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Given a sefl/ of n points in a two-dimensional plane, we give @&{fn logn)-time centralized al-
gorithm that constructs a planaispanner for/, for t = p(a) = max{Z,nwsin § 4 1} - Cgey,
such that the degree of each node is bounded from abov® by[%ﬂ, where0 < o < 7/2is an
adjustable parameter. Hetg,,; is the spanning ratio of the Delaunay triangulation, which is at most

‘*Tﬁw. We also show, by applying the greedy method4nhow to construct a low weighted bounded
degree planar spanner with spanning raiie)2(1 + ¢) and the same degree bound, wheig any

positive real constant. Here, a structure is cal®d weightedif its total edge length is proportional

to the total edge length of the Euclidean minimum spanning tréé.d¥loreover, we show that our
method can be extended to construct a planar bounded degree spanner for unit disk graphs with the
adjustable parameter satisfyingd < o < 7/3. Previously, only centralized meth§cof construct-

ing bounded degree planar spanner is known, with degree luadd spanning ratio ~ 10.02.

The distributed implementation of this centralized method t&kes?) communications in the worst

case. Our method can be converted to a localized algorithm where the total number of messages sent
by all nodes is at mogP(n).

Keywords Spanner; bounded degree; low weight; planar; localized algorithm.

1. Introduction

Let de(u,v) be the total edge weight of the shortest path in an edge weighted graph
connecting two vertices andwv. Given a set of pointd” in a two-dimensional plane, a
subgraphG = (V, E) of a graphH is at-spanner ofA if for any two nodes: andv, we
havedq (u,v) < t-dg(u,v). Inthis paper, we consider the case when the weight of an edge
is the Euclidean distance between its two endpoints. Whida the complete graph, we
simply say thatG is at-spanner. A graply is sparseif it has onlyO(n) edges. If the total
edge length of~ is within a constant factor of the Euclidean minimum spanning tréé, of
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thenG is low weighted Many algorithms are known that compute sparspanners with

some additional properties such as bounded node degree, small spanner diameter (i.e., any
two points are connected bytaspanner path consisting of only a small number of edges),

low weight, and fault-tolerance, see, elg%>810:14.19.21 ' A|| these algorithms compute
t-spanners for any given constant 1.

We consider how to construct planar spanners for a set of two-dimensional points or a
unit disk graph. Here a unit disk graph is a graph which has an eddfeand only if the
Euclidean distanciuv|| between: andwv is less than one unit. It is known that the relative
neighborhood grapi'® and Gabriel grapt'213 are not spanners, while the Delaunay
triangulation!16:17 is a ¢t-spanner where is a constant upper bounded by %w.

For the convenience of our notations, we Wg,; to denote the spanning ratio of the
Delaunay triangulation. Das and Josépshowed that the minimum weight triangulation
and the greedy triangulation arspanners for some constantevcopoulos and Linga$
showed, for any real number> 0, how to construct a planarspanner from the Delaunay
triangulation, whose total edge length is at mdst+ 1 times the weight of a minimum
spanning tree of/, wheret = (1 + 1/r)Cy.;. Notice that all these structures could have
unbounded node degree.

Recently Boset al.® proposed a centralized(n log n)-time algorithm that constructs
a planart-spanner for a given node s&t for t = (1 4+ ) - Cyer ~ 10.02, such that the
node degree is bounded from aboveiy As far as we know, this algorithm is the first
method to compute a planar spanner of bounded degree.

In this paper, we give a simpler method to construct a bounded degree plparner.
The bounds achieved here are better than those by &asle®. In addition, we show, by
applying the greedy method i, how to construct a low weighted bounded degree planar
spanner. The main results of this paper are summarized in the following theorems.

Theorem 1. There is anO(nlogn)-time centralized algorithm that, given a sétof n
points in a two-dimensional plane and a real const@nrt « < /2, constructs a graph

(1) thatis planar,
(2) that is at-spanner, fort = max{%,7wsin § + 1} - Cyer,
(3) in which each point o/ has degree at mog® + (%”].

For our convenience of notations, hereafterplet) = max{ %, 7sin § + 1} - Cyer.

Theorem 2. There is anO(nlogn)-time centralized algorithm that, given a sétof n
points in a two-dimensional plane and two real constaits « < wn/2 ande > 0,
constructs a graph

(1) thatis planar,

(2) that is at-spanner, fort = p(a)? - (1 + ¢),

(3) in which each point o} has degree at mos® + (%’r],

(4) and whose total edge length is bounded from above by a constant factor times the total
edge length of the Euclidean minimum spanning tre& oHere the constant factor
depends on.
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We also extend our method to unit disk graph and get the following resuilt.

