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Abstract—In this paper, we study the multicast capacity of
a large scale random wireless network. We consider extended
multihop networks, where a number of wireless nodes are
randomly located in a square region with side-length a =

√
n, by

use of Poisson distribution with density 1. All nodes transmit at
a constant power P , and the power decays along the path with
attenuation exponent α > 2. The data rate of a transmission
is determined by the SINR as B log(1 + SINR), where B
is the bandwidth. There are ns randomly and independently
chosen multicast sessions. Each multicast session has k randomly
chosen terminals. We show that, when k ≤ θ1

n
(log n)2α+6 , and

ns ≥ θ2n
1/2+β , the capacity that each multicast session can

achieve, with high probability, is at least c8

√
n

ns
√

k
, where θ1, θ2,

and c8 are some special constants and β > 0 is any positive
real number. We also show that for k = O( n

log2 n
), the per-flow

multicast capacity under Gaussian channel is at most O(
√

n

ns
√

k
)

when we have at least ns = Ω(log n) random multicast flows. Our
result generalizes the unicast capacity [3] for random networks
using percolation theory.

Index Terms—Wireless ad hoc networks, capacity, multicast,
unicast, scheduling, Gaussian channel, percolation theory.

I. INTRODUCTION

In many applications, e.g., wireless sensor networks, we
often need an estimation on the (asymptotic) achievable
throughput when we randomly deploy n wireless nodes in
a given region. The main purpose of this paper is to study the
asymptotic capacity of large scale random wireless networks
where a large number of nodes are randomly placed in the
deployment region, when we choose the best protocols for
all layers. Due to spatial separation, several wireless nodes
can transmit simultaneously provided that these transmissions
will not cause destructive wireless interferences to any of the
simultaneous transmissions. To describe when a transmission
is received successfully by its intended recipient, a number
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of interference models have been proposed and studied in the
literature, which include the following models.

1) Protocol Interference Model (PrIM) [7]: In this model,
a transmission by a node vi is successfully received by an in-
tended target vj iff node vj is sufficiently apart from the source
of any other simultaneous transmission, i.e., ‖vk − vj‖ ≥
(1 + η)‖vi − vj‖ for any simultaneously transmitting node
vk 6= vi. Here η is a constant depending on the environment.

2) Fixed-Power Protocol Interference Model (fPrIM):
Here each node v ∈ V has a fixed constant transmission range
r and an interference range R ≥ r. A node u can successfully
receive a transmission from another node v iff (1) ‖u−v‖ ≤ r,
and (2) there is no other node w with ‖w−u‖ ≤ R and node
w is transmitting simultaneously with node v. Here ‖w − u‖
is the Euclidean distance between w and u.

3) Physical Interference Model(PhIM): At any time,
given a set of simultaneously transmitting nodes A =
{u1, u2, · · · , ua}, a node v can successfully receive the signal
from a sender u ∈ A iff SINR = Pu·`(u,v)

N0+
∑a

i=1 Pui
`(ui,v) ≥ σ.

Here σ is a threshold for SINR, Pui is the transmission power
of node ui, 0 < `(ui, v) ≤ 1 is the path loss of signal
propagation, and N0 > 0 is the variance of background noise.

4) Gaussian Channel Model (GCM): At any time,
given a set of simultaneously transmitting nodes A =
{u1, u2, · · · , ua}. a node v can successfully receive the signal
from a sender u at a data rate ≤ B log(1 + SINR), where
SINR = Pu·`(u,v)

N0+
∑a

i=1 Pui
`(ui,v) and B is the bandwidth of the

channel.
In the first three of the preceding models (PrIM, fPrIM,

PhIM), when the transmission is successful, each wireless
node can transmit at W bits/second over a common wireless
channel. The unicast capacity for large scale random wireless
networks has been extensively studied. The ground breaking
work by Gupta and Kumar [7] has shown that, (1) for large
scale random networks of n nodes inside a unit square, the
asymptotic per-flow unicast capacity with n random flows is
Θ(W/

√
n log n) under fPrIM, (2) for networks where nodes

are arbitrarily located (not necessarily randomly placed) in a
unit square, when each node wishes to communicate to a des-
tination located at a nonvanishingly small distance away, the
amount of information that can be exchanged by each source-
destination pair must go to zero, as n → ∞, at least at rate
Θ(W/

√
n) under PrIM or PhIM. This result was originally

proved as the consequences of the interference model used
(fPrIM or PhIM with assumption `(u, v) = 1/‖u − v‖α for
a constant α > 2) [7]. It has later been extended to hold in
a more general information theoretic setting [27]. Gupta and
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Kumar [7] also showed that when nodes are randomly located
in a unit square area, each source-destination pair can achieve
a bit rate only of order Θ(1/

√
n log n), by using a specific

multihop strategy, when fPrIM or PhIM models are used.
Under Gaussian channel model, using multihop transmission,
pairwise coding and decoding at each hop, and a TDMA
scheme, Franceschetti et al. [3] shows that a rate Ω(1/

√
n)

is achievable in networks of randomly located nodes. Then
consequently claimed that there is no gap between the capacity
of randomly located, and arbitrarily located nodes, at least up
to a constant scaling. Observe that these two results [3], [7]
used two different channel models.

In this paper, we will concentrate on the multicast capacity
of random wireless networks, which generalizes the unicast
capacity [7] for random networks. We assume that a set
of wireless nodes V = {v1, v2, · · · , vn, · · · } are randomly
distributed (with Poisson distribution of rate 1) in a square
region Bn with a side-length a =

√
n and all nodes transmit

at a constant power P . Assume that a subset S ⊆ V of
ns = |S| random nodes will serve as the source nodes
of ns multicast sessions. We randomly and independently
choose ns multicast sessions as follows. To generate the i-
th (1 ≤ i ≤ ns) multicast session, k points pi,j(1 ≤ j ≤ k)
are randomly and independently chosen from the deployment
region Bn. Let vi,j be the nearest wireless node from pi,j (ties
are broken randomly). In the i-th multicast session, vi,1 will
multicast data to k − 1 nodes Ui = {vi,j | 2 ≤ j ≤ k} at
an arbitrary data rate λi. The aggregated multicast capacity
with S = {v1,1, v2,1, · · · , vns,1} as roots for a network is
defined as Λk,S(n) =

∑
vi∈S λi when there is a schedule of

transmissions such that all multicast flows will be received by
their destination nodes successfully within a finite delay. Sim-
ilarly, we define the minimum per-flow multicast throughput
(or capacity) as λk,S(n) = minvi∈S λi. Our result will show
how the multicast capacity of wireless networks scale with
the number of nodes in the networks, or scale with the size
of multicast group.

Multicast capacity of random networks has also been in-
vestigated recently. Using fixed-power protocol interference
model fPrIM, Li et al. [15] and Shakkottai et al. [22] showed
that, when there are ns multicast flows and each multicast
flow will have k randomly chosen receivers, the per-flow
multicast capacity of ns flows for random networks is of
order Θ( W

√
n

ns

√
k log n

) when k = O(n/ log n), and is of or-
der Θ(W/ns) when k = Ω(n/ log n) [15], [16]. Although
protocol interference model can approximate the interference
to some extent, experiment studies show that they are still
much different from the practice. In this paper, we study
the asymptotic network capacity using the Gaussian Channel
model. For presentation simplicity, we assume that there is
only one channel in the wireless networks. As always, we
assume that the packets are sent from node to node in a multi-
hop manner until they reach their final destinations. Unlike the
PrIM, fPrIM, and PhIM models, there is no upper bound on the
distance between the sending node and the receiving node in
Gaussian channel model. The packets could be buffered at in-
termediate nodes while awaiting for transmission. Intermediate

nodes can only store and forward packets (no other operations
such as network coding are allowed here). We assume that
the buffer is large enough so packets will not get dropped
by any intermediate node. We leave it as a future work to
study the scenario when network coding is permitted, the
buffers of intermediate nodes are bounded by some values.
In some results, we assume that every intermediate node have
an infinite buffer size. For most of the results presented here,
the worst delay of the routing is not considered, i.e., the delay
in the worst case could be arbitrarily large for some results.

Our Main Contributions: This paper shows that a per-
flow multicast rate Θ(1/

√
nk) is achievable in networks of n

randomly located nodes in a square region Bn =
√

n × √n.
Specifically, we will prove the following main theorems.

Theorem 1: When k ≤ θ1
n

(log n)2α+6 and ns ≥ θ2n
1/2+β

for some constants θ1,θ2 and and any positive real number β,
with high probability1, each multicast source node can send
data to all its intended receivers with rate at least

λk,S(n) ≥ c8

√
n

ns

√
k

. (1)

Here c8 is a constant depending on α > 2, θ1 and θ2.
In terms of capacity upper bound, we proved that
Theorem 2: Under Gaussian channel model, the per-session

multicast throughput for ns = Θ(n) random flows in random
networks in Bn is at most of order{

O( 1√
kn

) when k : [1, n
(log n)α ]

O( 1

k(log n)
α
2

) when k : [ n
(log n)α , n] (2)

Here we use k : [f(n), g(n)] to denote that k = Ω(f(n))
and k = O(g(n)). Our results imply that for multicast
under Gaussian channel model, if only relay and forwarding
is allowed, the achievable per-session rate is asymptotically
proportional to Θ(

√
n

ns

√
k
) when k = O( n

(log n)6+2α ), i.e.,
not too large. The increase in the number of receivers will
only decrease the throughput in the order of 1/

√
k for 2-

dimensional wireless networks. Observed that, we do not know
whether the boundary on k is tight such that the achievable
per-session multicast rate is of order Θ(

√
n

ns

√
k
). We think that

the boundary most likely is not tight and we want to know
what is the tight asymptotic largest k such that this rate is
still achievable. Recall that for protocol model, Li et al. [15]
derived a tight bound on k when two regimes of multicast
capacity are separated: k = O( n

log n ) and k = Ω( n
log n ). When

k = Ω( n
log n ), in protocol model, they [15] showed that, w.h.p.,

a constant fraction of cells (with constant side length) will have
receivers, thus, multicast is asymptotically same as broadcast.
We conjecture that Θ( n

log n ) will also be a separation point on
the value k in deriving different capacity regimes for multicast
under Gaussian channel model. Also notice that the hidden
constants in all our formulas are not tight. We believe that
a more careful analysis will further narrow the difference
between the asymptotic upper bound and asymptotic lower
bound on the capacity.

