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Orthogonal Variable Spreading Factor (OVSF) CDMA code has the abil-
ity to support higher and variable data rates with a single code using one
transceiver. A number of CDMA code assignment algorithms have been
developed and studied for cellular wireless networks, however, little is
known about the ad hoc wireless networks, e.g., mesh networks. In this
paper, we propose several distributed CDMA/OVSF code assignment algo-
rithms for wireless ad hoc networks modeled by unit disk graph (UDG). We
first study how to assign CDMA/OVSF code such that the total throughput
achieved is within a constant factor of the optimum. Then we give a dis-
tributed method such that the minimum rate achieved is within a constant
factor of the minimum rate of any valid code assignment. A distributed
method that can approximate both the minimum rate and total throughput
is also presented. Finally, we present a post processing method to further
improve these code assignments. All our methods use only O(n) total
messages (each with O(log n) bits) for an ad hoc wireless network of n
devices modeled by UDG. We conduct extensive simulations to study the
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performance and the message complexities of our methods for randomly
deployed wireless ad hoc networks. The experiments show that our method
performs much better practically than the pessimistic theoretical lower
bounds.

Keywords: CDMA, code assignment, vertex coloring, throughput, bottleneck,
interference graphs, wireless mesh networks.

I INTRODUCTION

Wireless ad hoc networking (e.g., wireless sensor networks, wireless mesh
networks, MANETS) has received significant attentions over the last few
years. To increase the capacity of the network, frequency spectrum has to
be reused as it is one of the scarcest resources available. Several multiple
access methods are used in wireless networks, e.g., conventional FDMA (fre-
quency division multiple access) and TDMA (time division multiple access),
and recently developed CDMA (code division multiple access). Same chan-
nel is not assigned to two wireless devices if it causes interferences. Here the
interferences could be primary interference or secondary interference. Pri-
mary interference occurs if two wireless devices use the same channel and
one is inside the transmission region of the other. And the secondary interfer-
ence (or called hidden terminal problem) occurs if a third device is within the
common transmission regions of two nodes using the same frequency chan-
nel. The interference graph is the graph over all wireless nodes and has an
edge uv if two wireless nodes u and v will generate interference when they
are assigned the same channel. Assigning frequency channel efficiently in unit
disk graphs has been well-studied [12,17] but little is known about assigning
CDMA/OVSF code for wireless ad hoc networks while achieving some global
quality such as the total throughput or the bottleneck of the networks. In this
paper, we are interested in assigning CDMA/OVSF codes to ad hoc wireless
devices (especially of wireless mesh networks where devices are often static)
such that either the total network throughput or the bottleneck or both are
maximized approximately.

CDMA provides higher capacity, flexibility, scalability, reliability and
security than conventional FDMA and TDMA. In a CDMA system, the com-
munication channels are defined by the pseudo-random codewords, which are
carefully designed to cancel each other out as far as possible. Every bit of data
is multiplied by the codeword used by the wireless communication channel.
The number of duplicates, which is equal to the length of the codeword, is
known as the spreading factor. The inverse to the length of the codeword
is known as the rate of the codeword. There is a trade-off on the length of
the codewords. On one hand, longer codewords can increase the number of
channels and the robustness of the communications. On the other hand, since
the raw rate seen by the user is inverse to the codeword length, longer code-
words would result in lower data rate of the communication channels. For
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FIGURE 1
OVSF code: (a) code-tree structure; (b) binary color representation.

example, the Walsh code, used by the cdmaOne cellular system, consists of
64 codewords, each 64-bits long.

Motivated by the support of variable rate data service at low hardware cost, a
variable-length code, known as orthogonal variable-spreading-factor (OVSF)
code, was developed in 1997 [1]. The idea of the OVSF code is to allow the
codewords in the CDMA code to have variable lengths, and a higher-rate
request is assigned with a single shorter codeword. The generation of OVSF
code can be depicted by the code-tree structure as shown in Figure 1 (a). The
code-tree is a balanced binary tree, whose vertices represent the codewords.
The root, which is at the level 0, is associated with the codeword 1. Recursively,
if a vertex has a codeword C, then its two children will have codewords CC

and CC respectively, where C is the complement of C. Thus, at level � there
are 2� codewords, each 2� bits long. Notice, not all codewords in an OVSF
code are orthogonal to each other. Two OVSF codewords are orthogonal to
each other if and only if neither is an ancestor, or equivalently, a prefix of the
other. In a CDMA system, two nodes possibly interfering each other should
use two codes that are orthogonal.

As always, it is convenient to represent the channels by colors. For the chan-
nelization by OVSF code, a representation of the channels or the codewords
by positive binary integers (called colors hereafter) is given in Figure 1 (b).
Two binary colors are said to be prefix-free if neither is a prefix of the other.
Then, two binary colors are prefix-free if and only if the corresponding code-
words are orthogonal. Additionally, we associate each binary color with a rate
attribute, which is equal to the rate of the corresponding codeword. Thus, the
rate of an �-bit binary color is equal to 2−�+1. We also say that an �-bit color is
in the �-th layer of the CDMA/OVSF code tree structure. The root has layer 1.

All prior studies of conflict-free CDMA/OVSF code assignment have
been restricted to complete graphs in the context of channel assignment to
nodes in a single cell of an CDMA/OVSF cellular networks [2,5,9,18]. The
CDMA/OVSF code assignment of complete graphs is fairly easy. Indeed, since
each node must receive a unique code different from others, a CDMA/OVSF
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code assignment can thus be represented by a binary tree with one-to-one
correspondence between the nodes (or their colors) and the leaves of the
tree. Every binary tree with n leaves leads to a valid CDMA/OVSF code
assignment. If the binary tree is full, then the corresponding code assignment
achieves the maximum throughput one. If the binary tree is full and balanced,
the corresponding code assignment achieves both the maximum throughput
and maximum bottleneck. Furthermore, if each node specifies a demand equal
to a power of 1/2, then as an immediate application of Kraft’s inequality, all
demands can be satisfied if and only if the total demands is at most one. The
dynamic reassignment of colors to meet a new demand is addressed in [18].

A proper vertex coloring is to assign each vertex a color such that two adja-
cent vertices receive different colors. The minimum (proper) vertex coloring
of the interference graph has been studied in the context of channel assignment
in wireless ad hoc networks channelized by FDMA, TDMA or CDMA/OVSF
[6–8,11,19,20,23,22]. The majority of these works simply presented net-
working protocols to obtain a proper vertex coloring without addressing the
computational complexity and/or the optimization. Sen and Huson [21] gave
a proof of the NP-hardness of the vertex coloring in interference graph even
when all nodes are located in a plane and have the same transmission radii.
Muqattash and Krunz [16] studied the power control for wireless ad hoc net-
works using CDMA based MAC. Several CDMA code assignment methods
were proposed for wireless ad hoc networks [10,13], but no theoretical analysis
of their performances was given.