Theorem 3. There is anO(nlogn)-time centralized algorithm that, given a connected
unit disk graphU DG (V') of a setV of n points in a two-dimensional plane and a real
constan®) < « < 7/3, constructs a graph

(1) thatis planar,
(2) that is at-spanner o DG(V'), fort = p(«),
(3) in which each point of” has degree at moso + [22].

The rest of the paper is organized as follows. In Section 2, we propose a method con-
structing bounded degree planaspanner with low weight for a two-dimensional point
set. In Section 3, we extend our method to construct a bounded degree #pirzamer
for a unit disk graph defined over a two-dimensional point set. The degree bound is larger
than that achieved by the method for point set, but the spanning ratio is smaller. Moreover,
this centralized method can be converted to a localized algorithm, which can be used for
wireless networks. We conclude our paper in Section 4.

2. Bounded Degree and Planar Spanner on Point Set
2.1. Priori Arts

Our algorithms borrow some idea from the algorithm by Beisa. 6. For the completeness
of presentation, we briefly review the basic steps of their algorithm as follows.

(1) Compute the Delaunay triangulationdf Del(V'), and a degree-3 spanning subgraph
BDS(V) of Del(V) thatincludes the convex hull H (V') of V.. This graphBDS(V)
partitionsC H (V) into (possibly degenerate) simple polygons, such that each node of
V is on the boundary of at most three polygons.

Notice that, the Euclidean minimum spanning tree is a degree-5 spanning subgraph of
Del (V). They use degree-3 spanning subgr&ihS (V) to improve the degree bound
achieved by their structure.

(2) For each polygorP in the above partition, their algorithm first orders the nodes of
the polygon according to a geometry based breadth-first search (BFS), and processes
the nodes ofP in increasing order. It prunes this part of the Delaunay triangulation
(edges inside” or on the boundary of’) such that each node @ has low degree.

The resulting graph is a planar spanner for the nodeB of the sense that any two
nodesu andv of P are connected by a path whose length is at most a constant times
the length of a shortest path betwegmandv that iscompletely containeth P. By
combining all the spanners for each of the polygons, they obtain a planar spanner of
bounded degree.

(3) Run a greedy algorithm by Gudmundssaral. '4 on the planar spanner with bounded
degree to bound the total weight of the graph.
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They show that the length stretch factor of the final grapfi is €) (7 + 1)Cge; * and
node degree is at mo8t. The running time of their algorithm i©(n logn). However,
their method is not suitable to be converted into a localized one even efficient distributed
version, since they used BFS and other operations on polygons (such as degree-3 parti-
tions). Here, a distributed algorithm constructing a graplis a localized algorithmif
every node; can exactly decide all edges@fincident onu based only on the information
of all nodes within a constant hops@fNotice that the breadth-first-search may 0e?)
communications in distributed or localized algorithms. Here, the total communication cost
of a distributed or localized algorithm is the total number of messages sent by all nodes
under broadcasting communication model. In this section, we will give a new method for
constructing a planar spanner with bounded node degree for a polit $&ke basic idea
of our methods is to combine the Delaunay triangulation and the ordered Yao strfucture
Given any edge-weighted gragh= (V, E, w), greedy method has long been known
to construct @-spannetH for G. It works as follows: (1) sort all edges @ incrementally
according to its weight; (2) initializ&/ to be an empty graph; (3) process all edges in order
of their weights, and an edgeis added toH if there is no path ind with weight at most
t - w(e). A simple implementation of this greedy method is expensive due to the query
cost for each edge. For complete geometry graph, Gudmunesson4'° showed how
this greedy method can be implemented in ti@g: log n) under the indirect addressing
model.
Notice that, given a point sét, the greedy algorithm by Gudmundssenal. 4 has
a preprocessing step that helps to eliminate all but a linear number of edges from further
consideration. This step generally will compute a sparse sparneith spanning ratio
t/+/t -/, which will then be used by the greedy method. Given a sparse spéhner
(V, E) for the complete graph, their main contribution is @(nlogn) time method to
construct a spanndi of GG using greedy approach. They uge - t’ as the parameter in
the greedy method. To guarantee that the total edge lendthisfvithin a constant factor
of the minimum spanning tree of the point 9éf they need the follow condition: there
exists a constanp such that > ¢’ > ¢t + 1 — ¢ > 1. They proved that the edges of
the graph constructed by their method satisfy tHet)-leapfrog property, which in turn
implies that the resulted graph is low-weighted whent' > ¢t +1 — ¢ > 1.