1Here an event is said to happen with high probability (w.h.p.), if for any
0 < ε < 1, there is a large integer N (typically N = 1/ε) such that for any
random network of size at least N , the probability that the event happens is
at least 1− ε.
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Compared with [15], [22], studying the multicast capacity
with Gaussian channel model requires new technical insights.
Our result is derived based on the highway system that can
be formed by use of percolation theory. The upper bound on
asymptotic per-flow unicast capacity implied by Theorem 2
(when k = 2) shows that the unicast capacity achieved by [3]
is indeed asymptotically optimal, and thus finally closes the
gap between the upper and lower bounds of unicast capacity
when Gaussian link model is used.

The rest of the paper is organized as follows. In Section
II, we briefly describe the network and system model used
throughout the paper. Our routing strategy that can achieve
asymptotic optimal multicast capacity is presented in Section
III. We present the theoretic analysis in Section IV and present
a matching upper bound for asymptotic per-flow multicast
capacity in Section V when the number of receivers k is small.
We review the related work in Section VI and conclude the
paper in Section VII.

II. NETWORK AND SYSTEM MODEL

Consider a square region Bn of side-length
√

n. We ran-
domly place a number of nodes inside this square region by use
of Poisson distribution with rate % = 1, i.e., the probability that
a region Z ⊆ Bn has i ≥ 0 nodes is e−%|Z|(%|Z|)i

i! . Here |Z| is
the area of the region Z. Assume that each node will transmit
at a constant power P , and node vj receives the transmitted
signal from vi with power P · `(d(vi, vj)), where d(vi, vj)
is the Euclidean distance between vi and vj , and `(x) is the
transmission loss during a path of length x. In this paper, we
consider the attenuation function

`(x) = min{1, x−α},
where the constant α > 2. In a Gaussian channel model, the
rate of a transmission from node vi to node vj is

R(vi, vj) = B log

(
1 +

S(vi, vj)

N0 + I(vi, vj)

)

= B log

(
1 +

P · `(d(vi, vj))

N0 +
∑

k 6=i,vk∈A P · `(d(vk, vj))

)

where A is the set of nodes transmitting simultaneously with
node vi, B is the channel bandwidth, N0 > 0 is the variance
of background noise, I(vi, vj) is the total interference at the
receiving node vj when vi is communicating with vj , and
S(w, v) is the strength of signal (sent by w and received
at v). When a node vi simultaneously sends data to a set
of receivers D, the data rate that it can communicate is
R(vi,D) = minvj∈D R(vi, vj).

Assume that there are ns multicast sessions. We randomly
choose ns nodes to be the sources of the multicast sessions.
For each source node, we will choose k − 1 nodes to be its
intended receivers. The source nodes and their receivers are
chosen using the the process described in Algorithm 1.

In Algorithm 1, different multicast sessions may have the
same source, and two receivers of a multicast session may be
the same. A source node may be also an intended receiver of
itself. These may confuse us when considering the multicast
rate. Therefore, it is necessary to clarify them. If two receivers

Algorithm 1 Process for selecting ns multicast sessions
1: for i ← 1, 2, · · · , ns do
2: for j ← 1, 2, · · · , k do
3: Randomly choose a point pi,j in Bn.
4: Choose a node vi,j from V that is closest to pi,j

5: end for
6: Let vi,1 be a source node and vi,2, vi,3, · · · , vi,k be its

intended receivers.
7: end for

of a multicast session are the same, i.e, vi,j1 = vi,j2 , we can
simply remove one of them. To notice that, a node can transmit
data to itself with an arbitrary large rate. However, things
are different when considering the set of ns sources. If the
sources of two multicast sessions are the same, we must treat
them separately. Notice that both the transmitted data and the
intended receivers of the two multicast sessions are different.
We can not combine the receivers of these two multicast
sessions together either. One reason we choose the sources
and receivers for each multicast session using Algorithm 1
is that we need the multicast sessions to be independently
chosen when we analyze the achieved multicast capacity by
our protocol using VC-dimension and VC-theorem.

Given a random wireless network of n nodes and
the set S of ns = |S| source nodes, let λS =
(λi1 , λi2 , · · · , λins−1 , λins

) be the rate vector of the multicast
data rate of all ns multicast sessions. Here λij is the data
rate of node vij ∈ S, for 1 ≤ j ≤ ns. In other words, we
do not assume that all nodes will serve as the source of a
multicast session. When given a fixed network G = (V,E),
where the node positions of all nodes V , the set S of ns source
nodes, the set of receivers Ui for each source node vi, and the
multicast data rate λi for each source node vi are all fixed,
we first define what is a feasible rate vector λ for the network
G. A multicast rate vector λS bits/sec is feasible if there is
a spatial and temporal scheme for scheduling transmissions
such that by operating the network in a multi-hop fashion and
buffering at intermediate nodes when awaiting transmission,
every node vi can send λi bits/sec on average to its chosen
k − 1 destination nodes. That is, there is a T < ∞ such that
in every time interval (with unit seconds) [(i − 1) · T, i · T ],
every node vi ∈ S can send T · λi bits to its corresponding
k − 1 receivers Ui w.h.p..

The total throughput of such feasible rate vector for multi-
cast is defined as Λk,S(n) =

∑
vi∈S λi. The average per-flow

multicast throughput is λa
k,S(n) =

∑
vi∈S λi/ns. The mini-

mum per-flow multicast throughput is λk,S(n) = minvi∈S λi,
where k is the total number of nodes in each multicast session,
including the source node. When S is clear from the context,
we drop S from our notations. When we mention per flow
multicast capacity, hereafter we mean the minimum per flow
multicast capacity, if not explained otherwise. An aggregated
multicast throughput Λk(n) bits/sec is feasible for ns multicast
sessions (each session with k terminals) if there is a rate
vector λS = (λi1 , λi2 , · · · , λins−1 , λns) that is feasible and
Λk(n) =

∑
vi∈S λi. Similarly, we say λk(n) = minvi∈S λi is

a feasible per-flow multicast throughput.
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Definition 1 (Capacity of Random Networks): We say that
the multicast capacity per flow of a class of random networks
is of order Θ(f(n)) bits/sec if there are deterministic constants
c > 0 and c < c′ < +∞ such that

lim
n→∞

Pr (λk(n) = cf(n) is feasible) = 1

lim inf
n→∞

Pr (λk(n) = c′f(n) is feasible) < 1

Here the probability is computed using all possible random
networks formed by n nodes distributed in a square Bn. We
will study the per-flow multicast capacity under Gaussian
channel model, instead of the fPrIM used in [15], [22].

III. OUR SOLUTION

In this section, we will first present several technical lemmas
that will be used in our latter analysis; then we briefly review
the highway system proposed in [3]; we then present our
multicast method based on the highway system; we finally
analyze the performance of our multicast method.

A. Technical Lemmas

To study the asymptotic multicast capacity, we first present
some technical lemmas that are essential for the analysis. Our
first lemma shows that, if the fixed range protocol model
exclusion rules are respected, then some predetermined rate
is achievable on each active link under the Gaussian channel
model. Later we will present our routing and scheduling,
where these exclusion rules are respected for nodes in the
highway system.

Lemma 3: At any time instance, assume that for any re-
ceiver vi (and its sender si), the following two conditions are
satisfied:
• C1: ∀vi, the Euclidean distance ‖visi‖ ≤ r; and
• C2: for any other sender sk, k 6= i, the Euclidean distance

between sk and vi is at least R with R > r.
Then each receiver can receive at rate at least

B log
(

1 +
P · `(r)

N0 + c1P (R− r)−α

)
,

where c1 is a constant only depending on α.
Proof: Let VS be the set of senders (which have at least

one intended receiver), and VR be the set of receivers. So,
VS

⋂
VR = ∅. If conditions C1 and C2 are satisfied, any two

senders are at least R′ = R − r away from each other. For
any receiver v∗ ∈ VR and any integer g > 0, define the ring
R(v∗, gR′, (g+1)R′) as D(v∗, (g+1)R′)\D(v∗, gR′), where
D(x, r) is a disk centered at a point x with radius r. Let

Ng(v∗) = {v ∈ VS | gR′ ≤ d(v∗, v) < (g + 1)R′} .

Let v′ be the intended sender of v∗, and ng(v∗) = |Ng(v∗)| be
the size of Ng(v∗). If we divide the ring R(v∗, gR′, (g+1)R′)
into tg = 2dπ(g+1)R′

R′/2 e = 2dπ(2g + 2)e sectors (see Figure 1),
the distance of any two points in the same sector is at most R′.
Here the ring is divided as follows: We first divide the ring into
π(g+1)R′

R′/2 sectors, then each sector is divided into two sectors

by a circle with radius (g + 1/2)R′. Thus, a sector contains
at most 1 sender, i.e., ng(v∗) ≤ tg = 2dπ(2g + 2)e.

Since n0(v∗) = 0, the total signal interference at
node v∗ by all other transmitting nodes is I(v′, v∗) ≤∑∞

g=1 ng(v∗)P · `(gR′) ≤ ∑∞
g=1 2dπ(2g + 2)eP (gR′)−α ≤

PR′−α
∑∞

g=1 2dπ(2g + 2)eg−α. Obviously, the sum in the
rightmost inequality converges if α > 2. So, I(v′, v∗) ≤
c1P (R− r)−α, where c1 is a constant. Thus,

R(v′, v∗) = B log

(
1 +

S(v′, v∗)
N0 + I(v′, v∗)

)

≥ B log

(
1 +

P · `(r)
N0 + c1P (R− r)−α

)
,

where constant c1 =
∑∞

g=1 2dπ(2g + 2)eg−α if α > 2.
Observe that Lemma 3 still holds when a sender has

multiple receivers. The Lemma still holds, with a different
constant data rate, if at any time-slot, every active link has a
length at most r, and every pair of senders is separated by at
least a distance R0 > 0.

