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Abstract. Power assignment for wireless ad hoc networks is to assign a power for each
wireless node such that the induced communication graph has some required properties. Re-
cently research efforts have focused on finding the minimum power assignment to guarantee
the connectivity or fault-tolerance of the network. In this paper, we study a new problem of
finding the power assignment such that the induced communication graph is a spanner for
the original communication graph when all nodes have the maximum power. Here, a spanner
means that the length of the shortest path in the induced communication graph is at most
a constant times of the length of the shortest path in the original communication graph.
Polynomial time algorithm is given, for any property that can be tested in polynomial time
and is monotone [1], to minimize the maximum assigned power. We also give a polynomial
time approximation method to minimize the total transmission radius of all nodes. Finally, we
propose two heuristics and conduct extensive simulations to study their performance when we
aim to minimize the total assigned power of all nodes.

Keywords: Power assignment, spanner, wireless ad hoc networks.

1. Introduction

In this paper, we address the problem of finding minimum power assignment
in wireless ad hoc networks such that the induced communication graph
is a spanner of the communication graph when all nodes transmit at their
maximum power. In a wireless network, each wireless node has an omni-
directional antenna and a single transmission of a node can be received by
any node within its vicinity (called transmission range) which, we assume,
is a disk centered at this node. A wireless node can receive the signal from
another node if it is within the transmission range of the sender. Otherwise,
they communicate through multi-hop wireless links by using intermediate
nodes to relay the message. Larger transmission range of a wireless node
means more neighbors it can communicate directly, but it costs more energy.
Energy conservation is a critical issue in wireless ad hoc network for the
node and network life, as the nodes are powered by small batteries only.
Thus research efforts have focused on designing minimum-power-assignment
(or called minimum-transmission-range-assignment) algorithms for typical
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network tasks such as broadcast transmission [2, 3, 4, 5], routing [6], connec-
tivity [7, 8, 9, 10, 11], and fault-tolerance [12, 13, 14].

We consider a set V = {v1, v2, · · · , vn} of n wireless nodes distributed in
a two dimensional plane. We assume that the power wuv needed to support the
communication between two nodes u and v is a monotone increasing function
of the Euclidean distance ‖uv‖. In other words, wuv > wxy if ‖uv‖ > ‖xy‖
and wuv = wxy if ‖uv‖ = ‖xy‖. For example, in the literature it is often
assumed that wuv = c + ‖uv‖β , where c is a positive constant real number,
and real number β ∈ [2, 5] depends on the transmission environment. We
also assume that all nodes have omnidirectional antennas, i.e., if the signal
transmitted by a node u can be received by a node v, then it will be received
by all nodes x with ‖ux‖ ≤ ‖uv‖. In addition, all nodes can adjust the
transmission power dynamically. Specifically, each node u has a maximum
transmission power Emax and it can adjust its power to be exactly wuv to
support the communication to another node v. Consequently, if all wireless
nodes transmit in their maximum power, they define a network that has a link
uv iff wuv ≤ Emax. This communication graph is also called unit disk graph
(UDG). When nodes adjust their power dynamically, we say that a node u can
reach a node v in an asymmetric communication model if node u transmits at
a power at least wuv. Notice that here, in asymmetric communications, node
v may transmit at a power less than wvu and thus cannot reach u. We say that
a node u can reach a node v in a symmetric communication model if both
nodes u and v transmit at a power at least wuv. In this paper, we only concern
about symmetric communication model.

An observation of this model is that the network topology is entirely
dependent on the transmission range of each individual node. Links can be
added or removed when a node adjusts its transmission range. A power as-
signment P is an assignment of power setting P(vi) to wireless node vi.
Given a power assignment P , we can define an induced direct communication
graph

−→
GP in which there is a directed edge −→uv if and only if wuv ≤ P(u).