A problem related to the vertex coloring of the interference graphs is the
distance-2 vertex coloring of a graph [14]. A distance-2 vertex coloring of a
graph H is a proper vertex coloring of H 2, the square graph of H , which is the
graph obtained by creating an edge between each pair of vertices of H sepa-
rated by at most two hops in H . However, the CDMA/OVSF code assignment
problem possesses several unique features that makes itself different from the
distance-2 vertex coloring. The colors assigned to two adjacent nodes in H 2

should only be different for a vertex coloring problem, while these two colors
should further be prefix-free for CDMA/OVSF code assignment.

The main contributions of this paper are as follows. We propose several
efficient distributed CDMA/OVSF code assignment algorithms for wireless
ad hoc networks modeled by unit disk graph. We first study how to assign
CDMA/OVSF code such that the total throughput achieved is within a con-
stant factor of the optimum. Then we give a method such that the minimum
rate achieved is within a constant factor of the minimum rate of any valid code
assignment. A method that can approximate both the minimum rate and total
throughput simultaneously is also presented. Finally, we present a post pro-
cessing method to further improve the performance of these code assignments.
All our methods use only O(n) total messages (each with O(log n) bits) for
an ad hoc wireless network of n devices modeled by UDG. We also conduct
extensive simulations to study the practical performances of our methods.
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Our methods not only have theoretically proven performance bounds but also
perform close to optimum practically.

It will be seen that the correctness of the protocols presented in this paper
does not require that the wireless networks are modelled by UDG. Out methods
apply to all wireless networks when the communication channels are varying
with distance, with time, and with obstacles. The UDG network model only
enables us to prove that our methods have theoretical performance guarantees.
The correctness of our methods also do not depend on the node positions. The
usage of the node positions enable us to show that the total messages needed
by each of our method is O(n). The position error will not affect our methods
as long as the position error will not change the topology of the network, i.e.,
the UDG topology derived from the perceived nodes’ positions is the same as
the actual physical network topology.

This paper is not intended to solve all critical issues in CDMA based wire-
less ad hoc networks. In addition to the code assignment problem, there are
several other important issues that should be addressed so the CDMA/OVSF
code can be used practically for wireless ad hoc networks. The first issue
is about how the communication of code assignment methods is performed
before a CDMA/OVSF code is assigned to nodes (sort of chicken and egg prob-
lem here). For this, we assume that there is already a separated control channel
available for communication when the wireless network is deployed. Another
issue is the mobility of wireless nodes. When wireless nodes move around
and in consequence of the movement the interference graph is changed, we
should re-assign the CDMA/OVSF codes to wireless nodes. The algorithms
proposed in this paper mostly use the information local to each node to select its
CDMA/OVSF code. Consequently, when nodes are mobile, we could update
the codes fairly quickly. The moving node will check if movement causes its
code to be invalid. If so, it will run our methods to find the new code and
inform its neighbors about this new code. Here, instead of letting the ID be
the rank in assigning code, we will use the updating time as the rank or the
moving speed of a node as the rank (slow moving node will have chance to
get higher rate code). To retain a good performance, we may need to re-assign
the codes for all nodes.

The third issue is the time synchronization among the mobile wireless
nodes. In MANET, it is impossible to have a common time reference for all the
transmissions that arrive at an intended receiver, since signals originate from
different transmitters. Equipping the mobile wireless nodes with GPS receivers
can reduce some asynchronizations but cannot eliminate it. In addition, these
transmissions suffer different time delays since they propagate through differ-
ent paths, which introduces another domain of difficulty of synchronization.
In an asynchronous system, it is thus impossible to design spreading codes
that are orthogonal for all time offsets [16]. The synchronization of wireless
ad hoc networks is thus not an easy task, which should be addressed by fur-
ther research. A possible direction is to design code assignment methods to
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assign codes that can tolerate the asynchronization to some extent while it still
achieves some sort of performance bounds.

The remainder of the paper is organized as follows. In Section II, we present
several efficient distributed CDMA/OVSF code assignment methods. Exten-
sive simulations to study their performance and message complexities are
reported in Section III. We conclude our paper in Section IV with a discussion
of possible future works.

II DISTRIBUTED CODE ASSIGNMENT

We consider a wireless ad hoc mesh network consisting of a set V of n nodes
distributed in a two-dimensional plane. The nodes are assumed to be static or
can be viewed as static during a reasonable period of time. We assume that
the omnidirectional antenna is used by the wireless devices. The transmission
range of a node is thus often modeled as a disk centered at this node. Assume
all nodes have the same transmission radius r , thus, wireless ad hoc networks
are modeled by unit disk graphs (UDG), in which two nodes are connected
iff their Euclidean distance is no more than r . Obviously, if there is a node w

inside the common transmission region of two nodes u and v, then w is a
hidden terminal. From now on, we will let G denote the interference graph,
which models the primary interference or both the primary interference and
the secondary interference.

In a CDMA/OVSF wireless mesh network, a channel assignment must
be conflict-free, i.e., any pair of neighboring nodes in the interference graph
must receive orthogonal codewords. A CDMA/OVSF code assignment is said
to be valid if its is conflict-free. With the representation of the codewords
by the binary colors, a conflict-free channel assignment is equivalent to a
vertex coloring of the interference graph by positive binary colors such that
adjacent nodes in the interference graph receive prefix-free colors. We propose
to study various optimization problems on prefix-free vertex coloring of the
interference graphs. Specifically, we will address how to maximize the total
throughput, the minimum rate, and both at the same time.

Given a conflict-free CDMA/OVSF code assignment

{cv | v ∈ V,∀ link uv, cu and cv are orthogonal}
of the interference graph G, its throughput and bottleneck are defined as∑

v∈V 2−|cv |+1 and minv∈V 2−|cv |+1 respectively, where |cv| denotes the num-
ber of bits of the color cv . In other words, the throughput of a conflict-free
CDMA/OVSF code assignment is the sum of the rates of the assigned codes,
and its bottleneck is the minimum of the rates of the assigned codes. The
throughput of an interference graph G, denoted by τ(G), is then the max-
imum of the throughput over all possible conflict-free CDMA/OVSF code
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assignments of G. Similarly, the bottleneck of an interference graph G,
denoted by β(G), is then the maximum of the bottleneck over all conflict-free
CDMA/OVSF code assignments of G.