One may argue that, after we proved Lemma 3, we can
directly use the routing methods in [15], [16] to get the
achievable multicast rate under Gaussian channel model. In
[15], [16], it is assumed that all nodes have a fixed transmission
range r and interference range R, which are fixed constants.
For the network model studied here, using a constant trans-
mission range cannot get a connected network w.h.p., due to
results in [21]. Actually, to get a connected network w.h.p.,
the transmission range of all nodes should be set as at least
Θ(
√

log n). Thus, the assumption that each link (when no
other active links exist) has a constant data rate W used in
[15], [16] does not hold anymore: the data rate W achievable
by the worst links in a connected network under Gaussian
channel model is of order W = O( 1

(log n)α/2 ), even other
links are not active. Thus, the data rate achievable by directly
applying the routing and scheduling methods in [15], [16]
to the network model here (under Gaussian channel model),
is only of order Θ(W ·

√
n

ns

√
k log n

) = Θ(
√

n

ns

√
k
· 1

(log n)
α+1

2
),

when k = O( n
log n ). This achievable rate is only (log n)−

α+1
2

fraction of the rate achieved by our methods presented later,
when k = O( n

log6+2α n
).

Lemma 4: For γ ≥ 1, if we partition the square Bn =
[0,
√

n] × [0,
√

n] into at least τ1
n

logγ n subsquare regions
(called cell) of area at most τ2 logγ n, then w.h.p. every region
contains at most 2τ2 logγ n nodes. Here τ1 and τ2 > 1

2−log e
are constants.

Proof: Let An be the event that there are more than
2τ2 logγ n nodes in some cell. Then by the union bound and
Chernoff bound (Lemma 25), the probability of An is

Pr(An) ≤
⌈
τ1

n

logγ n

⌉
e−τ2 logγ n(eτ2 logγ n)2τ2 logγ n

(2τ2 logγ n)2τ2 logγ n

=
⌈
τ1

n

logγ n

⌉
e−τ2 logγ n

(e

2

)2τ2 logγ n

=
⌈
τ1

n

logγ n

⌉ (e

4

)τ2 logγ n

=→ 0

as n tends to infinity.
Observe that when γ ≥ 1, Pr(An) ≤ τ1

nτ2 log(4/e)−1 log n
.
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Lemma 5: If we partition Bn into regions of area at least
a ln n (for a ≥ 1), then w.h.p. every region contains at least 1
node.

Proof: Let An be the event that some region is empty of
nodes. Then Pr(An) ≤ ⌈

n
a ln n

⌉
e−a ln n =

⌈
n

a ln n

⌉
1

na → 0 as
n tends to infinity. Then, w.h.p., there are at least 1 node in
every region.

Observe that Lemmas 4 and 5 still hold when nodes are
produced by uniform random distribution.

B. Constructing highway system using percolation theory

Our routing strategy is built upon the highway system
developed in [3]. We first review the highway system defined
in [3]. To begin the construction of highway system, we
partition the deployment box Bn into cells of a constant side
length c, as depicted in Figure 2. In Figure 2, let N(si) be
the number of random nodes inside a cell si. By appropriately
choosing c, we can arrange that the probability that a square
contains at least a Poisson node is as high as we want. Indeed,
for all i, we have p ≡ Pr(N(si) ≥ 1) = 1 − e−c2

. We say
that a square is open if it contains at least one node, and
closed otherwise. Notice that squares are open (and closed)
with a probability p (and 1− p), independently of each other,
because the nodes are produced by Poisson distribution. Thus,
percolation theory can be applied here. This model is then
mapped into a discrete edge-percolation model on the square
grid as follows.

We associate an edge to each square, traversing it diag-
onally, as depicted on the right-hand side of the Figure 2.
The edge is said to be either open or closed according to
the state of the corresponding square. We then obtain a grid
Gn of horizontal and vertical edges, each edge being open,
independently of all other edges, with probability p. A path of
Gn is said to be open if it contains only open edges. Observe
that an open path implies that we have a routing path (by
selecting one node from each open square and connecting
nodes from adjacent open squares) such that every link on
the path has length at most a constant

√
5c. Thus, the data

rate achievable by this path is of a constant value (depending
on c) from Lemma 3, using a TDMA scheduling of nodes
[3]. Note that, when constant c is large enough, the preceding
construction produces winding open paths that cross the entire
network area.

Denote the number of edges composing the side length of
Bn by m =

√
n

c
√

2
, where c is rounded up such that m is an

integer. By Theorem 24, we can choose c large enough such
that, w.h.p., there are Ω(m) paths crossing Bn from left to
right. These paths can be grouped into disjoint sets of paths:
each group have dδ log me paths, crossing a rectangle of width
m and height κ log m−εm, for all κ > 0, δ small enough, and
a vanishingly small εm so that the side length of each rectangle
is an integer. See Figure 3 for illustration. The same is true if
we divide the area into vertical rectangles and look for paths
crossing the area from bottom to top. Using the union bound,
they [3] conclude that there exist both horizontal and vertical
disjoint paths w.h.p.. These paths form a backbone, that was
called the highway system [3].

We then slice each horizontal rectangle (of width m and
height κ log m− εm) into horizontal strips of constant height
h. By choosing h appropriately we can guarantee that there are
at least the same paths as strips in every strip. Similarly, we can
divide the vertical rectangle into vertical strips. We let H =
κ log m− εm be the height of the horizontal rectangles(or the
width of the vertical rectangles), h be the height of the strips(or
the width of the vertical strip), J =

√
n/H be the number of

horizontal(vertical) rectangles, and L = H/h be the number
of horizontal(vertical) strips in a horizontal(vertical) rectangle.
As there are at least the same horizontal(vertical) highways as
the strips in a horizontal(vertical) rectangle, L node-disjoint
horizontal crossing highways can be chosen in each rectangle.
In all, we choose M = J × L horizontal(vertical) highways.

Let Π1, Π2, · · · ,ΠM be the M horizontal highways, such
that Π(i−1)L+j(1 ≤ i ≤ J, 1 ≤ j ≤ L) is a highway in
the i-th rectangle. We also let πi,j be the j-th node in the
i-th horizontal highway. So, a highway Πi can be denoted
by a list of nodes, i.e, Πi = (πi,1, πi,2, · · · , πi,si

). Similarly,
we use Φ1, Φ2, · · · ,ΦM to denote the M vertical highways,
where Φi = (φi,1, φi,2, · · · , φi,ti

). In this paper, we propose
the following definition that will be used in our proofs later.

Definition 2: We call a horizontal(vertical) highway Πi =
(πi,1, πi,2, · · · , πi,si)(or Φi = (φi,1, φi,2, · · · , φi,ti)) almost-
straight if there does not exist j1, j2 such that 1 ≤
j1 < j2 ≤ si(or ti) and X(πi,j1) > X(πi,j2) + 2H (or
Y (φi,j1) > Y (φi,j2) + 2H). Here X(p) and Y (p) are the
x-coordinate(from left to right) and y-coordinate(from up to
down) of point p, respectively.

Essentially, almost-straight highways (called legal in [17])
are highways that will go backward at most of distance 2H .
The existence of almost-straight highways will ensure that 1)
the Euclidean minimum spanning tree can be approximated
by using highways, 2) the capacity achievable by the highway
system is large. In [17], we proved the following theorem.

Theorem 6: If we find a set of M horizontal highways and
M vertical highways using the percolation method, we can
find a set of M almost-straight horizontal highways and M
almost-straight vertical highways.
In the rest of the paper, we will always use the almost-straight
highways.

C. Schedule the multicast tasks

We now are ready to describe our multicast method. The
proposed solution is based on multihop routing, and exploits
the formation of paths percolating across the network. As
in [3], we divide the nodes into disjoint sets that cross the
network area. These sets form a “highway system” of nodes
(called stations sometime) that can carry information across
the network at constant rate, using short hops. The rest of the
nodes access the highway system using single hops of longer
lengths.

Our multicast protocol (Algorithm 3) contains two kinds
of hops: the constant-length hop in the highway system, and
the longer hop connecting a receiver vi,x to some entry node
qi,x in the highway. We will then perform multicast (using
multicast tree) to these entry nodes in the highway. To transmit
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R′/2
R′/2

R′/2

gR′

Fig. 1. Divide a ring into sectors.

c

c
√

2

si

Fig. 2. Construction of the bond percolation model.

R
m

κ log m−εm
m

R1
m

R2
m

m

κ log m− εm

Fig. 3. There exist a number of crossing
paths in Bm.

data through the multicast tree, we divide our communication
strategy into three separate phases:

1) In the first phase, every non-station node vi,x exchanges
its data with some station qi,x in the highway system
(we call the nodes in the highway system stations) using
a single-hop communication; see Figure 4.

qi,x

vi,x
pi,x

Fig. 4. Choose qi,x for vi,x where the path is a highway.

2) in the second phase, data is transmitted through high-
ways using station nodes that are part of some special
Euclidean spanning tree constructed;

3) in the third phase, data is forwarded directly to the
destination nodes from the nodes of the highway system.

In the rest of our analysis, we typically will not distinguish the
first phase and the third phase. In the following, we take all
the ns multicast sessions into consideration and analyze the
date rate per multicast-session of the two phases separately.

We first describe our method (Algorithm 2) to construct a
Euclidean spanning tree of a set Pi of k points. We have to
point out that our method will not necessarily construct a Eu-
clidean minimum spanning tree of these k points. Assume that
the set Pi of k points is located in a square region [0, a]×[0, a].
Our method for constructing a Euclidean spanning tree will
first divide the region into cells (with side-length a/2t−1 for
t = dlog4 ke). This cells are called level t− 1 cell. Similarly,
we can define level g cells with side-length a/2g . Originally,
all nodes are representant nodes in level t− 1. If a level i cell
contains some representant nodes, we randomly pick one (as
the representant node to upper level i − 1) and build edges
from all other representant nodes in this cell to the randomly
picked node. We will show that the Euclidean length of the
constructed tree is of same order of the Euclidean length of
Euclidean minimum spanning tree.

After we construct the Euclidean spanning tree as guideline
for routing, we the describe our method (Algorithm 3) to
construct the actual multicast tree for a multicast composed of
nodes Vi = {vi,1, vi,2, · · · , vi,k}, which are generated by Al-
gorithm 1. To ensure that the multicast trees are independent of

πzy,u4 qi,y(πzy ,u5)

πzx,u1qi,x(πzx,u0) φwx,u2 Πzx Φwx

Πzx φwx,u3

Fig. 5. A path connecting qi,x and qi,y contains 3 highway segments: the
horizontal one from qi,x to πzx,u1 , the vertical one from φwx,u2 to φwx,u3 ,
and the horizontal one from πzy ,t4 to qi,y . These 3 segments are connected
by shortcuts, πzx,u1φwx,u2 and φwx,u3πzy,u4 , of length at most

√
5c.

