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Given a setV of n points in a two-dimensional plane, we give anO(n log n)-time centralized al-
gorithm that constructs a planart-spanner forV , for t = ρ(α) = max{π

2 , π sin α
2 + 1} · Cdel,

such that the degree of each node is bounded from above by19 + d 2π
α e, where0 < α < π/2 is an

adjustable parameter. HereCdel is the spanning ratio of the Delaunay triangulation, which is at most
4
√

3
9 π. We also show, by applying the greedy method in14, how to construct a low weighted bounded

degree planar spanner with spanning ratioρ(α)2(1 + ε) and the same degree bound, whereε is any
positive real constant. Here, a structure is calledlow weightedif its total edge length is proportional
to the total edge length of the Euclidean minimum spanning tree ofV . Moreover, we show that our
method can be extended to construct a planar bounded degree spanner for unit disk graphs with the
adjustable parameterα satisfying0 < α < π/3. Previously, only centralized method6 of construct-
ing bounded degree planar spanner is known, with degree bound27 and spanning ratiot ' 10.02.
The distributed implementation of this centralized method takesO(n2) communications in the worst
case. Our method can be converted to a localized algorithm where the total number of messages sent
by all nodes is at mostO(n).

Keywords: Spanner; bounded degree; low weight; planar; localized algorithm.

1. Introduction

Let dG(u, v) be the total edge weight of the shortest path in an edge weighted graphG
connecting two verticesu andv. Given a set of pointsV in a two-dimensional plane, a
subgraphG = (V, E) of a graphH is a t-spanner ofH if for any two nodesu andv, we
havedG(u, v) ≤ t·dH(u, v). In this paper, we consider the case when the weight of an edge
is the Euclidean distance between its two endpoints. WhenH is the complete graph, we
simply say thatG is at-spanner. A graphG is sparseif it has onlyO(n) edges. If the total
edge length ofG is within a constant factor of the Euclidean minimum spanning tree ofV ,
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thenG is low weighted. Many algorithms are known that compute sparset-spanners with
some additional properties such as bounded node degree, small spanner diameter (i.e., any
two points are connected by at-spanner path consisting of only a small number of edges),
low weight, and fault-tolerance, see, e.g.,1,2,3,8,10,14,19,21. All these algorithms compute
t-spanners for any given constantt > 1.

We consider how to construct planar spanners for a set of two-dimensional points or a
unit disk graph. Here a unit disk graph is a graph which has an edgeuv if and only if the
Euclidean distance‖uv‖ betweenu andv is less than one unit. It is known that the relative
neighborhood graph4,15 and Gabriel graph4,12,13 are not spanners, while the Delaunay
triangulation11,16,17 is a t-spanner wheret is a constant upper bounded by≤ 4

√
3

9 π.
For the convenience of our notations, we useCdel to denote the spanning ratio of the
Delaunay triangulation. Das and Joseph9 showed that the minimum weight triangulation
and the greedy triangulation aret-spanners for some constantt. Levcopoulos and Lingas18

showed, for any real numberr > 0, how to construct a planart-spanner from the Delaunay
triangulation, whose total edge length is at most2r + 1 times the weight of a minimum
spanning tree ofV , wheret = (1 + 1/r)Cdel. Notice that all these structures could have
unbounded node degree.

Recently Boseet al.6 proposed a centralizedO(n log n)-time algorithm that constructs
a planart-spanner for a given node setV , for t = (1 + π) · Cdel ' 10.02, such that the
node degree is bounded from above by27. As far as we know, this algorithm is the first
method to compute a planar spanner of bounded degree.

In this paper, we give a simpler method to construct a bounded degree planart-spanner.
The bounds achieved here are better than those by Boseet al. 6. In addition, we show, by
applying the greedy method in14, how to construct a low weighted bounded degree planar
spanner. The main results of this paper are summarized in the following theorems.

Theorem 1. There is anO(n log n)-time centralized algorithm that, given a setV of n
points in a two-dimensional plane and a real constant0 < α ≤ π/2, constructs a graph

(1) that is planar,
(2) that is at-spanner, fort = max{π

2 , π sin α
2 + 1} · Cdel,

(3) in which each point ofV has degree at most19 + d 2π
α e.

For our convenience of notations, hereafter, letρ(α) = max{π
2 , π sin α

2 + 1} · Cdel.

Theorem 2. There is anO(n log n)-time centralized algorithm that, given a setV of n
points in a two-dimensional plane and two real constants0 < α ≤ π/2 and ε > 0,
constructs a graph

(1) that is planar,
(2) that is at-spanner, fort = ρ(α)2 · (1 + ε),
(3) in which each point ofV has degree at most19 + d 2π

α e,
(4) and whose total edge length is bounded from above by a constant factor times the total

edge length of the Euclidean minimum spanning tree ofV . Here the constant factor
depends onε.
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We also extend our method to unit disk graph and get the following result.