Let Nk(u) be the set of all wireless nodes that are at most k hops away
from node u in the original unit disk graph, dk(u) be the cardinality of Nk(u).
Obviously, nodes that can have primary interference with a node u are N1(u)

only; the nodes that can have either primary interference or secondary interfer-
ence (hidden terminal) with u are N2(u) only. Consequently, we are interested
in Nk(u) for k = 1 if primary interference is concerned, and k = 2 if sec-
ondary interference is concerned. Letting every node broadcast its identity to
its one-hop neighbors enables all nodes to find their one-hop neighbors using
only total n communications. If every node knows its exact geometry location,
a communication efficient protocol [3] is known to find all two-hop neighbors
of all nodes using at most O(n) communications. Thus, we assume that each
node knows Nk(u) and then dk(u) for k = 1, 2.

A Maximize throughput τ(G)

Greedy algorithms have been used and proved to be efficient in many prob-
lems and we found that greedy CDMA/OVSF code assignment method also
generates a code assignment that is almost as good as the optimum. First-
fit coloring is a class of greedy algorithms for vertex coloring. Assume that
there is an ordering of all wireless nodes. We then assign code to the wireless
devices sequentially according to the associated ordering by assigning each
device the shortest possible CDMA/OVSF code. In particular, in any first-fit
coloring, all nodes receiving the same smallest CDMA/OVSF code must form
a maximal independent set. Such maximal independent set is desirable to be a
small constant approximation of a maximum independent set to maximize the
total throughput intuitively.

Clearly, the performance of a first-fit code assignment depends on the node
ordering used. Indeed, there always exists a node ordering in which the first-
fit coloring generates an optimal CDMA/OVSF code assignment. However,
such node ordering is unlikely to be found in polynomial time due to the
expected NP-hardness of the max-throughput CDMA/OVSF code assignment.
So we seek some node ordering that produces a CDMA/OVSF code assign-
ment approximating well the optimal assignment in terms of the maximum
throughput; such node ordering should be generated efficiently. We propose
several different node orderings for CDMA/OVSF code assignment. We show
that all of them produce a code assignment with total throughput O(τ(G)) and
use total communications O(n). Hereafter, we assume that each message has
O(log n) bits. Notice that all node orderings used in this paper are just par-
tial ordering computed locally. To compute such ordering, we assume that a
synchronous communication is used.

Our code assignment methods compute a partial ordering based on the node
ID, or degree, or the node position. Here we assume that every node has a
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Algorithm 1. Max-Throughput Using ID-ordering by u

1: Node u sends a message to tell its ID to all nodes inside its transmission
region. If secondary interference is not permitted, node u finds N2(u)

using a communication efficient method [3].
2: All nodes collectively find a maximal independent set (MIS) based on ID

using Algorithm 2.
3: Node u assigns a CDMA/OVSF code represented by binary 10 (see Fig-

ure 1 (b) for illustration) if u is in the maximal independent set. Node u then
informs its neighbors in the interference graph about its CDMA/OVSF
code.

4: If node u receives a CDMA/OVSF code from its neighbor in the interfer-
ence graph, u marks the corresponding code used in the CDMA/OVSF
tree structure stored locally.

5: We then assign code to the remaining nodes. If node u has the smallest
ID among all its neighboring nodes in the interference graph without
CDMA/OVSF code, then node u finds the smallest layer h > 0 in the
CDMA/OVSF tree structure stored locally such that layer h has at least
2 free codes1 not used by its neighbors in G. Node u then picks the first
unused code in layer h and informs its neighbors in the interference graph
G about its CDMA/OVSF code. The picked code is called the first fit code
for node u.

distinctive ID and knows its position if communication efficient protocol is
needed. The algorithms first construct the interference graph and then construct
a maximal independent set based on ID, or degree, or the node’s geometry
position. Nodes in the computed maximal independent set are assigned the
shortest code 10. For the remaining nodes, we assign code using the first
fit heuristics based on the partial ordering from the ID, or degree, or node
position. Algorithm 1 presents our method (run by every node u) of assigning
CDMA/OVSF code based on ordering by ID to maximize the throughput.

Finding a maximal independent set (MIS) for a wireless ad hoc net-
work modelled by UDG is well-studied. For completeness of presentation,
we review the general distributed method that computes a MIS based on a
rank. Algorithm 2 reviews the distributed method run by every node u. We
define three marks for nodes: White, InIS and NotInIS. Initially, all nodes are
marked as White. A node already in the computed maximal independent set
is marked InIS and the node that is ruled out of the maximal independent
set is marked NotInIS. All nodes with mark InIS form a maximal indepen-
dent set and it is known [15,25] that its size is within a constant factor of the
maximum independent set when G is UDG.

1Using a code such that there are at least 2 unused codes in that layer guarantees that there is
always a code available for unassigned neighboring nodes later.
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Algorithm 2. Compute a MIS based on a rank by a node u

1: mark(u)← White;
2: Node u sends rank(u) to its one-hop neighbors in G.
3: while node u received a message from its neighbors do
4: if message is rank(v) then
5: Node u stores rank(v); mark(u) ← InIS if u has the smallest rank

among all its White neighbors in G.
6: Node u sends a message InIS(u) to its neighbors in G using a

communication efficient protocol [3].
7: else if message is InIS(v) then
8: mark(u)← NotInIS; Node u then sends a message NotInIS(u) to its

neighbors in G using a communication efficient protocol [3].
9: else if message is NotInIS(v) then

10: Node u updates the mark of v stored locally.
11: end if
12: end while

Obviously Algorithm 1 generates a conflict-free CDMA/OVSF code
assignment since, for each pair of neighboring nodes u and v in the inter-
ference graph, the node with larger ID can only assign code after it gets the
code of the other node. The total communication cost is O(n) since we use
communication efficient protocol to collect N2(u) for all nodes and to inform
the assigned CDMA/OVSF code to its neighbors in the interference graph.

Notice that our method basically first computes a maximal independent
set and then assigns the shortest CDMA/OVSF code to the nodes in this
independent set. For the remaining nodes, we assign codes in the order of
increasing node ID. Notice that the throughput generated by such method
would be larger if the size of the computed independent set is larger or the
number of nodes assigned before each node is smaller. Intuitively, we could
further improve the throughput if we use an ordering based on the node degree
in the interference graph: using the increasing order of the node degree for
computing a maximal independent set and assigning codes to the remaining
nodes. The algorithm is described as follows.

We then show that the above methods indeed approximate the optimum
throughput τ(G). To analyze the approximation ratio of different methods on
the throughput, we first study the structure of some optimum CDMA code
assignment, called canonical coloring. In [24], we defined the canonical col-
oring as follows. Given a graph G = (V , E), partition the vertex set V into
independent sets V1, V2, . . . , Vk with

V1 ≥ V2 ≥ · · · ≥ Vk.

