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Efficient Distributed Low-Cost Backbone Formation
for Wireless Networks
Yu Wang∗ Weizhao Wang† Xiang-Yang Li†

Abstract— Backbone has been used extensively in various
aspects (e.g., routing, route maintenance, broadcast, scheduling)
for wireless ad hoc or sensor networks recently. Previous methods
are mostly designed to minimize the size of the backbone.
However, in many applications, it is desirable to construct a
backbone with small cost when each wireless node has a cost
of being in the backbone. In this paper, we first show that
previous methods specifically designed to minimize the backbone
size may produce a backbone with large cost. Then an efficient
distributed method to construct a weighted backbone with low
cost is proposed. We prove that the total cost of the constructed
backbone is within a small constant factor of the optimum for
homogeneous networks when either the nodes’ costs are smooth
(i.e. the maximum ratio of costs of adjacent nodes is bounded) or
the network maximum node degree is bounded. We also show that
with a small modification the constructed backbone is efficient
for unicast: the total cost (or hop) of the least cost (or hop)
path connecting any two nodes using backbone is no more than
3 (or 4) times of the least cost (or hop) path in the original
communication graph. Our theoretical results are corroborated
by our simulation studies. Finally, we discuss several possible ad
hoc network applications of our proposed backbone formation
algorithms.

Index Terms— Combinatorics, connected dominating set, clus-
tering, localized algorithm, wireless ad hoc networks.

I. I NTRODUCTION

Wireless networks draw lots of attentions in recent years
due to its potential applications in various areas. Many routing
protocols have been proposed for wireless ad hoc networks
recently. The simplest routing method is to flood the message,
which not only wastes the rare resources of wireless nodes,
but also diminishes the throughput of the network. One way
to avoid flooding is to let each node communicate with only
a selected subset of its neighbors , or to use a hierarchical
structure like Internet,e.g., connected dominating set (CDS)
based routing [1]–[5].

Efficient distributed algorithms for constructing connected
dominating sets in ad hoc wireless networks were well studied
[3]–[14]. Most of the proposed methods try to minimize the
number of clusterheads, i.e., the number of nodes in the
backbone. However, in many applications of wireless ad hoc
networks, minimizing the size of the backbone is not sufficient.
For example, different wireless nodes may have different costs
for serving as a clusterhead, due to device differences, power
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capacities, and information loads to be processed. Therefore,
in the remaining of the paper, for the succinctness of our
presentation, we assume that each wireless node has ageneric
cost (or weight). The cost may also represent thefitnessor
priority of each node to be a clusterhead. The lower cost
means the higher priority. In practice, the cost could represent
the power consumption rate of this node if a backbone with
small power consumption is needed; the robustness of this
node if fault-tolerant backbone is needed; or a function of
its security level if a secure backbone is needed. Therefore,
by defining different costs, our proposed low-cost backbone
formation algorithms can be used in various practical appli-
cations. Recently, many proposed clustering algorithms [14]–
[28] also considered different weights as apriority criterion
to decide whether a node will be a clusterhead. However, the
ultimate goal of the majority protocols is still to minimize the
size of the cluster (or backbone), not the total weight of the
cluster (or backbone). In this paper, we study how to construct
a sparse backbone efficiently for a set of weighted wireless
nodes such that the total cost of the backbone is minimized and
there is a cost (or hops)efficientroute connecting every pair of
wireless nodes via the constructed network backbone. Here a
route is cost (or hops resp.)efficientif its cost (or hops resp.)
is no more than a constant factor of the minimum cost (or
hops resp.) needed to connect the source and the destination in
the original communication graph when all possible physical
communication links are considered.

