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Abstract

We present an overview of the recent progress of apply-

ing computational geometry techniques to solve some ques-

tions, such as topology construction and broadcasting, in

wireless ad hoc networks. Treating each wireless device as

a node in a two dimensional plane, we model the wireless

networks by unit disk graphs in which two nodes are con-

nected if their Euclidean distance is no more than one. We

�rst summarize the current status of constructing sparse

spanners for unit disk graphs with various combinations of

the following properties: bounded stretch factor, bounded

node degree, planar, and bounded total edges weight (com-

pared with the minimum spanning tree). Instead of con-

structing subgraphs by removing links, we then review the

algorithms for constructing a sparse backbone (connected

dominating set), i.e., subgraph from the subset of nodes.

We then review some eÆcient methods for broadcasting

and multicasting with theoretic guaranteed performance.

Keywords: Computational geometry, wireless net-
works, network optimization, power consumption,
routing, spanner, topology control.

1 Introduction

Due to its potential applications in various situations
such as battle�eld, emergency relief, and so on, wire-
less networking has received signi�cant attention over
the last few years. There are no wired infrastructures
or cellular networks in ad hoc wireless network. Each
mobile node has a transmission range. Node v can
receive the signal from node u if node v is within
the transmission range of the sender u. Otherwise,
two nodes communicate through multi-hop wireless
links by using intermediate nodes to relay the mes-
sage. Consequently, each node in the wireless network
also acts as a router, forwarding data packets for other
nodes. In this survey, we consider that each wireless
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node has an omni-directional antenna. This is attrac-
tive because a single transmission of a node can be
received by many nodes within its vicinity which, we
assume, is a disk centered at the node. In addition,
we assume that each node has a low-power Global Po-
sition System (GPS) receiver, which provides the po-
sition information of the node itself. If GPS is not
available, the distance between neighboring nodes can
be estimated on the basis of incoming signal strengths.
Relative co-ordinates of neighboring nodes can be ob-
tained by exchanging such information between neigh-
bors [1].

Wireless ad hoc networks can be subdivided into
two classes: static and mobile. In static networks,
the position of a wireless node does not change or
changes very slowly once the node was deployed. Typ-
ical example of such static networks includes sensor
networks. In mobile networks, wireless nodes move
arbitrarily. Since mobile wireless networks change
their topology frequently and often without any regu-
lar pattern, topology maintenance and routing in such
networks are challenging tasks. For the sake of the
simplicity, we assume that the nodes are quasi-static
during the short period of topology reconstruction or
route �nding.

We consider a wireless ad hoc network consisting
of a set V of n wireless nodes distributed in a two-
dimensional plane. By a proper scaling, we assume
that all nodes have the maximum transmission range
equal to one unit. These wireless nodes de�ne a unit
disk graph UDG(V ) in which there is an edge between
two nodes if and only if their Euclidean distance is at
most one.

Computational geometry emerged from the �eld
of algorithms design and analysis in the late 70s. It
studies various problems [2, 3, 4] from computer graph-
ics, geographic information system, robotics, scienti�c
computing, wireless networks recently, and others, in
which geometric algorithms could play some funda-
mental roles. Most geometric algorithms are designed
for studying the structural properties, searching, in-
clusion or exclusion relations, of a set of points, a set
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of hyperplanes, or both. For example, the structural
properties include the convex hull, intersections, hy-
perplane arrangement, triangulation (Delaunay, regu-
lar, and so on), Voronoi diagram, and so on. The query
operations often include point location, range search-
ing (orthogonal, unbounded, or some variations) and
so on.

In this survey, we concentrate on how to apply
some structural properties of a point set for wire-
less networks as we treat wireless devices as two-
dimensional points.

It is common to separate the network design prob-
lem from the management and control of the network
in the communication network literature. The separa-
tion is very convenient and helps to signi�cantly sim-
plify these two tasks, which are already very complex
on its own. Nevertheless, there is a price to be paid for
this modularity as the decisions made at the network
design phase may strongly a�ect the network manage-
ment and control phase. In particular, if the issue of
designing eÆcient routing schemes is not taken into ac-
count by the network designers, then the constructed
network might not suited for supporting a good rout-
ing scheme. Wireless ad hoc network needs some spe-
cial treatment as it intrinsically has its own special
characteristics and some unavoidable limitations com-
pared with traditional wired networks. Wireless nodes
are often powered by batteries only and they often
have limited memories. Therefore, it is more challeng-
ing to design a network topology for wireless ad hoc
networks, which is suitable for designing an eÆcient
routing scheme to save energy and storage memory
consumption, than the traditional wired networks.

In technical terms, the question we deal with
is therefore whether it is possible (if possible, then
how) to design a network, which is a subgraph of the
unit disk graph, such that it ensures both attractive
network features such as bounded node degree, low-
stretch factor, and linear number of links, and attrac-
tive routing schemes such as localized routing with
guaranteed performances.

The size of the unit disk graph could be as large
as the square order of the number of network nodes.
So we want to construct a subgraph of the unit disk
graph UDG(V ), which is sparse, can be constructed
locally in an eÆcient way, and is still relatively good
compared with the original unit disk graph for routes'
quality.

Unlike the wired networks that typically have
�xed network topologies, each node in a wireless net-
work can potentially change the network topology by
adjusting its transmission range and/or selecting spe-

ci�c nodes to forward its messages, thus, controlling its
set of neighbors. The primary goal of topology control
in wireless networks is to maintain network connec-
tivity, optimize network lifetime and throughput, and
make it possible to design power-eÆcient routing. Not
every connected subgraph of the unit disk graph plays
the same important role in network designing. One
of the perceptible requirements of topology control is
to construct a subgraph such that the shortest path
connecting any two nodes in the subgraph is not much
longer than the shortest path connecting them in the
original unit disk graph. This aspect of path quality
is captured by the stretch factor of the subgraph. A
subgraph with constant stretch factor is often called a
spanner and a spanner is called a sparse spanner if it
has only a linear number of links. In this survey, we
review and study how to construct a spanner (a sparse
network topology) eÆciently for a set of static wireless
nodes.

Restricting the size of the network has been found
to be extremely important in reducing the amount of
routing information. The notion of establishing a sub-
set of nodes which perform the routing has been pro-
posed in many routing algorithms [5, 6, 7, 8]. These
methods often construct a virtual backbone by using
the connected dominating set [9, 10, 11], which is often
constructed from dominating set or maximal indepen-
dent set.

Many routing algorithms were proposed recently
for wireless ad hoc networks. The routing protocols
proposed may be categorized as table-driven protocols
or demand-driven protocols. A good survey may be
found in [12].

Table-driven routing protocols maintain up-to-
date routing information between every pair of nodes.
The changes to the topology are maintained by prop-
agating updates of the topology throughout the net-
work. Destination-sequenced Distance-Vector Rout-
ing (DSDV) [13] and Zone-Routing Protocol (ZRP)
[14, 15] are two of the table driven protocols proposed
recently. The mobility nature of the wireless networks
prevent these table-driven routing protocols from be-
ing widely used in large scale wireless ad hoc networks.
Thus, on-demand routing protocols are preferred.

Source-initiated on-demand routing creates routes
only when desired by the source node. The methodolo-
gies that have been proposed include the Ad-Hoc On-
Demand Distance Vector Routing (AODV) [16], the
Dynamic Source Routing (DSR) [17], and the Tem-
porarily Ordered Routing Algorithm (TORA) [18]. In
addition, the Associativity Based Routing (ABR) [19]
and Signal Stability Routing (SSR) use various criteria
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for selecting routes.

Introducing a hierarchical structure into routing
have also been used in many protocols such as the
Clusterhead Gateway Switch Routing (CGSR) [20],
the Fisheye Routing [21, 22], and the Hierarchical
State Routing [23]. Dominating set based methods
were also adopted by several researchers [6, 7, 8]. To
facilitate this, several methods [24, 9, 10, 25] were pro-
posed to approximate the minimum dominating set or
the minimum connected dominating set problems in
centralized and/or distributed ways.

Route discovery can be very expensive in commu-
nication costs, thus reducing the response time of the
network. On the other hand, explicit route mainte-
nance can be even more costly in the explicit commu-
nication of substantial routing information and the us-
age of scarcity memory of wireless network nodes. The
geometric nature of the multi-hop ad-hoc wireless net-
works allows a promising idea: localized routing pro-
tocols. Localized routing does not require the nodes to
maintain routing tables, a distinct advantage given the
scarce storage resources and the relatively low compu-
tational power available to the wireless nodes. More
importantly, given the numerous changes in topology
expected in ad-hoc networks, no re-computation of the
routing tables is needed and therefore we expect a
signi�cant reduction in the overhead. Thus localized
routing is scalable. Localized routing is also uniform,
in the sense that all the nodes execute the same pro-
tocol when deciding to which other node to forward
a packet. Mauve et al. [26] conducted an excellent
survey of position-based localized routing protocols.
Thus, we will not repeat it here.

Energy conservation is a critical issue in ad hoc
wireless network for the node and network life, as the
nodes are powered by batteries only. In the most com-
mon power-attenuation model, the power needed to
support a link uv is kuvk�, where kuvk is the Euclidean
distance between u and v, � is a real constant between
2 and 5 dependent on the wireless transmission envi-
ronment. This power consumption is typically called
path loss. In this survey, we assume that the path loss
is the major part of power consumption to transmit
signals.