Let G0 = G and Gi be the graph of removing the vertices Vi and the incident
edges from graphGi−1, for 1 ≤ i ≤ k. Vertex setVi is a maximum independent
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Algorithm 3. Max-Throughput Assignment by Degree
1: Each node u computes its degree d(u) in the interference graph G and

informs its neighbors in G about its degree d(u) using a communication
efficient protocol [3].

2: All nodes together compute a maximal independent set using the degree
as selecting criterion: node with smaller degree has a higher priority and
ties are broken by smaller ID.

3: A node assigns CDMA/OVSF code 10 if it is in the maximal independent
set.

4: All other nodes assign the first fit code in the increasing order of degree
using method similar to the last step of Algorithm 1.

set of graph Gi−1. For 1 ≤ i ≤ k − 1, all nodes in Vi receive the code 1i0,
and all nodes in Vk receive the code 1k . Obviously, the throughput of such
canonical coloring is

k−1∑

i=1

|Vi |
2i
+ |Vk|

2k−1
.

Notice that, If there are multiple maximum independent sets V1, we have
to choose the one that produces the largest maximum independent set V2.
Similarly, the selection of the first i maximum independent sets V1, V2, . . . , Vi

produces the largest maximum independent Vi+1, for 1 ≤ i < k. Call such
sequence of maximum independent set as canonical maximum independent
set decomposition and the corresponding coloring canonical coloring.

Theorem 1. [24] The canonical coloring maximizes the throughput.

This theorem implies that the maximum throughput of any code assignment
is at most the independence number α(G) of the interference graph G. Based
on this observation, we can assign the code as follows. First, compute a max-
imal independent set that approximates the maximum independent set (with
approximation ratio �). Then assign the nodes in the maximal independent
set a code 10 (its rate is 1/2). For the remaining nodes, we can recursively
find the maximal independent set and assign code 1i0 for the maximal inde-
pendent set retrieved in the ith iteration but the messages of this approach
could be very large. To optimize the message complexity, Algorithms 1 and 3
used a different approach for the remaining nodes (actually any conflict-free
CDMA/OVSF code assignment for the remaining nodes works here). Obvi-
ously, the throughput generated by assigning nodes in maximal independent
set a code 10 is at least � · α(G)/2. In other words, a �-approximation algo-
rithm for the maximum independent implies a �/2 approximation algorithm
for the maximum throughput CDMA code assignment algorithm. This implies
the following theorem (see appendix for the proof).
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Algorithm 4. Max-Throughput Using Position-ordering by u

1: Every node finds its neighbors in the interference graph using a commu-
nication efficient protocol in [3].

2: All nodes together compute a MIS based on rank (x(u), y(u), ID(u)) using
Algorithm 2, where x(u), and y(u) are the x-coordinate and y-coordinate
of a node u.

3: Node u gets code 10 if it is in the computed MIS.
4: All nodes not in MIS get the first fit code in an increasing ordering of

(x(u), y(u), ID(u)) using method similar to the last step of Algorithm 1.

Theorem 2. Algorithm 1 and 3 generate a code assignment whose throughput
is at least �/2, where � = 1/5 if only primary interference is concerned and
� = 1/13 if secondary interference is also concerned.

When every node knows its position, we can further improve the theo-
retical lower bounds on the throughput of the assigned CDMA/OVSF codes
as follows. We still construct a maximal independent set first, but instead of
using the node ID or the degree as selection criterion, we select a node u to
the maximal independent set if all unassigned neighboring nodes are inside
one half of the disk centered at u. Notice that such node u always exists since
the most left undecided node trivially satisfies this condition.

Theorem 3. Algorithm 4 generates a code assignment whose throughput is
at lease �/2, where � = 1/3 if only primary interference is concerned and
� = 1/7 if secondary interference is also concerned.

The proof of this theorem is similar to the proof of Theorem 2 and thus
is omitted. The approximation ratio could be further improved to be better
than �/2, which is analyzed as follows. The new approach will compute a
maximal independent V ′1, and then compute a maximal independent V ′2 for
the remaining nodes. Clearly, the total communication cost is still O(n). The
nodes in V ′1 will receive a code 10 and the nodes in V ′2 will receive a code 110.
We then assign codes to other nodes using a method that is similar to the last
step of Algorithm 1.

Theorem 4. An �-approximation algorithm for the maximum independent set
gives a 5

8�-approximation algorithm for the maximum throughput CDMA code
assignment.

See appendix for the proof. We then summarize our results in the following
main theorem.

Theorem 5. If node position is known, we can produce a CDMA/OVSF code
assignment, using O(n) total messages, whose total throughput is at least
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5/24 of the optimum when only primary interference is concerned, and 5/56
of the optimum when secondary interference is concerned.

Notice that our theoretical analysis is pessimistic and our simulations show
that the practical performances of our methods are much better than these
pessimistic analysis.

B Maximize bottleneck β(G)

In previous sections, we showed how to assign CDMA/OVSF codes to wire-
less nodes such that the total throughput of the network is maximized. We
continue to study how to assign CDMA/OVSF codes such that the minimum
rate of all nodes is maximized. Intuitively, to maximize the throughput, from
the canonical code assignment discussion, the assigned codes should be imbal-
anced. However, to maximize the minimum rate of the network, the assigned
codes should be as balanced as possible. Clearly, the previous greedy methods
do not generate a balanced code assignment. In this section, we present a novel
distributed method to assign a balanced CDMA/OVSF code.

Our method is based on the following observation. Consider a node u and
all its neighbors in the interference graph G. If all such neighbors and u form
a clique, then the minimum rate is approximately 1/d, where d is the size of
the clique. This is achieved when all nodes use the code in level log d. In other
words, to maximize the minimum rate assigned, node u cannot choose the
first fit code; it has to use a code in level close to log d. Putting in other way,
node u cannot be too greedy and it has to leave good codes for its neighbors.
The following Algorithm 5 details our method.

Here we say a code is marked if it is either marked as used or conflicted.
Later, we will describe how to compress the code to improve the throughput

Algorithm 5. Max-Bottleneck by Degree-ordering by u

1: All nodes together compute the interference graph G using a communi-
cation efficient protocol. Assume that each node u knows its degree d(u)

in G. Each node u informs its neighbors in G its degree d(u).
2: Node u constructs a local binary code tree T .
3: If node u has the largest degree d(u) among all neighbor nodes in G

without CDMA/OVSF code, where ties are broken by smaller ID, node u

picks the first unmarked code in the code tree T stored locally from layer
�, where

2�−2 < d(u)+ 1 ≤ 2�−1.