We propose a novel distributed method to generate weighted
backbone with a good approximation ratio while using small
communication cost. Our methods work not only for ho-
mogeneous networks, but also for heterogeneous networks.
We prove that the total cost of the constructed backbone is
within min(4δ +1, 18 log(∆+1))+10 times of the optimum
for homogeneous networks when all nodes have the same
transmission range. Hereδ is the maximum ratio of costs
of two adjacent wireless nodes and∆ is the maximum node
degree in the communication graph. Notice that the advantage
of our backbone is that the total cost is small compared with
the optimum when either the costs of wireless nodes are
smooth,i.e., two neighboring nodes’ costs differ by a small
constant factor, or the maximum node degree is low. The total
number of messages of our method isO(m) for any network
composed ofn wireless devices andm total pairs of nodes that
can directly receive signals from each other. We also show that
with a small modification the constructed backbone is efficient
for unicast: the total cost (or hop) of the least cost (or hop)
path connecting any two nodes using backbone is no more than
3 (or 4) times of the least cost (or hop) path in the original



communication graph. This is significant since our backbone
structure is much sparser than the original communication
graph, which significantly reduces the cost of routing without
losing much ground on the performance of unicast.

The rest of the paper is organized as follows. In Section
II, we provide preliminaries necessary for describing our new
algorithms. In Section III, we review the related works in
literature, including formations of connected dominating sets
and weighted clustering methods. Then, the possible bad per-
formances of several classical methods are shown by examples
in Section IV. Section V presents our new weighted backbone
formation algorithms, and Section VI gives the theoretical
performance analysis of the proposed algorithms. Section
VII presents some experimental results. In Section VIII, we
discuss several possible network applications of our proposed
weighted backbone formation algorithms. Finally, we conclude
our paper in Section IX by discussing dynamic maintenance
of the backbone and some future research directions.

II. PRELIMINARIES

In this section, we give some definitions and notations that
will be used in our presentation later. We assume that all
wireless nodes are given as a setV of n points in a two
dimensional space. Each wireless node has an omni-directional
antenna. This is attractive for a single transmission of a node
can be received by all nodes within its vicinity. Each node
has some computational power. We always assume that the
nodes are almost-static in a reasonable period of time. A
communication graphG = (V, E) over a setV of wireless
nodes has an edgeuv between nodesu and v if and only if
u andv can communicate directly with each other, i.e., inside
the transmission region of each other. Hereafter, we always
assume thatG is a connected graph. LetdG(u) be the degree
of nodeu in a graphG and∆ be the maximum node degree
of all wireless nodes (i.e.∆ = maxu∈V dG(u)). Notice that
the average node degree is calleddensityof the network. We
assume that each wireless nodeu has a costc(u) of being in
the backbone. Here the costc(u) could be the value computed
based on a combination of its remaining battery power, its
mobility, its node degree in the communication graph, and
so on. We will discuss several possible weight functions for
different applications in Section VIII in detail. In general,
smaller c(u) means that the node is more suitable of being
in the backbone. Letδ = maxij∈E c(i)/c(j), whereij is the
edge between nodesi and j, E is the set of communication
links in the wireless networkG, and the maximum operation
is taken on all pairs of adjacent nodesi and j in G. In other
words,δ is the maximum ratio of costs of two adjacent nodes.
We callδ thecost smoothnessof the wireless networks. When
δ is bounded by some small constant, we say the node costs
aresmooth.

When the transmission region of every wireless node is
modeled by a unit disk centered at itself, the communication
graph is often called aunit disk graph, denoted byUDG(V ),
in which there is an edge between two nodes if and only if their
distance is at most one. We also call such wireless networks
ashomogeneous networks.

We call all nodes within a constantk hops of a nodeu
in the communication graphG as thek-local nodesor k-hop
neighborsof u, denoted byNk(u), which includesu itself. The
k-local graph of a nodeu, denoted byGk(u), is the induced
graph of G on Nk(u), i.e., Gk(u) is defined on vertex set
Nk(u), and contains all edges inG with both end-points in
Nk(u).

A subset of vertices in a graphG is an independent setif
for any pair of vertices, there is no edge between them. It is
a maximal independent setif no more vertices can be added
to it to generate a larger independent set. It is amaximum
independent set(MIS) if no other independent set has more
vertices. The independence number, denoted asα(G), of a
graphG is the size of the maximum independent set ofG. The
k-local independence number, denoted byα[k](G), is defined
asα[k](G) = maxu∈V α(Gk(u)). It is well-known that for a
unit disk graph,α[1](UDG) ≤ 5 [29] and α[2](UDG) ≤ 18
[30].

A subset S of V is a dominating setif each nodeu
in V is either in S or is adjacent to some nodev in S.
Nodes from S are called dominators, while nodes not in
S are called dominatees. Clearly, any maximal independent
set is a dominating set. A subsetC of V is a connected
dominating set(CDS) if C is a dominating set andC induces
a connected subgraph. Consequently, the nodes inC can
communicate with each other without using nodes inV −C.
A dominating set with minimum cardinality is calledminimum
dominating set(MDS). A connected dominating set with
minimum cardinality is theminimum connected dominating set
(MCDS). In wireless ad hoc networks, assume that each node
u has a costc(u). Then a connected dominating setC is called
weighted connected dominating set(WCDS). A subsetC of V
is a minimum weighted connected dominating set(MWCDS)
if C is a WCDS with minimum total cost. In this paper, we
study efficient algorithms to construct a low-cost backbone
which can approximate the MWCDS well.

III. R ELATED WORKS

Efficient distributed algorithms for constructing connected
dominating sets in ad hoc wireless networks were well studied
[3]–[14]. The notion of cluster organization has been used
for wireless ad hoc networks since their early appearance.
Bakeret al. [7], [8] introduced a fully distributed linked cluster
architecture mainly for hierarchical routing and demonstrated
its adaptivity to the network connectivity changes. The notion
of the cluster has been revisited by Gerlaet al. [31], [32]
for multimedia communications with the emphasis on the
allocation of resources to support the multimedia traffic in
an ad hoc environment. In [33], Gao,et al. proposed a
randomized algorithm for maintaining the discrete mobile
centers,i.e., dominating sets. They showed that it approximates
minimum dominating setwithin O(1) with very high proba-
bility. Recently, Alzoubiet al. [6], [34] proposed a method
to approximateminimum connected dominating setwithin 8
whose message complexity isO(n log n) and time complexity
is O(n) for wireless networks modeled by unit disk graphs.
Alzoubi, et al. [35] continued to propose a localized method



approximating the MCDS within a constant time using a
linear number of messages. Maratheet al. [36] studied several
approximation results for unit disk graphs, such as methods for
maximum independent set, minimum vertex cover, minimum
coloring and minimum dominating set. Existing clustering
methods first choose some nodes to act as coordinators of
the clustering process,i.e., clusterheads. Then a cluster is
formed by associating the clusterhead with some (or all) of
its neighbors. Previous methods differ on the criterion for
the selection of the clusterhead, which is either based on the
lowest (or highest) ID among all unassigned nodes [8], [32],
or based on the maximum node degree [31], or based on some
generic weight [14] (the node with the largest weight will be
chosen as a clusterhead). In [13], Chenet al. also proposed
a localized algorithm to build connected dominating set for
topology maintenance for ad hoc networks. In their method, a
node becomes a dominator when two of its neighbors cannot
reach each other either directly or via one or two dominators.
Similarly, Wu and Li [4], [12] proposed their localized con-
nected dominating set method using amarking processwhere
a node is marked true if it has two unconnected neighbors.
It is shown that the set of marked nodes forms a CDS. They
then reduce the size of the CDS by applying twodominant
pruning rules. In [11], Dai and Wu further extended their
pruning rules tok-hop neighborhood in order to achieving
better results. Recently, Kuhn and Wattenhofer [37] proposed a
new distributed MDS approximation algorithm based on linear
programming (LP) relaxation techniques. For an arbitrary
parameterk and maximum degree∆, their algorithm computes
a dominating set of expected sizeO(k∆2/k log ∆|MDS|) in
O(k2) rounds where each node has to sendO(k2∆) messages
of sizeO(log ∆). Moreover, the authors further gave the time
lower bounds for the distributed approximation of MDS in
[38].

