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Abstract Data collection is one of the most important
functions provided by wireless sensor networks. In this

paper, we study theoretical limitations of data collection

and data aggregation in terms of delay and capacity for a
wireless sensor network where n sensors are randomly

deployed. We consider different communication scenarios

such as with single sink or multiple sinks, regularly-
deployed or randomly-deployed sinks, with or without

aggregation. For each scenario, we not only propose a data

collection/aggregation method and analyze its performance
in terms of delay and capacity, but also theoretically prove

whether our method can achieve the optimal order (i.e., its

performance is within a constant factor of the optimal).
Particularly, with a single sink, the capacity of data col-

lection is in order of HðWÞ where W is the fixed data-rate

on individual links. With k regularly deployed sinks, the
capacity of data collection is increased to HðkWÞ when

k ¼ O n
log n

! "
or H n

log nW
! "

when k ¼ X n
log n

! "
. With k ran-

domly deployed sinks, the capacity of data collection is

between H k
log kW
! "

and HðkWÞ when k ¼ O n
log n

! "
or

H n
log nW
! "

when k ¼ x n
log n

! "
. If each sensor can aggregate

its receiving packets into a single packet to send, the

capacity of data collection with a single sink is also

increased to H n
log nW
! "

.

Keywords Capacity $ Data collection $ Data aggregation $
Random networks $ Sensor networks

1 Introduction

A wireless sensor network (WSN) consists of a set of

sensor devices which spread over a geographical area.
These sensors are able to perform processing as well as

sensing and are additionally capable of communicating

with each other. Due to its wide-range potential applica-
tions such as battlefield, emergency relief, environment

monitoring, and so on, sensor network has recently

emerged as a premier research topic. For wireless sensor
networks, often the ultimate goal is to collect sensing data

from all sensors to certain sink nodes and then perform

further analysis at these sink nodes. Thus, data collection is
one of the most common services used in sensor network

applications. In this paper, we study some fundamental

capacity problems arising from different types of data
collection scenarios in wireless sensor networks. For each

problem, we will derive the asymptotic upper bound of

transport capacity and present efficient algorithms to
achieve such upper bound with certain constant factor.

We consider a dense wireless sensor network where

n sensors are randomly deployed in a finite geographical
region. Each sensor measures independent field values at
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regular time intervals and sends these values to sinks. The

union of all sensing values from n sensors at particular time
is called a snapshot. The task of data collection is to deliver

these snapshots to the sinks. Due to spatial separation,

several sensors can successfully transmit at the same time
if these transmissions do not cause any destructive wireless

interferences. As in the literature, the classical protocol
interference model is used in our analysis, while most of
analysis results could be extended to more realistic models

such as physical interference model. We also assume that a
successful transmission over a link has a fixed data-rate

W bit/s.

The performance of data collection in sensor networks
can be characterized by the rate at which sensing data can

be collected and transmitted to sink nodes. In particular,

theoretical measures that capture the possibilities and
limitations of collection processing in sensor networks are

the delay and capacity for many-to-one data collection. The

delay of data collection is the time to transmit one single
snapshot to sinks from its generation at sensors. Consid-

ering the size of data in the snapshot, we can define delay
rate as the ratio between the data size and the delay.
Clearly, large delay rate is desired. When multiple snap-

shots from sensors are generated continuously, data trans-

port can be pipelined in the sense that further snapshot may
begin to transport before sinks receive the prior snapshot.

The maximum data rate at the sinks to continuously receive

snapshot data from sensors is defined as the capacity of
data collection. Notice that the capacity is always larger

than or equal to the delay rate. Both delay rate and capacity
reflect that how fast the sinks can collect sensing data from
all sensors. It is critical to understand the limitations of

many-to-one information flows and devise efficient data

collection algorithms to maximize performance of wireless
sensor networks. In this paper, we are particularly inter-

ested in how the delay rate and capacity of data collection

vary as the number of sensors n increases.
Capacity limits of data collection in random wireless

sensor networks have been studied in the literature [1–6]. In

[1, 2], Duarte-Melo et al. first studied the many-to-one
transport capacity in dense and random sensor networks. But

they only considered the simplest case with a single sink

under the protocol interference model. El Gamal [3] studied
the capacity of data collection subject to a total average

transmitting power constraint where a node can receive data

from multiple source nodes at a time. Recently, Barton and
Zheng [4] also investigated the capacity of data collection

under general physical layer models (e.g., cooperative time

reversal communication model) where the data rate of an
individual link is not fixed as a constant W but dependent on

the transmitting powers and transmitting distances of all

simultaneous transmissions. Both [3] and [4] assumed
complex physical layer techniques, such as antenna sharing,

channel coding and cooperative beam-forming. More rela-

ted work is reviewed in Sect. 3. In this paper, we focus on
deriving capacity bounds of data collection under different

modalities of communication and/or assumptions, such as

with single sink or multiple sinks, grid or random sink
deployment, with or without aggregation.

Main Contributions: In this paper, we make the fol-

lowing contributions:

• For sensor networks with a single sink under protocol

interference model, we propose a new data collection
method whose delay rate and capacity are both HðWÞ
which match the theoretical upper bounds.

• When sensor networks have k regularly deployed sinks,

we prove that the capacity increases to HðkWÞ if k ¼

O n
log n

! "
and H n

log nW
! "

if k ¼ X n
log n

! "
. These results

show that (1) when k is small the capacity is HðkWÞ
since there will be no interference among neighboring

sinks with high probability; however, (2) when k is
large the capacity is bounded by the number of

interference areas instead of k.
• When sensor networks have k randomly deployed sinks, we

prove that the capacity is between H k
log kW
! "

and HðkWÞ

if k ¼ O n
log n

! "
and H n

log nW
! "

if k ¼ x n
log n

! "
. Notice that

there is a gap between the upper bound and lower bound of

data collection capacity when k ¼ O n
log n

! "
.

• One variation of data collection problem is data aggre-

gation [7, 8] in which sensors can cooperate to aggregate

information as it is transmitted to the sink. With data
aggregation, communication overhead is reduced and

the capacity is increased. Ideally, the sink can still

receive enough information to compute the desired
measurements. Here, we only consider the simplest set

of aggregation functions by which multiple packets can

be merged into a single packet at each sensor, such as the
functions of maximum, summation, or mean. Notice that

even though the data aggregation may use a reserved

broadcast tree its capacity is completely difference with
the one of broadcast due to interference among children

in the tree. We theoretically prove that the delay rate and

the capacity of data aggregation are H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n
p

Wð Þ and

H n
log nW
! "

respectively. Thus, pipelining can increase

the capacity in order of H
ffiffiffiffiffiffiffiffi

n
log3 n

q$ %
:

For all above cases, we propose our collection or

aggregation methods, and most of them can achieve the
optimal order (i.e., their performances are within a constant

factor of upper bounds) and all of them can achieve

fairness among all sensors.
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The rest of this paper is organized as follows. In Sect. 2,

we provide our network model and formal definitions of
delay rate and capacity. We briefly review related work on

capacities of data collection in wireless networks in Sect. 3.

Capacities of data collection with a single sink or multiple
sinks are studied in Sects. 4 and 5, respectively. The capacity

of data aggregation is then studied in Sect. 6. Finally, Sect. 7

concludes the paper by pointing out possible future work.

2 Preliminaries

In this section, we first briefly introduce our network model
and a partition method which will be used for our collec-

tion methods and theoretical analysis.

2.1 Network model

In this paper, we focus on the capacity bound of data col-
lection in wireless sensor networks. Thus, for simplicity, we

assume a simple and yet general enough model that is widely

used in the community. We consider a static sensor network
which includes n wireless sensor nodes V = {v1, v2, ..., vn}

and k sink nodes S = {s1, s2, ..., sk}. Here, we assume that

both sensor nodes and sink nodes are uniformly deployed in
a square of unit area. At regular time intervals, each sensor

node measures the field value at its position and transmits the

value to one of the sink nodes. We adopt a fixed data-rate
channel model where each wireless node can transmit at

W bits/s over a common wireless channel. Under such

channel model, we assume that every node has a fixed
transmission power P. Then a fixed transmission range r can

be defined such that a node vi can successfully receive the

signal sent by node vj only if jjvi % vjjj& r. Here, jjvi % vjjj is
the Euclidean distance between vi and vj. We also assume

that all packets have the unit size of b bits. Time is slotted
into slots with t = b/W seconds. Thus, only one packet can

be transmitted in a time slot between two neighboring nodes.

As in the literature, we consider the protocol interference
model in our analysis. In protocol interference model [1, 2,

6], all nodes are assumed to have uniform interference range

R. When node vi transmits to node vj, node vj can receive the
signal successfully if no node within a distance R is trans-

mitting simultaneously. Here, for simplicity, we assume that
R
r is a constant a which is larger than 1.

2.2 A grid-partition method

We then introduce a classical grid-partition method which

is essential for our data collection methods and theoretical
analysis. As shown in Fig. 1, the network (e.g., the unit

square) is divided into a2 micro cells of the size

d 9 d. Here a = 1/d. We assign each cell a coordinate
(i, j), where i and j are between 1 and a, indicating its

position at jth row and ith collum.

The following lemma gives a guidance of the cell size.

Lemma 1 [9] Given n random nodes in a unit square,
dividing the square into micro cells of the sizeffiffiffiffiffiffiffiffiffi

3log n
n

q
'

ffiffiffiffiffiffiffiffiffi
3log n

n

q
, every micro cell is occupied with prob-

ability at least 1% 1
n2.

Therefore, if we set d ¼
ffiffiffiffiffiffiffiffiffi
3log n

n

q
i.e.; a ¼

ffiffiffiffiffiffiffiffiffi
n

3 log n

q$ %
,

every micro cell has at least one node with high probability

(the probability converges to one as n %!1).

In order to make the whole network connected, the

transmission range r need to be equal or larger than
ffiffiffi
5
p

d
so that any two nodes from two neighboring cells are
inside each other’s transmission range. Hereafter, we set

r ¼
ffiffiffi
5
p

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
15log n

n

q
. In practice, the transmission range

of a sensor device may be fixed. In such case, we can

still make the above equation hold by adjusting the
deployment density (i.e., n).

We then derive the upper bound of the number of nodes

inside a single cell.

Lemma 2 Given n random nodes in a unit square,
dividing the unit square into micro cells of the sizeffiffiffiffiffiffiffiffiffi

3log n
n

q
'

ffiffiffiffiffiffiffiffiffi
3log n

n

q
, the maximum number of nodes in any

cell is OðlognÞ with probability at least 1% 3 log n
n .

(0, a) (a, a)

(a, 0)

1

d

sink node s  in cell (p, q)1

(0, 0)

Fig. 1 Grid partition of the sensor network: a2 cells with cell size of
d 9 d
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Proof The proof is straightforward from Lemma 3, thus

we ignore the detail. Note that the number of balls

c = n and the number of bins d ¼ a2 ¼ n
3 log n. h

Lemma 3 [10, 11] Randomly putting c balls into d bins,

with probability at least 1% 1
d, the maximum number of

balls in any bin is O c
dþ log d
& '

.

Lemma 2 indicates the number of nodes inside any cell
is bounded from above by O(logn) with high probability.

2.3 Capacity and delay

We now formally define the delay and capacity of data

collection in sensor networks. Recall that each sensor at
regular time intervals generates a field value with b bits and

wants to transport it to sinks. We call the union of all

values from all n sensors at particular sampling time a
snapshot of the sensing data. Then the goal of data col-

lection is to collect these snapshots from all sensors.

Definition 1 The delay of data collection D is the time

transpired between the time a snapshot is taken by the

sensors and the time the sinks have all data of this
snapshot.

Definition 2 The delay rate of data collection C is the

ratio between the data size of one snapshot n $ b and the
delay D.

It is clear that we prefer smaller delay and larger delay
rate so that the sink can get each snapshot more quickly.

On the other hand, the data transport can be pipelined in

the sense that further snapshots may begin to transport
before the sinks receive prior snapshots. Therefore, we

need to define a new data rate of data collection under

pipelining.

Definition 3 The usage rate of data collection U is the

number of time slots needed at sinks between completely

receiving one snapshot and completely receiving next
snapshot at the sinks.

Thus, the time used by sinks to successfully receive a
snapshot is T = U 9 t. Notice that due to pipelining, T is

always smaller than or equal to D. Clearly, small usage rate

and T are desired.

Definition 4 The capacity of data collection C is the ratio

between the size of data in one snapshot and the time to

receive such a snap shot (i.e., nb
T ) at the sinks.

Thus, the capacity C is the maximum data rate at the

sinks to continuously receive the snapshot data from sen-

sors. Clearly, C is at least as large as the delay rate C, and is
usually substantially larger.

In this paper, we analyze both the delay rate and

capacity for data collection in random sensor networks.
Notice that in our definitions we require data from every

sensor to reach the sink in the same rate, thus, the fairness

among all sensors is guaranteed.

3 Related work

Gupta and Kumar [12] initiated the research on capacity of
random wireless networks by studying the unicast capacity

in the seminal paper. A number of following papers studied

capacity under different communication scenarios: unicast
[13–15], multicast [16–18], broadcast [19–22], and mo-

tioncase [23]. In this paper, we focus on the capacity of

data collection or data aggregation in a many-to-one
communication scenario for random sensor networks.

Capacity of data collection in wireless sensor networks

has been studied in [1–6, 24]. In [1, 2], Duarte-Melo et al.
first studied the many-to-one transport capacity in dense

and random sensor networks. They only considered the

case with a single sink under protocol interference model.
Using a different method, they showed that the overall

capacity of data collection is HðWÞ. They also studied how

to compress the data to improve the capacity in [2].
El Gamal [3] studied the capacity of data collection subject

to a total average transmitting power constraint. They

relaxed the assumption that every node can only receive
from one source node at a time. It was shown that the

capacity of random networks scales as Hðlog nÞ when

n goes to infinity and the total average power remains
fixed. Their method uses antenna sharing and channel

coding. Recently, Barton and Zheng [4, 5] also investigated

the capacity of data collection under more complex phys-
ical layer models (non-cooperative SINR model and

cooperative time reversal communication (CTR) model)

where the data rate of individual link is not fixed as a
constant W but depends on the level of interference which

is decided by transmitting powers and transmitting dis-

tances of all simultaneous transmissions. They first dem-
onstrated that Hðlog nÞ is optimal and achievable using

CTR for a regular grid network in [5], then showed that the

capacity of Hðlog nÞ and Hð1Þ are optimal and achievable
by CTR when operating in fading environments with power

path-loss exponents that satisfy 2 \b\ 4 and b C 4 for

random networks [4]. Liu et al. [6] recently studied the
capacity of a more general some-to-some communication

paradigm in random networks where there are s(n) ran-

domly selected sources and d(n) randomly selected desti-
nations. They derived the upper and constructive lower

bounds for such problem. Notice that data collection is a

special case for their problem when s(n) = n and d(n) = 1.
However, their results have a gap between the upper and

308 Wireless Netw (2011) 17:305–318
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lower bounds due to the random selection of the sources

and designations. In addition, Zhu et al. [24] studied how
to schedule data collection in an arbitrary sensor network,

where sensors are not randomly distributed, such that delay

or latency is minimized. Notice that random network is a
subset of arbitrary network. However, they only adopted a

simpler protocol interference model where R = r and each

node has two individual channels. Two constant approxi-
mation algorithms were presented in [24].

There is not much work on capacity of data aggregation in
wireless sensor networks, except recent papers [7], [8].

Giridhar and Kumar [7] investigated a more general aggre-

gation problem in random sensor network where a sym-
metric function of sensor measurements was used for data

aggregation. It was shown that for random planar multihop

network, the maximum rate for computing divisible func-

tions (a subset of symmetric functions) is H 1
log nW
! "

. Notice

that they defined the maximum rate as the data rate per

sensor. By our definition, their result is H n
log nW
! "

which

matches our result in Sect. 6, since our aggregation function
(e.g., maximum) is a divisible function. In addition, using a

technique called block-coding, they further showed that

type-threshold functions can be computed at a rate of

H 1
log log nW
! "

. Moscibroda [8] then further studied the

aggregation capacity for arbitrarily deployed networks (he

called it as worst-case capacity) under both protocol inter-

ference model and physical interference model. He showed

that the worst-case capacities of data aggregation are H 1
nW
& '

and X 1
log2 n

W
! "

respectively. Finally, there are also some

results [25–27] on how to schedule data aggregation in
arbitrary sensor networks to minimize delay. Such problem

has been proved NP-hard [25], and several approximation

algorithms were proposed.

4 Data collection with single sink

In this section, we consider the simplest situation: data

collection under protocol interference model in a sensor
network where a single sink s1 located in cell (p, q) is used

as the collector to collect all sensing data. We first con-

struct a data collection scheme whose delay and delay rate
are O(nt) and XðWÞ respectively, and then prove that these

values are order-optimal.

As shown in Fig. 1, we consider the data collection of
nodes from four different directions (i.e., quadrants) to s1.

For the purpose of analysis, we only concentrate on the

direction which has the largest number of sensors, e.g., the
shaded rectangle in Fig. 1, since the sink can perform

collection on each direction in turn and it only adds a

constant 4 in the analysis. Our collection algorithm has two

phases. In the first phase (Phase I), every sensor sends its
data up to the highest cell in its column (in the pth row) as

shown in Fig. 2(a) and (b), and in the second phase (Phase

II), all data is sent via cells in the pth row to the sink as
shown in Fig. 2(c) and (d). We define the time needed for

these two phases as T1 and T2, respectively.

By Lemma 2, the number of nodes in each cell is at most
OðlognÞ. Every node needs one time-slot t to send one

packet to its neighbor in the next cell. However, due to
wireless interference, when a node vi transmits a packet to

vj, the nodes within R distance from vj can not transmit any

packets in the same time slot. Thus, every R
d þ 2
& '

'
R
d þ 1
& '

cells (we call it an interference block hereafter) can

only have one node send a packet to its upper neighbor in
every time slot t during Phase I. In Fig. 2, bold lines show

interference blocks. Remember that R
r ¼ a and r

d ¼
ffiffiffi
5
p

, so R
d

is also a constant
ffiffiffi
5
p

a. And a packet in the lowest row (i.e.,
cell (0, k)) has to walk q cells to reach nodes in the highest

cell in the rectangle. Hence,

T1&
R

d
þ 2

$ %
' R

d
þ 1

$ %
' t ' Oðlog nÞ ' q

¼ tOðlog nÞq&Oðt log nÞa

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n

3 log n

r
Oðt log nÞ ¼ Oðt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p
Þ:

In the beginning of Phase II, all data are already at cells

of the top row. The sink s1 lies in the same row with these
cells. We now estimate the time T2 needed for sending all

data to s1. Each cell in the top row has at most qOðlognÞ
nodes’ data and the interference block is 1' R

d þ 2
& '

now.

Similarly, we can get

T2&
R

d
þ 2

$ %
' t ' qOðlog nÞ ' p

¼ Oðt log nÞqp& a2Oðt log nÞ

¼ n

3 log n
Oðt log nÞ ¼ OðntÞ:

Therefore, the total time needed to collect b-bits
information from every sensor in the shaded rectangle to

the sink is T1 ? T2 = O(nt). The other three directions need

at most 3 times of such time. Thus, the total delay Dcol for the
sink to receive a complete snapshot is at most O(nt).
Consequently, the total delay rate of this collection scheme is

Ccol ¼
nb

Dcol
¼ X

nb

nt

$ %
¼ XðWÞ:

It has been proved that the upper bound of delay rate
or capacity of data collection is W [1, 2]. It is obvious that

the sink cannot receive at a rate faster than W since W is

the fixed transmission rate of individual link. Therefore, the
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delay rate of our collection scheme achieves the order of the

upper bound, and the delay rate of data collection is HðWÞ.
Notice that even for individual sensors the lowest achievable

delay rate of our method is HðW=nÞ which also meets the

upper bound. In other words, our approach can achieve the
order-optimal capacity for each individual sensor too.

Next, we consider the situation with pipelining. It is clear the

upper bound of capacity is still W. Since our above scheme
already reaches the upper bound, the pipelining operation can

only improve the capacity within a constant factor.

With pipelining, in Phase I, the sensor can begin to
transfer the data to its up-cell from next snapshot after

sensors in its interference block finish their transmissions

of previous snapshot. Whenever the cells in the top row
receive p $ b data (every cell in the top row receives a data

from its lower cell), Phase II can begin at the top row. We

consider the improvements of pipelining on both phases.
With the pipelining, the time T 01 for the highest cell to

receive a new set of p $ b data in Phase I is

T 01&
R

d
þ 2

$ %
' R

d
þ 1

$ %
' t ' Oðlog nÞ ¼ Oðt log nÞ:

And the time T 02 for the sink to receive a new set of

p $ b data in Phase II is

T 02&
R

d
þ 2

$ %
' t ' p ¼ O t

ffiffiffiffiffiffiffiffiffiffi
n

log n

r$ %
:

Therefore, the total time for sink to receive p $ b data is

T 01 þ T 02 ¼ O t
ffiffiffiffiffiffiffi

n
log n

q$ %
. Thus, the capacity of our method

with pipelining is still

Ccol ¼
p $ b

T 01 þ T 02
¼ XðWÞ:

This also meets the upper bound W in order.
In summary, we have the following theorem:

Theorem 1 Under protocol interference model, the delay
rate C and the capacity C of data collection in random
sensor networks with a single sink are both HðWÞ:

5 Data collection with multiple sinks

Now we consider networks with multiple sinks (e.g.,

k sinks). With more sinks, the collection task can be divided

into small sub-tasks (i.e., collections in sub-areas) and each
sub-task will be assigned to a single sink. Multiple sinks can

collect data from their areas simultaneously if they are not

R(0, 0)

(p, q)

R

(p, q)

(0, 0)

(p, q)

(0, 0)

(p, q)

(0, 0)

(d)(c)

(a) (b)Fig. 2 Our collection method:
[Phase I] each node sends its
data to its upper cell; [Phase II]
each node in the top row sends
its data to its right cell. a Phase
I, 1st time slot. b Phase I, 2nd
time slot. c Phase II, 1st time
slot. d Phase II, 2nd time slot
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interfering with each other. This can increase the capacity

and decrease the delay of data collection. We will derive the
bounds of data collection for multiple sinks using the results

in the case with a single sink (Sect. 4). Since in both cases the

delay rate and the capacity are always in the same order, here
we will not distinct them and only use the term of capacity.

Two scenarios are studied: sinks are regularly deployed on a

grid or are randomly deployed in the field.

5.1 Multiple sinks on grid

When sinks are displayed regularly on a
ffiffiffi
k
p
'

ffiffiffi
k
p

grid, the

capacity of collection depends on the number of sinks
k. Here, we divide the unit area into k sub-areas which are
1ffiffi
k
p ' 1ffiffi

k
p squares. There are two cases: k& n

15ðaþ1Þ2 log n
or

k [ n
15ðaþ1Þ2 log n

.

Case 1: When k\ n
15ðaþ1Þ2 log n

; k\ 1
ðRþrÞ2 since R = ar

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
15log n

n

q
. Thus, the area of each sub-area assigned

to a sink is larger than or equal to (R ? r)2. Therefore, we

can perform the data collection in each sub-area without

interfering with neighboring sub-areas. Since we have
k sub-areas, the total delay rate and the total capacity of the

whole area are at most k $HðWÞ ¼ HðkWÞ.
Case 2: When k) n

15ðaþ1Þ2 log n
; k) 1

ðRþrÞ2. Thus the area of

each sub-area is smaller than (R ? r)2, which indicates that
there will be interference between neighboring sub-areas.

Therefore, the total delay rate or capacity is bounded by

1
ðRþrÞ2 $HðWÞ ¼ H n

log nW
! "

from above, due to interference.

To achieve these upper bounds, the collection method

for a single sink case can be used. When k\ n
15ðaþ1Þ2 log n

, we

partition the field into k sub-areas with size of 1ffiffi
k
p ' 1ffiffi

k
p and

every sink performs the collection method to collect their

sub-areas. When k) n
15ðaþ1Þ2 log n

, we partition the field into

1
ðRþrÞ2 sub-areas with size of (R ? r) 9 (R ? r) as shown in

Fig. 3. Then 1
ðRþrÞ2 sinks can be selected to perform the

collection method. Note that one selected sink may still

cause interference with other selected sink in an adjacent
block. However, the number of such adjacent selected

sinks is bounded by eight. Thus, a simple scheduling can

avoid the interference and the capacity of data collection is
still in order of the theoretical bound. Figure 3 shows a

possible scheduling where only one of nine selected sinks

collects data from its surrounding blocks.
Therefore, we have our second theorem.

Theorem 2 Under protocol interference model, the delay
rate C and the capacity C of data collection in random
sensor networks with k regularly-deployed sinks are

HðkWÞ; when k\ n
15ðaþ1Þ2 log n

H n
log nW
! "

; when k) n
15ðaþ1Þ2 log n

:

8
<

:

Since when k ¼ H n
log n

! "
, the capacity (or delay rate) of

two cases are all equal to HðkWÞ ¼ H n
log nW
! "

. Therefore,

the above equations can also be written as follows:

HðkWÞ; when k ¼ O n
log n

! "

H n
log nW
! "

; when k ¼ X n
log n

! "
:

8
<

:

5.2 Randomly deployed multiple sinks

Consider the scenario when k sinks are randomly distrib-
uted in the network. It is clear that if k is very large, the

capacity is still bounded by the interference area. However,

when the k is very small, the achievable capacity of col-
lection may not reach the upper bound of HðkWÞ since the

distribution of k sinks could be unbalanced in the field. In

that case, even though the two neighboring sinks may not
interfere with each other, they cannot fully operate over the

whole period since some of them may finish their collec-

tion earlier and have no data to collect.
We first derive the upper bound of data collection

capacity. Since the interference range R ¼ ar ¼ a $
ffiffiffiffiffiffiffiffiffiffiffiffi
15log n

n

q
,

we partition the whole area into interference blocks with size

of (R ? r) 9 (R ? r). Thus, there are B ¼ n
15ð1þaÞ2 log n

R+r
sink

selected sink

active sink

Fig. 3 When k is large, we partition the field into 1
ðRþrÞ2 sub-areas.

Each subarea selects one sink as its selected sink (shown as a grey
solid triangle). Only one selected sink inside nine subareas is active
for data collection, shown as a dark solid triangle. It will collect data
from the surrounding 9 subareas using the method for single sink
case. Notice that the adjacent 9-subareas will not interfere with each
other when applying the collection method
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interference blocks. We then consider three cases when we

randomly put k sinks into B interference blocks:
Case 1: When k ¼ oð n

log nÞ. For this case, the capacity of

data collection is bounded by HðkWÞ from above since the

collection rate of each sink is bounded by W. Notice that data

collection with a single sink is a special case when k = 1.
Case 2: When k ¼ Hð n

log nÞ. We calculate the probability

that an arbitrary interference block has at least one sink.

Prðan interference block has at least 1 sinkÞ

¼ 1% 1% 1

B

$ %k

¼ 1% 1% 1

H n
log n

! "

0

@

1

A
k

¼ 1% 1% 1

H n
log n

! "

0

@

1

A
H n

log nð Þ

when n %!1, this probability equals to 1% 1
e. Let Pr be this

probability. Then we define the number of interference blocks
occupied by at least one sink as a random variable X. The

expectation and variance of X are E½X+ ¼ Pr ' B ¼ ð1% 1
eÞ

n
60a2 log n and r2 ¼ Pr ' ð1% PrÞ ' B ¼ 1

eð1%
1
eÞ

n
60a2 log n.

Based on Chebyshev inequality, we have the following:

PrðjX % E½X+j) frÞ& 1

f2
:

Let f ¼ 1
2 $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1%1

eÞ
n

60a2 log n
1
e

r
, we have

PrðjX % E½X+j) 1

2
E½X+Þ &

4 $ 1
e

ð1% 1
eÞ

n
60a2 log n

which goes to 0 when n %!1. That means 1
2E½X+ &X& 3

2E½X+
with high probability. In other words, the number of occupied

interference blocks is H n
log n

! "
. Therefore, the capacity of data

collection is bounded by H n
log nW
! "

(which is also HðkWÞ).
Case 3: When k ¼ xð n

log nÞ. We also consider the proba-

bility that an arbitrary interference block has at least one sink.

Prðan interference block has at least 1 sinkÞ

¼ 1% 1% 1

H n
log n

! "

0

@

1

A
k

¼ 1% 1% 1

H n
log n

! "

0

@

1

A
H n

log nð Þ$ k

H n
log nð Þ

¼ 1% 1% 1

H n
log n

! "

0

@

1

A
H n

log nð Þ$
X n

log nð Þ
H n

log nð Þ
:

When n %!1, this probability goes to 1. In other words,

every interference block has at least one sink with high
probability. Thus, we can select only one sink in each block

to collect data at the same time. Then the capacity of data

collection is bounded by H n
log nW
! "

from above.

From the above analysis, we find that the capacity upper
bounds for randomly distributed case are the same with the

ones for regularly distributed case. Next, we present lower

bounds of data collection capacity by giving our data col-
lection methods.

When k ¼ O n
log n

! "
, we first partition the network into

interference blocks with size
ffiffiffiffiffiffiffiffiffi
3log k

k

q
'

ffiffiffiffiffiffiffiffiffi
3log k

k

q
. From

Lemma 1, we know that each of the blocks is occupied by at
least one sink with high probability. Since k ¼ oð n

log nÞ, the

size of a block is
ffiffiffiffiffiffiffiffiffi
3log k

k

q
[ Rþ r. Thus, we select one sink

for each block, and use the same technique for grid-deployed
sinks (Sect. 5.1) to schedule a subset of selected sinks to

collect data from their surrounding area. The achieved

capacity is H k
log kW
! "

since the number of selected sinks

are H k
log k

! "
. Notice that there is a gap between this lower

bound and the upper bound HðkWÞ. This is due to pos-

sible uneven distribution of k sinks in this case, thus each

sink may not have the same amount sensors (or areas) to
perform collection in order to achieve HðkWÞ capacity in

total.

When k ¼ x n
log n

! "
, we first partition the network into

interference blocks with size (R ? r) 9 (R ? r). As show in
Case 3, with high probability, each block has at least one sink.

Using the same collection method, the achievable capacity is

H n
log nW
! "

, which meets the upper bound perfectly.

Theorem 3 Under protocol interference model, the delay
rate C and the capacity C of data collection in random
sensor networks with k randomly-deployed sinks are

H k
log kW
! "

&C&HðkWÞ; when k ¼ O n
log n

! "

C ¼ H n
log nW
! "

; when k ¼ xð n
log nÞ:

8
<

:

In summary, with multiple sinks (either grid or random

deployment of k sinks), the capacity of data collection is

increased from that of the single sink case. When the
capacity is constrained by the number of sinks (i.e.,

k ¼ Oð n
log nÞ), it is beneficial to add more sinks. However,

when the capacity is constrained by the interference among

sinks (i.e., k ¼ xð n
log nÞ), adding more sinks has no

substantial capacity improvement. Similar observations

have been obtained in [6] for many-to-many capacity.
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6 Data aggregation with single sink

In this section, we investigate a different data collection

problem where each sensor can aggregate its received data

(multiple packets) into a single packet. For example, if the
sink just wants to know the maximal temperature in the

deployed field, then each sensor can send out the maximal

sensing value towards the sink instead of all values which it
receives from other sensors. Hereafter, we will use this

example as the running example of our analysis.

Here, we study both delay rate and capacity of data
aggregation with a single sink. The definitions of delay rate

and capacity are similar to those of data collection in Sect.

2. Notice that when the sink receives the maximal value
(just b bits) of a snapshot of the field (n sensors), we still

count the size of all values from that snapshot as the size of

the received data. Thus, the delay rate is nb
D and the capacity

is nb
T .

It seems that data aggregation is quite similar to
broadcast, since both usually use a tree structure and the

aggregation tree can be treated as a reversed broadcast tree.

However, the capacity of data aggregation is completely
different with the capacity of broadcast. Notice that in a

broadcast tree a node can send its packet to all its children

within one slot, while in an aggregation tree the children
need multiple slots to send data to its parent due to inter-

ference among them. Therefore, the capacity of aggrega-

tion is much smaller than the broadcast capacity HðnWÞ
[19, 20, 22].

6.1 Delay rate

We assume that a single sink s is located in cell (p, q) and

we only need to consider data aggregation from the
direction which has the largest number of sensors. Our

aggregation scheme has three phases and uses the same

partition method as in Sect. 4.

First, each micro cell chooses a sensor which collects

data from all the other sensors in the same micro cell and
aggregates into one packet. Based on Lemma 3, each micro

cell has at most OðlognÞ nodes. Assume that T 001 is the time

needed to collect data inside each cell. Because of the

interference range R, T 001 is at most

R

d
þ 1

$ %2

$Oðlog nÞ $ t:

Second, every selected node waits for all data in the

same snapshot from cells, which are below its own cell and
within the same column, and then aggregates them with its

value into a single packet and sends the packet to its upper

cell. See Fig. 4(a) for illustrations. At the end of this phase,
all value has been aggregated at the top row where the sink

sits. The time needed for this phase T 002 is bounded from

above by

ðq% 1Þ ' t ' R

d
þ 1

$ %
¼ H

ffiffiffiffiffiffiffiffiffiffi
n

log n

r
t

$ %
;

since for every R
d þ 1 columns only one node can transmit

due to interference, as shown in Fig. 4(a).

Third, as shown in Fig. 4(b), the information is aggre-

gated via cells one by one in the top row. The time needed
T 003 is at most

ðp% 1Þ ' t ¼ Hð
ffiffiffiffiffiffiffiffiffiffi

n

log n

r
tÞ:

Therefore, the total delay Dagg& T 001 þ T 002 þ T 003 ¼

O
ffiffiffiffiffiffiffi

n
log n

q
t

$ %
. The delay rate is

Cagg ¼
nb

Dagg
¼ Xð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p
$WÞ:

Next, we prove that this delay rate is order optimal.

Notice that for one snapshot data aggregation is completed
when the sink has the aggregated value of all data in the

R(0, 0)

(p, q) (p, q)

(0, 0)

(b)(a)Fig. 4 Our aggregation
method: a [Phase II] each
selected node aggregates data to
its upper cell; b [Phase III] each
selected node in the top row
aggregates data to its right cell
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snapshot. Let Tcomplete denote the time that all data of one
snapshot are aggregated in the sink and Tfarthest be the time

needed for the value of the farthest node reach the sink. To

compute the aggregated value, all values from the snapshot
is needed. Therefore, Tfarthest B Tcomplete. Based on the

network model, the farthest node from the sink is located in

one corner of the field with high probability. We denote the
distance between the farthest node and the sink as L. It is

easy to show that the minimum value of L is
ffiffi
2
p
%d

2 (when the

sink is in the center of the field), i.e., L)
ffiffi
2
p
%d

2 . See Fig. 5 for

illustrations. Notice that when n goes to infinite, L)
ffiffi
2
p

2 .

Since the transmission range is r, the data in the farthest

node needs at least L
r time slots to reach the sink. Hence,

Tfarthest )
L

r
$ t ¼ L

r
$ b

W
)
ffiffi
2
p

2

r
$ b

W
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

30 log n

r
$ b

W
:

Consequently, we have

Tcomplete) Tfarthest)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

30 log n

r
$ b

W

Therefore, the delay rate of data aggregation is at most

nb

Tcomplete
& nbffiffiffiffiffiffiffiffiffiffiffi

n
30 log n

q
$ b

W

¼ Hð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p
$WÞ:

In summary, our data aggregation algorithm can achieve

the upper bound of delay rate Hð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n
p

$WÞ.

6.2 Capacity with pipelining

We now describe our aggregation algorithm with pipelin-

ing. In the above algorithm, sensors will not start sending

data in the next snapshot until the sink receives the
aggregated value for all data in the previous snapshot.

However, with pipelining, a sensor can begin to send (or

aggregate) data in the next snapshot before the aggregated
value of the previous snapshot reaches the sink. Actually, it

can begin to send if the aggregated data of the previous

snapshot are far away enough. Thus, all three phases in the
above algorithm can be pipelined.

At the beginning of one snapshot, each micro cell will

choose a node to collect data from all the other nodes in the

same micro cell and aggregates into one packet. The time

required is R
d þ 1
& '2 $Oðlog nÞ $ t ¼ Oðt log nÞ.

For Phase II and Phase III if the aggregated values in

previous snapshot are one interference block ahead (above

or right in Fig. 4), the values from next snapshot can be
sent or aggregated. The time difference between such two

snapshots will be bounded by R
d þ 1
& '2 $ t.1 This is much

smaller than the time used for the aggregation of data in a

cell (Oðt log nÞ). Thus, in a cell, when the aggregation of
data from one snapshot finishes, the aggregated values of

previous snapshot are already far away from this cell and

can not cause any interference with current transmissions
originated from this cell.

Therefore, every Oðt log nÞ the sink can collect one

snapshot data with pipelining. Then the capacity of our

data aggregation method is nb
Oðt log nÞ ¼ X n

log nW
! "

.

Next, we prove that the upper bound of data aggregation

with pipelining is O n
log nW
! "

. In other words, our schemes

achieves the optimal order.
Consider that n sensors are randomly distributed in the

unit square. If we divide the region into disks with radius

R
2 ¼ a

ffiffiffiffiffiffiffiffiffiffiffi
15 log n

4n

q
, every such disk has average 15pa2 log n

4 sen-

sors. Due to Pigeonhole principle, there exists some disks
that have Hðlog nÞ sensors. Now let D be such a disk.

When one sensor in D sends its data packet to a destination,

all of the other Hðlog nÞ sensors cannot send their data. The
aggregation of these Hðlog nÞ sensors will cost at least

Hðlog ntÞ, i.e., Tagg)Hðlog ntÞ. Thus, the capacity Cagg is

less than or equal to O n
log nW
! "

for sure.

In summary, we have the last theorem as follows.

Theorem 4 Under protocol interference model, the delay
rate C and the capacity C of data aggregation in random

sensor networks with a single sink are Hð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n
p

WÞ and

H n
log nW
! "

respectively.

Notice that for data collection the delay rate and the

capacity are in the same order (Theorem 1), i.e., pipelining
can improve only a constant factor of the data rate. How-

ever, for data aggregation, it is very interesting to see

that pipelining can increase the data rate in order of

H
ffiffiffiffiffiffiffiffi

n
log3 n

q$ %
. This is because there is room for capacity

improvement with data aggregation. Notice that the

throughput in the non-aggregation case and aggregation

case are limited differently.

(b)(a)

Fig. 5 Minimum value of L is
ffiffi
2
p
%d

2 . a L [
ffiffi
2
p
%d

2 . b L ¼
ffiffi
2
p
%d

2

1 We can also think of this as the case where each cell has a single
sensor. Then the rate of receiving data at the sink is a constant
dependent on R.
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So far, we only consider data aggregation capacity with

a single sink, but results for the case with multiple sinks are
easy to derive using the similar analysis in Sect. 5. Due to

space limit, here we just present the conclusion. The delay

rate of data aggregation in random sensor networks with
k regularly-deployed sinks are

C ¼ Hðk
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n
p

WÞ; when k ¼ O n
log n

! "

C ¼ H n
ffiffi
n
p
ffiffiffiffiffiffiffi
log n
p W

$ %
; when k ¼ X n

log n

! "
:

8
><

>:

The capacity of data aggregation of this case are

C ¼ H kn
log nW
! "

; when k ¼ O n
log n

! "

C ¼ H n
log n

! "2
W

$ %
; when k ¼ X n

log n

! "
:

8
><

>:

The delay rate of data aggregation in random sensor

networks with k randomly-deployed sinks are

H
k
ffiffiffiffiffiffiffiffiffi
n logn
p

logk W

$ %
&C&H k

ffiffiffiffiffiffiffiffiffiffiffiffi
nlogn
p

Wð Þ; when k¼O n
logn

! "

C¼H n
ffiffi
n
p
ffiffiffiffiffiffiffi
logn
p W

$ %
; when k¼x n

logn

! "
:

8
>><

>>:

The capacity of data aggregation of this case are

H kn
log k log nW
! "

&C&H kn
log nW
! "

; when k ¼ O n
log n

! "

C ¼ H n
log n

! "2
W

$ %
; when k ¼ x n

log n

! "
:

8
><

>:

7 Conclusion

In this paper, we study theoretical limitations of data col-
lection and data aggregation in terms of delay and capacity

for random sensor networks. For different communication

scenarios, we prove the asymptotical upper bound of delay

Table 1 Summary of results on delay rate and capacity

Task k Sinks Delay rate and capacity

Data collection k = 1 C ¼ HðWÞ
C ¼ HðWÞ

Data collection k ¼ O n
log n

! "
and regularly-deployed C ¼ HðkWÞ

C ¼ HðkWÞ
Data collection k ¼ X n

log n

! "
and regularly-deployed C ¼ H n

log nW
! "

C ¼ H n
log nW
! "

Data collection k ¼ O n
log n

! "
and randomly-deployed H k

log kW
! "

&C&HðkWÞ

H k
log kW
! "

&C&HðkWÞ

Data collection k ¼ x n
log n

! "
and randomly-deployed C ¼ H n

log nW
! "

C ¼ H n
log nW
! "

Data aggregation k = 1 C ¼ Hð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n
p

WÞ

C ¼ H n
log nW
! "

Data aggregation k ¼ O n
log n

! "
and regularly-deployed C ¼ Hðk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n
p

WÞ

C ¼ H kn
log nW
! "

Data aggregation k ¼ X n
log n

! "
and regularly-deployed C ¼ H n

ffiffi
n
p
ffiffiffiffiffiffiffi
log n
p W

$ %

C ¼ H n
log n

! "2
W

$ %

Data aggregation k ¼ O n
log n

! "
and randomly-deployed H

k
ffiffiffiffiffiffiffiffiffi
n log n
p

log k W

$ %
&C&H k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n
p

Wð Þ

H kn
log k log nW
! "

&C&H kn
log nW
! "

Data aggregation k ¼ x n
log n

! "
and randomly-deployed C ¼ H n

ffiffi
n
p
ffiffiffiffiffiffiffi
log n
p W

$ %

C ¼ H n
log n

! "2
W

$ %
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rate and capacity and then propose a collection method to

achieve the upper bound within a constant fact (except the

randomly-deployed multiple sink case when k ¼ O n
log n

! "
).

Summary of all results is shown in Table 1. These results

can lead to better network planning and performance for
data collection or data aggregation in wireless sensor net-

work applications.

So far, we only consider the protocol interference model,
which is an ideal and simple model. We can also consider a

more practical model—physical interference model. In such

model, node vj can correctly receive the signal from the sender
vi if and only if, given a constant g[ 0, the SINR

Pi$d%b
i;j

B$N0þ
P

k2I
Pk $d%b

k;j

) g. Here dk;j ¼ jjvk % vjjj;B is the channel

bandwidth, N0 [ 0 is the background Gaussian noise, I is the

set of actively transmitting nodes when node vi is transmitting,
b[ 2 is the path loss exponent, and Pk is node vks transmis-

sion power. There are established techniques to study the

capacity (such as unicast capacity [12, 15] or broadcast
capacity [22]) under physical interference model. Using these

techniques, we expect to show that our results under protocol

interference model and physical interference model are in the
same order. In [28], we provide such analysis of the case with

a single sink under physical interference model. Thus, we

leave analysis of other cases as our future work.
In this paper, we only consider capacities for random

sensor networks where sensors are uniformly distributed in

the field. It is interesting to study the capacities of data
collection for general networks (arbitrarily deployed net-

works), as in [8, 24, 26]. We leave this as one of our future

work. Another direction is to investigate the achievable
capacity and delay rate when the energy consumption of

data collection is considered, since energy issue is very

critical for wireless sensor networks. Recently, Li et al.
[29] showed the trade-offs between the delay and energy

consumption of data collection or data aggregation in

sensor networks. Last but not least, many assumptions in
our model are restrictive (such as no mobility, independent

sensing measurements, restricted aggregation model, and

simplified interference model), thus we are interested in
relaxing some of them.
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