
RESEARCH ARTICLE

Providing and finding k-road-coverage efficiently in
wireless sensor networks
Xufei Mao1∗, Xiaohua Xu2, ShaoJie Tang2 and Xiang-Yang Li2

1 Beijing Key Lab of Intelligent Telecommunications Software and Multimedia, BUPT, Beijing, China
2 Department of Computer Science, Illinois Institute of Technology, Chicago, IL, U.S.A.

ABSTRACT

In this paper, we study k-road-coverage problems in wireless sensor networks (WSNs). Assume there is a 2-dimensional
area ! with a given road map R = (V, E) where E contains all road segments and V consists of all intersection points on !.
The first question we study is about ‘sensor deployment’, i.e., how to deploy a minimum number of sensor nodes on ! such
that each path (each road segment) on R is k-covered when all sensor nodes have the same sensing range. When sensors
can only be deployed in a set of discrete locations, we propose an efficient method with the approximation ratio 6 + ϵ for
the special case where k = 1 and O(k) generally. If sensors can be deployed in arbitrary locations, we propose an efficient
method with the approximation ratio 24 + ϵ when k = 1 and O(k) generally. The second question we study is about ‘path
query’, i.e., how to find the k-covered path or k-support path connecting any given source/destination pair of points on the
road map R. Basically, given any source/destination pair of points S and D, we present two algorithms which can efficiently
find a k-covered path connecting S and D and a k-supported path connecting S and D, respectively. Copyright © 2010 John
Wiley & Sons, Ltd.

KEYWORDS
k-coverage; wireless sensor networks; k-support; path query

*Correspondence
Xufei Mao, Beijing Key Lab of Intelligent Telecommunications Software and Multimedia, BUPT, Beijing, China.
E-mail: xmao3@iit.edu

1. INTRODUCTION

Wireless sensor networks (WSNs) have drawn consider-
able research interests in the last decade. At the same
time, many new challenging research related questions
have been posed, such as energy efficient routing, data
processing, localization, and network diagnosis. Some of
these challenging research questions have been success-
fully addressed, and a number of practical systems have
been developed and used in practice. In many WSN appli-
cations, we are often required to deploy a bunch of sensor
nodes to monitor a given area. For example, when we deploy
some fire-alarm sensor nodes to monitor some building, we
may require the whole building to be dead angle free. In
other words, every place in the building should be in the
sensing range of at least one sensor. This kind of problem is
called 1-coverage problem in WSN. In some other cases, we
may require a (or some) point(s) in the monitored area to be
covered by multiple sensors at the same time. For instance,
we want to track a moving object (carrying a sensor node)

by some other anchor (fixed position) sensor nodes in some
given area. As we know, in order to get the accurate location
of the moving sensor, we often require the moving sensor to
stay in the communication ranges of at least (typically) three
anchor sensor nodes without further hardware support (e.g.,
using angle of antenna). To achieve this, we actually require
that every possible path (or say every feasible location) used
by this moving sensor should be within the communication
range of multiple anchor sensors (at least three in the afore-
mentioned example) at the same time. Generally speaking,
in order to maintain a certain quality of service (QoS), we
may require every path (or point) in some area to be covered
by multiple sensor nodes, e.g., at least k sensor nodes for
a general k. This kind of question is called the k-coverage
problem. Notice here, a point is said to be covered by a sen-
sor node iff the point is falling into the sensing range of the
sensor node. A path is said to be k-covered iff all the points
on this path are k-covered. In addition, we use ‘coverage
degree’ of a point (resp. path) to denote the total number of
sensors which cover this point (resp. path).

Copyright © 2010 John Wiley & Sons, Ltd.

WIRELESS COMMUNICATIONS AND MOBILE COMPUTING

Published online 22 September 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/wcm.
Wirel. Commun. Mob. Comput. 2012; 12:1053–1065

1031

1053

Providing and finding k-road-coverage X. Mao et al.

In this paper, we mainly study two questions. The first
question we study is about ‘sensor deployment’. Given an
area ! with a road map R, how to deploy sensor nodes in
this given area such that all road segments on the road map
are k-covered. In other words, any point on any road segment
should be in the sensing range of at least k sensor nodes at the
same time, i.e., has coverage degree at least k. Clearly, with-
out considering the cost, we may deploy as many sensors as
possible at feasible locations by a greedy method until all
road segments are k-covered. However, some nodes may be
redundant and make no contribution to the coverage since
some sensor nodes may share the common sensing region.
In other words, even if we remove some sensor node(s) or
turn its (their) power off, the coverage property will not
change. In this paper, we assume all sensor nodes have
same sensing range and our objective is to minimize the
total number of sensor nodes needed in order that all road
segments on R are k-covered.

The second question we study is about ‘path query’,
which is based on the following assumption. Assume a
bunch of sensor nodes have been deployed on the given
area ! with a road map R. In addition, different sensor
nodes may use different power levels thus have different
sensing ranges. Given any source/destination pair of points
S and D on area !, the first case we study is how to find
a path connecting S and D such that the resultant path is
k-covered.

Clearly, whether a point p is covered by a sensor node v is
a ‘0/1’ problem, i.e., the indicator returns 1 if p is covered
by v; otherwise returns 0. However, from the point of view
of QoS, the coverage problem could be further extended.
For example, two different points in the same sensing range
of a sensor node v may have different ‘observability’ by
v depending on the Euclidean distances between the two
points and v. Here, the ‘observability’ depends on different
applications. In the literature, two seemingly contradictory,
yet related viewpoints of coverage exist: worst and best
case coverage. In the worst case coverage (a.k.a., minimum
breach coverage), we attempt to quantify the QoS by find-
ing areas of the lowest observability from sensor nodes
and detecting breach regions (paths). In best case cover-
age (a.k.a., maximum support coverage), our goal is to find
areas of the highest observability from sensors and identi-
fying the best support and guidance regions (paths). In this
work, the second case about ‘path query’ we study is the
best case coverage problem in which we simply assume the
observability of a point by a sensor node is the Euclidean
distance between them. Formally speaking, we study how
to find the optimal k-support path (connecting any given
source/destination pair of points S and D) on the road map
R. Here, a path is called optimal k-support path iff it is
k-covered and has the minimum k-support among all such
k-covered paths. (The concept of k-support will be defined
in Section 3 formally.)

To the best of our knowledge, [1,2] and [3] are the only
work so far which address the problem of finding an optimal
k-support path. In [1], Mehta et al. suggested that the worst
case k-coverage problem may be addressed by adopting the

kth nearest Voronoi diagram. However, no algorithm and
theoretical results were given. In Reference [2], Fang et al.
gave a polynomial time algorithm to identify a k-support
path based on binary search and growing disk techniques.
Unfortunately, their algorithms cannot guarantee an opti-
mum solution, i.e., the path found by their method may not
be the optimum path. Furthermore, they assumed that k is
a small constant independent of n. This assumption may
reduce the generality of their algorithms since the value of
k could be up to the number of sensor nodes n depending on
different application and QoS requirements. In one of our
previous work [3], we gave a polynomial algorithm to find
an optimum k-support path with a general k, i.e., k could
be any integer value between 1 and n (the total number of
sensor nodes). However, all previous works are based on the
assumption that any found path is a feasible path, which is
not realistic. Here, we say a path is feasible if it is consisting
of the road segments in the given road map. As we know, in
most cases, only the paths consisting of the road segments
on the road map are feasible due to the physical or other
constraints.