We define the induced undirected communication graph GP in which there is
an edge uv if and only if wuv ≤ P(u) and wuv ≤ P(v). We will hereby refer
GP to as the induced communication graph. If all wireless nodes transmit in
their maximum power Emax, the induced communication graph is called the
original communication graph (unit disk graph), which provides information
about all possible topologies, in accordance with characteristics of the wire-
less environment and node power constraints. In other words, all possible
achievable network topologies are subgraphs of the original communication
graph. On the other hand, given a subgraph G = (V, E) of the original
communication graph, we can also extract a minimum power assignment PG,
where PG(u) = max{v|uv∈E} wuv, to support the subgraph. We call this PG

an induced power assignment from G.
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Due to the importance of energy efficiency in wireless ad hoc networks,
minimum power assignment for different network issues have been addressed
recently. Research efforts have focused on finding the minimum power as-
signment so that the induced communication graph has some “good” prop-
erties in terms of network tasks such as disjoint paths, connectivity or fault-
tolerance. The minimum energy connectivity problem was first studied by
Chen and Huang [7], in which the induced communication graph is strongly
connected while the total power assignment is minimized. This problem has
been shown by them to be NP-hard. Recently, this problem has been heavily
studied and many approximation algorithms have been proposed when the
network is modelled by using symmetric links or asymmetric links [8, 9, 10,
11, 15]. Along this line, several authors [12, 13, 14] considered the minimum
total power assignment while the resulting network is k-strongly connected
or k-connected. This problem has been shown to be NP-hard too. Solving
this problem can improve the fault tolerance of the network. In [16, 17, 9],
Clementi et. al also considered the minimum energy connectivity problem
while the induced communication graph have a diameter bounded by a con-
stant h. In [1], Lloyd et. al proposed one general framework that leads to
an approximation algorithm for minimizing total power assignment. Using
the framework they proposed a new 2-connected approximation method for
power assignment. In [18], Krumke et. al also studied the minimum power
assignment so that networks satisfy specific properties such as connectivity,
bounded diameter and minimum node degree. Other relevant work in the area
of power assignment (or called energy-efficiency) includes energy-efficient
broadcasting and multicasting in wireless networks. The problem, given a
source node s, is to find a minimum power assignment such that the induced
communication graph contains a spanning tree rooted at s. This problem was
proved to be NP-hard. In [2, 3, 4, 5], they presented some heuristic solutions
and gave some theoretical analysis. Recently, Srinivas and Modiano [6] also
studied finding k-disjoint paths for a given pair of nodes while minimizing
the total node power needed by nodes on these k-disjoint paths. An excellent
survey of some recent theoretical advances and open problems on energy
consumption in ad hoc networks can be found in [19].

In this paper, we consider a new minimum power assignment problem
which is not studied previously. The problem is to find the optimum transmis-
sion power of each individual node such that 1) the induced communication
graph is a spanner of the original communication graph; 2) the total (or the
maximum) power of all nodes is minimized. Here, a subgraph H = (V, E′)
is a t-spanner of G = (V, E) if for every u, v ∈ V , the length (or weight) of
the shortest path between them in H is at most t times of the length of the
shortest path between them in G. The value of t is called the stretch factor or
spanning ratio. If it is bounded by a constant, we say H is a spanner of G.
Therefore, if the induced communication graph is a spanner of the original
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communication graph, then we guarantee there is a path between each pair of
nodes whose length or power consumption is similar or “not bad” compared
with the original possible ones when every node uses its maximum power.
This will benefit routing performance on the network topology a lot. Clearly,
for this problem, a necessary and sufficient condition that a solution exists is
that the unit disk graph is connected when all nodes transmit at the maximum
power Emax.

The rest of the paper is organized as follows. In Section 2, we present a
polynomial time algorithm to find the power assignment whose maximum
is minimized such that the induced communication graph is a spanner. In
Section 3, we present an O(1)-approximation algorithm to find the minimum
total radius assignment such that the induced communication graph is a span-
ner. In Section 4, we show that it is NP-hard to find the minimum total power
assignment such that the induced communication graph is a spanner. Then
we give two simple power assignment methods for this problem and present
the performances comparison of those two min-total power assignment al-
gorithms.We conclude our paper with discussions of possible future research
directions in Section 5.

2. Min-Max Power Assignment

The formal definition of minimum maximum power assignment (min-max
power assignment) problem is as follows:

Input: A set of n wireless node V , maximum node power Emax, and a real
constant t0 ≥ 1. Notice that given V and Emax, it induces the original
communication graph UDG.

Output: A power assignment P = {P(v1),P(v2), · · · ,P(vn)}.