Node u informs all its neighbors in G the selected code using a
communication efficient protocol.

4: If a node u receives a CDMA/OVSF code from its neighbor in G, u marks
the corresponding code used in T , and marks all prefix-codes of this code
conflicted in T .
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and bottleneck. That method actually requires that, for each used code, the
node v will remember how many times this code is used by its neighbors. We
first show that every node u can find an unmarked code in layer �. Notice that
the number of total CDMA/OVSF codes in layer � is 2�−1.

Theorem 6. Algorithm 5 generates a conflict-free CDMA/OVSF code
assignment.

Proof. It is obvious that if nodeu can find a CDMA/OVSF code, then the found
code does not conflict with the code assigned to any other neighbor. It remains
to show that u can find an unmarked CDMA/OVSF code in layer �. Notice that
when we assign code to node u, node u has the largest degree d(u) among all
neighbors without CDMA code in the interference graph. This implies that all
neighbor nodes with assigned code must have degree at least d(u). Thus, the
codes already used by its neighbors, at the moment of assigning code for u, are
on or below layer �. Since there is only one code at layer � that is the prefix of
a code on or below layer �, the number of codes at layer � that are marked and
thus cannot be used by u is at most d(u). Notice that at layer �, there are at least
d(u) + 1 codes by the selection of layer �. Clearly, there is still one unused
CDMA/OVSF code when processing node u. This finishes the proof. �

We then show that the above Algorithm 5 generates a conflict-free CDMA/
OVSF code assignment whose minimum rate is within a constant factor of the
optimum.

Theorem 7. Algorithm 5 generates a code assignment whose minimum rate
is within a constant factor of any conflict-free CDMA/OVSF code assignment.

Proof. Consider a node u with the largest degree d(u) in the interference
graph. If primary interference is concerned, we partition the disk D(u, 1)

into 6 equal-sized sectors. If secondary interference is also concerned, we
partition the disk D(u, 2) into 13 equal-sized sectors. We already showed that
all neighbors of u inside one sector form a complete subgraph in G. Using
the pigeonhole principle, it is easy to show that among the neighbors of u in
the interference graph and u, the minimum clique size is at least c · d(u)+ 1,
where c = 1/6 for primary interference graph, and c = 1/13 for secondary
interference graph. For a clique of size q, the minimum rate of nodes in the
clique is obviously at most 2−�log2 q	. Thus, for any assignment, the minimum
rate among neighbors of u and node u is at most 2−�log2(c·d(u)+1)	. Obviously,
the rate by our approach is 2−�log2(d(u)+1)	. It is easy to show that

2−�log2(d(u)+1)	 ≥ 2−�log2 c	 · 2−�log2(c·d(u)+1)	

In other words, the minimum rate achieved byAlgorithm 5 is at least 1/8 of the
optimum if only the primary interference is concerned and 1/16 of the optimum
if the secondary interference is also concerned. This finishes the proof. �
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Notice that, the assigned codes can be further improved. For example, if
every neighboring node of u in the interference graph already has a CDMA/
OVSF code assigned, node u can pick the first fit code from the smallest layer.
We will discuss in detail how to further compact the assigned CDMA/OVSF
code to improve the performance later.

C Maximize τ(G) and β(G)

In previous two subsections, we have described several methods to assign
CDMA/OVSF code to wireless nodes in a distributed manner to maximize
either the total throughput or the bottleneck rate of the network, but not both.
As we discussed before, to maximize the throughput, the assigned codes should
be as imbalanced as possible, while to maximize the bottleneck rate, the
assigned codes should be as balanced as possible. It seems impossible to have
a CDMA/OVSF code assignment that approximates both the total throughput
and the bottleneck rate. In this subsection, we show that by retreating little bit
of both requirements, we can achieve this. Our method is almost a straight-
forward combination of previous methods. We first assign the shortest code to
the nodes in a maximal independent set. For the remaining nodes, we assign
a balanced code.

Similar to Theorem 6, Algorithm 6 also generates a conflict-free CDMA/
OVSF code assignment. A subtle difference is that, in Algorithm 6, node u

chooses code from layer � that has 2�−1 ≥ 2d(u) codes, while in Algorithm 5,
node u chooses code from layer � that has at least d(u) + 1 codes. This
is because each node u not in the maximal independent set is connected to
some node, say v, in the maximal independent set, and node v already uses
CDMA/OVSF code 10. Thus, node u can only use the bottom half codes in

Algorithm 6. Max-Throughput and Bottleneck by a node u

1: All nodes together compute the interference graph G. Each node u com-
putes its degree d(u) in G and informs its neighbors in G about its degree
d(u).

2: All nodes together compute a MIS based on the rank by degree using
Algorithm 2. Node ID or (x(u), y(u), ID(u)) can also be used as the rank
criterion. Node u gets CDMA/OVSF code 10 if it is in the computed MIS.
The remaining steps will assign code for other nodes.

3: Each node u constructs a binary code tree T .
4: If node u is not assigned and has the largest degree d(u) among all its

neighbors in G without a CDMA code, node u picks the first unmarked
code from layer � in T , where 2�−3 < d(u)≤ 2�−2. Node u informs all its
neighbors in G the selected code using a communication efficient protocol.

5: If node u receives a message from its neighbor v informing the
CDMA/OVSF code of v, u marks this code used, and marks all
prefix-codes of this code conflicted in tree T .
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Figure 1 (b), i.e., all CDMA/OVSF codes starting with 11. In other words, we
push the code to one layer below. Since for neighboring nodes of u, at least
one node is already assigned a CDMA/OVSF code 10, the number of nodes
that need balanced codes is thus at most d(u), including u itself, instead of
d(u) + 1 for Algorithm 5. It is not difficult to prove the following theorem
about the quality of assigned CDMA/OVSF codes.

Theorem 8. Algorithm 6 generates a conflict-free code assignment whose
total throughput is within �/2 of the optimum, and whose minimum rate is
within 2−�log2 c	−1 factor of the optimum, where � is the approximation ratio
of the maximum independent set algorithm, c = 1/6 for primary interference
and c = 1/13 for secondary interference.

Remember that, using the geometry information, the maximum indepen-
dent set of the interference graph can be approximated within 1/3 for primary
interference graph and 1/7 for secondary interference graph. If node position
is unknown, the approximation ratio becomes 1/5 and 1/13 respectively.