2.2. Our Algorithm

We then present our method of constructing low weighted bounded degree planar spanner
for a two-dimensional point sétf. We assume that every nodehas a unique ID denoted
by ID(u).

Algorithm: Constructing Bounded Degree Planar Spanner with Low Weight

(1) Compute the Delaunay triangulation of a $&bf n nodes,Del(V). Let Np.;(u) be

2\We suspect the correctness of this bound when low-weighted bounded degree planar spanner is needed. As
will see later, to use the method by Gudmundssbal. 14 to bound the weight of the graph, the spanning ratio
achieved should be modified (or + 1)Cye;)2 - (1 + ).
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the neighbors of a node in the Delaunay triangulation, and lét, be the degree of
nodew in Del(V). N4 (u) andd,, can easily be computed in linear time since the
Delaunay triangulation only has a linear number of edges.

(2) Find an orderr of V' as follows. LetG; = Del(V) anddg,, be the degree of in
a graphG. Remove the node with the smallest value ofdg, ., ID(u)) and all its
incident edges fronds;. Assignm,, = n — i + 1, and call the remaining grapi; ;.
Repeat the above procedure foK i < n.
Let P, denote the predecessorswin =, i.e., P, = {u € V : 7, < m,}. Notice that
sinceG; is a planar graph, we know that the smallest valuéf,, is at most. Then,
for orderingz, nodeu has at mos$ edges to its predecessdrs in Del(V).

(3) Let E be the edge set dbel(V), and letE’ be the edge set of the desired spanner.
Initialize E’ to be the empty set and all nodeslinare marked aanprocessedrlhen,
for each node: in V, following the increasing order of, run the following steps to
add some edges froifd to E’ (we only consider Delaunay neighba¥g,.; (u) of w):

(a) We usev,vs, - - - , v to denote the predecessors of nadgsee Figure 1). Notice
thatu can have at mosi edges to its predecessors (already processed Delaunay
neighbors), i.e.k < 5. Then there aré < 5 opensectors at node whose bound-
aries are rays emanated franto the processed neighbarsof « in Del(V'). For
each such sector apexeduatve divide it into a minimum number afpencones of
degree at most, wherea < /2 is a parameter.

(b) For each such cone, let, s, - ,s,, be the geometrically orderkcheighbors
Npei(u) of win this cone. That issy, s2, - - - , s, are allunprocessedhodes that
are connected by some edgesiofo « in this cone. For this cone, we first add the
shortest edge iy that is connected ta to the edge sek’, then add taF’ all the
edgess;s;+1, 1 < j < m. Notice that from the Delaunay triangulation definition,
5j8j4+1 € E.

(c) Mark nodeu processed

Repeat this procedure in the increasing order afintil all nodes are marked gso-
cessedThe final graph formed by edgés is denoted byBPS (V).

(4) If a low weighted structure is also needed, run the greedy spanner algorithm by Gud-
mundssoret al. 14 to bound the weight of the graphPS(V'). Let LBPS(V) be the
resulted low-weighted structure. We will s¢tt’ = p(a)(1+¢) as the input parameter
of the greedy method.

Notice that in the algorithm we usmensectors, which means that we do not consider
adding the edges on the boundaries (any edge involved previously processed neighbors).
For example, in Figure 1, the cones do not include any edggsThis guarantees that the
algorithm does not add any edges to nodafterv; has been processed. This approach, as
we will show it later, bounds the node degree.

bHere geometrically ordered means links; , uss, - - - , us., are clockwise or anticlockwise distributed around
nodeuw. In Figure 1,s1, s, s3 are anticlockwise distributed in the cone definedyanduvs.
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Fig. 1. Constructing planar spanner with bounded degree for a point set: process node

2.3. Analysis of Algorithm

A simple proof by induction can show that the final graP®S (V) is connected. This is
also implied by the later theorem of spanner property, thus, we ignore the proof here.
We then show that the degree BP.S(V) is bounded by a constant.

Theorem 4. The maximum node degree of the grapRS(V) is at mostl9 + [2Z].

PrROOF Notice that for a node there are2 cases that an edge is added taBP S (V).

Casel: When we process node some edgesv have already been added by some
processed nodas before. There are two subcases for this case.

Subcasd.1: The edgeuv has been added by the processed nofles., herew = v).