Object: Minimize maxv∈V P(v) and guarantee that the induced graph GP

is a t0-spanner of UDG.

It is obvious that we can solve the min-max power assignment problem
in polynomial time by using a binary search scheme. It was proposed in
[1] by Lloyd et. al. Notice that since the problem only wants to minimize
the maximum node power, we only need consider the case when all nodes
are assigned the same power, say P(v). Clearly, we can use binary search
among all possible power assignments P(v) to find the minimum. We give
the classical method in Algorithm 1.

Here spanning ratio could be length or power spanning ratio. The correct-
ness of this algorithm is obvious. The running time of the first step is O(n2 +
m log m). Recall that the all-pairs shortest paths can be found in O(n2 log n+
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Algorithm 1 MIN-MAX POWER ASSIGNMENT

1. Building UDG:
Using V and Emax, we first build the unit disk graph UDG, where there is
an edge uv if and only if wuv ≤ Emax.
Then we sort weights of all edges uv ∈ UDG, and get all possible node
powers w1, w2, · · · , wm, where w1 < w2 < · · · < wm ≤ Emax and m ≤
n2 is at most the number of links in UDG.
2. Binary search:
Initially i = 1, and ki = �m

2 �, set the power of all nodes to be P(v) = wki .
repeat

a) Building GP :
Using V and P(v), build the induced communication graph GP , where
there is an edge uv if and only if wuv ≤ P(v).
b) Computing spanning ratio:
Call a shortest path algorithm to compute the spanning ratio t for GP

according the UDG.
c) Select new power P(v):
if t ≤ t0 then

ki+1 = ki − � m
2i+1 �,

else
ki+1 = ki + � m

2i+1 �.
end if
if ki+1 �= ki then

set the power of all nodes to be P(v) = wki+1 and i = i + 1.
end if

until ki+1 = ki

mn), so computing the spanning ratio of given graph GP costs O(n2 log n +
mn). The second binary search step will call the all-pairs shortest paths
log m = O(log n) times, thus, the overall time complexity is O(log n · n ·
(n log n + m)) = O(n2 log2 n + mn log n). Therefore, the running time of
our algorithm is at most O(n3 log n).

Notice that here the weight function wuv can be any weight functions,
such as Euclidean distance of a link or the power needed to support the com-
munication of the link. In addition, if we change the objective property of the
induced graph from spanner to other properties, as long as the property can
be tested in polynomial time and is monotone1 [1], we can solve min-max
power assignment problem in polynomial time. For example, we can find the
min-max power assignment while the induced graph is connected, or has k-

1 Here a property of the graph is monotone if the property continues to hold even when we
increase the powers assigned to some nodes and keep the powers assigned to the other nodes
unchanged.
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disjoint paths. However, some properties cannot be tested in polynomial time
(if N �= NP ), e.g., the induced graph is k-connected, and lengths of these k
paths are all bounded by some constant factor of the length of shortest path
in the original communication graph. In [1], Lloyd et. al gave an example
property ”G IS A TREE”, which can be tested in polynomial time and makes
the power assignment problem NP-complete even without any minimization
objective.

3. Radius Assignment

In this section we consider problem of finding a transmission radius assign-
ment such that the induced graph is a spanner and the total assigned radius
of all nodes is minimized. We call it min-total radius assignment problem
hereafter. There are two differences between min-total radius assignment and
min-max power assignment: 1) the weight function now is the Euclidean
length of the link, i.e. wuv = ‖uv‖; 2) we want to minimize the total as-
signed radius instead of the maximum node power of the network. The formal
definition of min-total radius assignment problem is as follows:

Input: A set of n wireless node V , maximum node radius Rmax, and a real
constant t0 ≥ 1. Notice that given V and Rmax, it induces the original
communication graph UDG.

Output: A radius assignment R = {R(v1),R(v2), · · · ,R(vn)}.

Object: Minimize
∑

v∈V R(v) and guarantee that the induced graph GR is
a t0-spanner of UDG.

This problem seems much harder than min-max power/radius assignment,
although it is still open whether it is a NP-hard problem. In this section, we
now present an O(1)-approximation algorithm for this problem, in which we
first construct a spanner using a method presented in [20, 21] and then bound
the total edge length of the structure using a greedy method in [22]. Our
algorithm is given in Algorithm 2.