Algorithm 2 Find a Euclidean Spanning Tree for k points
Input: Pi = {pi,1, pi,2, · · · , pi,k}
Output: A Euclidean tree spanning Pi, denoted as EST (Pi)
Algorithm:

1: t ← the minimum integer such that 4t ≥ k;
2: P ← Pi; and E ← ∅;
3: for g ← t− 1, · · · , 1, 0 do
4: Divide Bn into 2g × 2g cells, each with size a

2g × a
2g ;

5: for each cell of size a
2g × a

2g do
6: if the cell contains s ≥ 2 points in P then
7: Randomly choose a point pi,x ∈ P in cell;
8: for any other point pi,y(y 6= x) in this cell do
9: E ← E ⋃{pi,xpi,y}; P ← P − {pi,y};

10: end for
11: end if
12: end for
13: end for
14: Output E as the edges of EST (Pi).
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Algorithm 3 Build a multicast tree using highway
Input:

1) Pi = {pi,1, pi,2, · · · , pi,k} and EST (Pi) generated from
Algorithm 2,

2) Vi = {vi,1, vi,2, · · · , vi,k} generated by Algorithm 1,
3) M horizontal highways Π1,Π2, · · · ,ΠM and M vertical

highways Φ1, Φ2, · · · , ΦM as described previously.
Output: A multicast tree spanning Vi, denoted as MT (Vi).

1: for x ← 1, 2, · · · , k do
2: Suppose pi,x is in the zx-th horizontal strip;
3: Let qi,x be the node from Πzx which is closest to the

vertical line drawn from pi,x(see Figure 4);
. qi,x will relay data for vi,x.

4: end for
5: for each edge pi,xpi,y in EST (Pi) do
6: Suppose qi,x = πzx,u0 , and qi,y = πzy,u5 ;
7: if zx = zy then
8: E(qi,x, qi,y) ← (πzx,u0 , πzx,u0±1, · · · , πzx,u5).
9: else

10: Suppose pi,x is on the wx-th vertical strip.
11: Find a station πzx,u1 in Πzx and a station φwx,u2

in Φwx such that d(πzx,u1 , φwx,u2) ≤
√

5c;
12: Find a station φwx,u3 in Φwx and a station πzy,u4

in Πzy such that d(φwx,u3 , πzy,u4) ≤
√

5c;
13: E1(qi,x, qi,y) ← (πzx,u0 , πzx,u0±1, · · · , πzx,u1);
14: E2(qi,x, qi,y) ← (φwx,u2 , φwx,u2±1, · · · , φwx,u3);
15: E3(qi,x, qi,y) ← (πzy,u4 , πzy,u4±1, · · · , πzy,u5);
16: E(qi,x, qi,y) ← E1(qi,x, qi,y) ∝ E2(qi,x, qi,y) ∝

E3(qi,x, qi,y); . See Figure 5 for illustration, ∝ means
concatenation of paths. . Here E(qi,x, qi,y) is a path in
the highway connecting qi,x and qi,y (See Figure 5).

17: end if
18: end for
19: Let MT ′(Vi) be the set of edges that covered by any path

E(qi,x, qi,y), union the set {qi,xvi,x | 1 ≤ x ≤ k}.
20: MT ′(Vi) is a connected graph that covers Vi. We can

remove redundant edges to get a multicast tree, denoted
as MT (Vi).

each other for different multicast sessions, we actually will first
build a multicast tree for points Pi = {pi,1, pi,2, · · · , pi,k},
1 ≤ i ≤ ns. For each edge pi,xpi,y in EST (Pi), we will first
find the closest entrance nodes qi,x, qi,y for points pi,x, pi,y

and connect nodes qi,x, qi,y using a short path in the highway.
We will first study the capacity that can be supported by the
network, assuming that Pi forms nodes in a multicast session.
In our study, we will use VC-dimension and VC-theorem,
which require the multicast sessions to be independent, which
is true if Pi are multicast terminals. For actual multicast of
Vi, we will then directly connect each node vi,j , 1 ≤ j ≤ k,
to the entrance node, say qi,j , in the highway system. We will
show that the capacity is not reduced asymptotically.

We schedule the link transmissions using TDMA as in [3],
[15], [16]. We first divide the time into mega-slots. One mega-
slot is then divided into two equal-sized groups of mini time-
slots. The first group of mini time-slots will be reserved for

nodes in the highway system and the second group of mini
time-slots will be reserved for nodes to relay data to (or from)
the highway system. We divide the square Bn into cells of
side length c. Each time only one node from a square can
transmit and at any time the transmitting nodes are separated
by at least t ≥ 1 cells. Thus, every square will have a node
that can transmit every t2 mini time-slots.

IV. ANALYSIS OF CAPACITY

We now analyze the per-flow multicast capacity achievable
by our routing and scheduling protocol.

A. Data rate of the 1st, 3rd phase (accessing highway)

To notice that a receiver will have the same relay node from
highways in all multicast sessions, our computation of the data
rate from a node to its highway entrance station comprises two
steps. In the first step, we only need to analyze the rate between
receivers and their relay nodes. While in the second step, we
calculate how many multicast sessions a non-station node v∗

is covered by, which will imply the data rate achievable in 1st
and 3rd phase.

Lemma 7: In the first (and 3rd) phase of the transmission,
w.h.p., for any 1 ≤ i ≤ ns and for any x(1 ≤ x ≤ k), the date
rate achievable by our method between a terminal vi,x and
the highway entrance station qi,x is c2(log n)−α−2 in both
directions. Here c2 is a constant.

Proof: Notice that the node pi,x and qi,x are within the
same rectangle with height H , and the horizontal distance
between them is at most

√
2c. Then the distance between pi,x

and qi,x is at most H +
√

2c.
From Lemma 5, we can see w.h.p there is at least 1 node

in every region with area log n. Thus, we could divide square
Bn into squares with side-length (1 + ξn)

√
log n, where ξn is

the smallest positive number that
√

n

(1+ξn)
√

log n
is an integer. It

is easily seen that ξn tends to 0 when n tends to ∞. Since
w.h.p each square contains a node and vi,x is the closest node
from the point pi,x, the distance d(pi,x, vi,x) is at most

√
2(1+

ξn)
√

log n, w.h.p..
By adding the above two upper bounds, we can see that

the distance between vi,x and qi,x is at most H +
√

2c +√
2(1+ξn)

√
log n = κ log m−εm+

√
2c+

√
2(1+ξn)

√
log n.

This is smaller than 2κ log m for a sufficient large n. Note
m =

√
n/(c

√
2).

Then we let r = 2κ log m and R = 2r. Then by Lemma
3, the data rate R(vi,x, qi,x) that can be achieved between
vi,x and qi,x is at least B log

(
1 + P ·`(r)

N0+c1P (R−r)−α

)
when

the condition C2 of Lemma 3 is satisfied. This condition can
be guaranteed by dividing the phase 1 into time slots. We
partition the square Bn into a number of cells with length r,
and divide the phase 1 into 16 time slots such that within a
time slot, any two cells that contain transmitting nodes is at
least 4 cells away (See Figure 6 (a) for illustration). Thus,
any two transmitting nodes are at least 3r away from each
other. To make sure that at the same time there is at most 1
transmitting node at each cell, each of the 16 time slots should
be divided into smaller mini-time-slots. By Lemma 4, we can
see, 2r2 mini time slots is enough w.h.p., since, w.h.p., each
cell contains at most 2r2 nodes. Considering the number of
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mini time slots, w.h.p., the data rate between each pair of vi,x
and qi,x that we can achieve is at least

B log

(
1 +

P · `(r)
N0 + c1P (R− r)−α

)
/(16× 2r2)

≥ (1− ε1)BP · r−α/(32N0r
2) = (1− ε1)

BP

32N0
r−α−2

≥ (1− ε1)
BP

32N0

(
(1 + ε2)

log n

2

)−α−2

=
2αBP

16N0
(log n)−α−2 (1− ε1)(1 + ε2)

−α−2

≥ 2αBP

17N0
(log n)−α−2

The above inequality requires that n is sufficient large. In the
above inequality, ε1 and ε2 are positive numbers whose value
we can set.

In the above reasoning, we assigned each node a time slot
and thus vix

and qi,x will have separate time slots. Thus, the
rates in both direction can achieve the lower bound. Setting
c2 = 2αBP

17N0
will finish our proof.

2κ log m

p∗
√

n

(1 + ξn)
√

log n

(a) (b)

Fig. 6. (a) The cells that contain transmitting nodes are at least 4 cells
away from each other, and each cell contains at most 1 transmitting node. In
the figure, the nodes with arrows represent transmitting nodes. (b) The cells
where v∗ may be located. p∗ is located in the square in the center, and the
green squares and the center square (totally 21 squares) are the squares where
v∗ may be located w.h.p.. The statement is also correct when we exchange
the position of v∗ and p∗.

Now we move to the second step. We need to show how
many multicast sessions a node v∗ may be part of. First, we
consider the process Q for choosing one node v∗ : randomly
selecting a point q∗ in Bn and let v∗ be its nearest wireless
node. We then are asking, what is the probability that a node
v∗ is chosen in this process Q? The following lemma gives
the answer.

Lemma 8: W.h.p, for any node v∗, the probability that a
node v∗ is chosen by process Q is at most c3

log n
n for a

constant c3.
Proof: This is exactly to compute the area of the regions

in the Voronoi graph of the n nodes. In Lemma 5, we partition
the square Bn into cells of side-length (1 + ξn)

√
log n and

w.h.p each cell contains at least 1 node. Considering a point
p∗ in a cell s, w.h.p., its nearest node v∗ must fall in s or the
20 cells around s (see Figure 6 (b)). In other words, if v∗ is
in a cell s′, p∗ must fall in s′ or the 20 cells around s′. So,
the probability that a node v∗ is chosen by process Q is at
most 21 (1+ξn)2 log n

n . Since ξn tends to 0 as n tends to +∞,
it is smaller than 22 log n

n when n is sufficiently large. So, if

we let c3 = 22, w.h.p, for any station v∗, the probability is at
most c3

log n
n .

Lemma 9: W.h.p, for any node v∗, the probability that a
multicast session has v∗ as a receiver is at most c3k

log n
n .

Proof: Since the probability that a node v∗ is chosen
by process Q is at most c3

log n
n , and v∗ is chosen by a

multicast session as receiver if v∗ is chosen by at least one of
k processes, the probability is at most c3k

log n
n .

Lemma 10: In Algorithm 1, w.h.p, for any node v∗, the
number of times that v∗ is chosen by process Q as a multicast
receiver is at most 3c3nsk

log n
n when nsk ≥ n.

Proof: Let An be the event that a node v∗ is chosen by Q
more than 3c3nsk

log n
n times. Let p = c3k

log n
n , the probability

that v∗ is chosen as terminal of a multicast session. Then

Pr(An) ≤ ns

(
ns

3nsp

)
p3nsp ≤ ns

(
nse

3nsp

)3nsp

p3nsp

= ns

(e

3

)3nsp

≤ ns

(
n−3c3(log 3−1)

)nsk
n → 0,

because 3c3(log 3− 1) > 1 and nsk ≥ n.
Lemma 11: W.h.p, there exists a constant c4 > 0, the

data rate that any multicast session can achieve in the 1st
and 3rd phase is at least c4

√
n

ns

√
k

, if k ≤ θ1
n

log2α+6 n
and

ns ≥ θ2n
1/2+β , where θ1, θ2 are special constants, and β > 0

is any positive real number.
Proof: When nsk ≥ n and k ≤ θ1

n
log2α+6 n

, based on
Lemma 7 and Lemma 10, w.h.p., the data rate achievable per-
multicast session in the 1st and 3rd phase is

R1
1 ≥ c2(log n)−α−2

3c3nsk
log n

n

=
c2

3c3

n(log n)−α−3

nsk

≥ c2

3c3

(
n(log n)−α−3

ns

√
k

)
/

(√
θ1

n

log2α+6 n

)

=
c2

3c3

√
θ1

√
n

ns

√
k

When nsk < n, the number of multicast sessions that will
choose a given node as receiver is w.h.p. at most 3c3n

log n
n =

3c3 log n. Then, when nsk < n and ns ≥ θ2n
1/2+β , w.h.p.,

the data rate that every multicast session can achieve in both
1st and 3rd phases is

R2
1 ≥ c2(log n)−α−2

3c3n
log n

n

≥ c2

3c3
(log n)−α−3

≥ c2

3c3

√
θ1

n−β

√
k
≥ c2

3c3

√
θ1

√
n

ns

√
k

In all, w.h.p., the data rate of any multicast session in the first
phase is at least, when k ≤ θ1

n
log2α+6 n

and ns ≥ θ2n
1/2+β ,

R1 ≥ min(R1
1, R

2
1) ≥

c2

3c3

√
θ1

√
n

ns

√
k

The lemma then follows by setting c4 = c2
3c3

√
θ1

.

Note we assumed that k ≤ θ1
n

log2α+6 n
and ns ≥ θ2n

1/2+β .
It is interesting to see if our results still hold for general k.
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B. Capacity of the highway system

We then study the capacity of the highway system for
multicast. We begin our analysis on the spanning tree used
for multicast constructed by Algorithm 2. For a region R,
and g with 0 ≤ g ≤ t − 1, we first run Algorithm 2 line
by line. When we run to line 5 for the (t − g)-th time, for
any region R, let E(R, g) be the event that there is a node
from P that falls in region R. Recall that here P is the set of
nodes representing all connected components (each node for
one connected component). We use D(p) to denote a small
enough region that contains point p, and D(p) = |D(p)| is the
area of D(p). Then we have the following lemma.

Lemma 12: For any point p in Bn and 0 ≤ g ≤ t , we have

Pr{E(D(p), g)} ≤ 4g+1

a2
D(p).

Proof: For g ≤ t− 2, at line (5) of Algorithm 2, there is
at most one representant wireless node in each a

2g+1 × a
2g+1

cells. Furthermore, we can see if there is a node in a cell s, this
node is randomly located in s. i.e, each point in s has the same
probability density 1

a2/4g+1 = 4g+1

a2 to be the node. So, when

g ≤ t− 2, for each point p, Pr{E(D(p), g)} ≤ 4g+1

a2 D(p).
When g = t− 1, since there are k nodes in P , we have

Pr{E(D(p), g)} ≤ k

a2
D(p) ≤ 4t

a2
D(p) =

4g+1

a2
D(p).

So, for 0 ≤ g ≤ t− 1, we have Pr{E(D(p), g)} ≤ 4g+1

a2 D(p).
This finishes the proof.

Lemma 13: For any region R in Bn and 0 ≤ g ≤ t− 1,

Pr (E(R, g)) ≤ 4g+1

a2
|R|

Proof: By integration, we have Pr{E(R, g)} =‚
p∈R Pr{E(D(p), g)} ≤ ‚

p∈R
4g+1

a2 D(p) = 4g+1

a2 |R|.
Lemma 14: In the second phase, the probability that a

station node is covered by a multicast session is at most c5

√
k√
n

when k ≤ θ3
n

log2 n
, where c5 and θ3 are constants.

See appendix for the proof of the lemma. With Lemma 14,
the following lemma is straightforward.

Lemma 15: For any station v∗, the expected number of
multicast sessions that pass v∗ is at most c5

ns

√
k√

n
, when

k ≤ θ3
n

log2 n
.

Proof: Since the ns multicast sessions are generated
independently, multiplying the upper bound of the probability
that v∗ is covered by a multicast sessions by ns will result in
the upper bound of the expected number of covering multicast
sessions. That is c5

√
k√
n
× ns = c5

ns

√
k√

n
.

The preceding result only shows an upper bound on proba-
bility that a given node v∗ is used by multicast sessions, when
v∗ is given a prior. Next, we use VC theorem (Theorem 26)
to give an upper bound on the number of multicast sessions
that pass v∗ for every possible node v∗ in the highway system.
Recall that, we used ns sets of independently selected k points
to generate ns multicast trees. So, the input space should be
the family of sets of k points, i.e, [0,

√
n]2k. To notice that

the output MT of Algorithm 3 is fixed for a fixed set of k
points, we could set the universal input space U be the set of

all possible output multicast trees of Algorithm 3. For each
wireless station v∗, v∗ is either covered or not covered by a
tree T in U . For a subset S of U , we use TS(v∗) to denote
the set of trees from S that cover v∗. Let

CS = {TU (v∗) | v∗ is a node in the highway system}.
Our objective is to compute the VC-dimension VC-d(CU )
of CU . Here, we simply use log2 n as the upper bound of
VC-d(CU ), due to the fact that there are at most n elements
in CU . Notice that a careful analysis can show that the VC-
dimension VC-d(CU ) is actually of order Θ(log k) [16].

Theorem 16: With high probability, for every station v∗, the
number of multicast sessions that cover v∗ is at most c6

ns

√
k√

n
,

when k ≤ θ3
n

log2 n
and ns ≥ θ2n

1/2+β , where c6 is a constant
to be specified and β > 0 is any positive real number.

Proof: Recall that in Lemma 14, the probability that a
station v∗ is covered by a random multicast session is at most
c5

√
k√
n

. Using VC-theorem, with ns multicast sessions,

Pr

(
sup
v∗

∣∣∣∣∣
# of sessions covering v∗

ns
− c5

√
k√
n

∣∣∣∣∣ < ε(n)

)
> 1− σ(n)

if ns ≥ max

{
8d

ε(n)
· log

13

ε(n)
,

4

ε(n)
log

2

σ(n)

}

If we set ε(n) =
√

k√
n

, σ(n) = 2
n , and let F (v) be the number

of multicast sessions that use node v, we have

Pr

(
sup
v∗

(F (v∗)) < (c5 + 1)
ns

√
k√

n

)
> 1− 2

n

if ns ≥ max
{

8
√

n log n√
k

· log
13
√

n√
k

,
4
√

n√
k

log n

}

=
8
√

n log n√
k

· log
13
√

n√
k

To guarantee the above lower bound for ns for a large
enough n, it is sufficient that ns ≥ θ2n

1/2+β for a constant
β > 0. Let c6 = c5 + 1 and we finish the proof.

Lemma 17: W.h.p, the data rate of the second phase in any
multicast session is at least c7

√
n

ns

√
k

, when ns ≥ θ2n
1/2+β and

k ≤ θ3
n

log2 n
.

Proof: As the distance between two adjacent highway
stations is at most 2

√
2c, we can set r = 2

√
2c and R =

4
√

2c and apply Lemma 3. We do it in the similar way with
the proof of Lemma 7. As there is at most 1 station in a
square of size c × c, we only need to divide the 2nd phase
into

(dR+r
c e+ 1

)2
= 100 time slots. Then, w.h.p, each station

can send data to its adjacent stations (on the same highway)
at rate at least B log

(
1 + P ·`(2√2c)

N0+c3P (2
√

2c)−α

)
/100 = Θ(1).

In addition, w.h.p, every station in highway is covered by at
most c6

ns

√
k√

n
multicast sessions when k ≤ θ3

n
log2 n

. So, each
multicast session has a rate at least

R2 ≥ B log

(
1 +

P · `(2√2c)

N0 + c3P (2
√

2c)−α

)
/

(
100c6

ns

√
k√

n

)

=
B

100c6
log

(
1 +

P · `(2√2c)

N0 + c3P (2
√

2c)−α

) √
n

ns

√
k

So, if letting c7 = B
100c6

log
(
1 + P ·`(2√2c)

N0+c3P (2
√

2c)−α

)
, we get

the result we need.
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(a) quasi-closed cut (b) quasi-closed net

Fig. 7. Grey cells are the quasi-closed cells. A quasi-closed cell contains at
most a constant ∆ number of nodes.

C. Per-flow multicast capacity of the system

By combining the data rate in the two phases, we have
Theorem 18: If k ≤ θ1

n
log2α+6 n

and ns ≥ θ2n
1/2+β ,

w.h.p., the per-flow multicast rate is at least c8

√
n

ns

√
k

, where
c8 = 1

2 min{c4, c7}.
Proof: When k ≤ θ1

n
log2α+6 n

, it is sufficient that k ≤
θ3

n
log2 n

for large n. Then both Lemma 11 and Lemma 17 are
applicable. We assign the two phases the same amount of time
and thus the achievable per-flow date rate is min(R1, R2)/2 ≥
1
2 min{c4, c7}

√
n

ns

√
k

= c8

√
n

ns

√
k

.

V. UPPER BOUND ON CAPACITY UNDER GAUSSIAN
CHANNEL MODEL

In [17], the authors presented an upper bound on the unicast
capacity under Gaussian channel model. In [12], an upper
bound on multicast capacity under Gaussian Channel was
presented by use of some novel concepts. Unfortunately, its
bounds have discrepancies, e.g., its upper bound on a special
case of broadcast (k = n − 1) is actually smaller than the
achievable broadcast capacity known in the literature [28]. In
this section, we give a new upper bound for multicast capacity
under Gaussian channel model. The basic idea of our approach
is to bound the capacity (1) studying the largest load of some
cell for any routing and scheduling method, and (2) using
the capacity bottleneck imposed by some critical link in the
network. To study the load of a cell, out method is as follows:

1) first, we partition the region Bn = [0,
√

n]× [0,
√

n] into
cells with a constant side length c;

2) we then obtain a grid graph Fn consisting of n
c2 cells.

3) we will then analyze the maximum load of cells under
any routing and scheduling method for multicast. Here the
load of a cell is defined as the number of flows passing
through the cell.

We partition the square region Bn into cells with constant
side length c. We obtain a grid graph Cn consisting of m2 = n

c2

cells: each cell is a vertex in Cn and two vertices form an edge
if the corresponding cells share a common side. See Figure 7
(a) for an illustration. We focus on those cells containing only
a constant number of nodes, and give the following definition.

Definition 3: We say a cell is quasi-closed cell if it contains
at most ∆ nodes. Here ∆ is some constant. As illustrated in
Figure 7, we call a path of cells quasi-closed cut if it contains

only quasi-closed cells and crosses from left to right side of
Bn. Furthermore, we define the length of a quasi-closed cut
as the total number of cells it contains.

According to the results in [3] and lower tail of Chernoff
bounds, we can choose c large enough such that Ω(m) quasi-
closed cuts can be partitioned into a number of disjoint groups
each with dδ log me disjoint quasi-closed cuts, and each group
is contained inside a slab of size m× (κ log m− εm), for all
κ > 0, δ small enough, and a non-zero small εm such that the
side length of each slab is an integer. The same is true when
we partition the square into vertical slabs with side length
m × (κ log m − εm). Notice that all of the horizontal and
vertical stripes together partition Bn into super-cells with side
length c · (κ log m− εm).

For any cell c and any time-slot t, let I(t, c) be the set of
links (sj , vj), 1 ≤ j ≤ q, that are scheduled concurrently at
time t, with sender sj or receiver vj inside c. Let wi be the
achievable data rate of link i in this circumstance. For a given
cell c, we first bound the total capacity of links in I(t, c).

Lemma 19: The throughput capacity of all links in I(t, c)
for any cell c with a constant side length is of order O(1).

Proof: Let lj be the length of the link (sj , vj). We
separate the links into two groups: first group L1 contains
all links with senders in c and second group L2 contains
all links with receivers in c. Let Pj be the transmitting
power of sender sj . Notice that the rate of link (sj , vj) is

wj = B log(1 +
Pj ·min{1,l−α

j }
N0+

∑
k 6=j Pk·min{1,‖sk−vj‖−α} ).

If we consider only links in L1, we have, for any
link (sk, vk) ∈ L1, ‖sk − vj‖ ≤ ‖sk − sj‖ + lj .

Thus, wj ≤ B log(1 +
Pj ·min{1,l−α

j }
N0+min{1,(lj+

√
2c)−α}∑

k 6=j Pk
). Since

c > 0 is a constant and we assumed that all nodes
transmit at the same (or similar) power, it holds that

wj = O(
Pj ·min{1,l−α

i(j)}
N0+min{1,l−α

i(j)}
∑

k 6=j Pk
) = O( 2Pj∑

k∈L1
Pk

). Thus,
∑

j∈L1
wj = O(1).

We then consider all links in L2. In this case, let x be
the centroid of the cell c. Let s1 be the closest sender to x.
Then ‖si − vj‖ ≤ ‖si − x‖ + ‖x − vj‖ ≤ ‖si − x‖ + c/

√
2

and ‖si − vj‖ ≥ ‖si − x‖ − c/
√

2. Thus, min{1, ‖si −
vj‖−α} = Θ(min{1, ‖si − x‖−α}) = Θ(‖si − x‖−α),
when we assume that the sender sj is out of the cell.
Thus, wj = O( Pj‖sj−x‖−α

∑
k∈L2,k 6j Pk‖sk−x‖−α ). For j ≥ 2, we have

Pj‖sj−x‖−α

∑
k∈L2,k 6j Pk‖sk−x‖−α ≤ 2Pj‖sj−x‖−α

∑
k∈L2

Pk‖sk−x‖−α . For j = 1, w1

clearly is at most a constant. Thus,
∑

j∈L2
wj = O(1).

If all links are considered together, our proof clear still
holds. This completes the proof.

For a quasi-closed cell c and any time slot t, let X (t, c) be
the set of all links that intersect the cell c. Similar to Lemma
19, we can prove the following lemma.

Lemma 20: The throughput capacity of all links in X (t, c)
for any quasi-closed cell c with a constant side length is of
order O(1).

Proof: Let c be a quasi-closed cell and x be its cen-
troid. Let (s1, v1), (s2, v2), · · · , (sg, vg) be the g links that
are scheduled cocurrently and all intersect the cell c. Let
di,j = ‖si − vj‖ be the Euclidean distance from si to vj
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and for simplicity di = di,i. It is easy to show that the
total capacity achieved by all links with length di,i ≤ 1 is
at most a constant based on Lemma 20. Then for simplicity,
we assume that di,i = Ω(1), for i ∈ [1, g] and g > 1. Then the
total capacity of all links in X (t, c) is at most (by ignoring

all other transmissions)
∑g

i=1 log(1 +
d−α

i,i

N0/P+
∑g

j=1,j 6=i d−α
j,i

) <

∑g
i=1 log(1 +

d−α
i,i∑g

j=1,j 6=i d−α
j,i

) < log e
∑g

i=1

d−α
i,i∑g

j=1,j 6=i d−α
j,i

. For

any two links (si, vi) and (sj , vj) from X (t, c), it is not
difficult to prove that di,j +dj,i ≤ di+dj +

√
2c, where c is the

width of cell c. Then, we can show that
∑g

i=1

d−α
i,i∑g

j=1,j 6=i d−α
j,i

=

O(
∑g

i=1
d−α

i∑g
j=1,j 6=i d−α

j

) = O(1). This finishes the proof.

Observe that this lemma does not conflict the arena-bound
proved in [11] since the arena-bound studies the capacity of
all links (si, vi) such that the disk D(si, ‖si− vi‖) contains a
given arbitrary point x, while our lemma only studies a subset
of these links.

We then prove that, for any routing method for multicast,
there is some cell such that the number of flows whose routing
structure will pass through the cell is at least a certain number
with high probability. Given a multicast session Mk, let Tk

be the multicast tree for Mk and C(Tk) denote the number
of cells passed through by Tk. Here a cell c is passed through
by a tree Tk if there is a link (si, vi) that intersects the cell c.

Lemma 21: Consider any multicast routing method and
a multicast session Mk. We have, C(Tk) = Ω(‖Tk‖) =
Ω(
√

nk).
Proof: For a random multicast session, based on results in

[15], [16] we can show that, w.h.p., the length of any multicast
tree Tk for Mk (with k nodes randomly selected from Bn) is
at least Ω(

√
k
√

n). Thus, for any routing method for multicast
under Gaussian channel model, w.h.p., the number of cells that
will be passed through by a tree Tk will be at least d‖Tk‖√

2c
e =

Ω(
√

nk) where c is the side length of a cell c.
We then analyze the maximum load of all quasi-closed cells.

Notice that to analyze the largest load of all quasi-closed cells,
we cannot directly use the total loads of all cells divided by the
total number of cells. The reason is that, some routing method
may be able to avoid these quasi-closed cells to improve the
capacity. Our proof shows that this is impossible by use of
super-cells.

Lemma 22: When ns = Θ(n), with probability at least
1−2e−nsc2/32, the per-session data rate that can be supported
using any routing strategy, due to the congestion in some
quasi-closed cell, is O( 1

ns
·
√

n√
k
).

Proof: Recall that a super-cell has side length κ log m−
εm and a load of a super-cell under a routing method is defined
as the number of flows crossing it. We use L to denote the
total load of all super-cells. Note that the number of super-
cells crossed by any tree Tk is least d ‖Tk‖

κ log m−εm
e. Obviously,

w.h.p., ‖EMST (Mk)‖ = Ω(m
√

k). Similar to Lemma 21,
there exists a constant c1 such that

L ≥
∑ns

i=1
c1 · ‖EMST (Mk)‖

κ log m− εm
.

By Azuma’s Inequality and Lemma 21, we obtain,

Pr(L ≥ c3ns

√
km/log m) ≥ 1− 2e−

c22
32 ns

for some constants c2 and c3. It is not difficult to prove that
any multicast routing tree will cross at least dδ log me quasi-
closed cuts if it crosses three super-cells. Denoted by L′ the
total number of flows crossing some quasi-closed cut. We have
L′ ≥ L

3 × dδ log me.

Fig. 8. At least dδ log me quasi-closed cuts will be crossed whenever three
super-cells are crossed by some routing tree

It follows that, with probability at least 1 − 2e−nsc2
2/32,

the total load of all quasi-closed cell is Ω(σ(n)), where
σ(n) = (ns

√
km

log m ) · dδ log me. Then by pigeonhole principle,
with probability at least 1 − 2e−nsc2

2/32, there is at least one
quasi-closed cell, that will be used by Ω(σ(n)/m2) flows
which is of order Ω(ns

√
k√

n
). Then with probability at least

1−2e−nsc2
2/32, the per-session data rate that can be supported

using any routing strategy, due to the congestion in some
quasi-closed cell, is at most O( 1

ns
·
√

n√
k
).

Furthermore, we will derive another upper bound based on
a result in [21]. That is, for the random extended network,
the nearest neighbor graph has w.h.p., an edge of length
Θ(
√

log n). By exploring this long edge, we can derive another
upper bound on multicast capacity.

Lemma 23: Under Gaussian channel model, the per-session
multicast capacity for extended networks is at most of order
O( n

nsk

(
log n)−

α
2
)

when k = ω(
√

n).
Proof: Assume that the longest edge in the nearest neigh-

bor graph of the random network is uv. Then for node v, the
probability p that it is chosen as a terminal of a given multicast
flow is p = k

n . It is easy to show that, with probability (at least
1− e−k2/2n), the number of multicast flows that will choose
the node v as a terminal is at least nsp/2 when k = ω(

√
n).

Observe that the total data rate that node v can receive is at
most R(v) = O((log n)−

α
2 ) since the shortest link incident at

node v is at least Θ(
√

log n). Then we have the minimum per-
session multicast data rate is at most of order O(R(v)/(nsp)),
which completes the proof.

Combining Lemma 22 and Lemma 23, we get Theorem 2.
Theorem 2: Under Gaussian channel model, the per-session

multicast throughput for ns = Θ(n) random flows in random
networks in Bn is at most of order

{
O( 1√

kn
) when k : [1, n

(log n)α ]
O( 1

k(log n)
α
2

) when k : [ n
(log n)α , n] (2)
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VI. LITERATURE REVIEWS

The ground-breaking work by Gupta and Kumar [7] studied
the asymptotic unicast capacity of a multi-hop wireless net-
works for two different models. When each wireless node is
capable of transmitting at W bits per second using a constant
transmission range, the throughput obtainable by each node for
a randomly chosen destination is Θ( W√

n log n
) bits per second

under PrIM. If nodes are optimally placed and transmission
range is optimally chosen, even under optimal circumstances,
the throughput is only Θ( W√

n
) bits per second for each node.

Similar results also hold for PhIM Kulkarni and Viswanath
[13] obtained a stronger (almost sure) version of the

√
n log n

throughput for random node locations in a fixed area obtained
in [7].

Grossglauser and Tse [6] showed that mobility actually can
help to improve the unicast capacity if we allow arbitrary large
delay. Their main result shows that the average long-term
throughput per source-destination pair can be kept constant
even as the number of nodes per unit area increases. Notice
that this is in sharp contrast to the fixed network scenario
(when nodes are static after random deployment). In summary,
for random networks, under the protocol model, the achievable
per-flow throughput capacity λ(n) and the average travel dis-
tance L satisfies λ(n)·L ≤ Θ( W

∆2n·r(n) ). Similar phenomenon
has also been observed in [14]. Gastpar and Vetterli [5] study
the capacity of random networks using relay. Chuah et al. [2]
studied the capacity scaling in MIMO wireless systems under
correlated fading. Vu et al. [24] studied the scaling laws
of cognitive networks. Liu et al. [18] studied the capacity
of a wireless ad hoc network with infrastructure. Another
stream of work (e.g. [20]) has proposed progressively refined
multi-user cooperative schemes, which have been shown to
significantly out-perform multi-hop communication in many
environments. Bounds for the capacity of wireless multihop
networks imposed by topology and demand were studied in
[11]. Their techniques can be used to study unicast, broadcast
and multicast capacity. Bhandari and Vaidya [1] studied the
unicast capacity of multi-channel wireless networks with ran-
dom (c, f) assignment. Garetto et al. [4] studied the capacity
scaling in delay tolerant networks with heterogeneous mobile
devices. Their methodology allows to identify the scaling
laws for a general class of mobile wireless networks, and
to precisely determine under which conditions the mobility
of nodes can indeed be exploited to increase the per-node
throughput.

Broadcast capacity of an arbitrary network has been studied
in [9], [23]. They essentially show that, under fPrIM, the
broadcast capacity is Θ(W ) for single source broadcast and
the achievable broadcast capacity per flow in any network is
only Θ(W/n) if each of the n nodes will serve as source
node. This capacity bounds also apply to random networks.
Keshavarz-Haddad et al. [10] studied the broadcast capacity
with dynamic power adjustment for physical interference
model. Zheng [28] studied the data dissemination capacity
in power-constrained networks: w.h.p., the total broadcast
capacity is P ·Θ((log n)−α/2) when each node transmits at a
power P in the Gaussian channel model.

Multicast capacity was also recently studied in the literature.
Jacquet and Rodolakis [8] studied the scaling properties of
multicast for random wireless networks. They briefly claimed
that the maximum rate at which a node can transmit multicast
data is O( W√

kn log n
). Recently, rigorous proofs of the multicast

capacity were given in [15], [22]. Li et al. [15] studied
the multicast capacity of the following random networks: n
wireless nodes are randomly deployed in a square region with
side-length a and each wireless node can transmit/receive at
W bits/second over a common wireless channel. They proved
that, in fPrIM, the per-flow multicast capacity (of n multicast
flows, each flow with k receivers) is Θ(

√
1

n log n · W√
k
) when

k = O( n
log n ); the per-flow multicast capacity is Θ(W/n)

when k = Ω( n
log n ). Shakkottai et al. [22] studied the multicast

capacity of random networks when the number of multicast
sources is nε for some ε > 0, and the number of receivers
per multicast flow is n1−ε. Recently, Mao et al. [19] studied
the multicast capacity for hybrid networks under fPrIM model.
They derived several capacity regimes based on the relations
of the number k of receivers per multicast session, the total
number n of nodes, and the number m of base stations.
Recently, Wang et al. [25] studied the multicast capacity under
Gaussian model and show that the per-flow bound Ω(

√
n

ns

√
k
)

still applies when k = O( n
logα+1 n

). Wang et al. [26] studied
capacity scaling laws for random wireless ad hoc networks
under (n, m, k)-cast formulation, where n, m, and k denote
the number of nodes in the network, the number of destinations
for each communication group, and the actual number of
communication group members that receive information (i.e.,
k ≤ m ≤ n), respectively and when nodes are endowed with
multi-packet transmission (MPT) or multi-packet reception
(MPR) capabilities.

These results [6]–[10], [15], [22], [23] for the network
capacity of random networks all assumed that the data rate
supported by each communication link is a constant W -bps
(using PrIM, fPrIM, or PhIM interference models). Using
percolation theorem, multihop transmission, pairwise coding
and decoding at each hop, and a TDMA scheme, Franceschetti
et al. [3] shows that a rate 1/

√
n is achievable in networks

of randomly located nodes (not only some arbitrarily placed
nodes) when Gaussian channel is used.

Recently, Keshavarz-Haddad and Riedi [12] studied the
multicast capacity of large scale random networks under a
variety number of interference models: protocol interference
model, physical interference model, and the Gaussian channel
model. It provides some upper bounds and lower bounds for
multicast under Gaussian channel also. They proved some
capacity upper bounds by use of some novel concepts: arena
and some large separated cluster. They also present a novel
constructive lower bound on achievable multicast capacity:
they partition the deployment region using super cells (with
side-length Θ(log n)), large cells (with side-length Θ(

√
log n))

and cell (with side-length Θ(1)) for three different purposes.
The proofs on the capacity achievable by their routing and
scheduling mechanisms are mainly based on the expected
valuation, which could be far different from the result that
need to be hold with high probability. We found that their



13

results have discrepancies when k > n/ log n: their results on
total capacity Θ(W ) cannot be achieved by broadcast when
k = n− 1 [28].

VII. CONCLUSION

In this paper, we studied the multicast capacity of randomly
placed wireless nodes in Bn under Gaussian model, in which
nodes can transmit data over large distance and the rates of
the transmission are determined by SINR. Nodes transmit at
constant power P , and the power attenuates according to the
power decay law with exponent α > 2. We assume that these
nodes are randomly located in Poisson distribution of rate 1
in a square Bn with side-length

√
n; there are ns multicast

flows, each flow has k receivers, and the sources and targets of
the ns sessions are chosen by repeating ns times the process
(Algorithm 1). We show that, when k ≤ θ1

n
(log n)2α+6 and

ns ≥ θ2n
1/2+β for some constants θ1, θ2 and any positive

real number β, with high probability, each multicast source
node can send data to all its intended receivers with rate at
least c8

√
n

ns

√
k

where c8 is a constant depending on attenuation
α, bandwidth B, and background noise N0. We also present
a matching upper bound O(1/

√
nk) for per-flow multicast

capacity under Gaussian channel when k = O( n
logα n ).

A number of interesting questions remain open. The first
question is to derive tight upper bound and lower bound on
the network capacity when k could be any arbitrary value
from 2 to n. The lower bounds presented here only hold
when k = O( n

(log n)2α+6 ). The second question is to study the
capacity when the receiving terminals in a multicast group are
within certain region (e.g., a disk with a radius b, or a square
with a side-length b). Finally, we point out that the problem
of optimizing the multicast throughput of a given arbitrary
network by choosing best routing protocol, and optimizing
the hidden constant in our formulas remains open.
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VIII. APPENDIX

A. Percolation Theory Result [3]

Consider a square lattice Bm with side length m. We declare
each edge of the square grid open with probability p and closed
otherwise, independently of all other edges.

For any given κ > 0, let us partition Bm into rectangles
Ri

m of sides m × (κ log m − εm). We choose εm > 0 as the
smallest value such that the number of rectangles m

κ log m−εm

in the partition is an integer. It is easy to see that εm = o(1) as
m →∞. We let Ci

m be the maximal number of edge-disjoint
left to right crossings of rectangle Ri

m and let Nm = mini Ci
m.

The result is the following.
Theorem 24 ( [3]): For all κ > 0 and 5

6 < p < 1 satisfying
2 + κ log(6(1− p)) < 0, there exists a δ(κ, p) > 0 such that

lim
m→∞

Pp(Nm ≤ δ log m) = 0
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B. Chernoff bound and VC-theorem

Lemma 25: Let X be a Poisson random variable of rate λ.

Pr(X ≥ x) ≤ e−λ(eλ)x

xx
, for x > λ (3)

Let U be the input space. Let C be a family of subsets of U .
A finite set S (called sample in machine learning) is shattered
by C, if for every subset B of S, there exists a set A ∈ C such
that A

⋂
S = B.

The VC-dimension of C, denoted by VC-d(C), is defined
as the maximum value d such that there exists a set S with
cardinality d that can be shattered by C. For sets of finite VC-
dimension, one has uniform convergence ini the weak law of
large numbers:

Theorem 26 (The Vapnik-Chervonenkis Theorem): If C is
a set of finite VC-dimension VC-d(C), and {Xi | i =
1, 2 · · · , N} is a sequence of i.i.d. random variables with
common probability distribution P , then for every ε, δ > 0,

Pr

(
sup
A∈C

∣∣∣∣∣
∑N

i=1 I(Xi ∈ A)

N
− Pr(A)

∣∣∣∣∣ ≤ ε

)
> 1− δ

whenever N > max

{
8 ·VC-d(C)

ε
· log

13

ε
,
4

ε
log

2

δ

}
.

Here I(Xi ∈ A) takes value 1 if Xi ∈ A and 0 otherwise.

C. Proof of some lemmas

Proof of lemma 14.
Proof: Considering Algorithm 3, we can see a highway

node v∗ can be covered by a multicast session in the following
two cases.

1) v∗ is covered by a horizontal path E(qi,x, qi,y) got by
line 8 of Algorithm 3.

2) v∗ is covered by a horizontal path E(qi,x, qi,y) got by
Line 16 of Algorithm 3.

We now study these two cases separately.
Case 1: v∗ is covered by a horizontal path E(qi,x, qi,y) got

by line 8 of Algorithm 3.
In this case, qi,x must be in the same horizontal highway

with v∗, say, highway Πzx . It means that pi,x must be in the
zx-th horizontal strip. Consider the value of g at the line 9 of
Algorithm 2 when pi,xpi,y is inserted into EST . For a segment
pi,xpi,y , its horizontal span is denoted as dH(pi,x, pi,y) and its
vertical span is denoted as dV (pi,x, pi,y). We can see both the
horizontal span and the vertical span of pi,xpi,y are at most
a
2g . So, we will show the upper bound of the vertical span of
pi,x on g. Since v∗ is between qi,x and qi,y in the highway,
considering the position of v∗ in relation to qi,x and qi,y , there
will be 3 subcases: (we assume that the x-coordinate X(qi,x)
of qi,x is less than X(qi,y))

1) X(v∗) ≤ X(qi,x). Since the highway Πwx is almost-
straight, dH(v∗, qi,x) < 2H . Thus dH(v∗, pi,x) ≤
dH(v∗, qi,x) + dH(qi,x, pi,x) ≤ 2H + dH(qi,x, pi,x).

2) X(qi,x) < X(v∗) ≤ X(qi,y). In this case, dH(v∗, pi,x) ≤
max{dH(qi,x, pi,x), dH(qi,y, pi,x)}.

3) X(qi,y) < X(v∗). Similar with the preceding subcase 1),
we have dH(v∗, pi,x) ≤ 2H + dH(qi,y, pi,x).

Consequently, dH(v∗, pi,x) ≤ max{2H + dH(qi,x, pi,x),
dH(qi,x, pi,x), dH(qi,y, pi,x), 2H + dH(qi,y, pi,x)} = 2H +

max{dH(qi,x, pi,x), dH(qi,y, pi,x)}. Note dH(pi,x, qi,x) ≤√
2c, and dH(pi,x, qi,y) ≤ dH(pi,x, pi,y) + dH(pi,y, qi,y) ≤

a
2g +

√
2c. Thus, for a sufficiently large n,

dH(v∗, pi,x) ≤ 2H +
a

2g
+
√

2c ≤ (2 + ε)H +
a

2g
.

Combining the horizontal span and vertical span of pi,x, we
know pi,x is in a h× (

(2 + ε)H + a
2g

)
rectangle (see Figure

9, case 1).
Case 2: v∗ is covered by a horizontal path E(qi,x, qi,y)

(Line 16 of Algorithm 3). In this case, the path E(qi,x, qi,y)
will contain qi,x, πzx,u1 , φwx,u2 , φwx,u3 , φzy,u4 , qi,y in that
order. Considering the position of v∗ in this path, there are 3
complementary sub-cases as follows.

Case 2(1) : v∗ is covered by a horizontal path E1(qi,x, qi,y)
(line 13 of Algorithm 3). Similar with case 1, pi,x

is bounded in the zx-th horizontal strip. Furthermore.
dH(v∗, pi,x) ≤ 2H + max{dH(qi,x, pi,x), dH(πzx,u1 , pi,x)}
≤ 2H + max{√2c, dH(pi,x, φwx,u2) + dH(πzx,u1 , φwx,u2)}
≤ 2H + H +

√
2c ≤ (3 + ε)H. So, pi,x is in a rectangle

region with height h and width (3 + ε)H (see Figure 9, case
2(1)).

Case 2(2) : v∗ is covered by a vertical path E2(qi,x, qi,y)
(Line 14 of Algorithm 3). In this case, v∗ is on highway
Φwx , between φwx,u2 and φwx,u3 . Since pi,x is on the wx-
th vertical strip, its vertical span is at most h. In addi-
tion, dV (pi,x, φwx,u3) ≤ dV (pi,x, pi,y) + dV (pi,y, πzy,u4) +
dV (πzy,u4 , φwx,u3) ≤ a

2g + H +
√

2c, and furthermore,
dV (pi,x, φwx,u2) ≤ dV (pi,x, πzx,u1) + dV (πzx,u1 , φwx,u2) ≤
H +

√
2c. Similar with case 1, we have dV (pi,x, v∗) ≤

2H +max{dV (pi,x, φwx,u2), dV (pi,x, φwx,u3)} ≤ 2H + a
2g +

H +
√

2c ≤ (3+ε)H + a
2g , when n is large enough. So, pi,x is

in a rectangle region of height h and width
(
(3 + ε)H + a

2g

)
(see Figure 9, case 2(2)).

Case 2(3) : v∗ is covered by a horizontal path E3(qi,x, qi,y)
(Line 15 of Algorithm 3). In this case, v∗ is located in the high-
way Πzy . So, pi,y is bounded in the zy-th horizontal strip. Ad-
ditionally, we have dH(pi,y, πzy,u4) ≤ dH(πzy,u4 , φwx,u3) +
dH(φwx,u3 , pi,x) + dH(pi,x, pi,y) ≤ √

2c + H + a
2g . Also

similar with case 1, we have dH(pi,y, v∗) ≤ 2H +
max{dH(pi,y, πzy,u4), dH(pi,y, qi,y)} ≤ 2H +

√
2c + H + a

2g

≤ (3+ε)H+ a
2g , when n is large enough. Thus, pi,y is bounded

in a rectangle of width
(
(3 + ε)H + a

2g

)
and of height h (see

Figure 9, case 2(3)).
In all cases, either pi,x or pi,y is bounded in a rectangle. For

some g, the probability that v∗ is covered by an edge from d
is at most Pg ≤ h

(
(2 + ε)H + a

2g

)
4g+1

a2 + h(3 + ε)H 4g+1

a2 +
h

(
(3 + ε)H + a

2g

)
4g+1

a2 + h
(
(3 + ε)H + a

2g

)
4g+1

a2 , which is
≤ h

(
12H + 3 a

2g

)
4g+1

a2 . Then, consider all g = 0, 1, 2, · · · , t−
1, the probability that v∗ is covered is at most

p ≤
t−1∑
g=0

Pg ≤
t−1∑
g=0

h
(
12H + 3

a

2g

) 4g+1

a2

= 48Hh

t−1∑
g=0

4g

a2
+ 12h

t−1∑
g=0

2g

a
≤ 48Hh

4t

a2
+ 12h

2t

a

≤ 48Hh
4k

a2
+ 12h

2
√

k

a
= 192Hh

k

a2
+ 24h

√
k

a
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√
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√
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Fig. 9. The cases in which the station v∗ is covered. In all cases, either pi,x or pi,y is bounded in a rectangle with size at most h×
(

a
2g + 3H +

√
2c

)
.

Replacing H with κ log
√

n

c
√

2
− εm and a with

√
n, we get

p ≤ 192
(

κ log
√

n

c
√

2
− εm

)
h

k

n
+ 24h

√
k√
n

Use the condition k ≤ θ3
n

log2 n
, we have, for a sufficient

large n, p ≤ 192
(
κ log

√
n

c
√

2
− εm

)
h
√

k
n

√
θ3

n
log2 n

+ 24h
√

k√
n

≤ (96 + ε1)κh
√

θ3

√
k√
n

+ 24h
√

k√
n
≤ (97κ

√
θ3 + 24)h

√
k√
n

,
where ε1 is a constant that satisfies 0 < ε1 ≤ 1. Setting
c5 = (97κ

√
θ3 + 24)h finishes the proof.

D. Notations and Abbreviations

TABLE I
NOTATIONS AND ABBREVIATIONS USED IN THIS PAPER.

PrIM Protocol interference model
fPrIM fixed power (range) protocol interference model
PhIM Physical interference model
GCM Gaussian channel model
λk,S(n) minimum per-flow multicast data rate with sessions S.
`(x) path loss for a transmission over a distance x
R(vi,D) the rate node vi can send to a set of receivers D without

relay
D(x, r) a disk centered at a point x with radius r
Πi, Φi a horizontal (vertical) highway produced in the highway

system.
πi,j the jth node in the ith horizontal highway Πi

φi,j the jth node in the ith vertical highway Φi

X(p), Y (p) the x-coordinate and y-coordinate of a point p.
Bn a 2-dimensional square with side-length

√
n.

pi,x the xth point randomly chosen for the ith multicast.
Pi the set of points pi,x randomly selected
vi,x the xth node (that is nearest to pi,x) in the ith multicast

session.
qi,x the node in the highway that is nearest to vi,x.
EST (Pi) a Euclidean spanning tree for Pi

D(T ) the area covered by transmission disks in a multicast
tree T

dH(u, v),
dV (u, v)

the horizontal (vertical) span of the segments connecting
u and v in the highway.

I(t, c) the set of links with an end node inside the cell c at
time-slot t.

X (t, c) the set of links that intersect the cell c at time-slot t.
n the expected number of nodes in the system
ns number of multicast sessions.
m the number of cells per row, i.e., m =

√
n/(c

√
2).

H the height (width) of a horizontal (vertical) rectangle
produced in deriving highways

B the bandwidth
P common transmission power used by all nodes
N0 variance of background noise
α path loss exponent
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