D Post processing
Although we proved that all our algorithms generate a conflict-free CDMA/
OVSF code assignment either whose total throughput or whose minimum
rate, or both, is within a constant factor of the optimum, the assigned code
can still be improved. We then present a communication efficient method
to further improve the code assignment generated by previous algorithms.
We assume that originally every node has a mark to indicate whether it has
performed the improvement. We also assume that, for each code C, each node
u stores the number of times t (C) the code C is used by its neighboring nodes
when assign CDMA/OVSF code, and stores the number, denoted by p(C), of
children codes that are used by its neighbors. Obviously, if either t (C) > 0 or
p(C) > 0 this code C cannot be used by node u since it causes interference
with neighboring nodes in G. When p(C) > 0, we say the code conflicted
and when t (C) > 0 we say the code used. When t (C) = 0 and p(C) = 0, we
say the code is unmarked. Our code compressing method basically will move
the code to the upper layer as much as possible.

Algorithm 7 will be used for the CDMA/OVSF code improvement for
the algorithms presented in the previous subsections. Notice that, when we
improve the CDMA/OVSF code assignment, we start from the node with the
smallest degree. The reason is as follows. Assume a node with the smallest
degree improves the assigned code to some code of upper layer. This node
cannot further improve the code after some of its neighbors improve their
assigned CDMA/OVSF codes since the codes in upper layer cannot be freed
by its neighbors. This implies that the code generated by Algorithm 7 is locally
optimum. Our simulations show that Algorithm 7 improves the performance
by a factor of almost 2.
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E Build interference graph efficiently
So far we always assumed that all nodes can collect the neighbors in the
interference graph G efficiently in a distributed manner and can inform its
assigned CDMA/OVSF code to all its neighbors in G efficiently. Here, we will
describe in detail how to perform these using total O(n) number of messages
if the wireless ad hoc networks are modeled by unit disk graphs and each node
knows its geometry position.

When only the primary interference is concern, then the interference graph
is the unit disk graph itself. Obviously, a node can inform all its neighbors in
the unit disk graph about its assigned CDMA/OVSF code by using only one
message to all nodes inside its transmission range.

We will thus concentrate on how to do so if the secondary interference
is concerned. Clearly, the interference graph has exactly all links uv, where
v ∈ N2(u). We briefly review the communication efficient method presented
in [3] to collect N2(u) for every node u. Assume a maximal independent set
is computed. Each node uses its adjacent node(s) in the MIS to broadcast over
a larger area relevant information. Listening to the information about other
nodes broadcast by the MIS nodes enables a node to compute its 2-hop neigh-
borhood. We start from the moment the virtual backbone is already constructed
by an efficient method such as [25], and every node knows the ID and the posi-
tion of its neighbors. The responsibility for announcing the ID and position of a
node v is taken by the MIS nodes adjacent to v. Each such MIS node assembles
a packet with the ID and position of v and a variable counter being set to 2. The
MIS node then broadcasts the packet. A connector node is used to establish
a link in between several pairs of virtually-adjacent MIS nodes, and will not
retransmit packets which do not travel in between these pairs of MIS nodes.
The connector node will rebroadcast packets with nonzero counter originated

Algorithm 7. Compress Assigned CDMA/OVSF Code by u

1: Each node u has a binary code tree T . For each code C, it already has
correct t (C) and p(C). All node are initially unmarked.

2: while u is unmarked and d(u) ≤ d(v) (ties are broken by ID) for all its
unmarked neighbors v do

3: From T , node u picks the first unmarked code, say Cn, from the smallest
layer that has at least one unmarked code.

4: Node u informs its neighbors in the interference graph its new code Cn

and its old code Co using a communication efficient protocol. Node u

also marks itself improved.
5: end while
6: When node u receives a pair of the new code Cn and old code Co from

its neighbor v, u increases t (Cn) by 1 and decreases t (Co) by 1. Node u

also increases p(C) of all prefix-code C of code Cn by 1 and decreases
p(C) of all prefix-code C of code Co by 1.
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by one of the nodes in a pair of virtually-adjacent MIS nodes, thus making sure
the packet advances toward the other MIS node in the pair. When an MIS node
receives a packet it checks whether this is the first message with this ID and
counter > 0, and if yes, it decreases the counter variable and rebroadcasts the
packet. A node listens to the packets broadcast by all the adjacent MIS nodes,
and, using its internal list of 1-hop neighbors, checks if the node announced
in the packet is a 2-hop neighbor or not - thus constructing the list of 2-hop
neighbors. The above approach can also be used by each node to inform the
assigned CDMA/OVSF code to its neighbors in the interference graph.

III PERFORMANCE STUDIES BY SIMULATIONS

We conducted extensive simulations of our methods to study their perfor-
mances. In our simulations, we assumed that the n wireless nodes are randomly
distributed in a square region with side length a = 200. Each node has a
transmission range r .

Vary the Number of Nodes: We first study the performances of our algo-
rithms in terms of different number of nodes. Here we fix the transmission
range to be a constant r = 30. We test 30 different number nodes 30 · i, for
1 ≤ i ≤ 30. Given n nodes, we generate 100 random n-points sets and run
our algorithms for all of these 100 sets of points. We then take the average
performances of these 100 networks.

Figure 2 illustrates the performance of throughput and the minimum rate
by different methods. Since our methods assigning code to maximize the
throughput are based on the first fit strategy, the assigned code cannot be
compressed anymore. For other methods, we also apply our compressing
method to improve the performance. In our simulations, we found that the
compressing method indeed improves the performance significantly.

Although Algorithm 1 and Algorithm 3 have the same theoretical per-
formance bound, we found that Algorithm 3 performs much better than
Algorithm 1. This could be because Algorithm 3 computes a maximal inde-
pendent set using nodes with smaller degree, which in turn produces a larger
maximal independent set than the one produced by Algorithm 1. As we
expected, Algorithm 4 performs better practically. It almost has the same
throughput as the one by Algorithm 3 based on node degree. It is surprising
thatAlgorithm 6 together withAlgorithm 7 also produces a CDMA/OVSF code
assignment whose total throughput is almost the same as Algorithm 3 and 1.

We also observe that the total throughput of the networks become stable
when the number of nodes is large enough. Before that, we see an almost linear
increasing of the throughput when the number of nodes increases. This can be
explained as follows. Since the transmission range is fixed, we can partition
the unit square into a2/r2 
 44 cells each with side length r . Then all nodes
inside a cell will form a clique. We know that the total throughput of all nodes
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FIGURE 2
The performance of CDMA/OVSF code assignment when the transmission range is fixed.

in a clique is at most 1. Thus, the total throughput of an ad hoc network using
CDMA/OVSF code is at most a2/r2. Notice that, the node causes interference
with any two hop neighbors. Thus, we expect that the throughput is actually
about a2/(2r)2 
 11. Here r is the transmission range of each node and the
region where the wireless nodes are deployed is a square with side length a.
Our simulations confirm the above analysis.