For example, in Figure 1, nodehas edges from,, v3 andvs before it is processed. For
each predecessor it only adds one such edge to node

Subcasd .2: The edgeuv has been added by a processed nodgerew is notv).

In this case, node must be an unprocessed node when processingor example, in
Figure 1, nodes; has edges from; ands; added by processing nodebefore nodes,
is processed. Notice that bothand are neighbors of this processed nadeFor each
predecessaw, it at most adds two such edges to nade

Remember that node can have at mosi predecessor neighbors (processed neigh-
bors), and each of predecessor neighbors can add at3rexges to it (either Subcase
1.1 or Subcasd.2, or both). Thus, the number of this kind of edges (edges added by its
predecessors before nodés processed) is bounded by.

Case2: When nodeu is processed, we can add one edgdor each of the partitioned
cones. Since we have at massectors emanated fromand each cone must have angle
at mosta, it is easy to show that we have at mdst [22] cones at. So the number of
edgesuwv added when processingis bounded byt + [22].

Notice that after node is processed, no edges will be added to it. Consequently, the
degree of each nodeis bounded byl9 + [227 in the final structure.
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For example, whemx = 7/2, then the maximum node degree is at m2&%t when
a = 7 /3, then the maximum node degree is at nitistEither case improves the previous
bound27 on the maximum node degree by Baseal. .

It is trivial that BPS(V) is a planar graph, sincBel(V) is a planar graph and the
algorithm only adds the Delaunay edged3® S (V). Notice that all edges;s;; are also
in Del(V) sinces; ands;;, are consecutive Delaunay neighbors of nade

Finally, we prove that the grapB PS(V) is a spanner. Notice that the following theo-
rem also implies that the graghP S (V) is connected.

Theorem 5. The graphBPS (V) is at-spanner, wheré = max{J, wsin § 4 1} - Cyer.

PrROOF First, remember thabDel(V') is a spanner with a constant length stretch factor
Ciei = #w ~ 2.42. Keil and Gutwin'” proved it using induction on the order of the
lengths of all pair of nodes (from the shortest to the longest). We can show that the path
connecting nodes andwv constructed by the method given by Keil and Gutwinalso
satisfies that all edges of that path are shorter tharj. So if we can prove this clainfor
any edgewv € Del(V), there exists a path i3 PS(V') connectingu andv whose length
is at most a constarittimes||uv||, then we knowBPS (V) is al - C4e-Spanner.

We then prove the above claim. Consider an edgén Del(V). If wv € BPS(V),
the claim holds. So assume that ¢ BPS(V).

Assume w.l.0.g. that, < m,. It follows from the algorithm that, when we process
nodew, there must exist a nod€ in the same cone witl such that||uv|| > ||ud’|,
wv' € BPS(V), andZv'uv < o < /2. Letv' = 51,89, , s = v be the sequence of
nodes in the ordered unprocessed neighborhoadi@m v’ to v.

Same with the proof by Boset al. %, consider the polygorP, consisting of nodes
u, 81, , 8k We will show that the path; s5 - - - 5 has length that is at most a small con-
stant factor of the lengtfwv||. Let us consider the shortest path freprto s, that istotally
insidethe polygonP. Let S(s1, si) denote such path. This path consists of diagonal3 of
and is contained insid&us; si. For example, in Figure 5(s1, si) = s18759.

Assume thatluv’|| = x. Letw be the point on segment such thaf|uw|| = [juv’||.
Assume that|uv|| = y, then|jwv|| = y — z. Notice that node/’ is the closest Delau-
nay neighbors in such cone. Obviously, all Delaunay neighbpia this cone is out-
side of the triangle defined by segments, wv’ anduv’. We will show that such path
S(s1, sk) is contained inside the triangl&ws, si.. First, if no Delaunay neighbor is inside
Awsi sk, thenS(s1, sg) = s1s,. Thus, the claim trivially holds. If there are some De-
launay neighbors insidéws; sk, thens; will connect to the one; forming the smallest
angle Zusys;. Similarly, nodes;, will connect to the one; forming the smallest angle
Zusys;. Obviouslys; ands; are insideAws; s, thus, the shortest path connecting them
is also insideAwsy s, (proved by induction). Since pat$i(s, si) is the shortest path in-
side the polygorP to connects; andsy, by convexity, the length of(s1, sx) is at most
[v'w|| + [|wo|| = 22sin § + y — . Hered = Lv'wv < a.