The main contributions of this work are as follows. For
the ‘sensor deployment’ problem, when sensors can only be
deployed in a set of discrete locations, we give the (6 + ϵ)-
approximation algorithm to find the minimum number of
wireless sensor nodes needed to make all road segments
(on the given map) 1-covered. Following this, we present the
O(k) approximation algorithm when all road segments are
required to be k-covered; when sensors can only be deployed
in arbitrary locations, we present an algorithm with the
approximation ratio 24 + ϵ for k = 1 and O(k) for a general
k. For the second ‘path query’ problem, we present two effi-
cient algorithms which can find the k-covered path and the
k-support path connecting any given source/destination pair
of points on the road map when such paths exist. According
to the second ‘path query’ problem, our main idea is based
on the kth nearest point (KNP) Voronoi diagram which is not
well studied before. Since the properties of KNP Voronoi
diagram is quite different from the ordinary Voronoi dia-
gram, in our paper, we first propose an efficient algorithm
to generate the KNP Voronoi diagram by combining com-
putational geometry techniques, with graph theoretical and
algorithmic techniques. More importantly, we prove and
present a number of theoretical results on the properties of
KNP Voronoi diagram. For example, we show that the total
number of KNP Voronoi edges is O(k2n) and the number of
edges of each KNP Voronoi cell is O(n). (We give the defini-
tions of KNP-Voronoi edge and KNP Voronoi cell in Section
5 formally.) To the best of our knowledge, these properties
studied in this paper about kth nearest-point Voronoi are not
known in the literature. In addition, compared with one of
our previous work [3], we further reduced the time complex-
ity for obtaining an optimal k-support path from O(k2n2)
to O(k2n log n) where n is the total number of deployed
sensors.

The rest of the paper is organized as follows. We first
review some related results in Section 2. In Section 3, we
define the terms and notations and give the details of the

Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

1054

X. Mao et al. Providing and finding k-road-coverage

network model used in the paper. We present our two effi-
cient algorithms that solve the ‘sensor deployment’ related
k-coverage problems in Section 4. The algorithms for solv-
ing ‘path query’ related problems are discussed in Section 5.
We conclude our paper and discuss possible future research
topics in Section 6.

2. RELATED WORK

Since the coverage problem can be reduced to disk cover
problem (which will be shown in Section 4), we briefly
review the recent work [4,5] about the disk cover prob-
lem, in which the authors want to deploy some disks (with
same radius or not) at some locations on the given area
such that all points in the given point set are fully 1-
covered. Basically, they studied several different cases, in
which the feasible locations of sensor nodes may be a given
discrete location set, may be only allowed to be along a
line.

In order to evaluate the quality of coverage of the
sensor network, Meguerdichian et al. [6] formulated the
1-coverage problem under two extreme cases: the best case
coverage problem and the worst case coverage problem.
They observed that an optimal solution for the best case
coverage problem is a path which lies along the edges of
the Delaunay triangulation [7,8] and an optimal solution
for the worse case coverage problem is a path which lies
along the edges of the Voronoi diagram [7,8]. They further
proposed centralized optimal algorithms for both problems.
Later, Mehta et al. [1] improved these algorithms and made
them more computationally efficient.

There were some work as well which aimed at solving
the 1-coverage problem formulated in Reference [6] in a
distributed manner. Li et al. [9] showed that the best case
coverage path can be constructed by using edges that belong
to the relative neighborhood graph (RNG) of the sensor set.
They attempted to address best case 1-coverage problem
in distributed manner. This is an improvement since the
RNG is a subgraph of the Delaunay triangulation and can
be constructed locally. In addition, a distributed algorithm
based on RNG was proposed to solve the best case cover-
age problem. On the other side, Meguerdichian et al. [6]
implied that a variation of the localized exposure algorithm
presented in Reference [8] can be used to solve the worst
case coverage problem locally. Another localized algorithm
with more practical assumptions was proposed by Huang et
al. [10].

For the general coverage problem, Huang et al. [10] stud-
ied the problem of determining if the area is sufficiently
k-covered, i.e., every point in the target area is covered by
at least k sensors. They formulated the problem as a decision
problem and proposed a polynomial algorithm which can
be easily translated to distributed protocols. In Reference
[11], Huang et al. further extended this problem to a three-
dimensional sensor networks and proposed a solution. The
connected k-coverage problem was addressed in Reference
[12] in which Zhou et al. studied the problem of selecting

a minimum set of sensors which are connected and each
point in a target area is covered by at least k distinct sen-
sors. They gave both a centralized greedy algorithm and
a distributed algorithm for this problem and showed that
their centralized greedy algorithm is near-optimal. Xing
et al. [13] explored the problem concerning energy con-
servation while maintaining both desired coverage degree
and connectivity. They studied the integrated work between
the coverage degree and the connectivity and proposed a
flexible coverage configure protocol.

Some studies focused on the relationship between the
coverage degree k, the number of sensors n and the sensing
radius r. Kumar et al. [14] considered the problem of deter-
mining the appropriate number of sensors that are enough
to provide k-coverage of an area when sensors are allowed
to sleep during most of their lifetime. In Reference [15],
Wan et. al analyzed the probability of the k-coverage when
the sensing radius or the number of sensors changes while
taking the boundary effect into account. Santosh et al. [14],
studies the k-coverage problem while concentrating on how
to prolong the lifetime of WSNs.

As we have introduced before, [1] and [2] are the only
two works which address the problem of finding an optimal
k-support path. In Reference [1], Mehta et al., suggested
that the worst case k-coverage problem can be addressed
by adopting the kth nearest Voronoi diagram. However,
no details of the proposed algorithm were given. In Ref-
erence [2], Fang et al. gave a polynomial time algorithm to
identify a k-covered path based on binary search and grow-
ing disk techniques. Unfortunately, the time complexity of
their algorithm cannot be bounded if an optimum solution
is required. Furthermore, they assume that k is some con-
stant which may reduce the generality of their algorithm.
In one of our previous work [3], we designed a central-
ized polynomial time algorithm which can find an optimum
k-support path efficiently for general k. In this paper, we
further improved the upper bound of time complexity for
obtaining an optimal k-support path.

3. NETWORK MODELS

We assume there is a 2-dimensional area ! with a known
road map R = (V, E). We consider all paths on R have
been divided into road segments by all intersection points.
The node set V contains all intersection points on map R,
and the edge set E consists of all road segments, denoted
by {e1, e2, · · · , e|E|}. Here, |E| is the cardinality of edge set
E. We further assume that all road segments are line seg-
ments. In addition, there is a set of n wireless sensor nodes
U = {s1, s2, · · · , sn}, which will be deployed and used to
monitor !. We assume all sensor nodes have the same sens-
ing power P, hence the same sensing range, denoted by r.
For simplicity, we assume that all deployed sensor nodes
construct a connected WSN.

Before we formulate the questions to be studied in this
paper, we introduce some definitions which will be used
throughout the whole paper.

1055Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

Providing and finding k-road-coverage X. Mao et al.

Definition 1. Given a point p in the field ! and the set
of sensors U, we say p is k-covered if p is in the sens-
ing range of at least k sensor nodes out of U. A path
P in ! is said to be k-covered if all points on P are
k-covered.