Theorem 3. There is anO(n log n)-time centralized algorithm that, given a connected
unit disk graphUDG(V ) of a setV of n points in a two-dimensional plane and a real
constant0 < α ≤ π/3, constructs a graph

(1) that is planar,
(2) that is at-spanner ofUDG(V ), for t = ρ(α),
(3) in which each point ofV has degree at most19 + d 2π

α e.

The rest of the paper is organized as follows. In Section 2, we propose a method con-
structing bounded degree planart-spanner with low weight for a two-dimensional point
set. In Section 3, we extend our method to construct a bounded degree planart-spanner
for a unit disk graph defined over a two-dimensional point set. The degree bound is larger
than that achieved by the method for point set, but the spanning ratio is smaller. Moreover,
this centralized method can be converted to a localized algorithm, which can be used for
wireless networks. We conclude our paper in Section 4.

2. Bounded Degree and Planar Spanner on Point Set

2.1. Priori Arts

Our algorithms borrow some idea from the algorithm by Boseet al.6. For the completeness
of presentation, we briefly review the basic steps of their algorithm as follows.

(1) Compute the Delaunay triangulation ofV , Del(V ), and a degree-3 spanning subgraph
BDS(V ) of Del(V ) that includes the convex hullCH(V ) of V . This graphBDS(V )
partitionsCH(V ) into (possibly degenerate) simple polygons, such that each node of
V is on the boundary of at most three polygons.
Notice that, the Euclidean minimum spanning tree is a degree-5 spanning subgraph of
Del(V ). They use degree-3 spanning subgraphBDS(V ) to improve the degree bound
achieved by their structure.

(2) For each polygonP in the above partition, their algorithm first orders the nodes of
the polygon according to a geometry based breadth-first search (BFS), and processes
the nodes ofP in increasing order. It prunes this part of the Delaunay triangulation
(edges insideP or on the boundary ofP ) such that each node ofP has low degree.
The resulting graph is a planar spanner for the nodes ofP in the sense that any two
nodesu andv of P are connected by a path whose length is at most a constant times
the length of a shortest path betweenu andv that iscompletely containedin P . By
combining all the spanners for each of the polygons, they obtain a planar spanner of
bounded degree.

(3) Run a greedy algorithm by Gudmundssonet al.14 on the planar spanner with bounded
degree to bound the total weight of the graph.
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They show that the length stretch factor of the final graph is(1 + ε)(π + 1)Cdel
a and

node degree is at most27. The running time of their algorithm isO(n log n). However,
their method is not suitable to be converted into a localized one even efficient distributed
version, since they used BFS and other operations on polygons (such as degree-3 parti-
tions). Here, a distributed algorithm constructing a graphG is a localized algorithmif
every nodeu can exactly decide all edges ofG incident onu based only on the information
of all nodes within a constant hops ofu. Notice that the breadth-first-search may useO(n2)
communications in distributed or localized algorithms. Here, the total communication cost
of a distributed or localized algorithm is the total number of messages sent by all nodes
under broadcasting communication model. In this section, we will give a new method for
constructing a planar spanner with bounded node degree for a point setV . The basic idea
of our methods is to combine the Delaunay triangulation and the ordered Yao structure5.

Given any edge-weighted graphG = (V, E,w), greedy method has long been known
to construct at-spannerH for G. It works as follows: (1) sort all edges inG incrementally
according to its weight; (2) initializeH to be an empty graph; (3) process all edges in order
of their weights, and an edgee is added toH if there is no path inH with weight at most
t · w(e). A simple implementation of this greedy method is expensive due to the query
cost for each edge. For complete geometry graph, Gudmundssonet al. 14,10 showed how
this greedy method can be implemented in timeO(n log n) under the indirect addressing
model.

Notice that, given a point setV , the greedy algorithm by Gudmundssonet al. 14 has
a preprocessing step that helps to eliminate all but a linear number of edges from further
consideration. This step generally will compute a sparse spannerG with spanning ratio
t/
√

t · t′, which will then be used by the greedy method. Given a sparse spannerG =
(V,E) for the complete graph, their main contribution is anO(n log n) time method to
construct a spannerH of G using greedy approach. They use

√
t · t′ as the parameter in

the greedy method. To guarantee that the total edge length ofH is within a constant factor
of the minimum spanning tree of the point setV , they need the follow condition: there
exists a constantφ such thatt ≥ t′ ≥ φt + 1 − φ > 1. They proved that the edges of
the graph constructed by their method satisfy the(t′, t)-leapfrog property, which in turn
implies that the resulted graph is low-weighted whent ≥ t′ ≥ φt + 1− φ > 1.