An edges;s; of S(s1,s,) has endpoints; ands; in the neighborhood ofi. Let
D(s;,s;) be the sequence of edges of the polygBnbetweens; and s; in the or-
dered neighborhood af, which are added by processing For example, in Figure 2,
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Fig. 2. The shortest path in polygdn

D(s1,87) = s18283848586S7. This path is inBPS(V). We can bound the length of
D(si,s5) by m/2|sis;|| by the argument in Ref.”. In Ref.”, it is shown that the length of
D(s;, s;) is at mostr/2 times||s;s, ||, provided that (1) the straight-line segment between
s; ands; lies outside the Voronoi region induced byand (2) that the pat®(s;, s;) lies
on one side of the line through ands;. In other words, we neeb(s;, s;) to beone-sided
Direct Delaunay patti; See Ref!!. In RefS, they showed that both these two conditions
hold whenZs;us; < /2. This is trivially satisfied since/s;us; < a < m/2.

Thus, we have a patias; s5 - - - s, to connectu andv with length at most

k—1
o' + 3 sisia
i=1
S.’,C + g : S(sl7sk‘)
.0
§x+(2xsm§+y—x) /2
=y (

g+g~(wsin%—g+l))

<y- max{g,wsin% + 1}

The last inequality comes frofh < f < 1. Putting it all together, we kno PS (V)
is a spanner with length stretch factor at mesix{ 7, 7sin § 4 1} - Cyer.

¢For any pair of nodes andv, letu = w1, wa, - -+, w, = v be the sequence of nodes whose Voronoi region
intersect segmentv and the Voronoi regions ai; andw; share a common boundary segment. Then the Direct
Delaunay pattDT (u, v) iswiws - - - wg.

dFirstly, the Voronoi region centered atwill not intersect the segment s;. This can be proved by showing
that |lup|| > max{||s;p||,||s;pll} for any pointp on segment;s;, which is due toLus;p + Zus;p >
Zsiup + Zsjup = Zs;us;. Notice thatZs;us; < o < /2. Secondly, the patid(s;, s;) is on one-side of
s;s; because it is part of the shortest path connectingndsy,. Thirdly, the pathD(s;, s;) is Direct Delaunay
pathDT(s;, s;). This can be proved by showing thier (s, ) intersects the segmests; for anyi < ¢ < j.

This is obvious since the circumcenter (belongind/tor(s,)) of any triangleus,_1s4 is on the same side of
Si5; asu.
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For simplicity, we denote the spanning ratioBPS (V') as
«

pla) = max{g,ﬂsin 5+ 1} - Cler-

For example, whem = 7/2, then the spanning ratio is at m(ﬁ% + 1) - Cger; when

o = /3, then the spanning ratio is at md$t + 1) - Cer; Whena = 2arcsin(§ — 1) ~

20.9°, then the spanning ratio is at mdst Cy;. Notice that, the method by Boseal. ©
actually can achieve the same spanning ratio as this one, although they did not prove this.
However, the node degree of the graph generated by our method is smaller than that by
Ref. 6.

Notice that the time complexity of our centralized algorithn®ig: log n) too. We can
build Delaunay triangulation i®(n log ), and do ordering in tim&(n log n) (using heap
for the ordering based on degrees), and Yao structué(in) (each edge is processed at
most a constant times and there &) edges to be processed). When using heap for the
ordering, initially building a heap need3(n log n), then we remove one node and it has
at most5 adjacent edges, it needs at mésdimes of updating the heap based on degree
(each of which can be done in tini®(log n)). So the ordering can be donedH(n logn).
Consequently, the time complexity@¥n log n), which is the same as the method by Bose
et al. 6. However, our algorithm has smaller node degree bound, is easier to implement,
and (more importantly) has potential to become a localized version for wireless ad hoc
networks application as we will describe later.

We then show that the structufeB PS(V) is indeed a low-weighted bounded degree
planar spanner. Notice that since we apply the fast greedy method by Gudmuetisson
al. ' on top of the structurd3 PS(V) instead of their preprocessing step, the structure
LBPS(V) clearly is planar, and has bounded degree. Remember that, in the preprocessing
step, they construct@%—spanner. Since we ugePS(V) to substitute their preprocessing
step, we hav% = p(«). From the transition property of the spanning ratio, the spanning
ratio of LBPS(V) is at mostp(a) - vVtt' = p(a)?(1 + €). In other words, in applying the
method by Gudmundssoet al. 14, we chooset = p(a)?(1 + ¢€), andt’ = 1 +e. It
is easy to show that the constat= m does satisfy that > ¢ > 0, and
t >t > ¢t+1— ¢ > 1. Consequently, the edges bBBPS (V') do satisfy the(t', ¢)-
leapfrog property and thus the total edge lengti.&PS (V) is within a constant factor
of that of M ST (V). Here the constant dependsmndt’, i.e., depending oa.