Definition 2. Given a point p in the field ! and the set of
sensors U, the kth distance of p, with respect to U, denoted
as ℓk(p, U), is defined as the Euclidian distance from p to
its kth nearest sensor node in U.

Definition 3. Given a path P connecting a source point S
and a destination point D, the k-support of P, denoted by
Sk(P), is defined as the maximum kth distance of all points
on P. In other words, Sk(P) = maxp∈P ℓk(p, U) where p is
a point on path P.

We say a path P is k-covered with respect to the sensor
node set U if every point on P falls in the sensing range
of at least k sensor nodes out of U. In addition, we say a
path P is the optimal k-support path with respect to U if the
k-support of P is minimum among all k-covered paths con-
necting the source/destination pair of points. Notice, in this
paper we only consider coverage of the road segments on the
map R.

3.1. Questions to be studied

In this paper, we mainly study two questions. The first ques-
tion is related to ‘sensor deployment’, i.e., how to deploy
sensor nodes in U to ! such that some special QoS is satis-
fied. We assume that the sensing ranges of all sensor nodes
are same and study how to deploy minimum number of
sensor nodes such that all feasible paths (road segments) in
R inside ! are k-covered, i.e., minimize the cardinality of
sensor node set U.

The second question we study in this paper is related
to ‘path query’, i.e., how to find a path on the given road
map such that the resultant path satisfies some QoS require-
ments. For the ‘path query’ question, we assume all sensor
nodes have been deployed with fixed geometry position,
fixed sensing power (hence fixed sensing range). Notice
here, different sensor nodes may be set to use different sens-
ing power during the deployment such that they can have
different sensing ranges. However, after being deployed,
a sensor node will always use the same sensing power to
work and cannot dynamically changing its sensing power.
Assume, we have a 2-dimensional area ! with a road map
R and a WSN with size n has been deployed in !. In addi-
tion, each sensor node has a fixed position and fixed sensing
power (range). The question we study is that given any pair
of source/destination points S and D on some road segment
of R, how to find a feasible path (only using road segment
on R) to connect S and D such that the resultant path is k-
covered. As we know, there might exist multiple k-covered
paths. Among all of those k-covered paths, the next question
we study is how to find an optimal k-support path. Here, we
say a path P connecting S and D is an optimal k-support

path if the k-support of P is minimum among all such
paths.

4. DEPLOYING WIRELESS SENSOR
NETWORK

In this section, we study how to deploy sensor nodes such
that every path (road segment) in the road map R is k-
covered. In other words, every point on any road segment of
R is falling into the sensing ranges of at least k sensor nodes.
We assume all sensor nodes have same sensing power P,
thus have the same sensing range r. Under this assumption,
our objective is to select a minimum number of sensors such
that every path in R is k-covered.

We first prove that the problem is NP-hard. When sensors
can only be deployed in a set of discrete locations, we then
present a (6 + ϵ)-approximation algorithm for the special
case where k = 1; Following that, we can achieve a solution
with an approximation ratio of O(k) for a general k. When
sensors can only be deployed arbitrarily, we present a (24 +
ϵ)-approximation algorithm when k = 1; following that, we
can achieve a solution with an approximation ratio of O(k)
for a general k.

4.1. The NP-hardness of 1-coverage problem

First we show that even for the special case k = 1, the
problem (that is 1-coverage problem) is NP-hard. Clearly,
this is sufficient to prove the NP-hardness of k-coverage
problem.

Theorem 1. It is NP-hard to find a placement of sensors
with minimum number of deployed sensors such that all
road-segments are covered by at least 1 sensor.

Proof. We will prove the NP-hardness of this problem
by construction of a reduction from a geometric set cover
problem. First, we consider the following special geomet-
ric set cover problem, which was shown to be NP-hard
in Reference [16]: covering a given set of points in the
plane with the smallest number of disks from a given set of
disks.

Next, we show that our problem is reducible from the
geometric set cover problem. Recalling that, in our problem,
we want each road segment to be covered by at least 1
sensor node. Clearly, the geometric set cover problem is a
special case of our problem, in which we consider a segment
as a point. For example, we assume there is any instance
(e.g., point set P = {p1, p2, · · · , pa}) of geometric set cover
problem. Next, we draw a line segment with arbitrarily small
length ϵ1 to cross each point in the given instance. Clearly,
the resultant segment set is an instance of our problem.
Therefore, if we have a polynomial time algorithm which
can find a minimum size of disks to cover all segments,
we can directly use the resultant set of disks to cover all
the given points in the geometric set cover problem. This
finishes the proof. !

Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

1056

X. Mao et al. Providing and finding k-road-coverage

4.2. Solutions with discrete feasible
locations

We first study the case when sensors can only be deployed
in a set of discrete m locations Z = {z1, z2, · · · , zm}. Here,
a location zi, 1 ≤ i ≤ m is a point in the 2-D dimension
with coordinates (Xzi

, Yzi
). As a preliminary step, we first

show that making all road segments 1-covered is equivalent
to making some points from the segments 1-covered when
the sensor nodes can only be deployed in a given set Z of
discrete m locations. As we know, the coverage area of a
sensor node u is a disk centered at u with radius r. If we
draw a circle centered at each point out of all feasible dis-
crete m locations Z with radius r, each road segment will
be divided into ≤ 2m + 1 subsegments. So, we will have
O(m|E|) subsegments in total. Assume the subsegments set
is L = {l1, l2, · · · , lb}, where b is the total number of sub-
segments where b = O(m|E|). Clearly, if we can deploy
sensors such that all b subsegments are 1-covered, we are
done. Let P = {p1, p2, · · · , pb}, where pi is the middle
point of the subsegment li. Next we will show that making
all these O(m|E|) subsegments L 1-covered is equivalent
to making O(m|E|) points P 1-covered by the following
Lemma 2.

Lemma 2. When the feasible locations of all the sensor
nodes are in a given set of discrete m locations Z, L is 1-
covered if and only if the set of middle points P is 1-covered.

See Appendix for the proof of Lemma 2. Based on
Lemma 2, we reduce the problem of covering all subseg-
ments to the problem of covering all middle points of all
subsegments by the same sensor set when the feasible loca-
tions of all sensors are in a given set of discrete m locations.
Note that by mapping sensors to disks with radius r and
furthermore scaling the radius of mapped disks from r to 1,
we reduce our problem to an equivalent problem, which is
known as Discrete Unit Disk Cover (DUDC) problem. The
DUDC problem can be described as this: given a set P of
points in the plane, and a set D of unit disks of fixed loca-
tions, the DUDC problem is to find a minimum-cardinality
subset D′ ⊂ D that covers all points of P. Next, we will
give a (6 + ϵ)-approximation algorithm for DUDC.

Our algorithm employs double partition and divide-and-
conquer techniques similar to those employed in Reference
[17]. Double partition means that we first partition the plane
into big blocks, each with size tµ × tµ, where µ =

√
2

2 and
t is a large integer constant. Then we partition each block
into t2 small squares, each with size µ × µ. The process of
double partition is illustrated in Figure 1.

After double partition, our algorithm for solving DUDC
can be divided into three phases:

(1) Solve DUDC in a tµ × tµ block, this means all the
points to be covered are contained in the block.

