For social-broadcast
sessions, it holds that Dk = Fk.

Let Λ = (λ1, λ2, · · · , λn) denote a rate vector of the data
rate of all sessions. A rate vector Λ is feasible if there is a
T < ∞ such that in every time interval (with unit seconds)
[(t−1) ·T, t ·T ], every source node vk can send T ·λk bits to
all its destinations. For a rate vector, we define the per-session
throughput as Λ(n) = minvk∈V λk.

Definition 2 (Achievable Throughput): We say a per-
session throughput Λ(n) is achievable for all social sessions
if there is a feasible rate vector Λ = (λ1, λ2, · · · , λn) such
that Λ(n) = minvk∈V λk.

Definition 3 (Social Capacity): The per-session capacity
for a class of random networks is of order Θ(Γ(n)) if there
are constants 0 < c < c < +∞ such that

lim
n→+∞

Pr(Λ(n) = c · Γ(n) is achievable) = 1,

lim inf
n→+∞

Pr(Λ(n) = c · Γ(n) is achievable) < 1.

To facilitate the reader, we have reported in Table 1 a
collection of frequently-used system parameters.
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TABLE 1
Notations for Exponents

Notation Definition

δ ∈ [0,∞) clustering exponent of node distribution

γ ∈ [0,∞) clustering exponent of friendship degree

β ∈ [0,∞) clustering exponent of friendship formation

α ∈ (2,∞) attenuation exponent of signal transmission

3 PRELIMINARY RESULTS FOR DISTRIBUTION
OF ANCHOR POINTS
In this section, we mainly present some preliminary results for
the anchor points distributed according to the population-based
social formation scheme in the center-clustering random model
(CCRM). The results can serve as the basis for addressing the
capacity of wireless social networks under the general CCRM
and population-based social formation model.

In the center-clustering random model (CCRM), say
N (n, S; g(·)), we construct a set of q + 1 anchor points,
denoted by P = {Xi}qi=0, by the following procedure: 1.
Select arbitrarily a point from O as the first one in P ,
denoted by X0. 2. Making point X0 as the reference point
denoted by O′, select independently other q points at random
according to the probability distribution with density function
as described in Eq.(2) of the population-based formation model
(Let vk := X0).

Let A := {Xi}qi=1. Next, we propose two theorems, and
prove them in Section 3.3.

3.1 General Distribution Density Function
For the probability density function of point distribution, we
have Theorem 1.

Theorem 1: Making the point X0 as the reference point
O′, the distribution of points in A = {Xi}qi=1 follows the
probability with density function

fX0(X) =

[∫
D(X0,|X−X0|) d(Y ) dY + 1

]−β

∫
O

[∫
D(X0,|Z−X0|) d(Y ) dY + 1

]−β

dZ

(4)

where d(Y ) = n · min{1,|Y−O|−δ}∫
O min{1,|Z−O|−δ}dZ .

3.2 Euclidean Minimum Spanning Tree
For the Euclidean minimum spanning trees of P and A,
denoted by EMST(P) and EMST(A), respectively, we have
Theorem 2.

Theorem 2: As q → ∞: With probability 1, it holds that

|EMST(A)| = Θ

(
√
q ·
∫
O

√
fX0(X)dX

)
; (5)

with high probability 1− o(1/N̂), it holds that

|EMST(P)| :
[
|EMST(A)|, |EMST(A)|+ L̄

]
, 1 (6)

1. We use the term f(n) : [ϕ(n), ϕ(n)] to represent f(n) = Ω(ϕ(n))

and f(n) = O(ϕ(n)); and use f(n) : (ϕ(n), ϕ(n)) to represent f(n) =

ω(ϕ(n)) and f(n) = o(ϕ(n)).

where fX0(X) is defined in Theorem 1, and

L̄ = min

{
L

∣∣∣∣∣
∫
D(X0,L)

fX0(X)dX = Ω

(
min

{
log N̂

q
, 1

})}
(7)

with N̂ : (1, n] is a given parameter.
Note that the parameter N̂ can be defined as the number of
nodes with degree of order ω(1).