For completeness of presentation, we review the methods of constructing
a bounded degree spanner with spanning ratio t1. We first divide the unit disk

centered at each node u into k-equal sized cones, where k ≥ π/arcsin 1−1/
√

t1
2 .

For each cone apexed at node u, we select the shortest link uv (the link −→uv
is directed actually). After processing all nodes, we have a directed graph
called Yao structure [25]. See Figure 1 (a) for an illustration. For each node v,
for each cone, we select the shortest incoming link −→uv, and then partition the
incoming neighbors locating inside this cone using the cone partition centered
at node u. Then select the closest such neighbor (say w) at each cone apexed
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Algorithm 2 Min-Total Radius Assignment
1. Building UDG:
Using V and Rmax, we build the unit disk graph, where there is an edge uv
if and only if wuv ≤ Rmax.
2. Building spanner:
Use the method by [20, 21] to build a

√
t0/t-spanner H of UDG where t

is a positive real constant smaller than t0.
3. Bounding weight:
Run the method in [22] to bound the total edge length of H while the
spanning ratio of the final structure is t0. The parameter of the greedy
method is α =

√
t0 · t. Clearly, the final structure (denoted by G) has

spanning ratio t0.
4. Radius assignment:
Extract the induced radius assignment RG, where RG(u) =
max{v|uv∈G} wuv, to support the subgraph.

at u and add link −→wu. Repeat the above procedure until all neighbors are
processed. See Figure 1 (b) for an illustration. The final structure by ignoring
the link direction is called YaoSink[21], which is a t1 spanner, and the node
degree is bounded by (k + 1)2 − 1. Notice that the length spanning ratio
of YaoSink is at most 1

(1−(2 sin π
k
))2

[21] and t1 ≥ 1
(1−(2 sin π

k
))2

due to the

selection of k.

u
u

w

v

(a) (b)

Figure 1. The structures of Yao and YaoSink, when k = 8. (a): The shortest edge in each cone
is added as a neighbor of u for Yao. (b): The sink structure is built recursively by the center v.

We then review the greedy method with parameter α to bound the total
edge length of a t1-spanner. Consider any sparse spanner G with spanning
ratio t1 on a point set. Initialize the final structure H to be empty. We first
add all edges in G with length at most D/n to H , where D is the diameter
of the point set. Then we process the remaining edges of G in the increasing
order of their lengths. An edge uv ∈ G is added to H if there is no path in
H connecting u and v with length ≤ α‖uv‖. Gudmundsson et al. [22] gave a
method to perform such query efficiently by bucketing the remaining edges of
G into log n groups. It is proven that the final structure H has spanning ratio
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α · t1 and its total edge length is at most O(w(EMST )), where w(EMST )
is the total edge length of Euclidean MST. Generally, for a general weighted
graph G = (V, E, w), let w(G) =

∑
uv∈G wuv, where wuv is the weight

of link uv. When the weight is the Euclidean distance, the weight function
is omitted hereafter. The weight of a node u in the weighted graph G =
(V, E, w) is P(u) = maxuv∈E wuv, and the total node weight of the graph is
P(G) =

∑
u∈V P(u).

Algorithm 2 has running time O(n log n) (after UDG is built) since re-
maining steps have running time at most O(n log n) [20, 21, 22]. Obviously,
the summation of radii assigned to all nodes is at most 2w(G), which is still
at most O(w(EMST )).

We then show that the lower bound of min-total radius assignment is
w(EMST ). Generally, the total power assignment P(G) based on any weighted
graph G, to guarantee the connectivity, satisfying the following condition

w(EMST (G)) ≤ P(G).

Notice that the communication graph induced by the power assignment PG

is connected. We root the tree EMST (G) at an arbitrary node. For any link
uv ∈ EMST (G) where u is the parent of v, we associate link uv to node v,
and call uv as A(v). The definition is valid since each node can only have one
parent. Clearly, w(EMST (G)) =

∑
u w(A(u)). On the other hand, P(u) is

at least the weight of the link A(u). Consequently,

w(EMST (G)) =
∑

u

w(A(u)) ≤
∑

u

P(u).

Since the min-total radius assignment produces a communication graph with
bounded spanning ratio, it clearly guarantees the connectivity of the induced
communication graph. Thus, we have the following lemma and theorem.

LEMMA 1. The optimum radius assignment for min-total radius assignment
problem has total radius at least w(EMST ).

THEOREM 2. Algorithm 2 gives a solution that is within a constant factor
of the optimum.

Obviously, we can find a bounded degree subgraph with the same span-
ning ratio of the communication graph induced by the radius assignment
calculated by Algorithm 2. If we want to find a subgraph of the induced
communication graph with some additional properties such as planar, fault-
tolerance, we have to replace the second step of Algorithm 2 by some other
spanners. For example, Li and Wang [23] gave a method to construct a planar
spanner with bounded degree. Recently, Czumaj and Zhao [24] also proposed
a k-vertex fault-tolerant spanner whose total cost is O(k2 · w(EMST )).

minpower-spanner-jco.tex; 22/06/2005; 17:11; p.8



9

4. Min-Total Power Assignment

Finally, we consider the minimum total power assignment (min-total power
assignment) problem which is defined as follows.

Input: A set of n wireless node V , maximum node power Emax, and a
real constant t0 ≥ 1. Given V and Emax, it induces the original commu-
nication graph UDG. Here, the weight function of a link uv becomes
wuv = ‖uv‖2 (β = 2).

Output: A power assignment P = {P(v1),P(v2), · · · ,P(vn)}.

Object: Minimize
∑

v∈V P(v) and guarantee that the induced graph GP is
a t0-spanner of UDG.

Clearly, this problem is a NP-hard problem since the minimum energy
connectivity problem is the special case of the minimum total power as-
signment problem in which t0 is chosen sufficiently large. Remember the
minimum total power assignment problem for connectivity is NP-hard [7].
Although there are several constant approximation methods for the minimum
total power assignment problem for connectivity, it is still an open problem
whether we can find a constant approximation algorithm for the minimum
total power assignment problem with bounded spanning ratio. In this paper,
we give two simple heuristic algorithms.

Our first approach is a simple greedy heuristic algorithm.

Algorithm 3 GREEDY MIN-TOTAL POWER ASSIGNMENT

1. Building UDG:
Using V and Emax, we first build the unit disk graph UDG.
2. Sorting UDG edges:
Sorting edges in UDG according their weights, get e1, e2, · · · , em, where
we1 ≤ we2 ≤ · · · ≤ wem ≤ Emax.
3. Greedy method:
Initialize G to be an empty graph. Following the increasing order, add an
edge ei = uv to G if and only if no path in G (already added edges) with
total power no more than t0 · ‖uv‖2.
4. Power assignment:
Extract the induced power assignment PG, where PG(u) =
max{v|uv∈G} wuv.

The running time of the first step is O(n2). Sorting the edges takes O(m log m).
Recall that the single source shortest path algorithm can be done in O(n log n+
m). The greedy step calls at most m times shortest path algorithm, so the cost
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is O(n2 log n + mn). The last step takes at most O(m), thus, the total costs
is O(n2 +m log m+n2 log n+mn+m) which is O(n3) when m = O(n2).

The second method is based on Yao graph. The Yao graph [25] with an
integer parameter k ≥ 6, denoted by

−−→
Y Gk(G), is defined as follows. At each

node u, any k equally-separated rays originated at u define k cones. In each
cone, choose the shortest edge uv among all edges from u, if there is any,
and add a directed link −→uv. Ties are broken arbitrarily. The resulting directed
graph is called the Yao graph. See Figure 1 (a) for an illustration. Let Y Gk(G)
be the undirected graph by ignoring the direction of each link in

−−→
Y Gk(G).

Li et al. [21] proved the power stretch factor of the Yao graph Y Gk(V ) is at
most 1

1−(2 sin π
k
)2

. The idea of our second method is to construct the t0-spanner

based on Yao structure. Consider UDG, for each node, we partition the disk
into cones, and select the shortest edge of UDG in each cone. The number of
cones k is chosen so that the power spanning ratio is t0, i.e. 1

1−(2 sin π
k
)2

≤ t0.

Thus, k ≥ π/arcsin
√

1−1/t0
2 . Notice, in Yao graph the cone partition does

not need to be aligned. Therefore, we can choose a rotation for each node
such that the maximum chosen incident link is the smallest. Obviously, there
are only du different rotations that may produce different power assignments
at node u, du is the degree of the node u in UDG.

Algorithm 4 YAO-BASED MIN-TOTAL POWER ASSIGNMENT

1. Building UDG:
Using V and Emax, we first build the unit disk graph UDG.
2. Building Yao graph:

Set k ≥ π/arcsin
√

1−1/t0
2 , apply Y Gk on UDG. For each node u, assume

that it has du edges uv1, uv2, · · · , uvdu in UDG. Then for each edge uvi,
we can assign a cone partition Ci (one of the cones started at link uvi). We
test Yao structure of u for all the du cone partitions Ci, and select the one
whose maximum chosen link incident is the smallest. Then the union of
the Yao structures of all nodes forms a graph G.
3. Power assignment:
Extract the induced power assignment PG, where PG(u) =
max{v|uv∈G} wuv.

The running time of the first step and last are the same with those of the
previous algorithm. The total time of building one Yao graph takes O(m). In
our algorithm, we build at most du Yao structures at node u, so totally at most
maxu(du) Yao graph. Therefore, the cost is at most O(mn). Then, the total
costs of Yao-based algorithm is O(mn), which is O(n3) when m = O(n2). It
seems that running time of this second algorithm is similar with the first one.
However, this algorithm is much faster than the first one practically , and more
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importantly it can be performed in a localized way. Remember for each node
to building one Yao structure, it only takes at most O(du). So at each node,
building du Yao structures takes at most O(d2

u). And since this algorithm can
be done locally, it is quite suitable for wireless ad hoc networks.

Originally, we was planning using a subgraph of UDG called Gabriel
graph [26] (GG) to save some computation in our algorithms. Let disk(u, v)
be the disk with diameter uv. The Gabriel graph contains an edge uv from
UDG if and only if disk(u, v) contains no other nodes w ∈ V . In [21], Li
et. al proved Gabriel graph is a power spanner and its power stretch factor
is one. Therefore, we first conjectured that it is enough to only consider the
power assignment induced from subgraphs of the Gabriel graph instead of
considering all possible subgraphs of UDG. However, we construct a counter
example to disprove the following conjecture.

y

u v

zw

x y

u v

zw

x y

u v

zw

x

(a) UDG (b) GG (c) OPT

Figure 2. A counter-example for Conjecture 3. (a): the unit disk graph. (b): the Gariel graph.
(c): the induced communication graph from the optimum power assignment

CONJECTURE 3. The optimum power assignment is induced from some
connected subgraph H of GG.

DISPROOF. Assume that we have six wireless nodes and they are distributed
as in Figure 2 (a). And when all nodes transmit at their maximum power, the
communication graph (the unit disk graph) is shown in Figure 2 (a). Notice
that ||xu|| = |yv|| > ||uv|| > ||wz|| > ||uw|| = ||vz||. Since node w
and z are inside the disk(u, v), from the definition of GG, we know uv are
removed in GG. Figure 2 (b) shows the Gabriel graph. The power assignment
induced from GG will be P(u) = P(v) = P(x) = P(y) = ||xu||2 and
P(w) = P(z) = ||wz||2. Therefore, the total power assignment is PGG =
4||xu||2 + 2||wz||2. However, in the optimum power assignment shown in
Figure 2 (c), since the power at node u needs to cover x, it is strong enough to
connect u to v. Thus, link wz is removed in the optimum power assignment
OPT. The power assignment induced from OPT will be P(u) = P(v) =
P(x) = P(y) = ||xu||2 and P(w) = P(z) = ||uw||2. Clearly, the total
power assignment POPT = 4||xu||2 + 2||uw||2 is less than the one induced
from GG. Also it is easy to see there are no connected subgraphs H of GG
that can induce the optimum power assignment, since for this special case we
cannot remove any edge in GG while still keep it connected.
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UDG Greedy method Yao method MST method

Figure 3. Different induced communication graphs under the different power assignments
from the same original communication graph (UDG).

Table I. Total assigned power and spanning ratios of graphs induced by power assignment methods.

MST GREEDY YAO

Avg Total-Power (P(G)) 78.92 106.72 366.21

Avg P(G)/P(UDG) 0.126 0.170 0.585

Avg P(G)/P(MST ) 1.00 1.352 4.65

Max P(G)/P(MST ) 1.00 1.650 5.53

Avg Spanning Ratio 1.424 1.060 1.000

Max Spanning Ratio 14.84 1.999 1.097

Since we do not give the theoretical performance analysis for our min-total
power assignment heuristics, we conducted extensive simulations of both
min-total power assignment methods. In experiments, we randomly generate
a set V of n wireless nodes and its UDG(V ), and test the connectivity of
UDG(V ). If it is connected, we apply these two min-total power assignment
methods and also the MST-based method to assign power for each node. Then
we compare the total power of the final power assignments.

In the first simulation, we generate 100 random wireless nodes in a 10×10
square; the spanner parameter t0 = 2; and the maximum power is 2.5. We
generate 100 vertex sets V (each with 100 nodes) and then apply the min-total
power assignment methods for each of these 100 vertex sets. The average and
the maximum are computed over all these 100 vertex sets. Figure 3 gives an
example of the original communication graph and different induced commu-
nication graphs by different min-total power assignment methods. It is clear
that Yao-based method keeps more links than others. Table I compares the
performances of our methods with the performance of the power assignment
based on MST. Remember that, it is already known [7, 8, 9] that the power
assignment based on MST is within twice of the optimum power assignment
for connectivity only. In this paper, we are interested in power assignment
such that the induced communication graph is a spanner and we also proved
in Section 3 that the optimum min-total power assignment has a lower bound
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w(MST (UDG)). From Table I, we found that the total power assignment
by greedy-based and Yao-based methods are within small constant factor
of w(MST (UDG)). Also both the power assignment methods save many
energy compared with UDG (i.e. every node uses the maximum transmission
power). Notice that the spanning ratio of the communication graph induced
from the power assignment induced from MST is large (almost 15 in the
worst case) while the communication graph induced by our power assignment
methods has spanning ratios less than 2.
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Figure 4. Results when the number of nodes in the networks are different (from 50 to 300).
Here the maximum transmission range is set as 2.5.

We then vary the number of nodes in the region from 50 to 300. The
maximum transmission range is still set as 2.5. We plot the performances
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(with the same six metrics in Table I) of all structures in Figure 4. We also
conduct experiments where we fix the number of nodes and vary the max-
imum transmission range. The results are similar. Due to space limit, we
ignore those results here. All the results show that the spanning ratios of
communication graphs induced by our greedy-based and Yao-based power
assignment methods are satisfied with the input requirement while the one by
MST-based method maybe large. Moreover, the total power assignments by
our new methods are within small constant factor of w(MST (UDG)), even
though we do not have theoretical results for its approximation ratios. Yao-
based method keeps more links and spends more power, however it is easy
to perform and can be run locally. In practice, both of our min-total power
heuristics are suitable for power assignment tasks in ad hoc networks.

5. Conclusion

In this paper, we studied the power assignment for wireless ad hoc networks
such that the induced communication graph is a spanner for the original
communication graph when all nodes have the maximum power. Polynomial
time algorithm was given, for any property that can be tested in polynomial
time and is monotone, to minimize the maximum assigned power. We also
proposed a polynomial time approximation method to minimize the total
transmission radius of all nodes. We gave two heuristics and conducted ex-
tensive simulations to study their performance when we want to minimize
the total assigned power of all nodes. For future work, we would like to know
if the min-total radius assignment is NP-hard and to design approximation
algorithms for min-total power assignment problem.

References

1. E. L. Lloyd, R. Liu, M. V. Marathe, R. Ramanathan, S. S. Ravi, Algorithmic aspects of
topology control problems for ad hoc networks, in: Proc. of the 3rd ACM international
symposium on Mobile ad hoc networking & computing, 2002.

2. P.-J. Wan, G. Calinescu, X.-Y. Li, O. Frieder, Minimum-energy broadcast routing in
static ad hoc wireless networks, ACM Wireless Networks 8 (6) (2002) 607–617.

3. A. Clementi, P. Crescenzi, P. Penna, G. Rossi, P. Vocca, On the complexity of computing
minimum energy consumption broadcast subgraphs, in: 18th Annual Symposium on
Theoretical Aspects of Computer Science, LNCS 2010, 2001, pp. 121–131.

4. J. Wieselthier, G. Nguyen, A. Ephremides, On the construction of energy-efficient
broadcast and multicast trees in wireless networks, in: Proc. IEEE INFOCOM 2000.

5. G. Huiban, Y. C. Verhoeven, A self-stabilized distributed algorithm for the range
assignment in ad-hoc wireless networks, Soumis à Parallel Processing Letters.
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11. E. Althaus, G. Cǎlinescu, I. Mandoiu, S. Prasad, N. Tchervenski, A. Zelikovsly,
Power efficient range assignment in ad-hoc wireless networks, in: IEEE Wireless
Communications and Networking Conference (WCNC03), 2003.

12. M. Hajiaghayi, N. Immorlica, V. S. Mirrokni, Power optimization in fault-tolerant topol-
ogy control algorithms for wireless multi-hop networks, in: Proc. of the 9th annual
international conference on Mobile computing and networking, 2003, pp. 300–312.

13. G. Cǎlinescu, P.-J. Wan, Range assignment for high connectivitity in wireless ad hoc net-
works, in: 2nd International Conf. on AD-HOC Networks and Wireless (AdHoc-Now),
2003.

14. J. Cheriyan, S. Vempala, A. Vetta, Approximation algorithms for minimum-cost k-
vertex connected subgraphs, in: Proc. of the 34th annual ACM symposium on Theory of
computing, 2002.

15. R. Ramanathan, R. Hain, Topology control of multihop wireless networks using transmit
power adjustment, in: IEEE INFOCOM (2), 2000, pp. 404–413.

16. A. E. F. Clementi, A. Ferreira, P. Penna, S. Perennes, R. Silvestri, The minimum range
assignment problem on linear radio networks, in: European Symposium on Algorithms,
2000, pp. 143–154.

17. A. Clementi, P. Penna, R. Silvestri, The power range assignment problem in radio net-
works on the plane, in: XVII Symposium on Theoretical Aspects of Computer Science
(STACS’00), LNCS(1770):651–660, 2000.

18. S. O. Krumke, R. Liu, E. L. Lloyd, M. V. Marathe, R. Ramanathan, S. S. Ravi, Topology
control problems under symmetric and asymmetric power thresholds, in: ADHOC-NOW
2003, 2003, pp. 187–198.

19. A. E. Clementi, G. Huiban, P. Penna, G. Rossi, Y. C. Verhoeven, Some recent theoretical
advances and open questions on energy consumption in ad-hoc wireless networks, in:
3rd Workshop on Approximation and Randomization Algorithms in Communication
Networks, 2002.

20. S. Arya, G. Das, D. Mount, J. Salowe, M. Smid, Euclidean spanners: short, thin, and
lanky, in: Proc. 27th ACM STOC, 1995, pp. 489–498.

21. X.-Y. Li, P.-J. Wan, Y. Wang, Power efficient and sparse spanner for wireless ad hoc
networks, in: IEEE Int. Conf. on Computer Communications and Networks, 2001.

22. J. Gudmundsson, C. Levcopoulos, G. Narasimhan, Improved greedy algorithms for con-
structing sparse geometric spanners, in: Scandinavian Workshop on Algorithm Theory,
2000, pp. 314–327.

23. X.-Y. Li, Y. Wang, Efficient construction of bounded degree planar spanner, International
Journal of Computational Geometry and Applications 14(1-2) (2004) 69–84.

24. A. Czumaj, H. Zhao, Fault-tolerant geometric spanners, in: Proceedings of the 19th
conference on Computational geometry, ACM Press, 2003, pp. 1–10.

25. A. C.-C. Yao, On constructing minimum spanning trees in k-dimensional spaces and
related problems, SIAM J. Computing 11 (1982) 721–736.

26. K. Gabriel, R. Sokal, A new statistical approach to geographic variation analysis,
Systematic Zoology 18 (1969) 259–278.

minpower-spanner-jco.tex; 22/06/2005; 17:11; p.15