(2) Combine the sub-solutions of DUDC in all blocks
obtained in the first phase to get a solution in the plane.

Figure 1. Double partition: Partition plane into blocks and fur-
ther partition block into squares.

(3) Using shifting strategy to get a set of solutions in the
plane similarly. Among all solutions in the plane, we
return the one with minimum size as the final solution.

The detail of our algorithm for DUDC in the plane is
shown in Algorithm 1.

Algorithm 1 Solve DUDC in a plane.

Input: P and D.
Output: DUDC in a plane.

1: (Double partition) Partition the whole plane into blocks
of size tµ × tµ, then partition each block into squares
with size µ × µ, where µ =

√
2/2.

2: Calculate DUDC for each block that contains points
and merge the solutions together to form a solution for
the whole plane. See appendix (subsection B) for our
approach solving DUDC.

3: Move each block one square along its diagonal direc-
tion.

4: Repeat Step 2 for this new partition to update the solu-
tion if any better solution is found.

5: Repeat Step 3 for t times, and output the final solution.

Notice that, the reason for us to choose µ as
√

(2)/2 in
Algorithm 1 is that the diameter of the resultant squares is
1 such that any unit disk (we used in the paper) with center
inside the square can cover all the points in the square.
Finally, we show the approximation ratio of our algorithm
for DUDC in a plane.

Theorem 3. For any constant ϵ, by setting m = O(1
ϵ
),

Algorithm 1 always outputs a disk set with size bounded by
(6 + ϵ) · |OPT |, where OPT is the optimum solution and
|OPT | is the size of OPT .

Proof. By Lemma 13 (in Appendix B), every disk in
the optimal solution OPT can be counted at most six times
for solving DUDC in a block. However it may be counted
more in the boundary region of a block. When we shift the
whole block many times, for any disk in OPT , it would be
counted at most six times in most cases. Since we return
the one with minimum size as the final solution, we can
achieve a solution with size bounded by (6 + ϵ) · |OPT |
for any small constant ϵ > 0. !

1057Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

Providing and finding k-road-coverage X. Mao et al.

4.3. Solutions with continuous feasible
locations

In this subsection, we will solve the case that when the
feasible locations for all sensor nodes are continuous,
i.e., sensors nodes can be deployed anywhere on the 2-
dimensional area !. Basically, we will prove that our
Algorithm 1 can provide a constant approximation solution
with ratio 24 + ϵ when the feasible locations of sensors are
continuous. Our main idea is that, we partition area ! into
small equilateral triangles and make the continuous feasible
locations of sensors discrete.

First, we assume the area ! is a square for simplicity.
Actually, even ! is not a square strictly, our results will
not be affected. We partition area ! into small equilateral
triangles with edge length r. By doing this, we can show
that only using some fixed discrete locations, our solution
is still ‘good’, i.e., has a constant approximation ratio. We
first prove the following Lemma 4.

Lemma 4. Given a square area ! with side length L, we
partition ! into small equilateral triangles with edge length
r, any sensor node inside ! can be replaced by at most 4
sensor nodes such that the coverage degree of any road
segment will not decrease. We assume L is multiple of r for
simplicity.

Proof. Clearly, after partition, we have totally O((L
r

)2)
small triangles with side length r as shown in Figure 2(a).

Consider any equilateral triangle △ABC as shown in
Figure 2(b), we will show that any sensor E located within
△ABC can be replaced by at most four sensors located at
four intersection points such that the coverage degree of any
road segment will not decrease.

Assume the center of the triangle △ABC is O, then
we can divide △ABC into three small triangles △OAB,
△OBC and △OCA. Assume E is located within △OBC,
then disk centered at E with radius r can be entirely con-

tained in the union of four disks centered at intersection
points A, B, C, D with radius r. In other words, any (part
of) road segment covered by E will also be covered after
we use four sensors located only on the intersection points.
The proof is similar when E is located within △OAB or
△OCA. !

Based on Lemma 4, the following Lemma 5 is straight-
forward.

Lemma 5. Assume OPT is the optimal feasible location
set (with minimum cardinality, saying |OPT |), at which
deploying sensor nodes can cover all the given points in !.
We can always construct another feasible location set (with
size at most 4|OPT |) only using the intersection points of the
partition such that deploying sensor nodes at the location
in this set will cover all the given points as well.

Next, we are ready to show that even when the feasible
locations of sensor node are continuous, we can still get a
good solution within 24 + ϵ times of the optimal solution
by constructing a discrete feasible location set for all the
sensor nodes.

Our main idea is as follows. We partition area ! into
small equilateral triangles with edge length r. Assume the
set of all intersection points (i.e., the vertices of all triangles)
in the partition is B. We show that the solution of Algorithm
1 (withB being the given discrete feasible location set) is no
greater than a constant times of the optimal solution when
the feasible locations for all sensor nodes are continuous.

Theorem 6. When the feasible locations for all sensor
nodes are continuous, the solution of Algorithm 1 using B
as the given discrete feasible location set is within 24 + ϵ

times of the optimal solution.

Proof. Assume the optimal solution is OPT with car-
dinality |OPT | when the feasible locations of all sensor
nodes are continuous. By Lemma 5, we can always have

Figure 2. (a) Partition the area into equilateral triangles, use sensor nodes at the intersection points of the partition only. (b) Any sensor
node (black node) inside the shaded equilateral triangle can be replaced by at most four red sensor nodes such that the coverage

degree of any road segment will not decrease.

Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

1058

X. Mao et al. Providing and finding k-road-coverage

another solution S1 only using intersection points such that
|S1| ≤ 4|OPT |. Next, we assume the optimal solution of
DUDC problem (usingB as the given discrete feasible loca-
tion set) is OPT1. By Theorem 3, we can achieve a solution
S2 that satisfies |S2| ≤ (6 + 0.25ϵ)|OPT1|. Then we have

|S2| ≤ (6 + 0.25ϵ)|OPT1| ≤ (6 + 0.25ϵ)|S1|

≤ (6 + 0.25ϵ)4|OPT |.

This finishes the proof. !

Theorem 7. For k-coverage problem, we can find a solu-
tion with O(k)-approximation.

Proof. Since we have an algorithm with O(1)-
approximation for 1-coverage problem. If we repeat the
executions of the algorithm for k times, the union of all the
returned results clearly yields a valid solution for k-coverage
problem with the approximation ratio at most O(k). !

It will be interesting if we can find a O(log k)-
approximation (or O(1) approximation) algorithm for
DUDC problem for general k.

5. PATH QUERY ON THE ROAD MAP

In this section, we study the ‘path query’ related questions.
Given a 2-dimensional area ! with a road map R, there
are n wireless sensor nodes {u1, u2, · · · , un} deployed in !.
Assume the position (xi, yi) and sensing range ri of each
sensor node ui are known and fixed. We further assume
different sensor nodes may have different sensing ranges,
for example, we use ri to denote the sensing range of the ith

sensor node ui.
The question we study in this section is how to find the

k-covered and k-supported paths using all feasible road seg-
ments on R = (V, E) to connect a given source/destination
pair of points S and D. Here, E contains all road segments
and V consists of all intersection points on !. See Figure 3
for illustration.

5.1. K-covered path query

Clearly, given any source/destination point pair S and D on
the road map, to find a k-covered path connecting S and D,
we only need to find a path such that every point on this path
is covered by (falling in the sensing range of) at least k sen-
sor nodes. Our main idea is as follows: (1) For each wireless
sensor node ui : 1 ≤ i ≤ n, we draw a circle centered at ui

with radius ri. Clearly, the area ! will be divided into subar-
eas by all the circles we drew and the boundary of !. Here
we do not consider those subareas outside !. (2) We give
each subarea a rank which is equal to the number of sensor
nodes that cover this subarea. For example, if a subarea is
not covered by any sensor node, its rank will be 0. If a sub-
area falls into the sensing ranges of k sensor nodes, its rank

d

S

D

Figure 3. An example of path query. Black nodes denote the
source point S and destination point D, respectively. Black curves
indicate feasible paths on the road mapR. White nodes and dash
circle denote the deployed sensor nodes and their corresponding

sensing range.

will be k. (3) Next, we check each road segment e ∈ E(R)
one by one. If e goes into or go through some subarea(s)
whose rank is less than k, we remove e from E(G). In other
words, we only keep road segments which are totally con-
tained in some subareas with rank at least k. (4) From all
remaining road segments, we can simply find a path to con-
nect the source/destination pair S and D (by Breath First
Search method or Depth First Search method) if such path
exists. See Algorithm 2 for details. Clearly, the first step
takes O(n) time. The second step takes O(n2) time, which
can be proved by a mathematical induction method. Since
we have to check each road segment, the time complexity for
the third step is O(|E|). The last step will use O(|E| + |V |)
by a Breath First Search method. Hence, the total time com-
plexity of Algorithm 2 is O(n + n2 + |E| + |E| + |V |) =
O(n2 + |E| + |V |), which means our algorithm can find a
solution in polynomial time.

5.2. Optimal k-support path query

Recalling that a path P (connecting S and D) is called an
optimal k-support path if the k-support of path P is the
minimum one among all k-supported paths which connect
S and D.

As we know, any path P connecting S and D on R con-
sists of one or more road segments and the k-support of P is
determined by the maximum k-support among all those road
segments. Hence, we can compute the k-support of any such
path P as long as we can compute the k-support of all road
segments constructing P. Before we go through the details
of the algorithm computing an optimal k-support path, we
first introduce the concept of kth Nearest-Point Voronoi Dia-
gram which can be used to compute the k-support for the
road segments efficiently.

5.2.1. The kth nearest-point Voronoi diagram.
Given a set of identical sensor nodes U distributed in the

field !, we assign a geometry point p in the field to the

1059Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

Providing and finding k-road-coverage X. Mao et al.

Algorithm 2 Finding k-covered path

Input: Source/destination pair S and D on the given road
map R = (V, E) with deployed sensor nodes set U.
Output: A k-covered path connecting S and D.

1: for Each sensor node ui : 1 ≤ i ≤ n with location
(xi, yi) and sensing range ri do

2: Draw a circle centered at ui with radius ri.
3: end for
4: ! will be divided into small subareas by the drawn

circles and the boundary of !

5: for Each subarea do
6: Set its rank to be equal to the number of sensor nodes

which cover this subarea.
7: end for
8: for Each road segment e ∈ E(R) do
9: Remove it from E(R) if e goes through (into) some

subarea(s) with rank smaller than k.
10: end for
11: Run BFS (or DFS) algorithm starting from S among all

road segments remaining in E(R);
12: Return the first path from S to D if such path exist; else

return FALSE;

sensor node ui ∈ U if ui is the kth nearest sensor node from
p. Following this assignment rule, we assign all points in
the field to at least one sensor node in U. In other words,
for any point p in the area, it has one or more kth near-
est sensor nodes in U. Basically, if the sensor node ui ∈ U

is the kth nearest sensor node of point p, the point p is
assigned to sensor node u. As a result, we obtain a collec-
tion of regions associated with sensor nodes in U, denoted
by Vk = {Vk(u1), . . . Vk(un)}, which forms a tessellation.
We call the tessellation Vk the kth nearest-point Voronoi
diagram generated by U, and the region Vk(ui) the kth
nearest-point Voronoi region of node ui. From now on,
we call kth nearest-point Voronoi diagram KNP Voronoi
diagram for simplicity.

In other words, all points inside region Vk(ui) have the
same kth nearest sensor node ui out of set U. Notice that
Vk(ui) may be disconnected and composed by several inde-
pendent polygons as shown in Reference [18]. Here we call
each independent polygon kth nearest-point Voronoi cell
(KNP Voronoi cell) of node ui and use Ck(ui) to denote
it, in addition, we simply call ui as the owner of Ck(ui).
Notice, the source point S and destination point T also
have owners depending on the KNP Voronoi cells they
belong to. If S (or D) are existing on one of edges of
some KNP Voronoi cell, which means S(or D) can have
two or more same distance kth nearest sensor nodes, we
randomly choose one such sensor node as the owner of S
(or D).

The edge (including the boundary of area !) of each
cell is called kth nearest-point Voronoi edge (KNP Voronoi
edge) and the intersections of all KNP Voronoi edges are
called kth nearest-point Voronoi vertex (KNP Voronoi ver-
tex). From now on, when we say KNP Voronoi diagram, we

mean the KNP Voronoi diagram with respect to the sensor
node set U if there is no confusion.

Clearly, one of important properties of KNP Voronoi dia-
gram is that all points inside a KNP Voronoi cell have the
same kth nearest sensor node out of U. Hence, we can com-
pute the k-support of each road segment by combining its
geometry location with KNP Voronoi diagram in Algorithm
4. (Actually, we will show later that we may not need to
compute the k-support of each road segment in order to get
the optimal k-support path.)

Algorithm 3 Computing KNP Voronoi Diagram

Input: Set of sensor nodes U.
Output: U’s KNP Voronoi Diagram G.

1: Compute U’s order-k Voronoi diagram;
2: for Each order-k Voronoi cell Cok(U [k]

i) do
3: Compute the farthest point Voronoi diagram using

corresponding k sensor nodes in U [k]
i ;

4: end for
5: for Each KNP Voronoi edge e do
6: if If two neighbor polygons which share e belong to

same sensor node ui then
7: Merge these two polygons into one polygon which

still belongs to ui;
8: end if
9: end for

10: for Each sensor node ui do
11: Return the union of all polygons belongs to ui as its

KNP Voronoi cell;
12: end for

The main idea to compute the optimal k-support path is as
follows. Firstly, we use the same way (described previously)
to rank all the subareas. Secondly, we use Algorithm 3 to
compute the KNP-Voronoi diagram G in time O(k2n log n).
Thirdly, we compute the k-support for each road segment e

if e is completely contained inside some subareas with rank
no less than k by Algorithm 4. We further assign the weight
of each such road segment with its k-support. Finally, we
find a minimum weight path to connect S and D. Here the
minimum weight path means the maximum weight of all its
partial road segments are minimum.

Since our algorithm is based on the KNP Voronoi dia-
gram, we present the method to compute the KNP Voronoi
diagram with respect to sensor node set U first.

5.2.2. Compute the KNP Voronoi diagram.
Before we present our algorithm to compute the KNP

Voronoi diagram with respect to U, we first introduce some
new definitions.