2.2. Our Algorithm

We then present our method of constructing low weighted bounded degree planar spanner
for a two-dimensional point setV . We assume that every nodeu has a unique ID denoted
by ID(u).

Algorithm: Constructing Bounded Degree Planar Spanner with Low Weight

(1) Compute the Delaunay triangulation of a setV of n nodes,Del(V ). Let NDel(u) be

aWe suspect the correctness of this bound when low-weighted bounded degree planar spanner is needed. As
will see later, to use the method by Gudmundssonet al. 14 to bound the weight of the graph, the spanning ratio
achieved should be modified to((π + 1)Cdel)2 · (1 + ε).
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the neighbors of a nodeu in the Delaunay triangulation, and letdu be the degree of
nodeu in Del(V ). Ndel(u) anddu can easily be computed in linear time since the
Delaunay triangulation only has a linear number of edges.

(2) Find an orderπ of V as follows. LetG1 = Del(V ) anddG,u be the degree ofu in
a graphG. Remove the nodeu with the smallest value of(dGi,u, ID(u)) and all its
incident edges fromGi. Assignπu = n − i + 1, and call the remaining graphGi+1.
Repeat the above procedure for1 ≤ i ≤ n.
Let Pv denote the predecessors ofv in π, i.e.,Pv = {u ∈ V : πu < πv}. Notice that
sinceGi is a planar graph, we know that the smallest value ofdGi,u is at most5. Then,
for orderingπ, nodeu has at most5 edges to its predecessorsPu in Del(V ).

(3) Let E be the edge set ofDel(V ), and letE′ be the edge set of the desired spanner.
Initialize E′ to be the empty set and all nodes inV are marked asunprocessed. Then,
for each nodeu in V , following the increasing order ofπ, run the following steps to
add some edges fromE to E′ (we only consider Delaunay neighborsNDel(u) of u):

(a) We usev1, v2, · · · , vk to denote the predecessors of nodeu (see Figure 1). Notice
that u can have at most5 edges to its predecessors (already processed Delaunay
neighbors), i.e.,k ≤ 5. Then there arek ≤ 5 opensectors at nodeu whose bound-
aries are rays emanated fromu to the processed neighborsvi of u in Del(V ). For
each such sector apexed atu, we divide it into a minimum number ofopencones of
degree at mostα, whereα ≤ π/2 is a parameter.

(b) For each such cone, lets1, s2, · · · , sm be the geometrically orderedb neighbors
NDel(u) of u in this cone. That is,s1, s2, · · · , sm are allunprocessednodes that
are connected by some edges ofE to u in this cone. For this cone, we first add the
shortest edge inE that is connected tou to the edge setE′, then add toE′ all the
edgessjsj+1, 1 ≤ j < m. Notice that from the Delaunay triangulation definition,
sjsj+1 ∈ E.

(c) Mark nodeu processed.

Repeat this procedure in the increasing order ofπ, until all nodes are marked aspro-
cessed. The final graph formed by edgesE′ is denoted byBPS(V ).

(4) If a low weighted structure is also needed, run the greedy spanner algorithm by Gud-
mundssonet al. 14 to bound the weight of the graphBPS(V ). Let LBPS(V ) be the
resulted low-weighted structure. We will set

√
tt′ = ρ(α)(1+ε) as the input parameter

of the greedy method.

Notice that in the algorithm we useopensectors, which means that we do not consider
adding the edges on the boundaries (any edge involved previously processed neighbors).
For example, in Figure 1, the cones do not include any edgesuvi. This guarantees that the
algorithm does not add any edges to nodevi aftervi has been processed. This approach, as
we will show it later, bounds the node degree.

bHere geometrically ordered means linksus1, us2, · · · , usm are clockwise or anticlockwise distributed around
nodeu. In Figure 1,s1, s2, s3 are anticlockwise distributed in the cone defined byv4 andv5.
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Fig. 1. Constructing planar spanner with bounded degree for a point set: process nodeu.

2.3. Analysis of Algorithm

A simple proof by induction can show that the final graphBPS(V ) is connected. This is
also implied by the later theorem of spanner property, thus, we ignore the proof here.

We then show that the degree ofBPS(V ) is bounded by a constant.

Theorem 4. The maximum node degree of the graphBPS(V ) is at most19 + d 2π
α e.

PROOF. Notice that for a nodeu there are2 cases that an edgeuv is added toBPS(V ).
Case1: When we process nodeu, some edgesuv have already been added by some

processed nodesw before. There are two subcases for this case.
Subcase1.1: The edgeuv has been added by the processed nodev (i.e., herew = v).

For example, in Figure 1, nodeu has edges fromv2, v3 andv5 before it is processed. For
each predecessorv, it only adds one such edge to nodeu.