Notice that there is a penalty to be paid to achieve the additional low-weight property:
a larger spanning ratio proved for the low-weighted bounded degree planar spanner. In
addition, theO(nlogn) time complexity of constructind.BPS (V') only works for the
indirect addressing modét.

3. Bounded Degree and Planar Spanner on Unit Disk Graph

We consider a wireless ad hoc network (or sensor network) with all nodes distributed in a
two-dimensional plane. Assume that all wireless nodes have distinctive identities and each
static wireless node knows its position information either through a low-power Global Po-

sition System (GPS) receiver or through some other way. For simplicity, we also assume
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that all wireless nodes have the same maximum transmission range and we normalize it
to one unit. By one-hop broadcasting, each nodan gather the location information of

all nodes within the transmission rangewfConsequently, all wireless nod&stogether
define the original communication graph (a unit-disk grdfhG (V)), which has an edge

wo if and only if the Euclidean distandeuv|| betweenu andwv is less than one unit. No-

tice, throughout this paper, laroadcastby a nodeu meansu sends the message to all
nodes within its transmission range. In wireless ad hoc networks, the radio signal sent out
by a nodeu can be received by all nodes within the transmission range dhe main
communication cost is to send out the signal while the receiving cost of a message is ne-
glected here. In this section we give a centralized algorithm to construct a planar spanner
with bounded degree for a connect€dG(V'), which can be used for wireless ad hoc
networks.

3.1. Our Algorithm

Our method of constructing a bounded degree planar spanner for a connected unit disk
graph is similar to our algorithm for a two-dimensional point set, but with the following
difference: the parameteris at mostr/3 here since we have to ensure that an edgg 1

does belong to UDG for any two nodesands;,; from a cone. The proof of the planar
property and the proof of the spanner property are different since we may add some edges
that are not in Delaunay triangulation.

Algorithm: Constructing Planar Spanner with Bounded Degree for UDG(V)

(1) Same with the algorithm for point set, first, compute Delaunay trianguld®@iil’).

(2) Removing the edges whose length are longer than one udiiV’). Call the re-
maining graph unit Delaunay triangulation, denotedlbel (V). For every node,
we find its unit Delaunay neighbof$y p.;(u) and its node degreé, in U Del (V).

(3) Then, same with the algorithm for point set, find an ordeof 1V as follows: Let
G1 = UDel(V) anddg,, be the node degree afin graphG. Remove the node
with the smallest value ofdg, ., ID(u)) from G, letm, = n — i + 1, and call the
remaining graplG,;,,. Repeat this procedure far< i < n. Obviously, in ordering
7, nodeu at most haveé edges to its predecessdPs in U Del (V).

(4) Let £ andE’ be the edge sets éf Del(V') and the desired spanner. Initializg =
and all nodes iri/ are unprocessed. Then, same with the algorithm for point set, for
each nodey in V, following the increasing order, run the following steps to add
some edges t&’:

(a) Nodewu uses its predecessors (processed Unit Delaunay neighbdisoiefine
at most5 opensectors at node (see Figure 3). For each sector, we divide it into a
minimum number obpencones of degree, wherea < 7/3.

(b) For each cone, let;, s, - - - , s,, be the ordered neighbofé, p.;(v) of w in this
cone. That issy, s2,- - - , 55, are all unprocessed nodes that are connected by an
edge of the unit Delaunay triangulationdoFor each cone, first add the shortest
edge inE that is adjacent ta to the edge sek’, then add toE’ all the edges
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sjsj4+1 between its geometrically ordered unprocessed neighbors in thislcehe,
j < m. Notice that, here such edgess; 1, arenot necessarily i/ Del(V'). For
example, when node has a Delaunay neighbar such thatux intersects edge
$i8i+1 and|jux| > 1.

(c) Mark nodeu processed

Repeat this procedure in order a@f until all nodes are markegrocessed Let

BPS(UDG(V)) denote the final graph formed by edge Bét

Fig. 3. Constructing planar spanner with bounded degre&foG(V): process node. Herevy, - - - ,vs are
the processed neighbors of nodé U Del (V).