Notice that, practically, there is some other over-
head cost for each device to receive and then process
the signal. For simplicity, this overhead cost can be
integrated into one cost, which is almost the same for
all nodes. Thus, we will use c to denote such constant
overhead. In most results surveyed here, it is assumed
that c = 0.

The rest of the survey is organized as follows. In

Section 2, we review some geometry structures, de�ne
the graph spanners, and introduce the localized algo-
rithm concept. In Section 3, we review the structures
with bounded stretch factor, or with bounded node
degree, or planar structures. In Section 4, we summa-
rize the current status of controlling the transmission
power so the total or the maximum transmission power
is minimized without sacri�cing the network connec-
tivity. In Section 5, state of the art of constructing
virtual backbone for wireless networks is reviewed. As
there are many heuristics proposed in this area, we
concentrate on the ones that have theoretic perfor-
mance guarantees or are popular. Section 6 reviews
the broadcasting protocols that We conclude the sur-
vey in Section 7 by pointing out some possible future
research questions.

2 Geometry Structures

Several geometrical structures have been studied re-
cently both by computational geometry scientists and
network engineers. Here we review the de�nitions of
some of them which could be used in the wireless net-
working applications. Let G = (V;E) be a geometric
graph de�ned on V .

The minimum spanning tree of G, denoted by
MST(G), is the tree belong to E that connects all
nodes and whose total edge length is minimized.
MST(G) is obviously one of the sparsest possible con-
nected subgraph, but its stretch factor can be as large
as n� 1.

The relative neighborhood graph, denoted by
RNG(G), is a geometric concept proposed by Tous-
saint [27]. It consists of all edges uv 2 E such that
there is no point w 2 V with edges uw and wv in
E satisfying kuwk < kuvk and kwvk < kuvk. Thus,
an edge uv is included if the intersection of two cir-
cles centered at u and v and with radius kuvk do not
contain any vertex w from the set V such that edges
uw and wv are in E. Notice if G is a directed graph,
then edges uw and wv also are directed in the above
de�nition, i.e., we have �!uw and �!wv instead of uw and
wv.

Let disk(u; v) be the disk with diameter uv.
Then, the Gabriel graph [28] GG(G) contains an edge
uv from G if and only if disk(u; v) contains no other
vertex w 2 V such that there exist edges uw and wv
from G satisfying kuwk < kuvk and kwvk < kuvk.
Same to the de�nition of RNG(G), if G is a directed
graph, then edges uw and wv also are directed in the
above de�nition of GG(G), i.e., we use �!uw and �!wv in-
stead. GG(G) is a planar graph (that is, no two edges
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cross each other) if G is the complete graph. It is easy
to show that RNG(G) is a subgraph of the Gabriel
graph GG(G). For an undirected and connected graph
G, both GG(G) and RNG(G) are connected and con-
tain the minimum spanning tree of G.

The Yao graph with an integer parameter k � 6,

denoted by
��!
Y Gk(G), is de�ned as follows. At each

node u, any k equally-separated rays originated at u
de�ne k cones. In each cone, choose the shortest edge
uv among all edges from u, if there is any, and add
a directed link �!uv. Ties are broken arbitrarily. The
resulting directed graph is called the Yao graph. See
Figure 1 for an illustration. Let Y Gk(G) be the undi-
rected graph by ignoring the direction of each link in��!
Y Gk(G). If we add the link �!vu instead of the link
�!uv, the graph is denoted by

 ��
Y Gk(G), which is called

the reverse of the Yao graph. Some researchers used a
similar construction named �-graph [29], the di�erence
is that, in each cone, it chooses the edge which has the
shortest projection on the axis of the cone instead of
the shortest edge. Here the axis of a cone is the angu-
lar bisector of the cone. For more detail, please refer
to [29].

u v u v u

RNG GG Yao

Figure 1: The de�nitions of RNG, GG, and Yao on
point set. Left: The lune using uv is empty for RNG.
Middle: The diametric circle using uv is empty for
GG. Right: The shortest edge in each cone is added
as a neighbor of u for Yao.

Notice all these de�nitions are exactly the con-
ventional de�nitions [30, 31, 32, 33] when graph G is
the completed Euclidean graph K(V ). We will use
RNG(V ), GG(V ), and Yao(V ) to denote the corre-
sponding resulting graph if G is the complete graph
K(V ).

We continue with the de�nition of Delaunay tri-
angulation. Assume that there are no four vertices
of V that are co-circular. A triangulation of V is a
Delaunay triangulation, denoted by Del(V ), if the cir-
cumcircle of each of its triangles does not contain any
other vertices of V in its interior. A triangle is called
the Delaunay triangle if its circumcircle is empty of
vertices of V . The Voronoi region, denoted by Vor(p),
of a vertex p 2 V is a collection of two dimensional
points such that every point is closer to p than to any

other vertex of V . The Voronoi diagram for V is the
union of all Voronoi regions Vor(p), where p 2 V . The
Delaunay triangulation Del(V ) is also the dual of the
Voronoi diagram: two vertices p and q are connected in
Del(V ) if and only if Vor(p) and Vor(q) share a com-
mon boundary. The shared boundary of two Voronoi
regions Vor(p) and Vor(q) is on the perpendicular bi-
sector line of segment pq. The boundary segment of a
Voronoi region is called the Voronoi edge. The inter-
section point of two Voronoi edge is called the Voronoi
vertex. The Voronoi vertex is the circumcenter of some
Delaunay triangle.

Besides these geometric structures, some graph
notations will also be used in this survey. A subset
S of V is a dominating set if each node u in V is
either in S or is adjacent to some node v in S. Nodes
from S are called dominators, while nodes not is S
are called dominatees. A subset C of V is a connected
dominating set (CDS) if C is a dominating set and
C induces a connected subgraph. Consequently, the
nodes in C can communicate with each other without
using nodes in V �C. A dominating set with minimum
cardinality is called minimum dominating set, denoted
by MDS. A connected dominating set with minimum
cardinality is denoted by MCDS.

A subset of vertices in a graph G is an indepen-
dent set if for any pair of vertices, there is no edge
between them. It is a maximal independent set if no
more vertices can be added to it to generate a larger in-
dependent set. It is amaximum independent set (MIS)
if no other independent set has more vertices.

Due to the limited resources of the wireless nodes,
it is preferred that the underlying network topology
can be constructed in a localized manner. Stojmenovic
et al. �rst de�ned what is a localized algorithm in sev-
eral pioneering papers [34, 35]. Here a distributed al-
gorithm constructing a graphG is a localized algorithm
if every node u can exactly decide all edges incident
on u based only on the information of all nodes within
a constant hops of u (plus a constant number of addi-
tional nodes' information if necessary). It is easy to see
that the Yao graph YG(V ), the relative neighborhood
graph RNG(V ) and the Gabriel graph GG(V ) can be
constructed locally. However, the Euclidean minimum
spanning tree EMST(V ) and the Delaunay triangula-
tion Del(V ) can not be constructed by any localized
algorithm. Gabriel graph was used as a planar sub-
graph in the Face routing protocol [34, 36, 37] and the
GPSR routing protocol [38]. Right hand rule is used to
guarantee the delivery of the packet in [34]. Relative
neighborhood graph RNG was used for eÆcient broad-
casting (minimizing the number of retransmissions) in
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one-to-one broadcasting model in [39]. In this survey,
we are interested in localized algorithms that construct
sparse and power eÆcient network topologies.

3 Spanners

Spanners have been studied intensively in recent years
[40, 41, 42, 43, 44, 45, 46, 47, 32]. Let G = (V;E) be
a n-vertex connected weighted graph. The distance in
G between two vertices u; v 2 V is the total weight
(length) of the shortest path between u and v and is
denoted by dG(u; v). A subgraph H = (V;E0), where
E0 � E, is a t-spanner of G if for every u; v 2 V ,
dH(u; v) � t � dG(u; v). The value of t is called the
stretch factor.

Consider any unicast �(u; v) in G (could be di-
rected) from a node u 2 V to another node v 2 V :

�(u; v) = v0v1 � � � vh�1vh; where u = v0; v = vh:

Here h is the number of hops of the path �. The total
transmission power p(�) consumed by this path � is
de�ned as

p(�) =
hX
i=1

kvi�1vik�

Let pG(u; v) be the least energy consumed by all paths
connecting nodes u and v in G. The path in G con-
necting u; v and consuming the least energy pG(u; v)
is called the least-energy path in G for u and v. When
G is the unit disk graph UDG(V ), we will omit the
subscript G in pG(u; v).

Let H be a subgraph of G. The power stretch
factor of the graphH with respect to G is then de�ned
as

�H(G) = max
u;v2V

pH(u; v)

pG(u; v)

If G is a unit disk graph, we use �H(V ) instead of
�H(G). For any positive integer n, let

�H(n) = sup
jV j=n

�H(V ):

Similarly, we de�ne the length stretch factors `H(G)
and `H(n). When the graph H is clear from the con-
text, it is dropped from notations.

It is not diÆcult to show that, for anyH � G with
a length stretch factor Æ, its power stretch factor is at
most Æ� for any graph G. In particular, a graph with
a constant bounded length stretch factor must also
have a constant bounded power stretch factor, but the
reverse is not true. Finally, the power stretch factor
has the following monotonic property: If H1 � H2 �

G then the power stretch factors of H1 and H2 satisfy
�H1

(G) � �H2
(G).

Previous algorithms that construct a t-spanner of
the Euclidean complete graph K(V ) in computational
geometry are centralized methods. The rapid devel-
opment of the wireless communication presents a new
challenge for algorithm designing and analysis. Dis-
tributed algorithms are favored than the more tradi-
tional centralized algorithms.

In this section, we study the power stretch fac-
tor of several new sparse spanners for unit disk graph.
A trade-o� can be made between the sparseness of
the topology and the power eÆciency. The power eÆ-
ciency of any spanner is measured by its power stretch
factor, which is de�ned as the maximum ratio of the
minimum power needed to support the connection of
two nodes in this spanner to the least necessary in the
unit disk graph.

3.1 RNG, GG, and Yao

Since the relative neighborhood graph has the length
stretch factor as large as n�1, then obviously its power
stretch factor is at most (n�1)�. Li et al. [48] showed
that it is actually n � 1. Thus, any graph contains
the Euclidean minimum spanning tree has the power
stretch factor at most n� 1.

The Gabriel graph has length stretch factor be-

tween
p
n

2 and 4�
p
2n�4
3 [43]. Li et al. [48] proved that

its power stretch factor is at most
�
4�
p
2n�4
3

��
.

The Yao graph has length stretch factor 1
1�2 sin �

k

.

Thus, its power stretch factor is no more than
( 1
1�2 sin �

k

)� . Li et al. [48] proved a stronger result:

its power stretch factor is at most 1
1�(2 sin �

k
)� .

Li et al. [49] also proposed to apply the Yao struc-
ture on top of the Gabriel graph structure (the result-

ing graph is denoted by
���!
Y GGk(V )), and apply the

Gabriel graph structure on top of the Yao structure

(the resulting graph is denoted by
���!
GY Gk(V )). These

structures are sparser than the Yao structure and the
Gabriel graph structure and they still have a constant
bounded power stretch factor. These two structures
are connected graphs if the UDG is connected, which
can be proved by showing that RNG is a subgraph of
both structures.

The two-phased approach by Wattenhofer et al.
[50] consists of a variation of the Yao graph followed by
a variation of the Gabriel graph. They tried to prove
that the constructed spanner has a constant power
stretch factor and the node degree is bounded by a
constant. Unfortunately, there are some bugs in their
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proof of the constant power stretch factor and their
result is erroneous, which was discussed in detail in
[48].

Li et al. [51] proposed a structure that is similar
to the Yao structure for topology control. Each node
u �nds a power pu;� such that in every cone of de-
gree � surrounding u, there is some node that u can
reach with power pu;�. Here, nevertheless, we assume
that there is a node reachable from u by the maxi-
mum power in that cone. Then the graph G� contains
all edges uv such that u can communicate with v us-
ing power pu;�. They proved that, if � � 5�

6 and
the UDG is connected, then graph G� is a connected
graph. On the other hand, if � > 5�

6 , they showed
that the connectivity of G� is not guaranteed by giv-
ing some counter-example [51].

3.2 Bounded Degree Spanners

Notice that although the directed graphs
��!
Y Gk(V ),���!

GY Gk(V ) and
���!
Y GGk(V ) have a bounded power

stretch factor and a bounded out-degree k for each
node, some nodes may have a very large in-degree.
The nodes con�guration given in Figure 2 will result
a very large in-degree for node u. Bounded out-degree
gives us advantages when apply several routing algo-
rithms. However, unbounded in-degree at node u will
often cause large overhead at u. Therefore it is of-
ten imperative to construct a sparse network topology
such that both the in-degree and the out-degree are
bounded by a constant while it is still power-eÆcient.

v

α

v

v1
u

vi

vi+1

α
α

2
v

n-1

n-2

Figure 2: Node u has degree (or in-degree) n� 1.

3.2.1 Sink Structure

Arya et al. [41] gave an ingenious technique to gen-
erate a bounded degree graph with constant length
stretch factor. In [48], Li et al. applied the same tech-
nique to construct a sparse network topology with a
bounded degree and a bounded power stretch factor
from Y G(V ). The technique is to replace the directed
star consisting of all links toward a node u by a di-
rected tree T (u) of a bounded degree with u as the

sink. Tree T (u) is constructed recursively. The algo-
rithm is as follows.

Algorithm: Constructing-YG�

1. Each node u computes the set of in-coming nodes

I(u) = fv j �!vu 2 ��!Y Gk(V )g.
2. Node u uses Tree(u,I(u)) to build tree T (u).

Algorithm: Constructing-T (u) Tree(u,I(u))

1. Chooses k equal-sized cones: C1(u), C2(u), � � � ,
Ck(u) to partition the unit disk centered at u.

2. Finds the nearest node yi 2 I(u) in Ci(u), for 1 �
i � k, if there is any. Link �!yiu is added to T (u)
and yi is removed from I(u). For each cone Ci(u),
if I(u) \ Ci(u) is not empty, call Tree(yi,I(u) \
Ci(u)) and add the created edges to T (u).

Figure 3 (a) illustrates a directed star centered
at u and Figure 3 (b) shows the directed tree T (u)
constructed to replace the star with k = 8. The union

of all trees T (u) is called the sink structure
��!
Y G�

k(V ).
Notice that, node u constructs the tree T (u) and

then broadcasts the structure of T (u) to all nodes in
T (u). Since the total number of edges in the Yao struc-
ture is at most k � n, where k is the number of cones
divided, the total number of edges of T (u) of all node
u is also at most k �n. Thus, the total communication
cost of broadcasting the T (u) to all its neighbors is
still at most k � n. Recall that k is a small constant.

u u

(a) (b)

Figure 3: (a) Star formed by links toward to u. (b)
Directed tree T (u) sinked at u.

The algorithm uses a directed tree T (u) to replace
the directed star for each node u. Therefore, if nodes

u and v are connected by a path in
��!
Y Gk, they are also

connected by a path in
��!
Y G�

k. It is already known that��!
Y Gk is strongly connected if UDG(V) is connected, so

does
��!
Y G�

k. Li et al. [48] showd that the power stretch

factor of the graph
��!
Y G�

k(V ) is at most (
1

1�(2 sin �
k
)�
)2,

the maximum degree of the graph
��!
Y G�

k(V ) is at most
(k + 1)2 � 1, and the maximum out-degree is k.
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Notice that the sink structure and the Yao graph
structure do not have to have the same number of
cones, and the cones do not need to be aligned. For
setting up a power-eÆcient wireless networking, each
node u �nds all its neighbors in Y Gk(V ), which can
be done in linear time proportional to the number of
nodes within its transmission range.

3.2.2 YaoYao Structure

In this section, we review another algorithm proposed
by Li et al. [49] that constructs a sparse and power
eÆcient topology. Assume that each node vi of V
has a unique identi�cation number ID(vi) = i. The
identity of a directed link �!uv is de�ned as ID(�!uv) =
(jjuvjj; ID(u); ID(v)).

Node u chooses a node v from each cone, if there
is any, so the directed link �!vu has the smallest ID(�!vu)
among all directed links �!wu in Y G(V ) in that cone.
The union of all chosen directed links is the �nal net-
work topology, denoted by

��!
Y Y k(V ). If the direc-

tions of all links are ignored, the graph is denoted

as Y Yk(V ). The directed graph
��!
Y Y k(V ) is strongly

connected if UDG(V ) is connected and k > 6, see [49].

It was proved in [52, 49] that
��!
Y Y k(V ) is a spanner

in civilized graph. Here a unit disk graph is civilized
graph if the distance between any two nodes in this
graph is larger than a positive constant �. In [53], they
called the civilized unit disk graph as the �-precision
unit disk graph. Notice the wireless devices in wireless
networks can not be too close or overlapped. Thus, it
is reasonable to model the wireless ad hoc networks as
a civilized unit disk graph.

The experimental results by Li et al. [49] showed
that this sparse topology has a small power stretch

factor in practice. They [49] conjectured that
��!
Y Y k(V )

also has a constant bounded power stretch factor the-
oretically in any unit disk graph. The proof of this
conjecture or the construction of a counter-example
remain a future work.

3.2.3 Symmetric Yao Graph

In [49], Li et al. also considered another undirected
structure, called symmetric Yao graph Y Sk(V ), which
guarantees that the node degree is at most k. Each
node u divides the region into k equal angular regions
centered at the node, and chooses the closest node in
each region, if any. An edge uv is selected to graph
Y Sk(V ) if and only if both directed edges �!uv and �!vu
are in the Yao graph

��!
Y Gk(V ). Then it is obvious that

the maximum node degree is k.

Li et al. [48] proved that the graph Y Sk(V ) is
strongly connected if UDG(V ) is connected and k �
6 by showing that RNG is a subgraph of Y Sk(V ) if
k � 6. This immediately implies the connectivity of
the Yao graph, sink structure, and the YaoYao graph
as RNG is also the subgraph of all these structures.

The experiment by Li et al. also showed that it
has a small power stretch factor in practice. However,
it was shown in [54] recently that Y Sk(V ) is not a
spanner theoretically. The basic idea of the counter
example is similar to the counter example for RNG
proposed by Bose et al. [43]. For the completeness of
the presentation, we still review the counter example
here.

Let nodes v1 and v0 have distance half unit from
each other. Assume the ith cone of v1 contains v0,
and the i0th cone of v0 contains v1. Then draw two
lines l1 = v1v3 and l2 = v0v2 such that both the an-
gles \v3v1v0 and \v2v0v1 are

�
2 ��, where � is a very

small positive number. Let's �rst consider even n, say
n = 2m. Figure 4 illustrates the construction of the
point set V . The node v2j is placed on l2 in the ith
cone of v2j�1 and it is very close to the upper bound-
ary of the ith cone of v2j�1. The node v2j+1 is placed
on l1 in the i0th cone of v2j close to the upper bound-
ary of that cone. Using this method, place all nodes
from v2 to v2m in order. Then it is easy to show that
the Y Sk(V ) does not contain any edge v2jv2j+1 and
v2j+1v2j+2 for 0 � j � m � 1. The nearest neighbor
of v2j is v2j+1, but for v2j+1, the nearest neighbor is
v2j+2. So although in Y Sk(V ) there is a path from v1
to v2, its length is kv1v2m�1k+kv2m�1v2mk+kv2mv2k.
So when � is appropriately small, the length stretch
factor of Y Sk(V ) cannot be bounded by a constant.
Similarly, its power stretch factor cannot be bounded
also. When n is odd, the construction is similar.

3.3 Planar Spanner

Given a set of nodes V , it is well-known that the De-
launay triangulation Del(V ) is a planar t-spanner of
the completed graph K(V ). This was �rst proved
by Dobkin, Friedman and Supowit with constant t =
1+

p
5

2 � � 5:08. Then Kevin and Gutwin improved
the upper bound on t to be 2�

3 cos �
6

� 2:42. How-

ever, it is not appropriate to require the construc-
tion of the Delaunay triangulation in the wireless
communication environment because of the possible
massive communications it requires. Given a set of
points V , let UDel(V ) be the graph of removing all
edges of Del(V ) that are longer than one unit, i.e.,
UDel(V ) = Del(V ) \ UDG(V ). Li et al. [55] con-
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Figure 4: An example that Y Sk(V ) has a large stretch
factor.

sidered the unit Delaunay triangulation UDel(V ) for
planar spanner of UDG, which is a subset of the Delau-
nay triangulation. In [55], they proved that UDel(V )
is a t-spanner of the unit disk graph UDG(V ). Specif-
ically, they showed that, for any two vertices u and v
of V ,

jj�UDel(V )(u; v)jj �
1 +
p
5

2
� � jj�UDG(V )(u; v)jj:

Notice that, Kevin and Gutwin [56] showed that
the Delaunay triangulation is a t-spanner for a con-
stant t � 2:42. They proved this using induction on
the order of the lengths of all pair of nodes (from the
shortest to the longest). It can be shown that the path
connecting nodes u and v constructed by the method
given in [56] also satis�es that all edges of that path
is shorter than kuvk. Consequently, we know that

the unit Delaunay triangulation UDel(V ) is a 4
p
3

9 �-
spanner of the unit disk graph UDG(V ).

3.3.1 Localized Delaunay triangulation

Li et al. [55] gave a localized algorithm that con-
structs a sequence graphs, called localized Delaunay
LDel(k)(V ), which are supergraphs of UDel(V ). We
begin with some necessary de�nitions before present-
ing the algorithm.

Unit Gabriel graph It consists of all edges uv such
that kuvk � 1 and the open disk using uv as di-
ameter does not contain any vertex from V . Such

edge uv is called the Gabriel edge. We denote the
unit Gabriel graph by GG(V ) hereafter.

k-localized Delaunay triangle Triangle 4uvw is
called a k-localized Delaunay triangle if the in-
terior of the circumcircle of 4uvw, denoted by
disk (u; v; w) hereafter, does not contain any ver-
tex of V that is a k-neighbor of u, v, or w; and all
edges of the triangle 4uvw have length no more
than one unit.

k-localized Delaunay graph The k-localized De-
launay graph over a vertex set V , denoted by
LDel (k)(V ), has exactly all unit Gabriel edges and
edges of all k-localized Delaunay triangles.

α vu
w

Figure 5: LDel: The disk(u; v; w) is not necessarily
covered by unit disks centered at u and v. But it is
empty of other vertices from N1(u) [N1(v) [N1(w).

A sequence of localized Delaunay graphs
LDel (k)(V ), where 1 � k � n is de�ned. All graphs
are t-spanner of the unit-disk graph with the following
properties [55]: (1) UDel(V ) � LDel (k)(V ), for all

1 � k � n; (2) LDel (k+1)(V ) � LDel (k)(V ), for all

1 � k � n; (3) LDel (k)(V ) are planar graphs for all

2 � k � n; and (4) LDel (1)(V ) is not always planar.

Notice that, although LDel (1)(V ) is not a planar

graph, graph LDel (1)(V ) has thickness 2; see [55].
Although the graph UDel(V ) is a t-spanner for

UDG(V ), it is unknown how to construct it locally.

We can construct LDel (2)(V ), which is guaranteed to
be a planar spanner of UDel(V ), but a total communi-
cation cost of this approach is O(m log n) bits, where
m is the number of edges in UDG(V ) and could be as
large as O(n2). This is more complicated than some
other non-planar t-spanners, such as the Yao struc-
ture [32] and the �-graph [56] (although the lattes are
not planar). In order to reduce the total communi-
cation cost to O(n logn) bits, they do not construct

LDel (2)(V ), and instead they extract a planar graph

PLDel(V ) out of LDel (1)(V ). They provided a novel

algorithm to construct LDel (1)(V ) using linear com-
munications and then make it planar in linear commu-
nication cost. The �nal graph still contains UDel(V )
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as a subgraph. Thus, it is a t-spanner of the unit-disk
graph UDG(V ). In the following description of the al-
gorithm constructing LDel, the order of three nodes
in a triangle is immaterial.

Algorithm 1 Localized Unit Delaunay Triangulation

1. Each node u broadcasts its identity and location
and listens to the messages from other nodes.

2. Node u computes Del(N1(u)) of its 1-neighbors
N1(u) and u itself.

3. If angle \wuv � �
3 and kvwk � 1, node u

broadcasts a message proposal(u; v; w) to form a 1-

localized Delaunay triangle 4uvw in LDel (1)(V ).

4. When u receives a message proposal(u; v; w), u ac-
cepts the proposal of constructing4uvw if 4uvw
belongs to Del(N1(u)) by broadcasting message
accept(u; v; w); otherwise, it rejects the proposal
by broadcasting message reject(u; v; w).

5. Node u adds the edges uv and uw to its set of in-
cident edges if 4uvw is in Del(N1(u)), kvwk � 1,
and both v and w have sent either accept(u; v; w)
or proposal(u; v; w).

It was proved that the graph constructed by the
above algorithm is LDel (1)(V ). Indeed, for each trian-

gle 4uvw of LDel (1)(V ), one of its interior angle is at
least �=3 and 4uvw is in Del(N1(u)), Del(N1(v)) and
Del(N1(w)). So one of the nodes amongst fu; v; wg
will broadcast the message proposal(u; v; w) to form a
1-localized Delaunay triangle 4uvw.

As Del(N1(u)) is a planar graph, and a proposal
is made only if \wuv � �

3 , node u broadcasts at most
6 proposals. And each proposal is replied by at most
two nodes. Therefore, the total communication cost is
O(n logn) bits. The above algorithm also shows that

LDel (1)(V ) has O(n) edges. Consequently, the local

Delaunay construction method generates LDel (1)(V )
with total communication cost O(n log n) bits [55].

We then review the algorithm to extract from
LDel (1)(V ) a planar subgraph.

Algorithm 2 Planarize LDel (1)(V )

1. Each node u broadcasts the Gabriel edges incident
on u and the triangles 4uvw of LDel (1)(V ).

2. Assume u gathered the Gabriel edge and 1-local
Delaunay triangles information of all nodes from
N1(u). For two intersected triangles 4uvw and
4xyz known by u, node u removes the triangle
4uvw if its circumcircle contains a node from
fx; y; zg.

3. Each node u broadcasts all the triangles which it
has not removed in the previous step.

4. Node u keeps the edge uv in its set of incident
edges if it is a Gabriel edge, or if there is a triangle
4uvw such that u, v, and w have all announced
they have not removed 4uvw in Step 2.

They denoted the graph extracted by the algo-
rithm above by PLDel(V ). Note that any triangle

of LDel (1)(V ) not kept in the last step of the Pla-

narization Algorithm is not a triangle of LDel (2)(V ),

and therefore PLDel(V ) contains LDel (2)(V ). Thus,

UDel(V ) � LDel (2)(V ) � PLDel(V ) � LDel (1)(V ).

Similar to the proof that LDel (2)(V ) is a planar
graph, they showed that the algorithm does generate
a planar graph.

The total communication cost to construct the
graph PLDel(V ) is a O(logn) times the number of

edges of the graph LDel (1)(V ), which is O(n). In sum-

mary, PLDel(V ) is planar 4
p
3

9 �-spanner of UDG(V ),
and can be constructed with total communication cost
O(n log n) bits.

3.3.2 Partial Delaunay triangulation

Stojmenovic and Li [57] also proposed a geometry
structure, namely the partial Delaunay triangulation
(PDT ), that can be constructed in a localized manner.
Partial Delaunay triangulation contains Gabriel graph
as its subgraph, and itself is a subgraph of the Delau-
nay triangulation, more precisely, the subgraph of the
unit Delaunay triangulation UDel(V ). The algorithm
for the construction of PDT goes as follows.

Let u and v be two neighboring nodes in the net-
work. Edge uv belongs to Del(V ) if and only if there
exists a disk with u and v on its boundary, which does
not contain any other point from the set V . First test
whether disk(u; v) contains any other node from the
network. If it does not, the edge belongs to GG and
therefore to PDT . If it does, check whether nodes
exist on both sides of line uv or on only one side. If
both sides of line uv contain nodes from the set inside
disk(u; v) then uv does not belong to Del(V ).

Suppose now that only one side of line uv con-
tains nodes inside the circle disk(u; v), and let w be
one such point that maximizes the angle \uwv. Let
� = \uwv. Consider now the largest angle \uxv on
the other side of the mentioned circle disk(u; v), where
x is a node from the set S. If \uwv+\uxv > �, then
edge uv is de�nitely not in the Delaunay triangula-
tion Del(V ). The search can be restricted to common
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neighbors of u and v, if only one-hop neighbor infor-
mation is available, or to neighbors of only one of the
nodes if 2-hop information (or exchange of the infor-
mation for the purpose of creating PDT is allowed) is
available. Then whether edge uv is added to PDT is
based on the following procedure.

Assume only N1(u) is known to u, and there is
one node w from N1(u) that is inside disk(u; v) with
the largest angle \uwv. Edge uv is added to PDT
if the following conditions hold: (1) there is no node
from N1(u) that lies on the di�erent side of uv with w
and inside the circumcircle passing through u, v, and
w, (2) sin� > d

R
, where R is the transmission radius of

each wireless node, d is the diameter of the circumcircle
disk(u; v; w), and � = \uwv (here � � �

2 ).
Assume only 1-hop neighbors are known to u and

v, and there is one node w from N1(u) [ N1(v) that
is inside disk(u; v) with the largest angle \uwv. Edge
uv is added to PDT if the following conditions hold:
(1) there is no node from N1(u) [ N1(v) that lies on
the di�erent side of uv with w and inside the circum-
circle passing u, v, and w, (2) cos �2 > d

2R , where R
is the transmission radius of each wireless node and
� = \uwv.

Obviously, the partial Delaunay triangulation is a
subgraph of UDel(V ). Thus, the spanning ratio of the
partial Delaunay triangulation could be very large.

α
w

vu α
w

vu

Figure 6: Left: Only one hop information is known
to u. Then it requires disk(u; v; w) to be covered by
the transmission range of u (denoted by the shaded
region) and is empty of neighbors of u. Right: Node
u knows N1(u) and node v knows N1(v). The cir-
cumcircle disk(u; v; w) is covered by the union of the
transmission ranges of u and v and is empty of other
vertices.

3.3.3 Restricted Delaunay Graph

Gao et al. [58] also proposed another structure, called
restricted Delaunay graph RDG and showed that it has
good spanning ratio properties and is easy to maintain
locally. A restricted Delaunay graph of a set of points
in the plane is a planar graph and contains all the De-
launay edges with length at most one. In other other

words, they call any planar graph containing UDel(V )
as a restricted Delaunay graph. They described a dis-
tributed algorithm to maintain the RDG such that at
the end of the algorithm, each node u maintains a set
of edges E(u) incident to u. Those edges E(u) satisfy
that (1) each edge in E(u) has length at most one unit;
(2) the edges are consistent, i.e., an edge uv 2 E(u)
if and only if uv 2 E(v); (3) the graph obtained is
planar; (4) The graph UDel(V ) is in the union of all
edges E(u).

The algorithm works as follows. First, each node
u acquires the position of its 1-hop neighbors N1(u)
and computes the Delaunay triangulation Del(N1(u))
on N1(u), including u itself. In the second step, each
node u sends Del(N1(u)) to all of its neighbors. Let
E(u) = fuv j uv 2 Del(N1(u))g. For each edge uv 2
E(u), and for each w 2 N1(u), if u and v are in N1(w)
and uv 62 Del(N1(u)), then node u deletes edge uv
from E(u).

They proved that when the above steps are �n-
ished, the resulting edges E(u) satisfy the four prop-
erties listed above. However, unlike the local Delaunay
triangulation, the computation cost and communica-
tion cost of each node needed to obtain E(u) is not
optimal within a small constant factor.

Figure 7 gives some concrete examples of the ge-
ometry structures discussed before.

4 Transmission Power Control

In the previous sections, we have assumed that the
transmission power of every node is equal and is nor-
malized to one unit. We relax this assumption for a
moment in this subsection. In other words, we assume
that each node can adjust its transmission power ac-
cording to its neighbors' positions. A natural question
is then how to assign the transmission power for each
node such that the wireless network is connected with
optimization criteria being minimizing the maximum
(or total) transmission power assigned.

A transmission power assignment on the vertices
in V is a function f from V into real numbers. The
communication graph, denoted by Gf , associated with
a transmission power assignment f , is a directed graph
with V as its vertices and has a directed edge ��!vivj
if and only if jjvivj jj� � f(vi). We call a transmis-
sion power assignment f complete if the communica-
tion graph Gf is strongly connected. Recall that a
directed graph is strongly connected if, for any given
pair of ordered nodes s and t, there is a directed path
from s to t.

The maximum-cost of a transmission power as-
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UDG(V ) Del(V )

PLDel(V ) PDel(V )
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Y G(V ) Y G�(V )
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Figure 7: Di�erent topologies from UDG(V ).

signment f is de�ned as mc(f) = maxvi2V f(vi). And
the total-cost of a transmission power assignment f is
de�ned as sc(f) =

P
vi2V f(vi).

The min-max assignment problem is then to �nd a
complete transmission power assignment f whose cost
mc(f) is the least among all complete assignments.
The min-total assignment problem is to �nd a complete
transmission power assignment f whose cost sc(f) is
the least among all complete assignments.

Given a graph H , we say the power assignment f
is induced by H if

f(v) = max
(v;u)2E

jjvujj� ;

where E is the set of edges of H . In other words, the
power assigned to a node v is the largest power needed
to reach all neighbors of v in H .

Transmission power control has been well-studied
by peer researchers in the recent years. Monks et
al. [59] conducted simulations which show that im-
plementing power control in a multiple access environ-
ment can improve the throughput performance of the
non-power controlled IEEE 802.11 by a factor of 2.
Therefore it provides a compelling reason for adopting
the power controlled MAC protocol in wireless net-
work.

The min-max assignment problem was studied by
several researchers [60, 61]. Let EMST(V ) be the
Euclidean minimum spanning tree over a point set
V . Both [60] and [61] use the power assignment in-
duced by EMST(V ). The correctness of using mini-
mum spanning tree is proved in [60]. Both algorithms
compute the minimum spanning tree from the fully
connected graph. Notice that Kruskal's or Prim's min-
imum spanning tree algorithm has time complexity
O(m + n logn), where m is the number of edges of
the graph. Thus, the approach by [60] and [61] has
time complexity O(n2) in the worst case. In addition,
di�erent distributed implementation of this algorithm
is not feasible because of the information each node has
to store and process. In contrast, Li [62] gave a sim-
ple O(n logn) time complexity centralized algorithm
and also show how this algorithm can be implemented
eÆciently for distributed computation.

For an optimum transmission power assignment
fopt, call a link uv the critical link if jjuvjj� = mc(fopt).
It was proved in [60] that the longest edge of the Eu-
clidean minimum spanning tree EMST(V ) is always
the critical link.

The best distributed algorithm [63, 64, 65] can
compute the minimum spanning tree in O(n) rounds
using O(m + n logn) communications for a general
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graph with m edges and n nodes. The relative neigh-
borhood graph, the Gabriel graph and the Yao graph
all have O(n) edges and contain the Euclidean mini-
mum spanning tree. This implies that the distributed
min-max assignment problem can be solved in O(n)
rounds using O(n log n) communications.

The min-total assignment problem was studied by
Kiroustis et al. [66] and by Clementi et al. [67, 68, 69].
Kiroustis et al. [66] �rst proved that the min-total as-
signment problem is NP-hard when the mobile nodes
are deployed in a three-dimensional space. A simple 2-
approximation algorithm based on the Euclidean min-
imum spanning tree was also given in [66]. The algo-
rithm guarantees the same approximation ratio in any
dimensions. Then Clementi et al. [67, 68, 69] proved
that the min-total assignment problem is still NP-hard
when the mobile nodes are deployed in a two dimen-
sional space.

Recently, C�alinescu et al. [70] gave a method that
achieves better approximation ratio than the approach
by the minimum spanning tree by using idea from the
minimum Steiner tree.

5 Clustering, Virtual Backbone

While all the structures discussed so far are at struc-
tures, there are another set of structures, called hier-
archical structures, are used in wireless networks. In-
stead of all nodes are involved in relaying packets for
other nodes, the hierarchical routing protocols pick a
subset of nodes that server as the routers, forwarding
packets for other nodes. The structure used to build
this virtual backbone is usually the connected domi-
nating set.

5.1 Centralized Methods

Guha and Khuller [71] studied the approximation of
the connected dominating set problem for general
graphs. They gave two di�erent approaches, both of
them guarantee approximation ratio of �(H(�)). As
their approaches are for general graphs and thus do not
utilize the geometry structure if applied to the wireless
ad hoc networks.

One approach is to grow a spanning tree that in-
cludes all nodes. The internal nodes of the spanning
tree is selected as the �nal connected dominating set.
They �rst pick the node (marked with black) with the
maximum node degree and all of its neighbors as its
children (marked with gray). They give two rules for
selecting nodes (either gray node or a gray node and a
white node adjacent to it) to grow the spanning tree:

(1) the gray node with the maximum number of white
neighbors; (2) two adjacent nodes, one is gray and one
is white, with the maximum number of white neigh-
bors. They [71] proved that this approach has approx-
imation ratio 2(H(�) + 1).

The other approach is �rst approximating the
dominating set and then connecting the dominating
set to a connected dominating set. It runs in two
phases. At the start of the �rst phase all nodes are
colored white. Each time a vertex is included into
the dominating set, we color it black. Dominators are
colored gray. In this �rst phase, the algorithm picks
a node at each step and colors it black and colors all
its adjacent nodes gray (as dominators). A piece is de-
�ned as a white node, or a black connected component.
At each step, pick a node to color black that gives the
maximum non-zero reduction in the number of pieces.
In the second phase, recursively connect pairs of black
components by choosing a chain of vertices, until there
is only one black connected component. The �nal con-
nected dominating set is the set of black vertices. They
[71] proved that this approach has approximation ratio
ln� + 3.

One can also use the Steiner tree algorithm to
connect the dominators. This straightforward method
gives approximation ratio c(H(�) + 1), where c is the
approximation ratio for the unweighted Steiner tree
problem. Currently, the best ratio is 1 + ln 3

2 ' 1:55,
due to Robins and Zelikovsky [72].

By de�nition, any algorithm generating a maxi-
mal independent set is a clustering method. We �rst
review the methods that approximates the maximum
independent set, the minimum dominating set, and the
minimum connected dominating set.

Hunt et al. [73] and Marathe et al. [74] also
studied the approximation of the maximum indepen-
dent set and the minimum dominating set for unit disk
graphs. They gave the �rst PTASs for MDS in UDG.
The method is based on the following observations: a
maximal independent set is always a dominating set;
given a square 
 with a �xed area, the size of any
maximal dominating set is bounded by a constant C.
Assume that there are n nodes in 
. Then, we can
enumerate all sets with size at most C in time �(nC).
Among these enumerated sets, the smallest dominat-
ing set is the minimum dominating set. Then, using
the shifting strategy proposed by Hochbaum [75], they
derived a PTAS for the minimum dominating set prob-
lem.

Since we have PTAS for minimum dominating set
and the graph V irtG connecting every pair of dom-
inators within at most 3 hops is connected [11], we
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have an approximation algorithm (constructing a min-
imum spanning tree V irtG) for MCDS with approxi-
mation ratio 3+�. Notice that, Berman et al. [76] gave
an 4

3 approximation method to connect a dominating
set and Robins et al. [72] gave an 4

3 approximation
method to connect an independent set. Thus, we can
easily have an 8

3 approximation algorithm for MCDS,
which was reported in [77]. Recently, Cheng et al. [78]
designed a PTAS for MCDS in UDG. However, it is
diÆcult to distributize their method eÆciently.

5.2 Distributed Methods

Many distributed clustering (or dominating set) algo-
rithms have been proposed in the literature [9, 79, 80,
81, 24, 82]. All algorithms assume that the nodes have
distinctive identities (denoted by ID hereafter).

In the rest of section, we will interchange the
terms cluster-head and dominator. The node that is
not a cluster-head is also called dominatee. A node is
called white node if its status is yet to be decided by
the clustering algorithm. Initially, all nodes are white.
The status of a node, after the clustering method �n-
ishes, could be dominator with color black or domi-
natee with color gray. The rest of this section is de-
voted for the distributed methods that approximates
the minimum dominating set and the minimum con-
nected dominating set for unit disk graph.

5.2.1 Clustering without Geometry Property

For general graphs, Jia et al. [83] described and an-
alyzed some randomized distributed algorithms for
the minimum dominating set problem that run in
polylogarithmic time, independent of the diameter of
the network, and that return a dominating set of
size within a logarithmic factor from the optimum
with high probability. Their best algorithm runs in
O(log n log�) rounds with high probability, and ev-
ery pair of neighbors exchange a constant number
of messages in each round. The computed dominat-
ing set is within O(log�) in expectation and within
O(log n) with high probability. Their algorithm works
for weighted dominating set also.

The method proposed by Das et al. [6, 84] con-
tains three stages: approximating the minimum domi-
nating set, constructing a spanning forest of stars, ex-
panding the spanning forest to a spanning tree. Here
the stars are formed by connecting each dominatee
node to one of its dominators. The approximation
method of MDS is essentially a distributed variation
of the the centralized Chvatal's greedy algorithm [85]

for set cover. Notice that the dominating set prob-
lem is essentially the set cover problem which is well-
studied. It is then not surprise that the method by
Das et al. [6, 84] guarantees a H(�) for the MDS
problem, where H is the harmonic function and � is
the maximum node degree.

While the algorithm proposed by Das et al. [6, 84]
�nds a dominating set and then grows it to a connect-
ing dominating set, the algorithm proposed by Wu and
Li [86, 7] takes an opposite approach. They �rst �nd a
connecting dominating set and then prune out certain
redundant nodes from the CDS. The initial CDS C

contains all nodes that have at least two non-adjacent
neighbors. A node u is said to be locally redundant if it
has either a neighbor in C with larger ID which dom-
inate all other neighbors of u, or two adjacent neigh-
bors with larger ID which together dominates all other
neighbors of u. Their algorithm then keeps removing
all locally redundant nodes from C . They showed that
this algorithm works well in practice when the nodes
are distributed uniformly and randomly, although no
any theoretical analysis is given by them both for the
worst case and for the average approximation ratio.
However, it was shown by Alzoubi et al. [9] that the
approximation ratio of this algorithm could be as large
as n

2 .

Stojmenovic et al. [8] proposed several synchro-
nized distributed constructions of connecting dominat-
ing set. In their algorithms, the connecting dominat-
ing set consists of two types of nodes: clusterhead and
border-nodes (also called gateway or connectors else-
where). The clusterhead nodes are just a maximal
independent set, which is constructed as follows. At
each step, all white nodes which have the lowest rank
among all white neighbors are colored black, and the
white neighbors are colored gray. The ranks of the
white nodes is updated if necessary. Here, the follow-
ing rankings of a node are used in various methods:
the ID only [80, 79], the ordered pair of degree and ID
[87], and an ordered pair of degree and location [8].
After the clusterhead nodes are selected, border-nodes
are selected to connect them. A node is a border-node
if it is not a clusterhead and there are at least two clus-
terheads within its 2-hop neighborhood. It was shown
by [9] that the worst case approximation ratio of this
method is also n

2 , although it works well in practice.

In [88, 89, 87], several researchers studied how
to maintain the clustering in mobile wireless ad hoc
networks. It uses a general weight as a criterion for
selecting the node as the clusterhead, where the weight
could be any criteria used before.
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5.2.2 Clustering with Geometry Property

Notice that none of the above algorithm utilizes the
geometry property of the underlying unit disk graph.
Recently, several algorithms were proposed with a con-
stant worst case approximation ratio by taking ad-
vantage of the geometry properties of the underlying
graph. These methods typically use two messages sim-
ilar to IamDominator and IamDominatee, and typically
have the following procedures: a white node claims it-
self to be a dominator if it has the smallest ID among
all of its white neighbors, if there is any, and broad-
casts IamDominator to its 1-hop neighbors. A white
node receiving IamDominator message marks itself as
dominatee and broadcasts IamDominatee to its 1-hop
neighbors. The set of dominators generated by the
above method is actually a maximal independent set.
Here, we assume that each node knows the IDs of all
its 1-hop neighbors, which can be achieved by asking
each node to broadcast its ID to its 1-hop neighbors
initially. This approach of constructing MIS is well-
known. For example, Stojmenovic et al. [8] also used
this method to compute the MIS.

The second step of backbone formation is to �nd
some connectors (also called gateways) among all the
dominatees to connect the dominators. Then the con-
nectors and the dominators form a connected dominat-
ing set. Recently, Wan, et al. [10] proposed a commu-
nication eÆcient algorithm to �nd connectors based
on the fact that there are only a constant number of
dominators within k-hops of any node. The following
observation is a basis of several algorithms for CDS.
After clustering, one dominator node can be connected
to many dominatees. However, it is well-known that a
dominatee node can only be connected to at most �ve
dominators in the unit disk graph model. Generally,
it was shown in [10, 11] that for each node (dominator
or dominatee), there are at most a constant number of
dominators that are at most k units away.

Given a dominating set S, let V irtG be the graph
connecting all pairs of dominators u and v if there is
a path in UDG connecting them with at most 3 hops.
It is also well-known that, V irtG is connected. It is
natural to form a connected dominating set by �nd-
ing connectors to connect any pair of dominators u
and v if they are connected in V irtG. This strategy
is also adopted by Wan, et al. [10]. Notice that, in
the approach by Stojmenovic et al. [8], they set any
dominatee node as the connector if there are two dom-
inators within its 2-hop neighborhood. This approach
is very pessimistic and results in very large number of
connectors in the worst case [9]. Instead, Wan et al.
suggested to �nd only one unique shortest path to con-

nect any two dominators that are at most three hops
away.

We �rst briey review their basic idea of forming
a CDS in a distributed manner. Let �UDG(u; v) be
the path connecting two nodes u and v in UDG with
the smallest number of hops. Let's �rst consider how
to connect two dominators within 3 hops. If the path
�UDG(u; v) has two hops, then u �nds the dominatee
with the smallest ID to connect u and v. If the path
�UDG(u; v) has three hops, then u �nds the node, say
w, with the smallest ID such that w and v are two
hops apart. Then node w selects the node with the
smallest ID to connect w and v.

Wang and Li [11] and Alzoubi et al. [10] discussed
in detail some approaches to optimize the communi-
cation cost and the memory cost. We briey review
the approaches proposed by Wang and Li [11]. Notice
that, for example, it is not obvious how node u can
�nd such node w eÆciently. In addition that, using
the smallest ID is not eÆcient because we may have to
postpone the selecting of connectors till the node col-
lects the IDs of all its one-hop neighbors. Instead of
using the intermediate node with the smallest ID, we
pick any node that comes �rst to the notice of the node
that makes the selection of connectors. Their method
uses the following primitive messages (some messages
are used in forming clusters):

� IamDominator(u): node u tells its 1-hop neighbors
that u is a dominator;

� IamDominatee(u; v): node u tells its 1-hop neigh-
bors that u is a dominatee of node v;

� 2HopsPath(u;w; v): node u tells its 1-hop neigh-
bors that u has a 2-hops path uwv and w is the
unique node selected by u among all intermediate
nodes that can connect u and v.

� 3HopsPath(x; u; w; v): node x tells its 1-hop neigh-
bors that x has a 3-hops path xuwv and u and w
are the uniquely selected nodes among all inter-
mediate nodes. Node u is selected by node x and
node w is selected by node u.

Notice that the message IamDominator(u) is only
broadcasted at most once by each node; the message
IamDominatee(u; v) is only broadcasted at most �ve
times by each node u for all possible dominators v;
2HopsPath(u;w; v) and 3HopsPath(x; u; w; v) are also
broadcasted at most a constant times by each node
for all possible dominator v.

To save the memory cost of each wireless node,
they [11] also designed the following link lists for each
node u:
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� Dominators: it stores all dominators of u if there is
any. Notice that if the node itself is a dominator,
no value is assigned for Dominators.

� Connector2HopsPath: for each dominator v that
are 2-hops apart from u, node u stores (w; v),
where the intermediate node w is selected by u
to connect u and v.

� Connector3HopsPath: for each dominator v that
are 3-hops apart from u, node u stores (w; x; v)
such that there is a path uwxv, and w is selected
by u and x is the node selected by w to connect
v.

Notice that for each node, there are at most �ve
dominators. So the size of link list Dominators is at
most �ve. Then for each node u, there are at most `k
number of dominators v that are k-hops apart from u.
Therefore, the sizes of link lists Connector2HopsPath,
Connector3HopsPath are bounded by `2 and `3 respec-
tively. Then we are in the position to review the dis-
tributed algorithm proposed by Wang and Li [11] to
�nd the connectors eÆciently. Assume that a maximal
independent set is already constructed by a cluster al-
gorithm.

Algorithm 3 Finding Connectors

1. Every dominatee node w broadcasts to its 1-hop
neighbors a message IamDominatee(w; v) for each
dominator v stored at Dominators.

2. Assume node u receives a message IamDomina-
tee(w; v) for the �rst time. If u 6= v, v is not in
Dominators list of u, and there is no pair (�; v) in
Connector2HopsPath, then u adds (w; v) to Con-
nector2HopsPath. Here � denotes any node ID.
If u is a dominatee, then it broadcasts message a
2HopsPath(u;w; v) to its 1-hop neighbors. If node
u is a dominator, node u already knows a path
uwv to connect a 2-hops apart dominator v.

Node u will discard any message IamDomina-
tee(�; v) afterward.

3. When a node w (it must be a dominatee here)
receives the message 2HopsPath(u;w; v), node w
marks itself as a connector, if u is a dominator.

4. Assume a dominator x receives the message
2HopsPath(u;w; v), where x 6= w. If there is
no triple (�; �; v) in Connector3HopsPath, then x
adds (u;w; v) to Connector3HopsPath and broad-
casts the message 3HopsPath(x; u; w; v) to its 1-
hop neighbors. Then node x already knows a path
xuwv to connect a 3-hops apart dominator v.

5. When a node u (it must be dominatee here) re-
ceives the message 3HopsPath(x; u; w; v), node u
marks itself as a connector. Node u sends a mes-
sage to node w asking w to be a connector.

Notice that it is possible that, given any two nodes
u and v, the path found by node u to connect v is dif-
ferent from the path found by v to connect u. This
increases the robustness of the backbone. When only
one connecting path between any pair of dominators
is needed, they suggested to add the following restric-
tions: a dominator node u stores a 2-hops or 3-hops
path connecting it to another dominator node v if and
only if node u has a smaller ID. In other words, the
decision to select the connectors is always made by the
node with smaller ID.

The graph constructed by the above algorithm is
called a CDS graph (or backbone of the network). If
we also add all edges that connect all dominatees to
their dominators, the graph is called extended CDS,
denoted by CDS'.

Wang and Li [11] proved that the number of con-
nectors found is at most `3 times of the minimum.
The size of the connected dominating set found by the
above algorithm is within a small constant factor of
the minimum.

5.2.3 The Properties of Backbone

It was shown in [11] that CDS is a sparse graph, i.e.,
the total number of edges is O(k), where k is the num-
ber of dominators. Moreover, the graph CDS' is also
a sparse graph because the total number of the links
from dominatees to dominators is at most 5(n � k).
Notice that we have at most n � k dominatees, each
of which is connected to at most 5 dominators. The
node degree in CDS is bounded, however, the degree
of some dominator node in CDS' may be arbitrarily
large.

After we construct the backbone CDS and the in-
duced graph CDS', if a node u wants to send a message
to another node v, it follows the following procedure.
If v is within the transmission range of u, node u di-
rectly sends message to v. Otherwise, node u asks
its dominator to send this message to v (or one of
its dominators) through the backbone. They showed
that CDS' (plus all implicit edges connecting domina-
tees that are no more than one unit apart) is a good
spanner in terms of both hops and length. The hops
stretch factor of CDS' is bounded by a constant 3 and
the length stretch factor of CDS' is bounded by a con-
stant 6.
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Several routing algorithms require the underlying
topology be planar. Notice in the formation algorithm
of CDS, we do not use any geometry information. The
resulting CDS maybe non-planar graph. Even using
some geometry information, the CDS still is not guar-
anteed to be a planar graph. Then Li et al. [52]
proposed a method to make the graph CDS planar
without losing the spanner property of the backbone.
Their method applies the localized Delaunay triangu-
lation [55] on top of the induced graph from CDS, de-
noted by ICDS. It was proved in [55] that LDel(G) is
a spanner if G is a unit disk graph. Notice that ICDS
is a unit disk graph de�ned over all dominators and
connectors. Consequently, LDel(ICDS) is a spanner
in terms of length. In addition, LDel(ICDS) has con-
stant bounded hop-stretch factor and a bounded node
degree [52].

6 Broadcasting & Multicasting

Minimum-energy broadcast/multicast routing in a
simple ad hoc networking environment has been ad-
dressed by the pioneering work in [90, 91, 92, 93]. To
assess the complexities one at a time, the nodes in
the network are assumed to be randomly distributed
in a two-dimensional plane and there is no mobility.
Nevertheless, as argued in [93], the impact of mobil-
ity can be incorporated into this static model because
the transmitting power can be adjusted to accommo-
date the new locations of the nodes as necessary. In
other words, the capability to adjust the transmission
power provides considerable \elasticity" to the topo-
logical connectivity, and hence may reduce the need
for hand-o�s and tracking. In addition, as assumed
in [93], there are suÆcient bandwidth and transceiver
resources. Under these assumptions, centralized (as
opposed to distributed) algorithms were presented by
[93] for minimum-energy broadcast/multicast routing.
These centralized algorithms, in this simple network-
ing environment, are expected to serve as the ba-
sis for further studies on distributed algorithms in
a more practical network environment, with limited
bandwidth and transceiver resources, as well as the
node mobility.

6.1 Broadcasting

Three greedy heuristics were proposed in [93] for the
minimum-energy broadcast routing problem: MST
(minimum spanning tree), SPT (shortest-path tree),
and BIP (broadcasting incremental power). The MST
heuristic �rst applies the Prim's algorithm to obtain

a MST, and then orient it as an arborescence rooted
at the source node. The SPT heuristic applies the
Dijkstra's algorithm to obtain a SPT rooted at the
source node. The BIP heuristic is the node version of
Dijkstra's algorithm for SPT. It maintains, through-
out its execution, a single arborescence rooted at the
source node. The arborescence starts from the source
node, and new nodes are added to the arborescence
one at a time on the minimum incremental cost basis
until all nodes are included in the arborescence. The
incremental cost of adding a new node to the arbores-
cence is the minimum additional power increased by
some node in the current arborescence to reach this
new node. The implementation of BIP is based on the
standard Dijkstra's algorithm, with one fundamental
di�erence on the operation whenever a new node q is
added. Whereas the Dijkstra's algorithm updates the
node weights (representing the current knowing dis-
tances to the source node), BIP updates the cost of
each link (representing the incremental power to reach
the head node of the directed link). This update is
performed by subtracting the cost of the added link
pq from the cost of every link qr that starts from q to
a node r not in the new arborescence.

They have been evaluated through simulations in
[93], but little is known about their analytical perfor-
mances in terms of the approximation ratio. Here, the
approximation ratio of a heuristic is the maximum ra-
tio of the energy needed to broadcast a message based
on the arborescence generated by this heuristic to the
least necessary energy by any arborescence for any set
of points. The analytical performance is very essen-
tial and more convincing in evaluating these heuristics,
because one may come up with several seemingly rea-
sonable greedy heuristics. But it is hard to tell from
simulation outputs which one is better or worse in the
worst case scenario.

For a pure illustration purpose, another slight
variation of BIP was discussed in detail in [94]. This
greedy heuristic is similar to the Chvatal's algorithm
[95] for the set cover problem and is a variation of
BIP. Like BIP, an arborescence, which starts with the
source node, is maintained throughout the execution of
the algorithm. However, unlike BIP, many new nodes
can be added one at a time. Similar to the Chvatal's
algorithm [95], the new nodes added are chosen to
have the minimal average incremental cost, which is
de�ned as the ratio of the minimum additional power
increased by some node in the current arborescence
to reach these new nodes to the number of these new
nodes. They called this heuristic as the Broadcast Av-
erage Incremental Power (BAIP). In contrast to the



Algorithmic, geometric and graphs issues in wireless networks, X.-Y. Li, September 19, 2002 17

1 + logm approximation ratio of the Chvatal's algo-
rithm [95], where m is the largest set size in the Set
Cover Problem, they showed that the approximation
ratio of BAIP is at least 4n

lnn � o (1), where n is the
number of receiving nodes.

Wan et al. [94, 96] showed that the approxima-
tion ratios of MST and BIP are between 6 and 12 and
between 13

3 and 12 respectively; on the other hand, the
approximation ratios of SPT and BAIP are at least n

2
and 4n

lnn � o (1) respectively, where n is the number of
nodes. We then discuss in detail of their proof tech-
niques.

Any broadcast routing is viewed as an arbores-
cence (a directed tree) T , rooted at the source node
of the broadcasting, that spans all nodes. Let fT (p)
denote the transmission power of the node p required
by T . For any leaf node p of T , fT (p) = 0. For any
internal node p of T ,

fT (p) = max
pq2T

kpqk� ;

in other words, the �-th power of the longest distance
between p and its children in T . The total energy
required by T is

P
p2P fT (p). Thus the minimum-

energy broadcast routing problem is di�erent from
the conventional link-based minimum spanning tree
(MST) problem. Indeed, while the MST can be solved
in polynomial time by algorithms such as Prim's al-
gorithm and Kruskal's algorithm [97], it is still un-
known whether the minimum-energy broadcast rout-
ing problem can be solved in polynomial time. In its
general graph version, the minimum-energy broadcast
routing can be shown to be NP-hard [98], and even
worse, it can not be approximated within a factor
of (1� �) log�, unless NP � DTIME

�
nO(log logn)

�
,

where � is the maximal degree and � is any arbitrary
small positive constant. However, this intractability
of its general graph version does not necessarily imply
the same hardness of its geometric version. In fact,
as shown later in the survey, its geometric version can
be approximated within a constant factor. Neverthe-
less, this suggests that the minimum-energy broadcast
routing problem is considerably harder than the MST
problem. Recently, Clementi et al. [90] proved that
the minimum-energy broadcast routing problem is a
NP-hard problem and obtained a parallel but weaker
result to those of [94, 96].

Wan et al. [94, 96] gave some lower bounds on
the approximation ratios of MST and BIP by study-
ing some special instances in [94, 96]. Their deriving
of the upper bounds relies extensively on the geomet-
ric structures of Euclidean MSTs. They �rst observed
that as long as the cost of a link is an increasing func-

tion of the Euclidean length of the link, the set of
MSTs of any point set coincides with the set of Eu-
clidean MSTs of the same point set. In particular, for
any spanning tree T of a �nite point set P , parameterP

e2T kek2 achieves its minimum if and only if T is
an Euclidean MST of P . For any �nite point set P ,
let mst (P ) denote an arbitrary Euclidean MST of P .
The radius of a point set P is de�ned as

inf
p2P

sup
q2P
kpqk :

Thus, a point set of radius one can be covered by a
disk of radius one. A key result in [94, 96] is an upper

bound on the parameter
P

e2mst(P ) kek2 for any �nite
point set P of radius one. Note that the supreme of
the total edge lengths of mst (P ),

P
e2mst(P ) kek, over

all point sets P of radius one is in�nity. However, the
parameter

P
e2mst(P ) kek2 is bounded from above by

a constant for any point set P of radius one. They use
c to denote the supreme of

P
e2mst(P ) kek2 over all

point sets P of radius one. They [94, 96] proved that
c is at most 12. The proof of this theorem involves
complicated geometric arguments.

Note that for any point set P of radius one, the
length of each edge in mst (P ) is at most one. There-
fore, for any point set P of radius one and any real
number � � 2,X

e2mst(P )

kek� �
X

e2mst(P )

kek2 � c � 12:

The next theorem proved in [94, 96] explores a
relation between the minimum energy required by a
broadcasting and the energy required by the Euclidean
MST of the corresponding point set.

Lemma 1 [94, 96] For any point set P in the plane,
the total energy required by any broadcasting among P
is at least 1

c

P
e2mst(P ) kek�.

Proof. Let T be an arborescence for a broadcasting
among P with the minimum energy consumption. For
any none-leaf node p in T , let Tp be an Euclidean MST
of the point set consisting p and all children of p in T .
Suppose that the longest Euclidean distance between
p and its children is r. Then the transmission power
of node p is r� , and all children of p lie in the disk
centered at p with radius r. From the de�nition of c,
we have X

e2Tp

�kek
r

��
� c;

which implies that

r� � 1

c

X
e2Tp

kek� :
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Let T � denote the spanning tree obtained by su-
perposing of all Tp's for non-leaf nodes of T . Then the

total energy required by T is at least 1
c

P
e2T� kek� ,

which is further no less than 1
c

P
e2mst(P ) kek� . This

completes the proof.

Consider any point set P in a two-dimensional
plane. Let T be an arborescence oriented from some
mst (P ). Then the total energy required by T is at

most
P

e2Tp kek
�
. From Lemma 1, this total energy is

at most c times the optimum cost. Thus the approx-
imation ratio of the link-based MST heuristic is at
most c. This observation implies that the approxima-
tion ratio of the link-based MST heuristic is at most c,
and therefore is at most 12 [94, 96]. In addition, they
derived an upper bound on the approximation ratio of
the BIP heuristic: For any broadcasting among a point
set P in a two-dimensional plane, the total energy re-
quired by the arborescence generated by the BIP al-
gorithm is at most

P
e2mst(P ) kek� . Once again, the

Euclidean MST plays an important role.

6.2 Forwarding Neighbors

The simplest broadcasting mechanism is to let every
node retransmit the message to all its one-hop neigh-
bors when receiving the �rst copy of the message,
which is called ooding in the literature. Despite its
simplicity, ooding is very ineÆcient and can result
in high redundancy, contention, and collision. One
approach to reducing the redundancy is to let a node
only forward the message to a subset of one-hop neigh-
bors who together can cover the two-hop neighbors. In
other words, when a node retransmits a message to its
neighbors, it explicitly ask a subset of its neighbors to
relay the message.

C�alinescu et al. [99] gave two practical heuris-
tics for this problem (they called selecting forwarding
neighbors). The �rst algorithm runs in time O(n logn)
and returns a subset with size at most 6 times of the
minimum. The second algorithm has an improved ap-
proximation ratio 3, but with running time O(n2).
Here n is the number of total two-hop neighbors of
a node. When all two-hop neighbors are in the same
quadrant with respect to the source node, they gave
an exact solution in time O(n2) and a solution with
approximation factor 2 in time O(n log n). Their al-
gorithms partition the region surrounding the source
node into four quadrants, solve each quadrants using
an algorithm with approximation factor �, and then
combine these solutions. They proved that the com-
bined solution is at most 3� times of the optimum

solution.
Their approach assumes that every node u can

collect its 2-hop neighbors N2(u) eÆciently. Notice
that, the 1-hop neighbors of every node u can be col-
lected eÆciently by asking each node to broadcast its
information to its 1-hop neighbors. Thus all nodes get
their 1-hop neighbors information by using total O(n)
messages. However, until recently, it is unknown how
to collect the 2-hop neighbors information with O(n)
communications. The simplest broadcasting of 1-hop
neighbors N1(u) to all neighbors u does let all nodes
in N1(u) to collect their corresponding 2-hop neigh-
bors. However, the total communication cost of this
approach is O(m), where m is the total number of
links in UDG. Recently, C�alinescu [100] proposed an
eÆcient approach to collect N2(u) using the connected
dominating set [10, 52] as forwarding nodes. Assume
that the node position is known. He proved that the
approach takes total communications O(n), which is
optimum within a constant factor.

7 Conclusion

Wireless ad hoc networks has attracted considerable
attentions recently due to its potential wide applica-
tions in various areas and the moreover, the ubiquitous
computing. Many excellent researches have been con-
ducted to study the electronic part of the wireless ad
hoc networks, the networking part of the wireless ad
hoc networks. For networking, there are also many
interesting topics such as topology control, routing,
energy conservation, QoS, mobility management, and
so on. In this survey, we present an overview of the
recent progress of applying computational geometry
techniques to solve some questions, such as topology
construction and broadcasting, in wireless ad hoc net-
works. Nevertheless, there are still many excellent re-
sults, such as localized routing methods, connectivity
and capacity results of wireless networks, and location
sevices, are not covered in this survey due to space
limit.
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