Subcase1.2: The edgeuv has been added by a processed nodew (herew is not v).
In this case, nodev must be an unprocessed node when processingw. For example, in
Figure 1, nodes2 has edges froms1 ands3 added by processing nodeu before nodes2

is processed. Notice that bothv andu are neighbors of this processed nodew. For each
predecessorw, it at most adds two such edges to nodeu.

Remember that nodeu can have at most5 predecessor neighbors (processed neigh-
bors), and each of predecessor neighbors can add at most3 edges to it (either Subcase
1.1 or Subcase1.2, or both). Thus, the number of this kind of edges (edges added by its
predecessors before nodeu is processed) is bounded by15.

Case2: When nodeu is processed, we can add one edgeuv for each of the partitioned
cones. Since we have at most5 sectors emanated fromu and each cone must have angle
at mostα, it is easy to show that we have at most4 + d 2π

α e cones atu. So the number of
edgesuv added when processingu is bounded by4 + d 2π

α e.
Notice that after nodeu is processed, no edges will be added to it. Consequently, the

degree of each nodeu is bounded by19 + d 2π
α e in the final structure.
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For example, whenα = π/2, then the maximum node degree is at most23; when
α = π/3, then the maximum node degree is at most25. Either case improves the previous
bound27 on the maximum node degree by Boseet al.6.

It is trivial that BPS(V ) is a planar graph, sinceDel(V ) is a planar graph and the
algorithm only adds the Delaunay edges toBPS(V ). Notice that all edgessisi+1 are also
in Del(V ) sincesi andsi+1 are consecutive Delaunay neighbors of nodeu.

Finally, we prove that the graphBPS(V ) is a spanner. Notice that the following theo-
rem also implies that the graphBPS(V ) is connected.

Theorem 5. The graphBPS(V ) is a t-spanner, wheret = max{π
2 , π sin α

2 + 1} · Cdel.

PROOF. First, remember thatDel(V ) is a spanner with a constant length stretch factor
Cdel = 4

√
3

9 π ≈ 2.42. Keil and Gutwin17 proved it using induction on the order of the
lengths of all pair of nodes (from the shortest to the longest). We can show that the path
connecting nodesu andv constructed by the method given by Keil and Gutwin17 also
satisfies that all edges of that path are shorter than‖uv‖. So if we can prove this claim:for
any edgeuv ∈ Del(V ), there exists a path inBPS(V ) connectingu andv whose length
is at most a constant̀times‖uv‖, then we knowBPS(V ) is a` · Cdel-spanner.

We then prove the above claim. Consider an edgeuv in Del(V ). If uv ∈ BPS(V ),
the claim holds. So assume thatuv /∈ BPS(V ).

Assume w.l.o.g. thatπu < πv. It follows from the algorithm that, when we process
nodeu, there must exist a nodev′ in the same cone withv such that‖uv‖ > ‖uv′‖,
uv′ ∈ BPS(V ), and∠v′uv < α ≤ π/2. Let v′ = s1, s2, · · · , sk = v be the sequence of
nodes in the ordered unprocessed neighborhood ofu from v′ to v.

Same with the proof by Boseet al. 6, consider the polygonP , consisting of nodes
u, s1, · · · , sk. We will show that the paths1s2 · · · sk has length that is at most a small con-
stant factor of the length‖uv‖. Let us consider the shortest path froms1 to sk that istotally
insidethe polygonP . Let S(s1, sk) denote such path. This path consists of diagonals ofP
and is contained inside4us1sk. For example, in Figure 2,S(s1, sk) = s1s7s9.

Assume that‖uv′‖ = x. Let w be the point on segmentuv such that‖uw‖ = ‖uv′‖.
Assume that‖uv‖ = y, then‖wv‖ = y − x. Notice that nodev′ is the closest Delau-
nay neighbors in such cone. Obviously, all Delaunay neighborssi in this cone is out-
side of the triangle defined by segmentsuw, wv′ anduv′. We will show that such path
S(s1, sk) is contained inside the triangle4ws1sk. First, if no Delaunay neighbor is inside
4ws1sk, thenS(s1, sk) = s1sk. Thus, the claim trivially holds. If there are some De-
launay neighbors inside4ws1sk, thens1 will connect to the onesi forming the smallest
angle∠us1si. Similarly, nodesk will connect to the onesj forming the smallest angle
∠usksj . Obviouslysi andsj are inside4ws1sk, thus, the shortest path connecting them
is also inside4ws1sk (proved by induction). Since pathS(s1, sk) is the shortest path in-
side the polygonP to connects1 andsk, by convexity, the length ofS(s1, sk) is at most
‖v′w‖+ ‖wv‖ = 2x sin θ

2 + y − x. Hereθ = ∠v′uv < α.
An edgesisj of S(s1, sk) has endpointssi and sj in the neighborhood ofu. Let

D(si, sj) be the sequence of edges of the polygonP betweensi and sj in the or-
dered neighborhood ofu, which are added by processingu. For example, in Figure 2,
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Fig. 2. The shortest path in polygonP .