We then study the effect of applying the post processing to compress the
code. Figure 3 illustrates our simulation results. We found that compressing
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FIGURE 3
The performance of our CDMA/OVSF code assignment when post processing is applied.

the code generated by Algorithm 5 and Algorithm 6 significantly improves the
throughput and the minimum rate.

Vary the Transmission Range: We then study the effect of the transmission
ranges on the performance of our algorithms. We fix the number of nodes to
be a constant 100 and test the following different transmission ranges 20+ 5i

for 0 ≤ i < 30. Figure 4 illustrates the performance of throughput and the
minimum rate by different methods. We found that the compressing method
improved the throughput by almost a factor of 3 if the old CDMA/OVSF code
assignment is not throughput-maximized, and by a factor of 1.5 even the old
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FIGURE 4
The performance of our CDMA/OVSF code assignment when the number of nodes is fixed to
be 100.

code is produced by Algorithm 6, that tries to maximize both the throughput
and the minimum rate.

Unlike the case of fixing the transmission range, we observe that the total
throughput of the networks decreases when the transmission range increases.
This is because increasing the transmission range will decrease the size of
the maximum independent set, while the total throughput of the network is at
most α(G), the size of the maximum independent set. As we expected, the
decreasing follows a curve 1/x2. Notice that, given a transmission range x,



“aswin80” — 2008/3/29 — 16:11 — page 21 — #21

Throughput for Mesh Networks 21

the size of the maximum independent in the interference graph is O(a2/x2).
Notice that the optimum throughput is at least 1, and codes produced by our
methods almost satisfy this.

The minimum rate of the networks becomes a constant when the transmis-
sion range is larger than some value. This is because when the transmission
range is large enough, the network becomes almost the complete graph. Thus
the minimum rate is close to 1/n = 0.01 no matter how large the transmission
range increases. If both maximizing throughput and maximizing the mini-
mum rate are required, the minimum rate of code assignment should be about
1/2n = 0.005. Our simulation results confirm this.

Figure 5 illustrates our simulation results when applying the post process-
ing to compress the code. We found that compressing the code generated by
Algorithm 5 and Algorithm 6 significantly improves the throughput and the
minimum rate when the transmission range is small. When the transmission
range becomes larger and larger, the improvement becomes subtle since the
network is almost the completed graph in this case.

Notice that in our simulations, the minimum rates of code assignments
produced by Algorithms 1, 3, and 4 are almost 0 since the produced code
assignments are extremely imbalanced.

IV CONCLUSION

We presented several efficient distributed CDMA/OVSF code assignment
algorithms for wireless ad hoc networks (especially mesh networks) mod-
eled by unit disk graph. We first studied how to assign CDMA/OVSF code
such that the total throughput achieved is within a constant factor of the opti-
mum. Then we gave a method such that the minimum rate achieved is within
a constant factor of the minimum rate of any valid code assignment. A method
that can approximate both the minimum rate and total throughput was also
presented. Finally, we presented a post processing method to further improve
the code assignment. If every node knows its position, we showed how to pro-
duce a CDMA/OVSF code assignment in a distributed manner, using O(n)

total messages, whose total throughput is at least 5/24 of the optimum when
only primary interference is concerned, and 5/56 of the optimum when sec-
ondary interference is concerned. We conducted extensive simulations to study
the performance of our methods. The simulations showed that our method
performs much better practically than the pessimistic theoretical analysis.

Notice that our methods can also be used to generate conflict-free CDMA/
OVSF code assignment for wireless ad hoc networks that are not modeled
by unit disk graphs. However, it is unclear how the number of messages in
the protocol could be bounded by O(n): how to collect N2(u) efficiently and
how to inform the assigned CDMA/OVSF code to the neighbors of interfer-
ence graph efficiently. If the network is not dense enough, a straightforward
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FIGURE 5
The performance of our CDMA/OVSF code assignment when the number of nodes is fixed to be
100 and the code compressing strategy is also applied.

method by letting all nodes inside the transmission range of u to relay the
message may be good enough practically. When the network is dense, such
flooding could be very expensive. Selective forwarding [4] could be one way
to save the messages but it cannot guarantee linear number of messages. We
leave it as a future work to design communication efficient protocol to assign
CDMA/OVSF code for heterogeneous wireless ad hoc networks, in which
different nodes may have different transmission ranges.
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V APPENDIX

This section contains the proofs of several theorems presented in this paper.

Proof of Theorem 1 Let S be the set of all colors used by a coloring, each
of which represents a distinctive CDMA code. For each item x in S, let �(x)

denote the code length of the color x. Thus, its rate is 2−�(x).
Consider any optimum coloring that maximizes the throughput. For each

item x in S, let ω(x) denote the number of mobile hosts receiving the cor-
responding CDMA code x. Consequently, the total rate (throughput) of such
coloring is

∑
x∈S ω(x) · 2−�(x). Since the coloring must be prefix-free, the

colors used by any valid coloring can be represented by a binary tree T with
|S| leaves representing all used colors. Obviously, the tree T of any optimal
coloring is always a full binary tree: if there is one leave node is used and its
sibling node is not used, we can use its parent node instead, which improves
the throughput.

It is easy to prove that for every optimal coloring, the least frequent used
color x, i.e., ω(x) is minimum among all used colors in S, has the longest
code �(x). This can be proved by a simple contradiction. Assume that ω(x)

is the smallest and there is another code y ∈ S with larger code length, i.e.,
�(y) > �(x), but ω(x) < ω(y). By swapping the code x and y, the throughput
is improved by ω(x) · 2−�(y) +ω(y) · 2−�(x) −ω(x) · 2−�(x) −ω(y) · 2−�(y).
This is equal to (ω(y)− ω(x)) · (2−�(x) − 2−�(y)) > 0.

For the two longest sibling code x and y, if we merge them to its parent
node z by setting ω(z) = (ω(x)+ω(y))/2, and removing codes x and y, the
total throughput does not change. Additionally, since x and y have the lowest
weights (because they have the longest codeword), node z has the smallest
weight in the new tree. It implies that node z has the largest height in the new
tree. This implies that the imbalanced full binary tree shown in the following
Figure 6 is an optimal. It is easy to show that the number of nodes using the
code in level i must be |Vi |. This finishes the proof. �

Proof of Theorem 2 Let’s consider all nodes, denoted by V1, that receive code
10. Clearly, V1 is an independent set. We will show that V1 is within � factor
of the maximum independent set.