3.3 Proof of Theorem 1 and Theorem 2

First of all, the cost of an edge (Xi, Xj) is given by
Ψ(|Xi−Xj |) = |Xi−Xj |, that is, the exponent σ in Lemma
A.1 equals 1. In addition, Ψ(x) is a monotonically increasing
function. Let L denote the distance between the center O
and reference point. Then, under the center-clustering random
model N (n, S; g(·)), by Eqs.(2) and (3), the density function
is specified into Eq.(4). Then, by Lemma A.1, we get that

|EMST(A)| = Θ
(√

q ·
∫
O

√
fX0(X)dX

)
.

It is straightforward that |EMST(P)| = Ω(|EMST(A)|). On
the other hand, let L denote the smallest distance from the
points in A to point X0. Then,(

1−
∫
D(X0,L)

fX0(X)dX
)q

= o(1).

That is,
∫
D(X0,L)

fX0(X)dX = ω(1/q). Thus, L ≤ L̄, where
L̄ is defined in Eq.(7), which completes the proof. Note that
we deliberately relax the upper bound of L as in Eq.(7) in
order to ensure Eq.(6) to hold with uniformly high probability
for Θ(n) Euclidean spanning trees, [29].

4 SOCIAL-BROADCAST CAPACITY FOR HO-
MOGENEOUS PHYSICAL LAYER

In this work, we specifically reduce the complexity from three
dimensions (δ, γ, β) ∈ [0,∞)3 to two dimensions (γ, β) ∈
[0,∞)2 by letting δ = 0. In this case of extremely weak
clustering behavior, the physical layer degenerates into the
homogeneous random network model, [6], [13], [30], where
d(Y ) ≡ Θ(1).

4.1 Main Results

4.1.1 Capacity under Generalized Physical Model

Theorem 3: Under the population-based social model
P(δ = 0, γ, β) and the generalized physical model (GphyM)
with α > 2, the per-session social-broadcast capacity is of
order Λ, where Λ is defined in Table.2.

From Theorem 3, there are still gaps between upper and
lower bounds on social-broadcast capacity under the gen-
eralized physical model in four regimes. As illustrated in
Fig.4, these four regimes are indeed lines in the 2-dimensional
parameter space (γ, β) ∈ [0,∞)2. A challenging issue is to
close those gaps by presenting possibly new tighter upper and
lower bounds by using some new arguments or designing new
schemes.
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TABLE 2
Social-Broadcast Capacity under GphyM

γ Social Capacity under GphyM – Λ:

γ > 2



Θ((logn)−
α
2 ), β > 2;[

(logn)−
α+1
2 , (logn)−

α
2

]
, β = 2;

Θ(1/n1− β
2 ), 1 < β < 2;

Θ(
√
logn/

√
n), β = 1;

Θ(1/
√
n), 0 ≤ β < 1.

γ = 2



[
(logn)−

α+3
2 , (logn)−

α
2
−1

]
, β ≥ 2;

Θ(1/n1− β
2 ), 1 < β < 2;

Θ(
√
logn/

√
n), β = 1;

Θ(1/
√
n), 0 ≤ β < 1.

3/2 < γ < 2


Θ((logn)−

α
2 /n2−γ), β ≥ 2γ − 2;

Θ(1/n1− β
2 ), 1 < β < 2γ − 2;

Θ(
√
logn/

√
n), β = 1;

Θ(1/
√
n), 0 ≤ β < 1.

γ = 3/2


Θ((logn)−

α
2 /

√
n), β ≥ 1;[

(logn)
−α+1

2√
n

,
(logn)

−α
2√

n

]
, 0 ≤ β < 1.

1 < γ < 3/2 Θ((logn)−
α
2 /n2−γ)

γ = 1
[
(logn)

1−α
2 /n, (logn)1−

α
2 /n

]
0 ≤ γ < 1 Θ((logn)−

α
2 /n)

2

2

0

β

γ

1

1

[

(logn)
1−α

2 /n, (logn)1−
α

2 /n
]

3/2

[

(logn)
−

α+1
2

√

n
, (logn)

−

α

2
√

n

]

[

(log n)−
α+1

2 , (log n)−
α

2

]   
  
!!
!!

 !

  
  
!!
!!

Fig. 4. Four Regimes/Lines Where Gaps Exist.

4.1.2 Capacity under Protocol Model
We concentrate on deriving the capacity under the generalized
physical model, while for completeness, we also include the
results on capacity under the well-known protocol model
(ProM, [13]). Based on our results on EMSTs and ESTs of
social-broadcast sessions (Lemma 6 and Lemma 9), using the
analytical methods for capacity under the protocol model in
[13], [22], we get that

Theorem 4: Under the population-based social model
P(δ = 0, γ, β) and the ProM, the per-session social-broadcast
capacity is of order ΛPro as defined in Table.3.

4.1.3 Intuitions of Main Results
At first, we discuss the impacts of clustering exponents of
friendship degree and friendship formation, i.e., γ and β, on
the social-broadcast capacity. We provide an illustration for the
protocol model in Fig.5 according to the results of Theorem
4, and we omit the counterpart for the generalized physical

TABLE 3
Social-Broadcast Capacity under ProM: ΛPro

γ Social Capacity under ProM – ΛPro

γ > 2



Θ(1/ logn), β > 2;

Θ(1/(logn)
3
2 ), β = 2;

Θ(n
β
2
−1/

√
logn), 1 < β < 2;

Θ(1/
√
n), β = 1;

Θ(1/
√
n logn), 0 ≤ β < 1.

γ = 2


Θ(1/(logn)3), β ≥ 2;

Θ(n
β
2
−1/

√
logn), 1 < β < 2;

Θ(1/
√
n), β = 1;

Θ(1/
√
n logn), 0 ≤ β < 1.

3/2 < γ < 2


Θ(nγ−2/ logn), β ≥ 2γ − 2;

Θ(n
β
2
−1/

√
logn), 1 < β < 2γ − 2;

Θ(1/
√
n), β = 1;

Θ(1/
√
n logn), 0 ≤ β < 1.

γ = 3/2

{
Θ(1/(logn ·

√
n)), β ≥ 1;

Θ(1/(logn ·
√
n logn)), 0 ≤ β < 1.

1 < γ < 3/2 Θ(1/(logn · n2−γ))

0 ≤ γ ≤ 1 Θ(1/n)

  
  
!!
!!

 !

  
  
!!
!!

Θ(1/(log n · n2−γ))

ΛPro

γ = 2 :

2

γ > 2 :

Θ(1/(log n ·
√
n log n))

Θ(1/(log n ·
√
n))

3/2 < γ < 2 :

γ = 3/2 :

β0

1 < γ < 3/2 :

Θ(1/
√
n)

1

0 ≤ γ ≤ 1 :

Θ(1/
√
n logn)

2γ − 2

Θ(1/ log n)

Θ(1/(log n)
3

2 )

Θ(n
β
2
−1/

√

log n)

Θ(1/(log n)3)

nγ−2/ log n

Θ(1/n)

Fig. 5. The Impacts of γ and β on The Capacity under
Protocol Model.

model due to it’s similarity of change trend. From Fig.5, the
social-broadcast capacity is monotonically nondecreasing in
the range [1/ logn, 1/n] for both γ and β. An intuitive expla-
nation can be made as follows: A larger clustering exponent
of friendship degree γ can limit the number of friends of each
user into a smaller upper bound with high probability, then
leads to a larger social-broadcast capacity (Definition 3); a
larger clustering exponent of friendship formation β makes
the friends more closer to each user with high probability,
then possibly reduces the total transmission distance of each
social-broadcast session, finally also leads to a larger social-
broadcast capacity.

Importantly, we notice that we only take account of the case
that δ = 0, where the population-based model degenerates to
that similar to distance-based model [17], [31]. The advantages
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of population-based model cannot be sufficiently highlighted
for such a special model, indeed. This work can act as
the first step of investigating the capacity under the general
population-based model. It would be a significant future work
to clarify the relationships between the general clustering
exponent and capacity in 3-dimensional parameter space, i.e.,
(δ, γ, β) ∈ [0,∞)3. For such future work, we make a more
detailed discussion in Section 5.1 on how to derive the capacity
under more general models based on the results in this paper.

4.1.4 Differences from Existing Work
As stated above, the distance-based model can be regarded
as a special case of the proposed population-based model. In
this work, we mainly give the complete results on capacity
scaling laws for this special case. Azimdoost et al. [18], [19]
had also introduced the distance-based social model into the
study of wireless social networks. Naturally, it is necessary
to declare the differences between [18], [19] and our results,
and highlight the advantages of our work compared with those
existing works. We can summarize the differences from three
aspects: The first is the different generality of the studied
session patterns. Both [18] and [19] focused on the simple
unicast capacity by choosing randomly one destination node
for each session from the social group (the set of friends) of
the source node. They did not give sufficient consideration
to the scale-free feature of social relationship distribution and
the diversity of session patterns in social applications. While,
to address this problem, we investigate the capacity for the
social-broadcast sessions where the number of destinations
in each session is assumed to follow a Zipf’s distribution
[26]. The second is the different practicality of the adopted
communication models. As two representative communication
models, the protocol model and generalized physical model
have been widely used in addressing the issue of capacity
scaling laws. The former is convenient analytically, while
the latter can capture the nature of wireless channels better,
then can derive more practical results on network capacity.
Both [18] and [19] only investigated the simple protocol
model. In our paper, we mainly aim to present more practical
results by adopting the generalized physical model, while for
completeness, we also include the results under the protocol
model. The third is the different scalability of the proposed
methods and results. Although only the results on the special
case are completely derived in this paper, some proposed
analytical methods and results can serve as the basis of ad-
dressing network capacity under the general population-based
social model with inhomogeneous physical layer. However, the
results and methods in [18] and [19] cannot be extended into
ones in line with reality for the general physical layer due to
the incurable defect of the distance-based model.

4.2 System Setting
4.2.1 Degree Distribution of Social Relationships
Considering the degree distribution, by Eq.(1), we get that

Pr(qk = l) =


Θ(l−γ) , γ > 1;

Θ
(

1
logn · l−1

)
, γ = 1;

Θ
(
nγ−1 · l−γ

)
, 0 ≤ γ < 1.

(8)

4.2.2 Distribution of Anchor Points
For each session Sk initiated by the source vk, we can get the
distribution of anchor points directly using Theorem 1,

Lemma 1: When the clustering exponent δ = 0, for a
session Sk under the population-based social model P(δ =
0, γ, β), the anchor points of the friends of source vk follows
the distribution of density function:

fvk(X) =


Θ
(
(|X − vk|2 + 1)−β

)
, β > 1;

Θ
(

1
logn · (|X − vk|2 + 1)−1

)
, β = 1;

Θ
(
nβ−1 · (|X − vk|2 + 1)−β

)
, 0 ≤ β < 1.

By using Lemma 1, we can get the following result.
Lemma 2: For a social-broadcast session Sk under the

model P(δ = 0, γ, β), it holds that:

E[|X − vk|] =



Θ(1) , β > 3/2;
Θ (log n) , β = 3/2;

Θ
(
n

3
2−β

)
, 1 < β < 3/2;

Θ (
√
n/ log n) , β = 1;

Θ (
√
n) , 0 ≤ β < 1.

(9)

4.2.3 Social-Broadcast Sessions
Under the population-based social model, we denote a social-
broadcast session by a set Sk := {vk} ∪ Fk, where vk is the
source node and each element in Fk = {vki}

qk
i=1, say vki ,

is the nearest node to the corresponding anchor point pki in
Ak = {pki}

qk
i=1. Please see the illustration in Fig.2. Recall that

Pk = {vk}∪Ak, we get the following Lemma 3 for spanning
trees over Sk.

Lemma 3: For a social-broadcast session Sk with qk =
ω(1) under the social model P(δ = 0, γ, β), with probability
1, it holds that |EMST(Ak)| = Θ(LP(β, qk)), and then
|EMST(Pk)| = Ω(LP(β, qk)), where

LP(β, qk) =



Θ
(√

qk
)
, β > 2;

Θ
(√

qk · log n
)
, β = 2;

Θ
(√

qk · n1− β
2

)
, 1 < β < 2;

Θ
(√

qk ·
√

n
logn

)
, β = 1;

Θ
(√

qk ·
√
n
)
, 0 ≤ β < 1.

(10)

Proof: From Theorem 2, it follows that with probability
1, |EMST(Ak)| = Θ(LP(β, qk)) for qk = ω(1), where
LP(β, qk) is defined in Eq.(10). Combining with the fact that
|EMST(Pk)| ≥ |EMST(Ak)|, we get the lemma.

4.3 Upper Bounds on Social-Broadcast Capacity
4.3.1 Technical Preparations for Upper Bounds
Before computing the upper bounds, we introduce a notion
called lattice view.

Definition 4 (Lattice View): Partition a square deployment
region O(S) = [0,

√
S]2 into ⌈

√
S/c⌉2 cells of side length

c:[
√
S/n,

√
S), we call the produced lattice graph lattice view,

and denote it by V(
√
S, c).

Based on a given lattice view V(
√
S, c), we can get the

following lemma for arbitrary routing trees for a session Sk.
By Lemma 2 of [25], we have
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TABLE 4
H(γ, β) in Bounding

∑
EMST and

∑
EST

γ H(γ, β)

γ > 2



Θ(n), β > 2;

Θ(n · logn), β = 2;

Θ(n2− β
2 ), 1 < β < 2;

Θ(n3/2/
√
logn), β = 1;

Θ(n3/2), 0 ≤ β < 1.

γ = 2


Θ(n · logn), β ≥ 2;

Θ(n2− β
2 ), 1 < β < 2;

Θ(n3/2/
√
logn), β = 1;

Θ(n3/2), 0 ≤ β < 1.

3/2 < γ < 2


Θ(n3−γ), β ≥ 2γ − 2;

Θ(n2− β
2 ), 1 < β < 2γ − 2;

Θ(n3/2/
√
logn), β = 1;

Θ(n3/2), 0 ≤ β < 1.

γ = 3/2


Θ(n3/2), β > 1;

Θ(n3/2 ·
√
logn), β = 1;

Θ(n3/2 · logn), 0 ≤ β < 1.

1 < γ < 3/2 Θ(n3−γ)

γ = 1 Θ(n2/ logn)

0 ≤ γ < 1 Θ(n2)

Lemma 4: Given a social-broadcast session Sk, let Tk be
a routing tree for Sk, and let N(Tk,

√
S, c) denote the number

of cells used by Tk in V(
√
S, c), then when qk = O(S/c2), it

holds that N(Tk,
√
S, c) = Ω

(
1
c · |EMST(Sk)|

)
.

In V(
√
S, c), a cell is called an island if it contains Θ(nc

2

S )
nodes and all its eight neighbor cells are empty.

Lemma 5 ( [25]): There exists w.h.p. an island in the lat-

tice view V(
√
S, c), if c ≤ 1

2 ·
√

(1−ϵ)·S·logn
2n , where ϵ ∈ (0, 1)

is constant.
Since the sum of length of Euclidean minimum spanning

trees for all n sessions, i.e.,
∑n

k=1 |EMST(Sk)|, plays a
key role in the analysis of network capacity, we need to
give the lower bounds on

∑n
k=1 |EMST(Sk)|. Note that the

bounds depend on those on
∑n

k=1 |EMST(Pk)|, which will
be provided in Lemma B.1.

Lemma 6: For all social-broadcast sessions Sk, k =
1, 2, · · · , n, under the social model P(δ = 0, γ, β), with
high probability,

∑n
k=1 |EMST(Sk)| = Ω(H(γ, β)), where

H(γ, β) is described in Table.4.
Proof: Please see the proof in Appendix B.1.

4.3.2 Upper Bounds on Social-Broadcast Capacity

We will derive the upper bounds by combining the bounds
based on the lattice views V(

√
n,

√
2) and V(

√
n, 1

3

√
log n).

Upper Bound from Lattice View V(
√
n,

√
2): Based on

Lemma 6, we can get the following lemma.
Lemma 7: Under the social model P(δ = 0, γ, β) and the

generalized physical model with α > 2, the per-session social-
broadcast capacity is of order O(n/H(γ, β)), where H(γ, β)
is defined in Table.4.

Proof: Please see the proof in Appendix B.2.

Upper Bound from Lattice View V(
√
n, 1

3

√
log n): From

Lemma 5, for ϵ = 1
9 , there is an island in the lattice view

V(
√
n, 1

3

√
log n). Thus, we get the following lemma.

Lemma 8: Under the social model P(δ = 0, γ, β) and the
generalized physical model with α > 2, the per-session social-
broadcast capacity is of order

Λ =


O
(
(log n)−

α
2

)
, γ > 2;

O
(
(log n)−

α
2 −1

)
, γ = 2;

O
(
nγ−2 · (log n)−α

2

)
, 1 < γ < 2;

O
(
(log n)1−

α
2 /n

)
, γ = 1;

O
(
(log n)−

α
2 /n

)
, 0 ≤ γ < 1.

Proof: Please see the proof in Appendix B.3.
Combination of Upper Bounds: Combining Lemma 7 and

Lemma 8, we obtain the upper bounds in Theorem 3 by
performing some simple algebraic manipulations.

4.4 Lower Bounds on Social-Broadcast Capacity
In this section, we present the constructive lower bounds for
the social-broadcast capacity by devising two social-broadcast
strategies having their own merits respectively. Both strategies
depend on the Euclidean spanning trees (ESTs) of sessions.

4.4.1 Euclidean Spanning Trees
Recall that we denote each social-broadcast session by Sk =
{vk} ∪ Fk, where vk is the source node and Fk is the set of
friends (or followers) of vk. Ak = {pki}

qk
i=1 denotes the set

of these qk anchor points of the nodes in Fk = {vki}
qk
i=1.

Construction of Euclidean Spanning Trees: For each session
Sk = {vk} ∪ Fk, we build an EST, denoted as EST(Sk), by
the following method (Anchors-EMST-Based Greedy (AEBG)
Algorithm):

Step 1. Construct a Euclidean minimum spanning tree
(EMST) based on Ak, denoted as EMST(Ak), using some
classic greedy algorithms like Prim algorithm.

Step 2. Connect the pairs vki and vkj if and only if the link
pki

pkj
∈ EMST(Ak). Then, one can obtain an EST of Fk.

Step 3. Connect the source vk to its nearest node in Fk to
get the final EST of Sk, i.e., EST(Sk).

Bounds on
∑n

k=1 |EST(Sk)|: We give the upper bounds on∑n
k=1 |EST(Sk)|.
Lemma 9: For all social-broadcast sessions Sk, k =

1, 2, · · · , n, under the social model P(δ = 0, γ, β), using
the aforementioned AEBG algorithm, with high probability, it
holds that

∑n
k=1 |EST(Sk)| = O(H(γ, β)), where H(γ, β)

is described in Table.4.
Proof: Please see the proof in Appendix B.4.

Combining Lemma 6 and Lemma 9, we get that
Theorem 5: For all social-broadcast sessions Sk, under the

model P(δ = 0, γ, β), it holds that with high probability,∑n
k=1 |EMST(Sk)| = Θ(H(γ, β)), where H(γ, β) is de-

scribed in Table.4.

4.4.2 Social-Broadcast Schemes
Since the physical layer with δ = 0 is a random extended
network, the percolation-based routing backbone [6] still ap-
plies to the social model P(δ = 0, γ, β). We introduce two
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TABLE 5
Achievable Throughput under Bp&h: ΛBp&h

γ ΛBp&h

γ > 2


Ω((logn)−

α+1
2 ), β ≥ 2;

Ω(1/n1− β
2 ), 1 < β < 2;

Ω(
√
logn/

√
n), β = 1;

Ω(1/
√
n), 0 ≤ β < 1.

γ = 2


Ω((logn)−

α+3
2 ), β ≥ 2;

Ω(1/n1− β
2 ), 1 < β < 2;

Ω(
√
logn/

√
n), β = 1;

Ω(1/
√
n), 0 ≤ β < 1.

3/2 < γ < 2


Ω(

(logn)
−α+1

2

n2−γ ), β ≥ 2γ − 2;

Ω(1/n1− β
2 ), 1 < β < 2γ − 2;

Ω(
√
logn/

√
n), β = 1;

Ω(1/
√
n), 0 ≤ β < 1.

1 < γ ≤ 3/2 Ω((logn)−
α+1
2 /n2−γ)

γ = 1 Ω((logn)
1−α
2 /n)

0 ≤ γ < 1 Ω((logn)−
α
2 /n)

routing backbones called highways [6] and parallel arterial
roads [30] to design the social-broadcast schemes. For the
sake of completeness, we include concisely the construction
procedures of these backbone systems in Appendix C.1. We
propose two types of social-broadcast schemes: The former’s
hierarchical routing backbone consists of highways and paral-
lel arterial roads, denoted by Bp&h; the latter is only based on
parallel arterial roads, denoted by Bp. Due to the relatively
insignificant novelty, we move the complete descriptions of
these schemes into Appendix C.2.

Next, we give a theorem to present the achievable social-
broadcast throughputs under Bp&h and Bp.

Theorem 6: Under the social model P(δ = 0, γ, β) and
generalized physical model with α > 2, using EST(Sk)
derived by AEBG algorithm as the input of schemes Bp&h

or Bp, then it holds that with high probability:
� Under scheme Bp&h, the achievable throughput, denoted

by ΛBp&h , is described in Table.5.
� Under scheme Bp, the achievable throughput, denoted by

ΛBp , is described in Table.6.
Proof: Please see the proof in Appendix C.3.

Combining the throughputs under schemes Bp&h and Bp in
Theorem 6, we get the lower bounds in Theorem 3.

5 CONCLUSION AND FUTURE WORK

In this paper, we mainly address capacity scaling laws of wire-
less social networks under the social-based session formation
scheme. A three-layered model is proposed for abstracting
wireless social networks. As one of main contributions, a
cross-layer and distance&density-aware social model is pro-
posed, which captures the formation characteristics of real-
world social networks better, and specializes in the analysis of
capacity scaling laws. We derive the social-broadcast capacity,
taking into account the general clustering exponents of both
friendship degree and friendship formation. Moreover, we

TABLE 6
Achievable Throughput under Bp: ΛBp

γ ΛBp

γ > 2



Ω((logn)−
α
2 ), β > 2;

Ω((logn)−
α+1
2 ), β = 2;

Ω((logn)
1−α
2 /n1− β

2 ), 1 < β < 2;

Ω((logn)
2−α
2 /

√
n), β = 1;

Ω((logn)
1−α
2 /

√
n), 0 ≤ β < 1.

γ = 2


Ω((logn)−

α
2
−2), β ≥ 2;

Ω((logn)
1−α
2 /n1− β

2 ), 1 < β < 2;

Ω((logn)
2−α
2 /

√
n), β = 1;

Ω((logn)
1−α
2 /

√
n), 0 ≤ β < 1.

3/2 < γ < 2


Ω((logn)−

α
2 /n2−γ), β ≥ 2γ − 2;

Ω((logn)
1−α
2 /n1− β

2 ), 1 < β < 2γ − 2;

Ω((logn)
2−α
2 /

√
n), β = 1;

Ω((logn)
1−α
2 /

√
n), 0 ≤ β < 1.

γ = 3/2

 Ω((logn)−
α
2 /

√
n), β ≥ 1;

Ω((logn)−
α+1
2 /

√
n), 0 ≤ β < 1.

1 ≤ γ < 3/2 Ω((logn)−
α
2 /n2−γ)

0 ≤ γ < 1 Ω((logn)−
α
2 /n)

present the density function of general social friendships
distribution that will be the basis for investigating the capacity
of general wireless social networks. This work can act as
the first step of investigating the capacity under the proposed
population-based model.

Next, we make a discussion on how to derive the capacity
under more general models based on the results of this work.

5.1 Extending to General Physical Clustering Case
The advantages of population-based model cannot be suffi-
ciently highlighted for the case that δ = 0, indeed. It would
be a significant future work to investigate the relationships
between the general clustering exponent and capacity in 3-
dimensional parameter space, i.e., (δ, γ, β) ∈ [0,∞)3.

Here, we probe the feasibility of studying network capacity
under the social model with inhomogeneous physical layer,
by extending the proposed basic theorem (Theorem 1) for the
general distribution of anchor points. The key factor is to deter-

mine d(Y ). Furthermore, since d(Y ) =
n·min{1,|Y−O|−δ}∫
O min{1,|Z−O|−δ}dZ ,

then it should be the first key step to deal with |Y−O| based on
the “known” distance deviating from the source Ls = |Y −vk|
and distance deviating from the center Lc = |vk − O|. As
illustrated in Fig.6, it follows that

|Y −O| =
√

L2
c + L2

s − 2Lc · Ls · cos θ,

which can serve as a basis for the further study on the general
model.

5.2 Extending to General Physical Layer
The proposed center-clustering random model (CCRM) can be
developed to more general physical layer models in terms of
clustering patterns and scaling patterns.
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θ

θ

Y

X
X

Lc

vk

O

Ls

Y

Lc

(b) |X − vk| > |vk − O|

vk
O

(a) |X − vk| ≤ |vk − O|

Ls

Fig. 6. Illustrations of positions of the center point O, the
reference point vk, the targeted point X, and any interior
point Y in D(vk, |X − vk|).

5.2.1 Multiple Clustering Centers
In the CCRM, there is only one center. Although the results
under this model also apply to the model with physical
layer model having a finite number of centers due to the
characteristic of capacity scaling issues, more realistic and
general clustering behaviors in real-life networks cannot be
fully embodied by this simple model. To model the clustering
behavior of node distribution with ω(1) centers in real-life
applications of wireless networks, the shotnoise Cox process
(SNCP, [23], [32]) can be introduced, where M center points
generate their respective point processes, and the conditional
local intensity at X is determined by the superposition of the
individual processes, i.e., d(X) =

∑
j ρj · κ(cj , X), Then, the

node process forms an inhomogeneous Poisson point process.

5.2.2 General Scaling Models
In the research of network capacity scaling laws, there are two
typical models in terms of scaling patterns of network: dense
scaling model and extended scaling model [6], [30], [33]. They
have different engineering implications related to the classical
notions of interference-limitedness and coverage-limitedness
[33]: The former is only interference-limited; while, the lat-
ter is both interference-limited and coverage-limited. In the
CCRM adopted in this paper, the area of deployment region
is S := n, which implies that it is of extended scaling pattern.
Then, it is necessary to extend the CCRM to one with general
scaling pattern by setting a general area of deployment region.
Such a work will directly involve defining the dispersion
density function g(·) and power attenuation function ℓ(·)
which might have a significant impact on the network capacity.
Unlike the setting for extended scaling models, these two
functions for dense scaling models are usually defined as:
g(s) := s−δ [23] and ℓ(s) := s−α [6], respectively.

5.3 Extending to General Underlying Networks
For addressing the performance of data transmission in under-
lying communication networks for social networking services
(SNSs), besides the architecture of specific SNSs, there is
another key factor to consider. It is the architecture of under-
lying communication network, e.g., wireless, wired, or hybrid
networking architectures. This has a significant impact on
implementing routing for specific data dissemination sessions,

and plays a key role in limiting network capacity. In this paper,
we focus on the scenario where social networking applications
operate on the underlying wireless ad hoc networks, and aim
to investigate the capacity scaling laws of a large-scale ad hoc
network when it undertakes the data transmission of social ap-
plications. However, we notice that the real-world underlying
network for social networking applications is most unlikely
a pure wireless ad hoc networks. A realistic and effective
underlying network might be a hybrid network consisting of
the Internet and different types of wireless networks, including
static wireless and mobile networks. Therefore, it will be a
very challenging but significant future work to extend the
study by considering the diversity of real-world underlying
networks, based on the preliminary results on wireless ad
hoc networks in this work. For example, the next feasible
and necessary extension could be addressing the fundamental
limits of mobile social ad hoc networks where the underlying
communication networks can be modeled as mobile ad hoc
networks.
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