D(s1, s7) = s1s2s3s4s5s6s7. This path is inBPS(V ). We can bound the length of
D(si, sj) by π/2‖sisj‖ by the argument in Ref.6,7. In Ref.7, it is shown that the length of
D(si, sj) is at mostπ/2 times‖sisj‖, provided that (1) the straight-line segment between
si andsj lies outside the Voronoi region induced byu, and (2) that the pathD(si, sj) lies
on one side of the line throughsi andsj . In other words, we needD(si, sj) to beone-sided
Direct Delaunay pathc; See Ref.11. In Ref.6, they showedd that both these two conditions
hold when∠siusj < π/2. This is trivially satisfied since∠siusj < α ≤ π/2.

Thus, we have a pathus1s2 · · · sk to connectu andv with length at most

‖uv′‖+
k−1
∑

i=1

‖sisi+1‖

≤x +
π
2
· S(s1, sk)

≤x + (2x sin
θ
2

+ y − x) · π/2

=y · (π
2

+
x
y
· (π sin

α
2
− π

2
+ 1))

≤y ·max{π
2

, π sin
α
2

+ 1}

The last inequality comes from0 < x
y ≤ 1. Putting it all together, we knowBPS(V )

is a spanner with length stretch factor at mostmax{π
2 , π sin α

2 + 1} · Cdel.

cFor any pair of nodesu andv, let u = w1, w2, · · · , wk = v be the sequence of nodes whose Voronoi region
intersect segmentuv and the Voronoi regions atwi andwj share a common boundary segment. Then the Direct
Delaunay pathDT (u, v) is w1w2 · · ·wk.
dFirstly, the Voronoi region centered atu will not intersect the segmentsisj . This can be proved by showing
that ‖up‖ > max{‖sip‖, ‖sjp‖} for any pointp on segmentsisj , which is due to\usip + \usjp >
\siup + \sjup = \siusj . Notice that\siusj < α ≤ π/2. Secondly, the pathD(si, sj) is on one-side of
sisj because it is part of the shortest path connectings1 andsk. Thirdly, the pathD(si, sj) is Direct Delaunay
pathDT (si, sj). This can be proved by showing thatV or(sq) intersects the segmentsisj for anyi ≤ q ≤ j.
This is obvious since the circumcenter (belonging toV or(sq)) of any triangleusq−1sq is on the same side of
sisj asu.
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For simplicity, we denote the spanning ratio ofBPS(V ) as

ρ(α) = max{π
2

, π sin
α
2

+ 1} · Cdel.

For example, whenα = π/2, then the spanning ratio is at most(
√

2π
2 + 1) · Cdel; when

α = π/3, then the spanning ratio is at most(π
2 + 1) · Cdel; whenα = 2 arcsin( 1

2 −
1
π ) '

20.9o, then the spanning ratio is at mostπ
2 ·Cdel. Notice that, the method by Boseet al.6

actually can achieve the same spanning ratio as this one, although they did not prove this.
However, the node degree of the graph generated by our method is smaller than that by
Ref. 6.

Notice that the time complexity of our centralized algorithm isO(n log n) too. We can
build Delaunay triangulation inO(n log n), and do ordering in timeO(n log n) (using heap
for the ordering based on degrees), and Yao structure inO(n) (each edge is processed at
most a constant times and there areO(n) edges to be processed). When using heap for the
ordering, initially building a heap needsO(n log n), then we remove one node and it has
at most5 adjacent edges, it needs at most5 times of updating the heap based on degree
(each of which can be done in timeO(log n)). So the ordering can be done inO(n log n).
Consequently, the time complexity isO(n log n), which is the same as the method by Bose
et al. 6. However, our algorithm has smaller node degree bound, is easier to implement,
and (more importantly) has potential to become a localized version for wireless ad hoc
networks application as we will describe later.

We then show that the structureLBPS(V ) is indeed a low-weighted bounded degree
planar spanner. Notice that since we apply the fast greedy method by Gudmundssonet
al. 14 on top of the structureBPS(V ) instead of their preprocessing step, the structure
LBPS(V ) clearly is planar, and has bounded degree. Remember that, in the preprocessing
step, they construct at√

tt′
-spanner. Since we useBPS(V ) to substitute their preprocessing

step, we have t√
tt′

= ρ(α). From the transition property of the spanning ratio, the spanning

ratio ofLBPS(V ) is at mostρ(α) ·
√

tt′ = ρ(α)2(1 + ε). In other words, in applying the
method by Gudmundssonet al. 14, we chooset = ρ(α)2(1 + ε), and t′ = 1 + ε. It
is easy to show that the constantφ = ε

ρ(α)2(1+ε)−1 does satisfy that1 > φ > 0, and
t ≥ t′ ≥ φt + 1 − φ > 1. Consequently, the edges ofLBPS(V ) do satisfy the(t′, t)-
leapfrog property and thus the total edge length ofLBPS(V ) is within a constant factor
of that ofMST (V ). Here the constant depends ont, andt′, i.e., depending onε.

Notice that there is a penalty to be paid to achieve the additional low-weight property:
a larger spanning ratio proved for the low-weighted bounded degree planar spanner. In
addition, theO(n log n) time complexity of constructingLBPS(V ) only works for the
indirect addressing model14.

3. Bounded Degree and Planar Spanner on Unit Disk Graph

We consider a wireless ad hoc network (or sensor network) with all nodes distributed in a
two-dimensional plane. Assume that all wireless nodes have distinctive identities and each
static wireless node knows its position information either through a low-power Global Po-
sition System (GPS) receiver or through some other way. For simplicity, we also assume
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that all wireless nodes have the same maximum transmission range and we normalize it
to one unit. By one-hop broadcasting, each nodeu can gather the location information of
all nodes within the transmission range ofu. Consequently, all wireless nodesV together
define the original communication graph (a unit-disk graphUDG(V )), which has an edge
uv if and only if the Euclidean distance‖uv‖ betweenu andv is less than one unit. No-
tice, throughout this paper, abroadcastby a nodeu meansu sends the message to all
nodes within its transmission range. In wireless ad hoc networks, the radio signal sent out
by a nodeu can be received by all nodes within the transmission range ofu. The main
communication cost is to send out the signal while the receiving cost of a message is ne-
glected here. In this section we give a centralized algorithm to construct a planar spanner
with bounded degree for a connectedUDG(V ), which can be used for wireless ad hoc
networks.

3.1. Our Algorithm

Our method of constructing a bounded degree planar spanner for a connected unit disk
graph is similar to our algorithm for a two-dimensional point set, but with the following
difference: the parameterα is at mostπ/3 here since we have to ensure that an edgesisi+1

does belong to UDG for any two nodessi andsi+1 from a cone. The proof of the planar
property and the proof of the spanner property are different since we may add some edges
that are not in Delaunay triangulation.
Algorithm: Constructing Planar Spanner with Bounded Degree for UDG(V )

(1) Same with the algorithm for point set, first, compute Delaunay triangulationDel(V ).
(2) Removing the edges whose length are longer than one unit inDel(V ). Call the re-

maining graph unit Delaunay triangulation, denoted byUDel(V ). For every nodeu,
we find its unit Delaunay neighborsNUDel(u) and its node degreedu in UDel(V ).

(3) Then, same with the algorithm for point set, find an orderπ of V as follows: Let
G1 = UDel(V ) anddG,u be the node degree ofu in graphG. Remove the nodeu
with the smallest value of(dGi,u, ID(u)) from Gi, let πu = n − i + 1, and call the
remaining graphGi+1. Repeat this procedure for1 ≤ i ≤ n. Obviously, in ordering
π, nodeu at most have5 edges to its predecessorsPu in UDel(V ).

(4) Let E andE′ be the edge sets ofUDel(V ) and the desired spanner. InitializeE′ = ∅
and all nodes inV are unprocessed. Then, same with the algorithm for point set, for
each nodeu in V , following the increasing orderπ, run the following steps to add
some edges toE′:

(a) Nodeu uses its predecessors (processed Unit Delaunay neighbors) inE to define
at most5 opensectors at nodeu (see Figure 3). For each sector, we divide it into a
minimum number ofopencones of degreeα, whereα ≤ π/3.

(b) For each cone, lets1, s2, · · · , sm be the ordered neighborsNUDel(u) of u in this
cone. That is,s1, s2, · · · , sm are all unprocessed nodes that are connected by an
edge of the unit Delaunay triangulation tou. For each cone, first add the shortest
edge inE that is adjacent tou to the edge setE′, then add toE′ all the edges
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sjsj+1 between its geometrically ordered unprocessed neighbors in this cone,1 ≤
j < m. Notice that, here such edgessjsj+1 arenot necessarily inUDel(V ). For
example, when nodeu has a Delaunay neighborx such thatux intersects edge
sisi+1 and‖ux‖ > 1.

(c) Mark nodeu processed.

Repeat this procedure in order ofπ, until all nodes are markedprocessed. Let
BPS(UDG(V )) denote the final graph formed by edge setE′.

2

v

v

v

1v

3s s2

s1

u

5

3

v4

Fig. 3. Constructing planar spanner with bounded degree forUDG(V ): process nodeu. Herev1, · · · , v5 are
the processed neighbors of nodeu in UDel(V ).

Notice that, for UDG we need all edges be less than one unit, while for point set we do
not worry about whether an edge is in the original graph. In the algorithms forUDG(V ),
we change the cone angle bound fromπ/2 toπ/3. The reason is that in the proof of spanner
property we need to guarantee the edgesisj andvv′ must be inUDG(V ), i.e.,‖sisj‖ ≤ 1
and‖vv′‖ ≤ 1.

3.2. Analysis of Algorithm

The bounded node degree property of the final structureBPS(UDG(V )) is trivial. The
proof is similar to the one for point set. Only difference is that the angle of open cone is
α ≤ π/3 instead ofα ≤ π/2. Notice that node degree is bounded by25 if α = π/3.

Remember that it is straightforward thatBPS(V ) is planar since it is a subgraph
of the Delaunay triangulation. This is not true anymore forBPS(UDG(V )): the graph
BPS(UDG(V )) may contain edges that are not in Delaunay triangulation. We will prove
that the structureBPS(UDG(V )) is still planar.

Theorem 6. BPS(UDG(V )) is a planar graph.

PROOF. Observe thatUDel(V ) is a planar graph. When each nodeu is being processed,
we add two kinds of edges: (1) edgeusi, wheresi is the nearest unprocessed node in some
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cone divided byu; (2) some edgessisi+1, whensi andsi+1 are consecutive unprocessed
neighbors ofu in graphUDel(V ). See Figure 3 for illustration. These edgesusi belong to
UDel(V ), so they will not intersect each other. If edgesisi+1 is in UDel(V ), then it will
not break the planar property of the graph also. Otherwise, the only possible reason which
makessisi+1 /∈ UDel(V ) is that there are some edges (such asuw in Figure 4) inDel(V )
betweenusi andusi+1 with length longer than1. Then all such endpointsw of these long

s

i+1s

i

Q
w

u

Fig. 4. No new edges can be added by other nodes to intersectsisi+1, wheresisi+1 is added byu and not in
UDel(V ).

edges andsi, sj , u will form a polygon, denoted byQ, in UDel(V ). We will show that
aftersisi+1 is added no intersecting edges can be added inBPS(UDG(V )). Notice that
all the edges which are possible to add inBPS(UDG(V )) must be diagonals of some
polygons inUDel(V ). However, all the diagonals of polygonQ intersectingsisi+1 are
longer than1, asuw is, i.e., they will never be considered by our algorithm. Consequently,
adding edgesisi+1 will not break the planar property. This finishes our proof.

Next, we prove thatBPS(UDG(V )) is a spanner ofUDG(V ). Notice that we cannot
directly apply for proof thatBPS(V ) is a spanner here since the edges added are different.

Theorem 7. BPS(UDG(V )) is a ` · Cdel-spanner of UDG(V ), where ` =
max{π

2 , π sin α
2 + 1}.

PROOF. Keil and Gutwin17 showed that the Delaunay triangulation is at-spanner for a
constantCdel = 4

√
3

9 π using induction on the increasing order of the lengths of all pair
of nodes. We can show that the path connecting nodesu and v constructed in Ref.17

also satisfies that all edges of that path is shorter than‖uv‖. Consequently, for any edge
uv ∈ UDG(V ) we can find a path inUDel(V ) with length at most at = 4

√
3

9 π times
‖uv‖, and all edges of the path is shorter than‖uv‖. So we only need to show that for
any edgeuv ∈ UDel(V ), there exists a path inBPS(UDG(V )) betweenu andv whose
length is at most a constant` times‖uv‖. ThenBPS(UDG(V )) is a` · Cdel-spanner.

Consider an edgeuv in UDel(V ). If edgeuv is in BPS(UDG(V )), the claim trivially
holds.

Then consider the caseuv /∈ BPS(UDG(V )). The rest of the proof is similar to the
proof of Theorem 5. There must exist a nodev′ in the same cone withv such that‖uv‖ >
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‖uv′‖, uv′ ∈ BPS(UDG(V )), and∠v′uv < α ≤ π/3. Let v′ = s1, s2, · · · , sk =
v be the sequence of nodes in the ordered unprocessed neighborhood ofu in UDel(V )
from v′ to v. Let v′ = w1, w2, · · · , wk = v be the sequence of nodes in the ordered
unprocessed neighborhood ofu in Del(V ) fromv′ tov. Obviously, the set{s1, s2, · · · , sk}
is a subset of{w1, w2, · · · , wk}. Similar to Theorem 5, we know that the length of the path
uw1w2 · · ·wk to connectu andv with length at mostmax{π

2 , π sin α
2 + 1} · ‖uv‖, where

w1 = s1 is the nearest neighbor ofu in the cone, andwk = v. Since any such nodewi

is not inside the polygonQ (defined in the Figure 4 of proof for Theorem 6), the path
us1s2 · · · sk is not longer than the length of pathuw1w2 · · ·wk. This finishes the proof.

The spanner theorem also implies the connectivity of the final topology. In addition,
the computation cost of the algorithm isO(n log n).

It is unclear whether we can run the greedy spanner algorithm by Gudmundssonet al.
14, using the above method as the preprocessing step, to obtain a low-weighted bounded
degree planar spanner forUDG(V ). Notice that if we run the greedy method with the
naive implementation onBPS(UDG(V )), we will obtain a graph whose edges satisfying
the t-leapfrog property, i.e., the final structure is low-weighted. We leave it as an open
problem whether we can construct low-weighted planar bounded degree spanner for UDG
in timeO(n log n).

Notice that here our algorithm for UDG removes long edges from Delaunay triangu-
lation before we process them. We can also first process the Delaunay edges and then
remove the long edges from the resulted graph. In other words, we can first run the algo-
rithm for point set to buildBPS(V ) with parameterα ≤ π/3, then remove the edges with
length longer than1 in BPS(V ). The final graph, denoted asBPS′(UDG(V )), could
be different fromBPS(UDG(V )) since (1) the ordering of nodes could be different; (2)
BPS(UDG(V )) could add some edges (somesisi+1 type edges) that do not belong to the
unit Delaunay triangulationUDel(V ) = Del(V )∩UDG(V ), whileBPS′(UDG(V )) al-
ways uses the edges fromUDel(V ). It is not difficult to proveBPS′(UDG(V )) also has
same properties asBPS(UDG(V )), such as planar, bounded spanning ratio and bounded
node degree.

3.3. Localized Algorithm

Due to the limited power and resources of wireless nodes, wireless ad hoc networks pre-
fer that the underlying network topology can be constructed and maintained in a localized
manner. Therefore, in Ref.22, we extended our centralized algorithm forUDG(V ) to a
localized algorithm withO(n) total messages so that it can be used in wireless ad hoc
networks. Surprisingly enough, the proof of the localized algorithm is much more compli-
cated. For the completeness of presentation, we briefly review that method to support our
claim that the centralized algorithm can be extended to a localized one. The algorithm has
three steps as following.

Firstly, since we cannot build Delaunay triangulation locally, we construct a planar
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spanner, localized Delaunay triangulation for UDG. In Ref.20, Li et. al presented the lo-
calized method to build the LDel for UDG and proved it is a planar spanner with the
same spanning ratiot = CDel as the Delaunay triangulation. LetLDel(V ) be the local-
ized Delaunay triangulation ofUDG(V ), and letNLDel(u) be the neighbors of nodeu in
LDel(V ).

Secondly, instead of building a global order, we build a local orderπ of V using the
following method. Every nodeu initializesπu = 0, i.e., unordered. For nodeu with πu =
0, if its degreedu ≤ 5 then nodeu queries each nodev, from its unordered neighbors,
the current degreedv. If nodeu has the smallest ID among all unordered neighborsv with
dv ≤ 5, nodeu setsπu = max{πv | v ∈ NLDel(u)}+1, and broadcastsπu to its neighbors
NLDel(u) in LDel(V ). Notice that if all unordered neighbors withdv ≤ 5 has larger ID,
we call such query round afailed round. Nodeu performs a new round of queries only if it
finds that the unordered neighbors have been reduced from previous failed round. If node
u receives a message from its neighborv saying thatπv = k, it updates itsdu = du − 1
and also updates the orderπv stored locally. Sodu represents how many neighbors are not
ordered so far. If nodeu finds thatdu ≤ 5 andπu = 0, it goes to do querying. When node
u finds thatdu = 0 andπu > 0, it can go to next step to bound node degree. Notice that
different nodes may have the same order and go to next step in the same time. However,
most importantly, in the local ordering, each nodeu has different order with its neighbors.

Finally, we apply the same technique in the previous algorithm to bound the node
degree following the local orderπ. Initialize all nodes unprocessed. If an unprocessed node
u has the highest local order among its unprocessed neighborsNLDel(u), it applies the
same procedure (steps (4a) and (4b) in the centralized algorithm for UDG) to bound degree,
and then marks itself processed. When all nodes are processed, the algorithm terminates.

4. Conclusion

In this paper, we first proposed a new structure which is a planar spanner with bounded
node degree for any point setV . We can further bound the total weight of the structure by
applying the method by Gudmundssonet al.14. Then we gave one centralized algorithm to
construct bounded degree planar spanner forUDG(V ). The centralized algorithms can be
implemented in timeO(n log n). An advantage of the centralized methods presented here,
compared with the previous methods, is that these methods can be extended to localized
methods, although the extension is not straightforward.
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