If only primary interference is concerned, the interference graph is the
original unit disk graph and it is well-known that each presented greedy method
generates a maximal independent set whose size is at least 1/5 of the maximum
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FIGURE 6
Canonical coloring is optimum.

independent set. Obviously, the total throughput generated by our approach is
at least |V1|/2 and the optimum throughput is at most α(G) ≤ 5|V1|.

If the secondary interference is also concerned, we will prove that V1 has
size at least 1/13 of the maximum independent set of the interference graph
by showing that, for every node u ∈ V1, there are at most 13 independent
nodes in the interference graph. Let D(x, r) be the disk centered at a point
x with radius r hereafter. Consider a disk D(u, 2) centered at node u with
radius 2. Then all its neighbors N2(u) are inside the disk D(u, 2). Partition
this disk into 13 equal-sized sectors, each with angle 2π/13. It is easy to show
that the chord ab defined by the sector �aub has length 4 sin(π/13) < 1. We
will show that all neighboring nodes in one sector are connected. Consider
any two nodes x and y from N2(u). We actually will prove a stronger result:
any two neighbors of u in the sector �aub with ‖ab‖ = 1 are connected in the
interference graph.

If x and y are inside D(u, 1), then obviously ‖xy‖ < 1. Thus, x and y are
connected in the interference graph.

If y is inside D(u, 1) but x is not, then there exists a node w connected
to both x and u. Clearly, y and w are all inside D(u, 1) now, thus, edge yw
exists in the original unit disk graph. Thus, node w is inside the common
transmission range of nodes y and x. It implies that x, y are connected in the
interference graph (concerning the secondary interference).

Finally, we consider the case when both x and y are not inside the disk
D(u, 1). Assume that node w is connected to both x and u, and node v is
connected to both y and u. See Figure 7 for an illustration.

We will then show that either ‖yx‖ ≤ 1, or ‖yw‖ ≤ 1, or ‖vx‖ ≤ 1. Notice
that, if any one is true, then x, y are connected in the interference graph. For
the sake of contradiction, assume that ‖yx‖ > 1, ‖yw‖ > 1, and ‖vx‖ > 1.
We partition the region �aub−�cud into 6 regions. Figure 8 illustrates such
six partitions. Here segments ca, db, ab, eb, am have length 1.

We then prove that any two nodes in region efa∪mfb have distance at most
1 and any two nodes in region efbha have distance at most 1. Consider any
two nodes x and y in the region efa ∪ mfb. If both are in the same triangle,
then clearly ‖xy‖ < 1 since the edges of the triangles have length less than 1.
Otherwise, let x′ and y′ be the intersection point of line xy with segment ea
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All neighbors in the sector conflict with each other. Here ‖uc‖ = ‖ud‖ = ‖ab‖ = 1 and
‖ua‖ = ‖ub‖ = 2. Left: wx and vy intersect. Right: wx and vy do not intersect.
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FIGURE 8
Left: Six possible regions we can place node x or y. Right: node two independent nodes can be
in regions 2 and 5.

and segment mb respectively. Figure 8 illustrates the proof that follows. Obvi-
ously, ‖xy‖ ≤ ‖x′y′‖ ≤ min(‖ey′‖, ‖ay′‖). Note that ‖ey′‖ ≤ min(‖em‖,
‖eb‖) < 1 and similarly ‖ay′‖ ≤ min(‖am‖, ‖ab‖) = 1. Thus, ‖xy‖ ≤ 1.
Similar proof will reveal that any two nodes in region efbha have distance at
most 1.

If node x is in region 2, then node y cannot be in region 3, 5, and 6 since we
can show that otherwise ‖xy‖ ≤ 1. In other words, node y must be in region
1 or 4 in this case. Similarly, if node x is in region 3, 5, or 6, node y must be
in region 1 or 4 in this case. Thus, we assume that either node x or y (say x

w.l.o.g) is in region 1 by symmetry. Obviously, node y cannot be inside the
disk D(x, 1) since we assume that xy ∈ G. Thus, we have to place node v

inside the sector �cud but not inside the disk D(x, 1) and place y inside region
efmbha but not inside the disk D(x, 1) while still maintain ‖yv‖ ≤ 1. We then
show that this is impossible.

If the disk D(x, 1) contains the region cgdbha = �aub−�cud , then clearly
node y is inside the disk D(x, 1). It implies that xy is an edge in the interference
graph. Let p and q be the points on line ub such that ‖xp‖ = ‖xq‖ = 1. Let s

be the point on ub such that xs is perpendicular to segment pq and t be the point
on ub such that et is perpendicular to segment pq. Clearly, ‖xs‖ ≤ ‖et‖ since x

is inside the triangle�eub. It is not difficult to show that ‖ce‖ = ‖ea‖ = 1/2.
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No two independent nodes can be placed in region 1.

Then, ‖et‖ = ‖ue‖ · sin(∠aub) < 3
2 sin(π

6 ) = 3/4 <
√

3/2. It implies that
∠xqp = arcsin(‖xt‖/‖xq‖) < π

3 . Thus, edge pq is the longest in triangle
�xpq. Consequently, ‖pq‖ > 1. It is easy to show that, for any two-hop
neighbor y of u connected through node v, ‖yv‖ ≥ ‖pq‖ if both v and y are
not inside the disk D(x, 1). This is a contradiction to ‖yv‖ ≤ 1.

This finishes the proof of the theorem. �

Proof of Theorem 4 Consider a canonical maximum independent decompo-

sition V1, V2, . . . , Vk of all nodes V . Here |V ′1| ≥ � · |V1|. Let ti,j = |V
′
i ∩Vj |
|Vj | ,

i.e., the portion of Vj is used in V ′i . After V ′1 is generated, we know
that the maximum independent set in the remaining graph has size at least
max((1− t1,1) · |V1|, (1− t1,2) · |V2|), since V1 − V ′1 ∩ V1 and V2 − V ′1 ∩ V2
are still independent sets. Notice that t1,1 · |V1| + t1,2 · |V2| ≤ V1. Then
(1 − t1,1) · |V1| + (1 − t1,2) · |V2| ≥ |V2|. It implies that V ′2 has size
at least � · |V2|/2. Consequently, the throughput τ ′ generated by partition
V ′1, V ′2, . . . , V ′k, . . . , V ′k2

is at least � · ( |V1|
2 + |V2|

2·22 ). Remember that the canon-

ical coloring has throughput τ at most |V1|
2 + 2 · |V2|

22 using fact |Vi | ≤ |V2|.
From |V2| ≤ |V1|, it is easy to show that τ ′ ≥ 5

8� · τ . This finishes the proof.
�


