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Localized Construction of Low Weighted Structure
and Its Applications in Wireless Ad Hoc Networks

Xiang-Yang Li

Abstract— We consider a wireless network composed of a set
of n wireless nodes distributed in a two dimensional plane. The
signal sent by every node can be received by all nodes within its
transmission range, which is uniform and normalized to one unit.
We present the first distributed method to construct a bounded de-
gree planar connected structure LRNG, whose total link length is
within a constant factor of the minimum spanning tree1 using total
O(n) messages under the broadcast communication model. More-
over, in our method, every node only uses its two-hop information
to construct such structure, i.e., it is localized method. We show
that some two-hop information is necessary to construct any low-
weighted structure. We also study the application of this structure
in efficient broadcasting in wireless ad hoc networks. We prove
that, for broadcasting, the relative neighborhood graph (RNG),
which is the previously best-known sparse structure that can be
constructed locally, could use energyO(n) times the total en-
ergy used by our structure LRNG. Our simulations show that the
broadcasting based on LRNG consumes energy about36% more
than that by MST, and broadcasting based on RNG consumes en-
ergy about 64% more than that by MST. We also show that no
localized method can construct a structure for broadcasting with
total power consumption asymptotically better than LRNG.

Index Terms— Broadcasting, energy conservation, low weight,
minimum spanning tree, ad hoc networks.

I. I NTRODUCTION

Recent years saw a great amount of research in wireless net-
works, especially ad hoc wireless networks due to its potential
applications in various situations such as battlefield, emergency
relief, and so on. We assume that each wireless node has an
omni-directional antenna and a single transmission of a node
can be received byany node within its vicinity which, we as-
sume, is a disk centered at this node. A wireless node can re-
ceive the signal from another node if it is within the transmis-
sion range of the sender. Otherwise, they communicate through
multi-hop wireless links by using intermediate nodes to relay
the message. Consequently, each node in the wireless network
also acts as a router, forwarding data packets for other nodes.

We consider a wireless ad hoc network (or sensor network)
with all nodes distributed in a two-dimensional plane. Assume
that all wireless nodes have distinctive identities, and the iden-
tity of a nodeu is denoted byID(u). We also assume that
each static wireless node knows its position information either
through a low-power Global Position System (GPS) receiver or
through some other way. More specifically, it is enough for
our protocol when each node knows the relative position of its
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1The structure whose total link length is within a constant factor of the mini-
mum spanning tree is called low-weighted hereafter.

one-hop neighbors. The relative position of neighbors can be
estimated by thedirection of arrivaland thestrength of signal.
For simplicity, we also assume that all wireless nodes have the
same maximum transmission range and we normalize it to one
unit. By one-hop broadcasting, each nodeu can gather the loca-
tion information of all nodes within the transmission range ofu.
Consequently, all wireless nodesV together define a unit-disk
graph (UDG), which has an linkuv iff the Euclidean distance
‖uv‖ is less than one unit.

Energy conservation is a critical issue inad hocwireless net-
work for the node and network life, as the nodes are powered by
batteries only. In the most common power-attenuation model,
the power needed to support a linkuv is ‖uv‖β , where‖uv‖
is the Euclidean distance betweenu andv, β is a real constant
between2 and5 dependent on the wireless transmission envi-
ronment. This power consumption is typically calledpath loss.
We assume that the path loss is the major part of power con-
sumption to transmit signals. Notice that, practically, there is
some other overhead cost for each device to receive and then
to process the signal. For simplicity, this overhead cost can be
integrated into one cost, denoted byc, which is almost the same
for all nodes. However, we will assume thatc = 0 for the rest
of this paper.

Wireless ad hoc network needs some special treatment as it
intrinsically has its own special characteristics and some un-
avoidable limitations compared with wired networks. For ex-
ample, wireless nodes are often powered by batteries only and
they often have limited memories. A transmission by a wire-
less device is often received by many nodes within its vicinity.
This causes the signal interference if there are at least two nodes
wanting to send a signal to a node. On the other hand, we can
also utilize this broadcasting property to save the communica-
tions needed to send some information. Throughout this paper,
a local broadcastby a node means it sends the message to all
nodes within its transmission range; aglobal broadcastby a
node means it tries to send the message to all nodes in the net-
work by the possible relaying of other nodes. Since the main
communication cost in wireless networks is to send out the sig-
nal while the receiving cost of a message is neglected here, a
protocol’s message complexity is only measured by how many
messages are sent out by all nodes.

Wireless ad hoc networks require efficient distributed algo-
rithms and especially efficient localized algorithms for fast up-
dating due to node’s mobility. Here a distributed algorithm is
called alocalized algorithmif every node only uses the infor-
mation of nodes within a constant number of hops (plus some
additional information, if necessary, provided that it can be rep-
resented in a constant number of bits). A structure can be ef-
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ficiently updated if it is constructed by a localized algorithm
since when a node moves, it only affects the structure within a
constant number of hops.

In recent years, there has been a substantial amount of re-
search on topology control for wireless ad hoc networks [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Topology
control is to select a subset of links among all possible wire-
less links for communication. These algorithms are designed
for different objectives. Some of the algorithms [1], [14], [4],
[9] try to minimize the maximum link length while maintain-
ing the network connectivity. Some algorithms [3], [6], [11]
bound the number of neighboring nodes each node has to con-
nect to. The method proposed in [6] also guarantees that the
constructed structure is a length spanner. Here a structureH
is a spanner if, for any two nodes, the length of the shortest-
path connecting them inH is no more than a constant factor of
the length of the shortest-path connecting them in the original
communication graph. A spanner structure can guarantee that
the total power consumption needed by the least cost path to
connect any two nodes is within a small constant factor of the
optimum if all possible links are kept. In [5], we proposed the
first algorithm that can construct a planar spanner in a localized
manner. Planar structures are used by several localized routing
algorithms [15], [16]. Recently, we [17] proposed the first al-
gorithm that can construct a bounded degree planar spanner in
a localized manner. However, no localized algorithm is known
on how to construct a structure whose total link length is within
a constant factor of that of the minimum spanning tree. We call
such structure aslow weightstructure.

It was recently shown [18] that a broadcasting based on the
minimum spanning tree consumes energy within a constant fac-
tor of the optimum. The best distributed algorithm [19], [20],
[21] can compute the minimum spanning tree inO(n) rounds
usingO(m+n log n) communications for a general graph with
m edges andn nodes. The relative neighborhood graph, the
Gabriel graph and the Yao graph all haveO(n) edges and con-
tain the Euclidean minimum spanning tree for wireless ad hoc
networks modeled by UDG. This implies that we can con-
struct the minimum spanning tree in a distributed manner us-
ing O(n log n) messages. Unfortunately, even for wireless net-
work modeled by a ring, theO(n log n) number of messages
is still necessary for constructing the minimum spanning tree.
This is expensive especially when we have to update the MST
frequently due to the frequent nodes’ movement. Thus, it is
nature to ask whether we can approximate the MST efficiently
instead of constructing it exactly. Relative neighborhood graph
(RNG) has been used for broadcasting in wireless ad hoc net-
works [22], [23]. The ratio of the weight (total link length here)
of RNG over the weight of MST could beO(n) for n points
set [24]. The same example also shows that, the total power
used for broadcasting based on RNG is as large asO(n2) of
that based on MST.

We present the first localized method to construct a bounded
degree planar connected structure, namely LRNG, whose total
edge length is within a constant factor of that of the minimum
spanning tree. The total communication cost of our method is
O(n) under a local broadcast communication model. In ad-
dition, every node only uses its two-hop information to con-

struct such structure. We also show that some two-hop informa-
tion is necessary to construct any low-weighted structure. We
also show the application of this structure in efficient broad-
casting in wireless ad hoc networks. Notice that a structure
with low-weight cannot guarantee that the broadcasting based
on structure LRNG consumes energy within a constant factor
of the optimum. We show that the energy consumption using
the structure LRNG is withinO(nβ−1) of the optimum. Given
a geometry graphG, let ωb(G) =

∑
uv∈G ‖uv‖b. Equiva-

lently, we prove thatωβ(LRNG) = O(nβ−1) · ωβ(MST )
for any β ≥ 1. This improves the previously known “light-
est” structure RNG byO(n) factor since in the worst case
ωβ(RNG) = Θ(nβ) · ωβ(MST ) for anyβ ≥ 1. Notice that,
the optimum broadcasting structure consumes total node power
at leastO(ωβ(MST )). At last, we show that there is no local-
ized algorithm that can construct a structure for broadcasting
whose total energy consumption isO(ωβ(MST )).

The remainder of the paper is organized as follows. We give
some geometry notations and present our efficient localized
method constructing a bounded degree planar structure with
low weight in Section II. The proof of the correctness of the al-
gorithm is also given. In Section III, we discuss its applications
in broadcasting, and find that it saves considerable energy con-
sumption compared with that based on RNG. In Section IV, we
conducted extensive simulations to compare the performances
of the structure LRNG with previously best known structures.
We conclude our paper in Section V with the discussion of pos-
sible future works.

II. L OW WEIGHT TOPOLOGY

Before we present our structure LRNG, we first give some
notations and review the definitions of some known structures.
Let ‖xy‖ denote the Euclidean distance between two pointsx
andy. A disk centered at a pointx with radiusr, denoted by
disk(x, r), is the set of points whose distance tox is at most
r, i.e., disk(x, r) = {y | ‖xy‖ ≤ r}. Let lune(u, v) de-
fined by two pointsu and v be the intersection of two disks
with radius ‖uv‖ and centered atu and v respectively, i.e.,
lune(u, v) = disk(u, ‖uv‖) ∩ disk(v, ‖uv‖). The relative
neighborhood graph[25], denoted by RNG(V ), consists of
all edgesuv such that theinterior of lune(u, v) contains no
point w ∈ V . Notice here if only the boundary oflune(u, v)
contains a point fromV , edgeuv is still included in RNG.
Given a weighted geometry graphG over a set of points, let
ω(G) be the total weight of the edges inG. More specifi-
cally, if the weight of an edgeuv is defined as‖uv‖b, then
let ωb(G) be the total weight of the weighted edges inG, i.e.,
ωb(G) =

∑
uv∈G ‖uv‖b. Whenb = 1, b is often omitted from

the notation. A minimum spanning tree of a set of pointsV is a
connected graph whose weight is the minimum among all con-
nected graphs spanningV . It is known that, given a UDG or a
point set, the relative neighborhood graph always contains the
minimum spanning tree as a subgraph.

A. Modified RNG

Our low-weight structure is based on a modified relative
neighborhood graph. Notice that, traditionally, the relative
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neighborhood graph will always select an edgeuv even if there
is some node on the boundary oflune(u, v). Thus, RNG may
have unbounded node degree, e.g., consideringn − 1 points
equally distributed on the circle centered at thenth pointv, the
degree ofv is n − 1. Notice that for the sake of lowering the
weight of a structure, the structure should contain as less edges
as possible without breaking the connectivity. We then natu-
rally extend the traditional definition of RNG as follows.

The modifiedrelative neighborhood graphconsists of all
edgesuv such that (1) theinterior of lune(u, v) contains no
point w ∈ V and, (2) there is no pointw ∈ V with ID(w) <
ID(v) on the boundary oflune(u, v) and ‖wv‖ < ‖uv‖,
and (3) there is no pointw ∈ V with ID(w) < ID(u)
on the boundary oflune(u, v) and ‖wu‖ < ‖uv‖, and (4)
there is no pointw ∈ V on the boundary oflune(u, v) with
ID(w) < ID(u), ID(w) < ID(v), and‖wu‖ = ‖uv‖. See
Figure 1 for an illustration when an edgeuv is not included
in the modified relative neighborhood graph. We denote such
structure by RNG’ hereafter. Obviously, RNG’ is a subgraph
of traditional RNG. We prove that RNG’ has a maximum node
degree6 and still contains a minimum spanning tree as a sub-
graph.

w

vu

w

vu

(1) (2)

w

vu

w

vu

(3) (4)

Fig. 1. Which edges are not in the modified RNG.

Lemma 1:The maximum node degree in modified relative
neighborhood graph RNG’ is at most6.
PROOF. Consider any nodeu. For the sake of contradiction, as-
sume thatu has degree larger than6, i.e., it has at least7 neigh-
bors in RNG’. By the pigeonhole principle, obviously, two of its
neighbors in RNG’, sayv1 andv2, form an angle∠v1uv2 less
thanπ/3. Assume that‖uv1‖ ≤ ‖uv2‖ and if ‖uv1‖ = ‖uv2‖
assume thatID(v1) < ID(v2). Obviously, nodev1 is then in-
side the interior oflune(u, v2) or if it is on the boundary then
‖v1v2‖ < ‖uv2‖ andID(v1) < ID(v2). In both cases, it is
a contradiction to the existence of edgeuv2 in RNG’. This fin-
ishes the proof.

Similar to the above proof, it is not difficult to show that the
maximum node degree in graph RNG’ is at most5 actually.

Lemma 2:The graph RNG’ contains an Euclidean minimum
spanning tree as a subgraph.

PROOF. One way to construct MST is to add edges in
the order of their lengths to the MST if it does not create a
cycle with previously added edges. If there are two edges
with the same length, we break the tie by comparing the
larger ID of the two end-points then comparing smaller ID
of the two-end points. In other words, we label an edgeuv
by (‖uv‖, max(ID(u), ID(v)), min(ID(u), ID(v))), and an
edgeuv is ordered before an edgexy if the lexicographic order
of the label ofuv is less than that ofxy. LetT be the minimum
spanning tree constructed using the above edge ordering. We
will show thatT ⊆ RNG′.

For the sake of contradiction, assume that there is an edge in
T that is not in RNG’. Consider such edgeuv with the smallest
ordering. By definition of RNG’, there are only four cases for
uv /∈ RNG′.

The first case is that there is aw ∈ V in the interior of
lune(u, v). Obviously, edgesuw andwv are shorter thanuv.
No matter whether the edgeuw is in T , we know that there is a
path inT (could be edgeuw) connectingu andw using edges
with length at mostuw. Similarly, the same property holds for
pointsw andv. Thus, when we add edgeuv to T , it will create
a cycle with edges already inT since the edges in path fromu
to w to v definitely are shorter thanuv, i.e., added before edge
uv. This is a contradiction to the existence ofuv in T .

The second case is that there is a pointw ∈ V on the bound-
ary of lune(u, v) with ID(w) < ID(v) and‖wv‖ < ‖uv‖.
We only need to show that edgeuw and edgewv are ordered
before edgeuv; the remaining proof is similar to the first case.
SinceID(w) < ID(v), it is easy to show that the label ofuw is
lexicographically less than that of edgeuv. Edgewv is ordered
beforeuv since‖wv‖ < ‖uv‖.

The similar proof carries over to the third and the fourth
cases. This finishes the proof.

Obviously, graph RNG’ still can be constructed usingn mes-
sages. Each node first locally broadcasts its location and ID to
its one-hop neighbors. Then every node decides which edge to
keep solely based on the one-hop neighbors’ location informa-
tion collected. Since the definition is still symmetric, the edges
constructed by different nodes are consistent, i.e., an edgeuv
is kept by a nodeu iff it is also kept by nodev. The compu-
tational cost of a nodeu is still O(d log d) by using Delaunay
triangulation, whered is its degree in UDG. A simple edge by
edge testing method has time complexityO(d2).

Although graph RNG’ has possibly less edges than RNG,
its total edge weight could still be arbitrarily large compared
with the MST. Figure 2 (a) illustrates an example where
ω(RNG′)/ω(MST ) = O(n) for a set ofn points. Heren/2
points are equally distributed with separationε ≤ 2/n on two
parallel vertical segments with distance1 respectively. Obvi-
ously, all edges form RNG’ have total weightn/2+(n/2−1)ε
and the MST has total weight1+(n/2−1)ε. On the other hand,
the following lemma bound the weight and spanning ratio from
above.

Lemma 3:For any sparse graphG with O(n) edges, contain-
ing MST as subgraph,ωb(G) = O(nb) · ωb(MST ) for b ≥ 1,
and it has length spanning ratio at mostO(n).
PROOF. For any edgeuv ∈ G, if uv ∈ MST , then‖uv‖b

<
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ωb(MST ). If uv 6∈ MST , then there is a path in MST with
edges not longer thanuv connectingu andv. Let aj , 1 ≤ j ≤
k ≤ n be the length of these edges. Then‖uv‖ <

∑
1≤j≤k aj .

Thus,

‖uv‖b
< (

∑

1≤j≤k

aj)b ≤ nb−1
∑

1≤j≤k

ab
j ≤ nb−1 · ωb(MST ).

Consequently,ωb(G) = O(nb) · ωb(MST ) sinceG has only
O(n) edges. Similar proof can show thatG has length spanning
ratio at mostO(n).

B. Low Weight Topology

So far RNG’ is the previously best known connected struc-
tures that can be constructed locally and has a small total edge
weight. As shown by Figure 2 (a), its total weight could still be
as large asO(n) times ofω(MST ). In this section, we give a
communication efficient method to construct a sparse topology
from RNG’ whose total edge weight is within a constant fac-
tor of ω(MST ). Previously no method is known to construct a
structure with weightO(ω(MST )) in a localized manner.

We first show by example that it isimpossibleto construct a
low-weighted structure using only one hop neighbor informa-
tion. Assume that there is such algorithm. Consider a set of
points illustrated by Figure 2 (a). Let’s see what this hypothet-
ical algorithm will do to this point set. Since it uses only one-
hop information, at every node, the algorithm only knows that
there are a sequence of nodes are evenly distributed with small
separation, and another node which is one-unit away from cur-
rent node. Since the algorithm has the same (or almost same)
information at each node, the algorithm cannot decide whether
to keep the long edge. If it keeps the long edge, then the total
weight of the final structure isO(n · ω(MST )). If it discards
the long edge, however, it may disconnect the graph since the
nodes known at the algorithm at one node may be the whole
network. See Figure 2 (b) for an illustration.

v v

(a) A network (b) Another network

Fig. 2. The hypothetical algorithm cannot distinguish two cases here.

We now present our localized algorithm that constructs a
low-weighted structure using only some two hops information.

Algorithm 1: Construct Low Weight Structure
1) All nodes together construct the modified relative neigh-

borhood graph RNG’ in a localized manner.
2) Each nodeu locally broadcasts its incident edges in

RNG’ to its one-hop neighbors. Nodeu listens to the
messages from its one-hop neighbors.

3) If nodeu received a message informing existence of edge
xy from its neighborx, for each edgeuv in RNG’, if uv
is the longest amongxy, ux, andvy, nodeu removes
edgeuv. Ties are broken by the label of the edges. Here
assume thatuvyx is the convex hull ofu, v, x, andy.

Let LRNG be the final structure formed by all remaining
edges in RNG’, and we call it low-weighted modified relative
neighborhood graph (LRNG). Obviously, if an edgeuv is kept
by nodeu, then it is also kept by nodev. To study the total
weight of this structure, we will show that the edges in LRNG
satisfies theisolation property[26]. Let c > 0 be a constant.
Let E be a set of edges ind-dimensional space, and lete ∈ E
be an edge of weightl. If it is possible to place a hyper-cylinder
B of radius and heightc · l each, such that the axis ofB is a
subedge ofe andB does not intersect with any other edge, i.e.,
B ∩ (E − {e}) = φ, then edgee is said to beisolated [26].
If all the edges inE are isolated, thenE is said to satisfy the
isolation property. The following theorem is proved by Daset
al. [26].

Theorem 4:[26] If a set of line segmentsE in d-dimensional
space satisfies the isolation property, thenω(E) = O(1) ·
ω(SMT ).

Here SMT is the Steiner minimum tree over the end points
of E. Obviously, total edge weight of SMT is no more than
that of the minimum spanning tree. Generally,ω(MST ) =
O(ω(SMT )) for a set of points in Euclidean space. It is also
known [26] that, in the definition of the isolation property, we
can replace the hyper-cylinder by a hypersphere, a hypercube
etc., without affecting the correctness of the above theorem. We
will use a disk and call itprotecting disk. Specifically, the pro-
tecting disk of a segmentuv is disk(p,

√
3

4 ‖uv‖), wherep is the
midpoint of segmentuv. Obviously, we need all such disks do
not intersect any edge except the one that defines it.

We first partition the edges of LRNG into at most7 groups
such that the edges in each group satisfy the isolation property.
Notice, given any nodeu, any cone apexed atu with angle less
thanπ/3 will contain at most one edge of LRNG incident on
u sinceLRNG ⊆ RNG′. Thus, we partition the region sur-
rounded the origin by7 equal-sized cones, sayC1, C2, · · · , C7

(the cone is half-open and half-close). The cones at different
nodes are just a simple shifting of cones from the origin. Let
Ei be the set of edges at coneCi (one end-point is the apex of
the cone and the other end-point is inside the cone). We then
show that:

Lemma 5:No two edges inEi share an end-point.
PROOF. Assume that two edgesxu andyu share a common
nodeu. Obviously, these two edges cannot be from the cone
apexed at nodeu; see Figure 3 for an illustration. Clearly, angle

x

u
y

Fig. 3. Edges share a common end-point.
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∠xuy ≤ 2π/7. However, we already showed that there are no
two edges incident onu forming an angle less thanπ/3. This
finishes the proof.

We then prove the main theorem of this paper.
Theorem 6:The total edge weight of LRNG is within a con-

stant factor of that of the minimum spanning tree.
PROOF. We basically just show that the edges inEi sat-
isfy the isolation property, for1 ≤ i ≤ 7. For the sake
of contradiction, assume thatEi does not satisfy the isola-
tion property. Consider any edgeuv from Ei and assume
that it is not isolated. Thus, there is an edge, sayxy, in-
tersects the protecting disk ofuv. There are four different
cases: Case (a):x ∈ disk(u, ‖uv‖) andy ∈ disk(v, ‖uv‖);
Case (b):x ∈ disk(u, ‖uv‖) and y 6∈ disk(v, ‖uv‖); Case
(c): x 6∈ disk(u, ‖uv‖) and y ∈ disk(v, ‖uv‖); Case (d):
x 6∈ disk(u, ‖uv‖) andy 6∈ disk(v, ‖uv‖). These four cases
are illustrated by Figure 4. Remember thatlune(u, v) is empty.
We will show that none of these four cases is possible.

y

u v
x x

y

u v

(a) (b)

x
u v

y

x
u v

y

(c) (d)

Fig. 4. Four cases that an edgeuv is not isolated. Assume edgexy intersects
the protecting disk.

For the first case, sincex is in disk(u, ‖uv‖) and y is in
disk(v, ‖uv‖), we know thatxu andyv are both shorter than
uv. Here,xu andyv need not be in the structureEi. Thus,
either uv or xy is the longest edge amonguv, xy, xu and
yv. Consequently, our algorithm will remove eitheruv or xy
(whichever is longer).

For the remaining three cases, we will show that edgexy
is the longest of these four edges. First of all, nodesx and
y cannot be on the different side of the line passing through
nodesu andv. Assume that they do, andx is below the line
uv. We also assume thatx is outside of the disk centered at
u with radius‖uv‖ since one of thex andy is outside of the
corresponding disk. See Figure 5 for an illustration. We first
show that∠yxu < π/3. Let pointq be the intersection point of
segmentxy with line uv. Let pointp be the corner point of the
lune lune(u, v) that is on the same side ofuv asy. Obviously,
∠yxu < ∠yqu < ∠pqu < ∠puv = π/3. We then show
that‖xy‖ > ‖xu‖. Let z be the intersection point ofxy with
the boundary oflune(u, v) and closer tou thanv. Obviously,
∠xuz > π/2, thus,‖xy‖ > ‖xz‖ > ‖xu‖. Consequently,

q
u v

y

x

z

p

Fig. 5. Nodex is below lineuv andy is above.

point u is inside the lune defined by pointsx andy, which is a
contradiction to the fact thatxy ∈ RNG′.

We then prove that the Case (b) is impossible. Assume that
y is outside of disk centered atv with radius‖uv‖. See Fig-
ure 6 for an illustration of the proof that follows. Letz be the

x’

u v

y
z

x

p

Fig. 6. Case (b) is impossible.

intersection point ofxy with disk(v, ‖uv‖) that is closer toy.
Let x′ be the point on the diskdisk(v, ‖uv‖) such that segment
zx′ is tangent to the protecting disk of segmentuv. Obviously,
∠ux′z > π/2. Then‖zx‖ > ‖zx′‖. We can show that‖zx′‖
is at least‖zv‖ (the proof is presented in next paragraph). Then

‖yx‖ > ‖yz‖+ ‖zx′‖ > ‖yv‖ − ‖zv‖+ ‖zx′‖ > ‖yv‖
Thenxy is the longest segment of the convex hullxyvu since
‖xu‖ ≤ ‖uv‖ ≤ ‖vy‖. This is a contradiction since our algo-
rithm will remove edgexy. Notice here edgexy is the longest
edge implies that nodeu is a neighbor ofx and nodev is a
neighbor ofy. Thus both nodex and nodey will know the ex-
istence of edgeuv, and thus will remove edgexy according to
our algorithm.

Figure 7 illustrates the proofs of‖zx′‖ ≥ ‖zv‖ that follows.
Consider any chordxy tangent on the protecting disk foruv.
We will show that‖xy‖ ≥ ‖yv‖ = ‖uv‖. Letz be the midpoint
of xy, i.e.,vz is perpendicular toxy. To makexy shorter, seg-
mentvz must be as long as possible. Letp be the midpoint ofuv
ands be the point onxy such that segmentps is perpendicular
to segmentxy. Then clearly,‖vz‖ = ‖ps‖+‖pv‖ · cos(∠ups).
Thus,xy is minimized when angle∠ups is minimized. How-
ever, ∠ups > ∠upw since x and y are all above the line
uv. Here w is the only intersecting point of chordut with
the protecting diskdisk(p,

√
3

4 · ‖uv‖. It is easy to show that
‖ut‖ = lengthtv = ‖uv‖. Thus, the minimum length of seg-
mentxy is ‖uv‖ when∠ups = ∠upw.
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Fig. 7. Edgexy is the longest edge.

The proof of Case (c) is exactly the same as that for Case
(b). For Case (d), same to the proof of Case (b), we know that
‖xu‖ < ‖xy‖ and‖vy‖ < ‖xy‖. Then edgexy is also the
longest edge of the convex hullxyvu. This is a contradiction
since our algorithm will remove edgexy (nodesx andy will be
informed byu andv respectively of the existence of edgeuv
since‖xu‖ < 1 and‖vy‖ < 1). This finishes the proof.

Notice that, from the above proof, we generally proved the
following corollary.

Corollary 7: A subgraphG ⊆ RNG′ is low-weighted if for
any two edgesuv ∈ G andxy ∈ G, neitheruv nor xy is the
longest edge of the quadrilateraluvyx.

Based on this corollary, several new low weighted structures
had been proposed recently [27], [28]. We then show that the
topology LRNG does contain an Euclidean minimum spanning
tree as a subgraph, thus it is still a connected graph.

Lemma 8:The constructed topology LRNG still contains a
minimum spanning tree as a subgraph.
PROOF. Consider the minimum spanning treeT constructed
in the proof of Lemma 2. We will prove thatT ⊆ LRNG by
induction on the order of the edges added to the minimum span-
ning treeT . For the edge with the smallest order, it is clearly
still in LRNG. Assume that the firstk− 1 edges added toT are
still in LRNG. Consider thekth edge, sayuv, added toT . If uv
is not in LRNG, there must have two pointsx andy such that
edgeuv has the largest lexicographical label among edges on
the convex hulluvyx.

Notice that for RNG’, it is easy to show by induction that,
for any two pointsp andq, there is a path in RNG’ connecting
p andq, whose edges have label less than that ofpq. For any
edge in this path, if it is not inT , then by definition ofT , we
know that there is another path with edges inT to connect the
two endpoints of this edge. Thus, for any two pointsp andq,
there is a path inT connectingp andq, whose edges have label
less than that ofpq.

Consequently, for pointsu andv, there is a path inT con-
necting them using edges with label lexicographically less than
uv. This is a contradiction to the fact thatuv is also in the
minimum spanning treeT . This finishes the proof.

III. A PPLICATION IN BROADCASTING

Minimum-energy broadcast/multicast routing in a simple ad
hoc networking environment has been addressed in [29], [30],

[31], [32]. To assess the complexities one at a time, the nodes in
the network are assumed to be static. Nevertheless, as argued
in [32], the impact of mobility can be incorporated into this
static model because the transmission power can be adjusted
to accommodate the new locations of the nodes as necessary.
In other words, the capability to adjust the transmission power
provides considerable “elasticity” to the topological connectiv-
ity, and hence may reduce the need for hand-offs and tracking.
In addition, as assumed in [32], there are sufficient bandwidth
and transceiver resources. Under these assumptions, central-
ized (as opposed to distributed) algorithms were presented by
[32] for minimum-energy broadcast/multicast routing. These
centralized algorithms, in this simple networking environment,
are expected to serve as the basis for further studies on dis-
tributed algorithms in a more practical network environment,
with limited bandwidth and transceiver resources, as well as
the node mobility.

Any broadcast routing is viewed as an arborescence (a di-
rected tree)T , rooted at the source node of the broadcast-
ing, that spans all nodes. LetfT (p) denote the transmission
power of the nodep required byT . For any leaf nodep of T ,
fT (p) = 0. For any internal nodep of T ,

fT (p) = max
pq∈T

‖pq‖β
,

in other words, theβ-th power of the longest distance between
p and its children inT . The total energy required byT is∑

p∈V fT (p). Thus the minimum-energy broadcast routing
problem is different from the conventional link-based minimum
spanning tree problem. Indeed, while the MST can be solved
in polynomial time by algorithms such as Prim’s algorithm and
Kruskal’s algorithm [33], it is known [29] that the minimum-
energy broadcast routing problem cannot be solved in polyno-
mial time if P 6= NP .

Three greedy heuristics were proposed in [32] for the
minimum-energy broadcast routing problem: MST (minimum
spanning tree), SPT (shortest-path tree), and BIP (broadcast-
ing incremental power). The MST heuristic first applies the
Prim’s algorithm to obtain a MST, and then orient it as an ar-
borescence rooted at the source node. The SPT heuristic ap-
plies the Dijkstra’s algorithm to obtain a SPT rooted at the
source node. The BIP heuristic is the node version of Dijk-
stra’s algorithm for SPT. It maintains, throughout its execution,
a single arborescence rooted at the source node. The arbores-
cence starts from the source node, and new nodes are added
to the arborescence one at a time on the minimum incremen-
tal cost basis until all nodes are included in the arborescence.
The incremental cost of adding a new node to the arborescence
is the minimumadditional power increased by some node in
the current arborescence to reach this new node. The imple-
mentation of BIP is based on the standard Dijkstra’s algorithm,
with one fundamental difference on the operation whenever a
new nodeq is added. Whereas the Dijkstra’s algorithm updates
the node weights (representing the current knowing distances to
the source node), BIP updates the cost of each link (represent-
ing the incremental power to reach the head node of the directed
link). This update is performed by subtracting the cost of the
added linkpq from the cost of every linkqr that starts fromq
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to a noder not in the new arborescence.
For a pure illustration purpose, another slight variation of

BIP was discussed in detail in [34]. This greedy heuristic is
similar to the Chvatal’s algorithm [35] for the set cover prob-
lem and is a variation of BIP. Like BIP, an arborescence, which
starts with the source node, is maintained throughout the exe-
cution of the algorithm. However, unlike BIP, many new nodes
can be added one at a time. Similar to the Chvatal’s algorithm
[35], the new nodes added are chosen to have the minimalav-
erageincremental cost, which is defined as the ratio of the min-
imum additional power increased by some node in the current
arborescence to reach these new nodes to the number of these
new nodes. They called this heuristic as the Broadcast Average
Incremental Power (BAIP). In contrast to the1+log m approx-
imation ratio of the Chvatal’s algorithm [35], wherem is the
largest set size in the Set Cover Problem, they showed that the
approximation ratio of BAIP is at least4n

ln n − o (1), wheren is
the number of receiving nodes.

The heuristics based broadcasting methods BIP, MST, and
SPT have been evaluated through simulations in [32], but lit-
tle is known about their analytical performances in terms of the
approximation ratio. Wanet al. [34], [18] showed that the ap-
proximation ratios of MST and BIP are between6 and12 and
between13

3 and12 respectively; on the other hand, the approx-
imation ratios of SPT and BAIP are at leastn

2 and 4n
ln n − o (1)

respectively, wheren is the number of nodes. The following
lemma was proved in [18].

Lemma 9:For any point setV in the plane, the total
energy required by any broadcasting amongV is at least
ωβ(MST )/Cmst, where6 ≤ Cmst ≤ 12 is a constant related
to the geometry minimum spanning tree.

Unfortunately, none of these underlying structures can be
constructed in a localized manner, i.e., each node cannot deter-
mine which edge is in the defined structure by purely using the
information of the nodes within some constant hops. RNG has
been used for broadcasting in wireless ad hoc networks [22],
[23]. Obviously, the ratio of the total link lengths in RNG over
the total link lengths of MST could beO(n) for a UDG of n
points set. Figure 8 illustrates an example that the total energy
used by broadcasting on RNG could be aboutO(nβ) times of
the minimum-energy used by an optimum method. Here then
nodes are evenly distributed on the arcxu1, segmentu1uk, arc
uky, arcyvk, segmentvkv1, and arcv1x. Here four nodesu1,
uk, v1, andvk form a unit square. It is not difficult to show
that ω(MST ) = Θ(1) andωβ(MST ) = Θ(1/nβ−1), while
ω(RNG) = Θ(n) andωβ(RNG) = Θ(n).

Together with Lemma 3, we know that in the worst case,
ωβ(RNG′) = Θ(nβ) · ωβ(MST ).

Lemma 10:In the worst case,ωβ(RNG) = Θ(nβ) ·
ωβ(MST ).

Notice that even the structure LRNG has total edge length
ω(LRNG) ≤ c·ω(MST ) for some constantc, it does not guar-
antee thatωβ(LRNG) is within a constant factor ofωβ(MST )
for β > 1. Figure 9 illustrates such an example. Here the seg-
mentuv has length1. The othern − 1 nodes are evenly dis-
tributed along the three segments of a square (with side length
1 + ε) such that the lines drawn in Figure 9 is indeed the graph
RNG’. It is not difficult to show that all edges in RNG’ are

y

u v 11

u vkk

x

Fig. 8. Broadcasting based on RNG could beΘ(nβ) times the optimum.

still kept by our algorithm, i.e., LRNG = RNG’. Obviously,
ωβ(LRNG) = O(1) andωβ(MST ) = O(1/nβ−1) for any
β > 1.

vu

Fig. 9. ωβ(LRNG) = O(nβ−1) · ωβ(MST ).

On the other hand, we can show that the worst-case perfor-
mance of LRNG on broadcasting is better than that based on
RNG. Actually, the total energy consumption of broadcasting
based on LRNG is no more thanO(nβ−1) times of the opti-
mum.

Lemma 11:ωβ(LRNG) ≤ O(nβ−1) · ωβ(MST ).
PROOF. Assume thatω(LRNG) ≤ c ·ω(MST ) for a constant
c. Let ai, 1 ≤ i ≤ k be the edge lengths of LRNG, andbi,
1 ≤ i ≤ n− 1 be the edge lengths ofMST . Herek = O(n) is
the number of edges in LRNG. Then

∑

1≤i≤k

aβ
i ≤ (

∑

1≤i≤k

ai)β

≤ cβ · (
∑

1≤i≤n−1

bi)β

≤ cβ · nβ−1 ·
∑

1≤i≤n−1

bβ
i .

This finishes the proof.

Consequently, we know that in the worst case,
ωβ(LRNG) = Θ(nβ−1) · ωβ(MST ). Figure 9 shows
that, to get a structure with weightO(ωβ(MST )), we have
to construct a minimum spanning tree for that example.
Notice that the worst case communication cost to build a
minimum spanning tree isO(n log n) under the wireless
communication model. It seems that the we may have to spend
O(n log n) communications to build a structure with weight
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O(ωβ(MST )). However, this worst case may not happen at
all: for the configurations of nodes that needO(n log n) com-
munications to build the minimum spanning tree, the structure
built by our method may be good enough; on the other hand,
for the example that our algorithm does not perform well, we
may find an efficient way to build a minimum spanning tree
using o(n log n) messages. We leave it as an open problem
whether we can construct a structureG whose weightωβ(G) is
O(ωβ(MST )) using onlyo(n log n) messages, or evenO(n)
messages. Here each message hasO(log n) bits always.

Here we show that nolocalizedalgorithm can construct a
structure for broadcasting, whose total power consumption is at
mosto(nβ−1) times the optimum. Assume that there is such
a deterministic localized algorithmA that usesk-hop informa-
tion. Figure 10 illustrates such an example that algorithmA
cannot approximate the optimum broadcasting structure within
factor o(nβ−1). In the example, the shortest hop distance be-

u

y

x

v

u

y

x

v

(a) (b)

Fig. 10. No localized algorithm that approximates the optimum broadcasting
within factoro(nβ−1.

tween nodesu andx is more thank hops. Then algorithmA
will have the same information at nodeu for both configura-
tions (a) and (b). IfA decides to keep edgeuv, then for config-
uration (a), the broadcasting based on the final structure (with
all edges shown in Figure 10 (a)) will consume power about

1 + ( 2k+1
n )β · n = 1 + (2k+1)β

nβ−1 . Notice that, the optimum
broadcasting structure will not use linkuv, and has total power

consumption about( 2k+1
n )β · n = (2k+1)β

nβ−1 . Consequently, the

constructed structure uses power about1+ nβ−1

(2k+1)β = Θ(nβ−1)
times of the optimum, sincek is a constant here. IfA decides
not to keep edgeuv, then the structure constructed byA is not
connected for configuration illustrated by Figure 10 (b). Thus,
we have the following theorem.

Theorem 12:No localized method can construct a structure
for broadcasting with total power consumption asymptotically
better than LRNG.

IV. EXPERIMENTS

We conducted extensive simulations to study the perfor-
mance of our structure in terms of the longest edge length, the
total edge length, maximum node power, total node power and
so on. Although network throughput is an important perfor-
mance metric, it is influenced by many other factors such as the
MAC protocol, routing protocol and so on. Therefore, most re-
lated work does not test the throughput performance. We will
use the following metrics to compare the performance:

1) Total Messages: In wireless networks, less messages to
construct a topology will save energy consumption. We
already showed that the total messages of constructing
LRNG is at most3n.

2) Max Messages: We also test what is the maximum num-
ber of messages a node will send in building this struc-
ture. A large number of messages at some node will de-
lay the topology updating and drain out its battery power
quickly.

3) Average Node Degree: A smaller average node degree
often implies less contention and interference for signal
and thus a better frequency spatial reuse, which in turn
will improve the throughput of the network.

4) Max Node Degree: We also test the maximum node de-
gree. A larger node degree at some node will cause more
contention and interference for signal, and also may drain
out its battery power quickly.

5) Max Node Power: Notice that each useru will set its
transmission range equal to the length of the longest edge
incident onu, callednode powerin this paper. Thus, a
smaller node power will always save the power consump-
tion. The max-node-power captures the maximum power
used by all nodes. Here, in all our simulations, we set the
constantβ = 2, so that the power needed to support a
link uv is ‖uv‖2.

6) Total Node Power: The total node power approximates
the total power used by all nodes to keep the connectivity.

7) Total Edge Length: We proved that all structures pro-
posed in this paper have the total edge length within a
constant factor of MST, while no previously known struc-
tures having this property.

8) Total Link Power : It was also proved in [18] that a
broadcasting based on MST consumes energy within a
constant factor of the optimum. We thus compare the
total link power used by our structure with previously
known structures.

In the simulations, we will only test the performances of
structure LRNG and compare it with previously known struc-
tureG−0 in [36], RNG in terms of the above metrics. The rea-
son for only selectingG−0 and RNG is that in [36], their sim-
ulations already show thatG−0 out-performs other previously
known structures in terms of the node degree, max node power,
and the total node power. Hereafter, we useLMST instead of
G−0 in the experiments, if it is clear.

In the first simulation, we randomly generate100 nodes uni-
formly in a 1000m × 1000m region. The maximum trans-
mission range of each node is set as250m for all the nodes.
The topology derived using the maximum transmission power
(UDG), MST, RNG, LMST, and LRNG are shown in Figure 11
respectively. To make the performance testing precise, we gen-
erate100 sets of100 node sets and compute the performance
metrics accordingly. The corresponding performances are il-
lustrated in the following Table IV. Here for max node degree,
max message and max node power, we show both the maximum
and average values over the100 sets.

We then vary the number of nodes in the region from50 to
500. The transmission range of each node is still set as250m.
We plotted the performances of all structures in Figure 12.
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UDG MST RNG LMST LRNG

Fig. 11. Different structures from a UDG.

TABLE I
THE PERFORMANCES COMPARISON OF SEVERAL STRUCTURES.

MST RNG LMST LRNG
MaxMaxMsg - 1.00 5.00 4.00
AvgMaxMsg - 1.00 4.68 4.00

TotMsg - 100.00 305.96 238.98
MaxMaxDeg 4.00 4.00 4.00 4.00
AvgMaxDeg 3.68 4.00 3.68 3.68

AvgDeg 1.98 2.38 2.06 2.03
MaxMaxNPow 3.59 5.90 5.90 4.06
AvgMaxNPow 2.27 4.02 3.85 3.16

TotNPow 208.91 368.40 343.27 285.35
TotLength 135.41 189.26 148.18 143.84
TotLPow 114.86 192.71 136.16 128.53

All the results show that LRNG has better performance than
LMST and RNG. In other words, LRNG has less length cost
and power cost for broadcasting; it has smaller node power
to keep the connectivity. The messages used for constructing
LRNG are also less than the one of LMST. The simulation re-
sults confirm all of our theoretical analysis. Remember that
LRNG maybe spendO(nβ−1) times of power of the optimum
for broadcasting in the worst case. However, our simulations
show that the energy consumption of broadcasting based on
LRNG is within a small factor of that based on the MST and
is much better than the energy consumed based on RNG and
LMST. In summary, the LRNG is the best among all these
known local structures; additionally, it can approximate MST
theoretically and be used for energy efficient broadcasting.

V. CONCLUSION

We consider a wireless network composed ofn a set of wire-
less nodes distributed in a two dimensional plane. We pre-
sented the first localized method to construct a bounded de-
gree planar connected structure LRNG whose total edge length
is within a constant factor of that of the minimum spanning
tree, i.e.,ω(LRNG) = O(1) · ω(MST ). The total com-
munication cost of our method isO(n), and every node only
uses its two-hop information to construct such structure. We
showed that some two-hop information is necessary to con-
struct any low-weighted structure. We also studied the ap-
plication of this structure in efficient broadcasting in wireless
ad hoc networks. We showed that the energy consumption
using this structure is withinO(nβ−1) of the optimum, i.e.,

ωβ(LRNG) = O(nβ−1) · ωβ(MST ) for anyβ ≥ 1. This im-
proves the previously known “lightest” structure RNG byO(n)
factor sinceω(RNG) = Θ(n) · ω(MST ) andωβ(RNG) =
O(nβ) · ωβ(MST ). We also showed thatno localized method
can construct a structure such that the broadcasting based on
this structure consumes power within factoro(nβ−1) of the op-
timum.

On one aspect, a structure with low-weight does not guaran-
tee that it approximates the optimum broadcasting structure in
terms of the total energy consumption. On the other hand, a
structure for broadcasting whose total energy consumption is
within a constant factor of optimum does not guarantee that
it is low-weight. We can show that its total edge length is
within O(

√
n) of ω(MST ) for a n-nodes network. Consid-

ering this “non-relevance” of the low-weight structure and the
optimum broadcasting structure, it remains open how to con-
struct a topology that approximates the optimum broadcasting
structure using messageso(n log n).

The constructed structure is bounded degree, planar, and
low-weight. We [37] recently gave anO(n log n)-time cen-
tralized algorithm constructing a bounded degree, planar, and
low-weighted spanner. However, we cannot make that a dis-
tributed algorithm without sacrificing the spanner property [17].
It remains open how to construct a bounded degree, planar, and
low-weightedspannerin a distributed manner using onlyO(n)
communications under the local broadcasting communication
model.
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