Notice that, for UDG we need all edges be less than one unit, while for point set we do
not worry about whether an edge is in the original graph. In the algorithnis fo6 (1),
we change the cone angle bound frai® to 7 /3. The reason is that in the proof of spanner
property we need to guarantee the edge andvv’ mustbe inUDG(V), i.e.,||s;s ]| <1
and|jvv’|| < 1.

3.2. Analysis of Algorithm

The bounded node degree property of the final strucBiRS (U DG(V)) is trivial. The

proof is similar to the one for point set. Only difference is that the angle of open cone is

a < /3 instead ofo < /2. Notice that node degree is boundedyif o = 7/3.
Remember that it is straightforward th&PS(V) is planar since it is a subgraph

of the Delaunay triangulation. This is not true anymore B S(UDG(V)): the graph

BPS(UDG(V)) may contain edges that are not in Delaunay triangulation. We will prove

that the structurd P.S(UDG(V)) is still planar.

Theorem 6. BPS(UDG(V)) is a planar graph.

PROOF Observe that/ Del(V) is a planar graph. When each nodés being processed,
we add two kinds of edges: (1) edge;, wheres; is the nearest unprocessed node in some
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cone divided by; (2) some edges;s;+1, whens; ands;; are consecutive unprocessed
neighbors ofu in graphU Del(V'). See Figure 3 for illustration. These edges belong to
UDel(V), so they will not intersect each other. If edge;,; is in UDel(V'), then it will

not break the planar property of the graph also. Otherwise, the only possible reason which
makess; s; 11 ¢ UDel(V) is that there are some edges (such@sn Figure 4) inDel (V)
betweerus; andus;+1 with length longer tha. Then all such endpoints of these long

S+i1

Fig. 4. No new edges can be added by other nodes to interseqt;, wheres;s; 1 is added by and not in
UDel(V).

edges and;, s;, u will form a polygon, denoted by, in UDel(V'). We will show that
afters;s; 1 is added no intersecting edges can be addd8litt (U DG(V)). Notice that

all the edges which are possible to addB®S(UDG(V)) must be diagonals of some
polygons inU Del(V'). However, all the diagonals of polygadh intersectings;s; 1 are
longer thanl, asuw is, i.e., they will never be considered by our algorithm. Consequently,
adding edge; s;1 will not break the planar property. This finishes our proof.

Next, we prove thaBPS(UDG(V)) is a spanner o/ DG (V). Notice that we cannot
directly apply for proof thaB PS(V) is a spanner here since the edges added are different.

Theorem 7. BPS(UDG(V)) is a ¢ - Cgye-spanner of UDG(V), where ¢ =
max{F,msin § + 1}.

PrROOF. Keil and Gutwin'” showed that the Delaunay triangulation is-apanner for a
constantCye; = %w using induction on the increasing order of the lengths of all pair
of nodes. We can show that the path connecting nadaad v constructed in Ref!”
also satisfies that all edges of that path is shorter thar|. Consequently, for any edge
uv € UDG(V) we can find a path if/Del(V') with length at most & = %w times
|luv]|, and all edges of the path is shorter than||. So we only need to show that for
any edgewv € UDel(V), there exists a path iBPS(UDG(V')) betweernu andv whose
length is at most a constaftimes||uv||. ThenBPS(UDG(V)) is al - Cgei-Spanner.

Consider an edgev in UDel(V). If edgeuv is in BPS(UDG(V')), the claim trivially
holds.

Then consider the case ¢ BPS(UDG(V)). The rest of the proof is similar to the
proof of Theorem 5. There must exist a nadén the same cone with such that|uv|| >
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luv'|], uv" € BPS(UDG(V)), and Zv'uv < a < 7/3. Letv' = s1,89, -+ ,8, =
v be the sequence of nodes in the ordered unprocessed neighborhedd BfDel (1)

from v’ to v. Let v’ = wi,ws, -+ ,w; = v be the sequence of nodes in the ordered
unprocessed neighborhoodwiin Del(V') from’ tov. Obviously, the sefsy, s, -+ , s}
is a subset ofwy, wa, - - - ,wy }. Similar to Theorem 5, we know that the length of the path

uwiws - - - wy, to connecty andv with length at mostnax{ 7, wsin § + 1} - [Juv||, where

wy = s IS the nearest neighbor afin the cone, andv;, = v. Since any such node;

is not inside the polygor) (defined in the Figure 4 of proof for Theorem 6), the path
us1se - - - S, IS not longer than the length of pathv;ws - - - wy. This finishes the proof.

The spanner theorem also implies the connectivity of the final topology. In addition,
the computation cost of the algorithm@¥n log n).

It is unclear whether we can run the greedy spanner algorithm by Gudmuretssion
14 using the above method as the preprocessing step, to obtain a low-weighted bounded
degree planar spanner f6fDG(V). Notice that if we run the greedy method with the
naive implementation oBPS(UDG(V')), we will obtain a graph whose edges satisfying
the t-leapfrog property, i.e., the final structure is low-weighted. We leave it as an open
problem whether we can construct low-weighted planar bounded degree spanner for UDG
in time O(nlogn).

Notice that here our algorithm for UDG removes long edges from Delaunay triangu-
lation before we process them. We can also first process the Delaunay edges and then
remove the long edges from the resulted graph. In other words, we can first run the algo-
rithm for point set to buildB PS(V') with parametery < /3, then remove the edges with
length longer tharl in BPS(V). The final graph, denoted &P.S’(UDG(V)), could
be different fromBP.S(UDG(V)) since (1) the ordering of nodes could be different; (2)
BPS(UDG(V)) could add some edges (so®&; 1 type edges) that do not belong to the
unit Delaunay triangulatioty Del(V') = Del(V)NUDG(V'), while BPS"(UDG(V)) al-
ways uses the edges fraiiDel (V). It is not difficult to proveBP.S’ (UDG(V)) also has
same properties @PS(UDG(V)), such as planar, bounded spanning ratio and bounded
node degree.

3.3. Localized Algorithm

Due to the limited power and resources of wireless nodes, wireless ad hoc networks pre-
fer that the underlying network topology can be constructed and maintained in a localized
manner. Therefore, in Ref?, we extended our centralized algorithm DG (V) to a
localized algorithm withO(n) total messages so that it can be used in wireless ad hoc
networks. Surprisingly enough, the proof of the localized algorithm is much more compli-
cated. For the completeness of presentation, we briefly review that method to support our
claim that the centralized algorithm can be extended to a localized one. The algorithm has
three steps as following.

Firstly, since we cannot build Delaunay triangulation locally, we construct a planar
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spanner, localized Delaunay triangulation for UDG. In Ref.Li et. al presented the lo-
calized method to build the LDel for UDG and proved it is a planar spanner with the
same spanning ratio= Cp,; as the Delaunay triangulation. L&tDel (V') be the local-
ized Delaunay triangulation éaf DG(V'), and letNy, p.;(u) be the neighbors of nodein
LDel(V).

Secondly, instead of building a global order, we build a local ordef V' using the
following method. Every node initializes«,, = 0, i.e., unordered. For nodewith 7, =
0, if its degreed,, < 5 then nodeu queries each node, from its unordered neighbors,
the current degreé, . If nodew has the smallest ID among all unordered neighlonrsth
d, < 5,nodeu setsr, = max{m, | v € Nppe(u)}+1, and broadcasts, to its neighbors
Nppei(u) in LDel(V'). Notice that if all unordered neighbors with < 5 has larger ID,
we call such query roundfailed round Nodeu performs a new round of queries only if it
finds that the unordered neighbors have been reduced from previous failed round. If node
u receives a message from its neighbaaying thatr, = k, it updates itsl, = d, — 1
and also updates the ordey stored locally. Sal, represents how many neighbors are not
ordered so far. If node finds thatd,, < 5 andr,, = 0, it goes to do querying. When node
u finds thatd,, = 0 and~=, > 0, it can go to next step to bound node degree. Notice that
different nodes may have the same order and go to next step in the same time. However,
most importantly, in the local ordering, each nadeas different order with its neighbors.

Finally, we apply the same technique in the previous algorithm to bound the node
degree following the local order. Initialize all nodes unprocessed. If an unprocessed node
u has the highest local order among its unprocessed neiglors; (u), it applies the
same procedure (steps (4a) and (4b) in the centralized algorithm for UDG) to bound degree,
and then marks itself processed. When all nodes are processed, the algorithm terminates.

4. Conclusion

In this paper, we first proposed a new structure which is a planar spanner with bounded
node degree for any point sét We can further bound the total weight of the structure by
applying the method by Gudmundssetral. 4. Then we gave one centralized algorithm to
construct bounded degree planar spannettG(V'). The centralized algorithms can be
implemented in time& (n log n). An advantage of the centralized methods presented here,
compared with the previous methods, is that these methods can be extended to localized
methods, although the extension is not straightforward.
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