Definition 4 (The Order-k Voronoi Diagram). The order-k
Voronoi diagram is a partition of the plane into regions such
that points in each region have the same k closest sensor
nodes in set U [k]. Each polygon is named order-k Voronoi
cell Cok(U [k]

i) corresponding to a set of k sensor nodes U [k]
i .

Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

1060

X. Mao et al. Providing and finding k-road-coverage

Definition 5 (The Farthest Point Voronoi Diagram). The
farthest point Voronoi diagram is a special case of kth
nearest-point Voronoi diagram, when k = n − 1. It is a par-
tition of the plane into polygons such that points in each
polygon have the same farthest sensor node in U. Each
polygon is called a farthest Voronoi cell.

Next we give a lemma which will be used to prove the
correctness of our algorithm.

Lemma 8. For any point p in the plane !, it belongs to
sensor node ui ∈ U’s KNP Voronoi cell Ck(ui) if and only
if p is located in some order-k Voronoi cell Cok(U [k]

i) where
ui ∈ U [k]

i and ui is p’s farthest sensor node among all k
sensor nodes in U [k]

i .

Proof. We prove this lemma in both directions.
According to the definition of the order-k Voronoi diagram,
we know that if point p is located in Cok(U [k]

i), all sensor
nodes in U [k]

i are the k closest sensor nodes to v. Clearly, if
some sensor node ui ∈ U is the farthest sensor node from
point p among all sensor nodes in U [k]

i , ui must be the kth
nearest sensor nodes of p.

On the other hand, if sensor node ui is the point p’s kth
nearest sensor node, p must be located in some Cok(U [k]

i)
where U [k]

i is the union of p’s 1st, 2nd . . . , (k − 1)th near-
est sensor nodes. Obviously, ui is the farthest sensor node
among all k sensor nodes in U [k]

i . This finishes the proof.
!

Based on Lemma 8, we propose the following method
(Algorithm 3) to compute the KNP Voronoi diagram with
respect to sensor node set U. The main idea of our method
is as follows.

1) Compute the order-k Voronoi diagram of given sensor
nodes set U using the algorithm given in Reference
[19].

2) For each order-k Voronoi cell Cok(U [k]
i), we compute

the farthest Voronoi diagram of its corresponding k
sensor nodes U [k]

i , and for each sensor node ui ∈ U [k]
i ,

return the corresponding farthest Voronoi cell as one
part of ui’s KNP Voronoi cell.

3) For each sensor node ui, we merge the partial cells
computed above into one KNP Voronoi cell if they
share one edge. We union all those KNP Voronoi cells
as ui’s KNP Voronoi region. Finally, we get U’s KNP
Voronoi diagram G.

See detailed Algorithm 3 for illustration.
We first show that the time complexity of Algorithm 3 is

O(k2n log n) by the following Lemma 9.

Lemma 9. The time complexity of Algorithm 3 which is
used to compute the KNP Voronoi diagram is O(k2n log n).

Proof. First, using the algorithm given in Reference
[19], we can compute the order-k Voronoi diagram of
n sensor nodes within time O(k2n log n). In the second
step, we compute the farthest Voronoi diagram in each

order-k Voronoi cell Cok(U [k]
i) of the k sensor nodes in

U [k]
i . This operation will cost O(k log k) for each order-

k Voronoi cell (proven in Reference [20]). Since there
are O(nk) order-k Voronoi cells (results showed in Ref-
erence [19], the time complexity of the second step is
O(k lg k) × O(nk) = O(k2n log k). In the third step, we may
do some merge operations for each KNP Voronoi edge,
this operation will cost O(k2n) time since there are at
most O(nk2) KNP Voronoi edges in KNP Voronoi diagram
(which will be proved in Lemma 10) and each merge oper-
ation uses constant time O(1). So the time complexity for
Algorithm 3 is O(k2n log n) + O(k2n log k) + O(k2n) =
O(k2n log n). This finishes the proof. !

Lemma 10. For a set of n sensor nodes U on the field !

and its KNP-Voronoi diagram G, the total number of KNP
Voronoi edges is O(k2n) and the number of edges of each
KNP Voronoi cell is O(n).

Proof. From the results in References [19] and [18], we
know that the total number of KNP Voronoi edges in KNP
Voronoi diagram is O(kn) and the number of KNP Voronoi
edges in the farthest Voronoi diagram of k sensor nodes is
O(k). So the total number of KNP Voronoi edges computed
from Algorithm 3 is O(nk) + O(nk) × O(k) = O(k2n).

Next we use a simple construction approach to show that
the number of KNP Voronoi edges of each KNP Voronoi
cell is O(n). For any sensor node ui ∈ U, we construct the
bisectors between ui and all the other sensor nodes in U and
we further call the open half-plane (defined by the sectors
which does not contain ui) farther half-plane. The KNP
Voronoi cell of ui is the area which is intersected by exactly
k − 1 farther half-planes. This observation comes from the
definition of KNP Voronoi cell. Since there are no more
than n − 1 bisectors for each sensor node, the total number
of KNP Voronoi edges of each KNP Voronoi cell is no more
than n − 1. This finishes the proof. !

Clearly, the KNP Voronoi diagram G will have intersec-
tions with some road segments of R. Next, we use the same
method to mark the sensing range of each sensor node and
rank all subareas. Obviously, we only need to compute the
k-support of road segments which are completely contained
inside some subareas with rank no less than k. Then we use
Algorithm 4 to compute the k-support for each such road
segment based on the KNP Voronoi diagram. Clearly, the
time complexity of Algorithm 4 is bounded by the possible
number of partial segments that an input road segment can
be divided into. Since any road segments can be divided into
at most O(k2n) (here, O(k2n) is the total number of all KNP
Voronoi Edges as proved in Lemma 10) partial segments,
the time complexity is O(k2n).

After we got the k-support of each road segment which
is completely contained in some subarea(s) with rank at
least k. We compute a minimum weight path connecting S
and D by considering the k-support as the weight for each
road segment. For example, we can run Dijkstra’s algorithm
by maintaining the maximum weight on a path instead of
accumulating all weights on a path.

1061Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

Providing and finding k-road-coverage X. Mao et al.

Algorithm 4 Computing k-support for a road segment

Input: KNP Voronoi diagram G and road segment e.
Output: k-support of road segment e.

1: if e is contained completely inside of some subarea(s)
with rank at least k then

2: Assume e has been divided by some KNP
Voronoi edges into a bunch of g partial segments
{e1, e2, · · · , eq}.

3: for Each partial segment ei : 1 ≤ i ≤ q do
4: If ei is contained in KNP Voronoi cell Cj , find

the point a on ei which is furtherest away from
the owner (sensor node u) of Cj . See Figure 4 for
illustration. Let the k-support of ei be equal to |ua|.

5: end for
6: Set the k-support of e to be equal to

maxq
i=1 k-support of ei;

7: else
8: Set the k-support of e to be ∞;
9: end if

Figure 4. An example to compute k-support for road segment
a1a6. Road segment a1a6 has been divided into five partial paths
by KNP Voronoi edges, a1a2,a2a3,a3a4,a4a5,a5a6. Blue sensor
node ui is the owner of the KNP Voronoi cell with blue KNP
Voronoi edges. The k-support of segment a3a4 is equal to the
Euclidean distance of the dash line since in this case, a3 is the

point on segment a3a4 which is furtherest away from ui .

6. CONCLUSION

In this paper, we studied several questions about k-coverage
problem in WSNs. First, we studied how to deploy sensors
on a given 2-dimensional area with a road map such that
all road segments on the map are k-covered with minimum
number of sensors. Then we studied how to find a k-cover
path and an optimal k-support path connecting a given pair
of source and destination points. For the first ‘sensor deploy-
ment’ problem, when sensors can only be deployed in a
set of discrete locations, we give the (6 + ϵ)-approximation
algorithm to find the minimum number of wireless sensor
nodes needed to make all road segments (on the given map)
1-covered. Following this, we present the O(k) approxima-
tion algorithm when all road segments are required to be

k-covered; when sensors can be deployed in arbitrary loca-
tions, we present an algorithm with the approximation ratio
24 + ϵ for k = 1 and O(k) for a general k. For the second
‘path query’ problem, we present two efficient algorithms
which can find the k-covered path and the k-support path
connecting any given source/destination pair of points on
the road map when such paths exist.

There are still many open questions about k-coverage
problem. For example, for deploying sensors to make all
paths k-covered, whether there exists an algorithm with an
O(log k)-approximation ratio or even a constant approxi-
mation ratio. Also, for deploying sensors, we may want to
optimize some other objectives, such as the total power or
maximum power of all sensors.

APPENDIX A

Proof of Lemma 2. We first prove that covering P is nec-
essary for covering all segments L. This is obvious since
any point on a 1-covered subsegment is 1-covered when L
is 1-covered.

Next, we prove that covering P is sufficient for covering
all segments L. Recall that the resultant subsegment set L is
obtained by drawing a circle centered at each feasible loca-
tion (totally m locations). This means that each subsegment
is either entirely covered by a sensor node or totally outside
of the sensing range of a sensor node. Let us consider one
subsegment l with middle point lmp. See Figure 5 for illus-
tration. Clearly, l cannot have any intersection (except the
two end points) with any circle which is the sensing bound-
ary of some sensor. Otherwise, l will be further divided into
smaller subsegments such that l cannot be in the subseg-
ment set. Hence, if the middle point lmp of l is covered by
any sensor, the entire l will be covered by this sensor as
well. This finishes the proof. !

Figure 5. Red curve denotes the subsegment l . l cannot have
any intersection with any circle. White node denotes the sen-
sor nodes and the dash circles are the corresponding sensing
boundaries. In this example, different sensors may have different

sensing range.

Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

1062

X. Mao et al. Providing and finding k-road-coverage

Figure 6. Partition of outside of a ! × ! square into eight
regions.

APPENDIX B

SOLVING DUDC IN A BLOCK

In this subsection, we present our algorithm for DUDC in a
tµ × tµ block B. We begin with some terms and notations.

Since block B consists of t2 squares of size µ × µ, we
denote them as Sij, i, j ∈ [t]. Sij is the square in the ith
order from left to right and in the jth order from up to
down. All squares Skj together form a horizontal strip (note
as sx

k, j ∈ [t]). Thus, block B contains t horizontal strips,
sx

1, · · · , sx
m. Similarly, block B contains t vertical strips,

s
y
1, · · · , sy

m, where s
y
k is formed by combination of all squares

Sik, i ∈ [t]. Let Dij and Pij denote the set of disks and points
lying in Sij , respectively.

For each square Sij , we divide its outside into eight
regions UL, UM, UR, CL, CR, LL, LM, LR as shown
in Figure 6. Denote by Left = UL ∪ CL ∪ LL, Right =
UR ∪ CR ∪ LR, Up = UL ∪ UM ∪ UR, Down = LL ∪
LM ∪ LR. Assume the four lines forming Sij are x =
x1, x = x2, y = y1, y = y2.

Then we briefly describe the idea for solving DUDC in
a block.

(1) Guessing the covering pattern. Assume the optimum
solution is OPT . For each square Sij , we have:
• d ∈ OPT ∩ Dij ̸= ∅. Since the disk radius is 1 and

the diameter of every square is 1, any disk d from
OPT ∩ Dij can cover Sij entirely. Thus d can cover
all points Pij .

• OPT ∩ Dij = ∅. In this case, Pij are covered by
disks out of the square Sij . By Lemma 12, we can
use up to four points to separate points in Pij into
two groups, one group can be covered by disks
only from the Up and Down region of the square,
and the other can be covered by disks only from
the Left and Right region of the square Sij .

Thus, we can guess the covering pattern of OPT for
each square Sij by enumeration of all possibilities.

(2) Solving DUDC over strips. Once we guess a pat-
tern, we can decompose the problem into problem
in strips. We solve DUDC for t horizontal strips sx

j .
Similarly, we solve DUDC for t vertical strips s

y
j . We

combine the 2m solutions and use OPT ∩ Dij as the
solution for this pattern. We then output the minimum
solution over all possible enumerating patterns.

Lemma 11 ([17]). Suppose p ∈ Pij is a point in Sij which
can be covered by a disk d ∈ LM. We draw two lines pl and
pr , which intersect y = y1 by angle π/4 and 3π/4. Then
the shadow PLM surrounded by x = x1, x = x2, y = y1, pl

and pr can also be covered by d. Similar results can be hold
for shadow PUM, PCL and PCR, which can be defined with
a rotation.

Then, we give the definition of sandglass and a lemma
which can be used to separate Pij into two groups, with one
can be covered by disks from Up ∪ Down and the other by
disks from Left ∪ Right.

Definition 6 ([17] Sandglass). If D is a disk set covering
Pij and D ∩ Sij = ∅, then there must exist a subset PM ⊂ Pij

which can only be covered by disks from UM and LM (we
can set PM = ∅. if there is no such points). Select PLM ⊂
PM , the disks that can be covered by disks from LM, draw
pl and pr line for each p ∈ PLM . Select the leftmost pl and
rightmost pr and form a shadow. Symmetrically, choose
PUM and form a shadow. The union of the two shadows
form a sandglass region Sandij of Sij .

Lemma 12 ([17]). Suppose D is a disk set covering Pij ,
and Sandij are chosen as in Definition 6. Then any points in
Sandij can be covered by disks only from neighbor region
Up ∪ Down, and disks from Sij \ Sandij can be covered by
disks only from neighbor region Left ∪ Right.

Then, we state Algorithm 5 for solving DUDC in a block
similar to Reference [17].

Algorithm 5 DUDC in a block.

Input: a set of points P in the block and D covering P.
Output: DUDC in the block.

1: For each Sij , choose its sandglass or select a disk u ∈
Dij inside the square.

2: If for a square Sij , a disk u is chosen, then remove all
points in Pij . We also remove all other points outside
of square Sij covered by u.

3: For each horizontal strip sx
i , calculate an optimum

DUDC for the remaining points in the sandglass of sx
i .

4: For each vertical strip s
y
j , calculate optimum DUDC for

the union of points in the sandglass of s
y
j .

Lemma 13. Algorithm 5 can find a 6-approximation solu-
tion for DUDC in a tµ × tµ block.

1063Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

Providing and finding k-road-coverage X. Mao et al.

Proof. According to the definition of OPT , for any
square in the block, it is either covered by a disk in this
square, or covered by some disks outside of it. So during
the enumeration process in Algorithm 5, once the covering
pattern is guessed correctly, for any disk that is used in the
pattern to cover the square containing this point,it is selected
and then deleted by the algorithm in step 1, hence is only
used once.

Consider the second case when we calculating DUDC
for t horizontal strips, it is used at most three times. For the
horizontal strips, the analysis is the same. By adding the
horizontal and vertical strips up, for any disk, it could be
counted at most six times totally.

The two solutions together have size no more than 6 ·
OPT , so Algorithm 5 gives a solution with size no more
than 6 · OPT when it guesses the pattern correctly. Since
the algorithm enumerates all possible covering patterns, and
takes the minimum solution, the lemma holds. !

REFERENCES
1. Mehta D, Lopez M, Lin L. Optimal coverage paths in ad-

hoc sensor networks. In IEEE International Conference
on Communications, ICC’03, 2003; 1.

2. Fang C, Low C. Redundant coverage in wireless sensor
networks. In IEEE International Conference on Commu-
nications, ICC’07, 2007; 3535–3540.

3. Tang S, Mao X, Li X. Optimal k-support coverage paths
in wireless sensor networks. In Proceedings of the 2009
IEEE International Conference on Pervasive Computing
and Communications, Vol. 00, 2009.

4. Alt H, Arkin E, Bronnimann H, et al. Minimum-cost
coverage of point sets by disks. In Proceedings of
the twenty-second annual symposium on Computational
geometry, 2006; ACM, 458.

5. Carmi P, Katz M, Lev-Tov N. Covering points by unit
disks of fixed location. Algorithms and Computation,
4835: 644–655.

6. Meguerdichian S, Koushanfar F, Potkonjak M, Sri-
vastava M. Coverage problems in wireless ad hoc
sensor networks. In IEEE INFOCOM, 2001; 3: 1380–
1387.

7. De Berg M, Cheong O, Van Kreveld M, Overmars M.
Computational Geometry: Algorithms and Applications.
Springer-Verlag New York Inc: New York, 2008.

8. O’Rourke J. Computational Geometry in C. Cambridge
University Press: New York, NY 10013, USA. 1998.

9. Li X, Wan P, Frieder O. Coverage in wireless ad hoc
sensor networks. IEEE Transactions on Computers 2003;
52(6): 753–763.

10. Huang C, Tseng Y. The coverage problem in a wireless
sensor network. Mobile Networks and Applications 2005;
10(4): 519–528.

11. Huang C, Tseng Y, Lo L. The coverage prob-
lem in three-dimensional wireless sensor networks. In
IEEE Global Telecommunications Conference, GLOBE-
COM’04, 2004; 5.

12. Zhou Z, Das S, Gupta H. Connected k-coverage problem
in sensor networks. In Proceedings of 13th Interna-
tional Conference on Computer Communications and
Networks, ICCCN, 2004; 373–378.

13. Xing G, Wang X, Zhang Y, Lu C, Pless R, Gill C.
Integrated coverage and connectivity configuration for
energy conservation in sensor networks. ACM Transac-
tions on Sensor Networks (TOSN) 2005; 1(1): 72.

14. Kumar S, Lai T, Balogh J. On k- coverage in a mostly
sleeping sensor network. Wireless Networks 2008; 14(3):
277–294.

15. Wan P, Yi C. Coverage by randomly deployed wireless
sensor networks. IEEE/ACM Transactions on Network-
ing (TON), SI, 2006; 14: 2669.

16. Hochbaum D, Maass W. Approximation schemes for
covering and packing problems in image processing
and VLSI. Journal of the ACM (JACM) 1985; 32(1):
136.

17. Huang Y, Gao X, Zhang Z, Wu W. A better constant-
factor approximation for weighted dominating set in unit
disk graph. Journal of Combinatorial Optimization 2009;
18(2): 179–194.

18. Okabe A, Boots B, Sugihara K, Chiu S. Spatial tessel-
lations: concepts and applications of Voronoi diagrams
(POD). Européen des systèmes automatisé 2009; 43:
672.

19. Lee D. On k-nearest neighbor Voronoi diagrams in the
plane. IEEE Transactions on Computers 1982; 100(31):
478–487.

20. Skyum S. A Sweepline Algorithm for Generalized Delau-
nay Triangulations. Technical Report DAIMI PB-373, CS
Dept. Aarhus University.

AUTHORS’ BIOGRAPHIES

Xufei Mao is an Assistant Professor
in Computer Science Department, Bei-
jing University of Posts and Telecom-
munications. He holds Ph.D. (2010)
degree in Computer Science from
Illinois Institute of Technology. He
received M.S. (2003) and Bachelor
degree from Northeastern University
and Shenyang University of Technol-

ogy, respectively. His research interests include design and
analysis of algorithms concerning wireless networks, net-
work security, etc. Topics include Coverage problems in
sensor network, Top-k Query, Capacity (Throughput) study,
Channel Assignment, Link Scheduling, and Tiny OS pro-
gramming etc.

Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

1064

X. Mao et al. Providing and finding k-road-coverage

Xiaohua Xu is a Computer Science
Ph.D. student at Illinois Institute of
Technology. He received B.S. from
ChuKochen Honors College of Zhe-
jiang University, P.R.China, 2007. His
research interests include algorithm
design and analysis, optimization in
mesh network, energy efficiency and
security in wireless network. He is an

IEEE student member.

ShaoJie Tang has been a Ph.D. stu-
dent of Computer Science Department
at the Illinois Institute of Technology
since 2006. He received B.S. degree
in Radio Engineering from Southeast
University, China, in 2006. His current
research interests include algorithm
design and analysis for wireless ad hoc
networks, wireless sensor networks,

and online social networks.

Xiang-Yang Li (M’99, SM’08) has
been an Associate Professor (since
2006) and Assistant Professor (from
2000 to 2006) of Computer Science at
the Illinois Institute of Technology. He
received M.S. (2000) and Ph.D. (2001)
degree at Department of Computer Sci-
ence from University of Illinois at
Urbana-Champaign. He received the

Bachelor degree at Department of Computer Science and
Bachelor degree at Department of Business Management
from Tsinghua University, China, both in 1995. His research
interests span wireless sensor networks, game theory,
computational geometry, and cryptography and network
security. He served as a co-chair of ACM FOWANC 2008
workshop, a co-chair of AAIM 2007 conference, a TPC
co-chair of WTASA 2007, and TPC members of a number
of conferences such as ACM MobiCom, ACM MobiHoc,
IEEE INFOCOM, IEEE ICDCS. He serves as an Editor
of ‘IEEE Transitional on Parallel and Distributed Systems
(TPDS)’, from 2010; an Editor of ‘Networks: An Inter-
national Journal’ from 2009, and Advisory Board of ‘Ad
Hoc & Sensor Wireless Networks: An International Jour-
nal’, from 2005. He was a guest editor of special issues for
‘ACM Mobile Networks and Applications’, ‘IEEE Journal
on Selected Areas in Communications’, and several other
journals. He published a monograph ‘Wireless Ad Hoc and
Sensor Networks: Theory and Applications’, in June 2008
by Cambridge University Press. He also co-edited the fol-
lowing books ‘Encyclopedia of Algorithms’, by Springer
publisher, as the area editor for mobile computing.

1065Wirel. Commun. Mob. Comput. 2012; 12:1053–1065 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

	1031_ftp
	blank.pdf
	wcm-1029