Many proposed clustering algorithms [14]–[28] also consid-
ered different weights as apriority criterion to decide whether
a node will be a clusterhead. Notice, the ultimate goal of
the majority protocols is still to minimize the number of
clusterheads (or the size of the backbone), not the total weight
of clusterheads (or the backbone). For example, methods
in [14], [19], [26] considered the stability or mobility of
each node as the weight. They preferred the node with high
stability and low mobility to be the clusterhead. However,
the definitions of stability or the evaluation methods used are
different. In [21], authors also combined the stability with
the degree of each node as the weight. The higher priority
is given to relatively stable and high degree nodes. Methods
in [20], [22] considered clustering in heterogeneous sensor
networks, where each node has different energy level. Most
of them used the remaining energy or energy consumption
rate as the weight. Both [28] and [27] considered two factors
in the priority: available energy and the speed, though they
used different equations to combine them. In [18], Chatterjee
et al. considered a combined weight metric for their clustering
algorithm, that takes into account several system parameters
like the node-degree, transmission power, mobility and the
battery power of the nodes. Similarly, Nocettiet al. [25]
also combined these four facts to be the weights for their

clustering method. A nice literature review of cluster methods
can be found in [25]. In [39], Basagniet al. also showed
the performance comparison of some proposed protocols for
clustering and backbone formation. Most of these proposed
weighted clustering algorithms applied the simple greedy
algorithms where the nodes with highest priority (lowest cost)
become clusterheads. For example, cluster method in [18]
selects a node with the lowest cost among its unchosen
neighbors to serve as a clusterhead. These greedy heuristics
work well in practice, but as we will show in Section IV that
they may generate a backbone with a high cost compared
with the optimum. Some of these methods [20], [22] are
randomized algorithms, nodes become clusterheads randomly
with a weighted election probability. In [15], Turgut proposed
a genetic algorithm to optimize cluster processing. All of
these cluster methods do not guarantee any approximation
ratio of the weighed cluster (or backbone) compared with
the optimum. Notice that, Basagni [16] gave an algorithm to
solvemaximal weighted independent setin wireless networks
and Basagniet al. [40] studied the performance of a greedy
clustering algorithm (highest weight nodes become cluster
heads) formaximum weighted independent setin peer-to-peer
networks, but here our solution for cluster is a distributed
approximation algorithm forminimum weighted dominating
set, and minimum weighted connected dominating setwhich
are well-known NP-hard problems. Liet al. [41] presented a
centralized approximation algorithm for weighted maximum
independent set for some special graphs. Guha and Khuller
[42] studied centralized algorithms for weighted minimum
connected dominating set in general graphs, by combining
a weighted set cover approximation algorithm and a node-
weighted Steiner tree approximation algorithm they achieved
approximation ratio3 ln n. In [43], they further improved the
approximation ratio to1.35 ln n which is the best known ratio.
In addition, any approximation algorithm with ratioα for the
unweighted (connected) dominating set problem automatically
gives ratioα · δ for the weighted version. In particular, the
known PTAS for dominating set in UDG [44] implies that
weighted dominating set in UDG can be approximated with
ratio (1 + ε) · δ for arbitrary ε > 0.

IV. CLASSICAL GREEDY METHODSNOT WORK WELL

Most of the proposed method in the literature are aim to find
a small dominating set for homogeneous networks. Many of
them are based on classical greedy algorithms. Since, in this
paper, we are interested in distributed methods, we will thus
mainly discuss the priori distributed greedy methods here. If
we insist on applying these distributed methods to approximate
the minimum weighted dominating set, they may produce a
backbone that is arbitrarily worse than the optimum. We will
show by examples that three classical methods do not generate
a dominating set whose cost is always comparable with ours
in the worst case.

The first method to generate a dominating set is to generate
a maximal independent set as follows [17], [29]. First, assume
that all nodes are marked asWHITE originally, which repre-
sents that the node is not assigned any role yet. A nodeu



sends a messageIamDominator to all its one-hop neighbors
if it has the smallest cost (ID is often used if every node
has a unit cost) among all itsWHITE neighbors. Nodeu
also marks itselfDominator. When a nodev received a
messageIamDominator from its one-hop neighbors, nodev
then marks itselfDominatee. Nodev then sends a message
IamDominatee to all its one-hop neighbors. Clearly, the
nodes marked withDominator indeed form a dominating set.

We then show by example that the produced dominating set
may be arbitrarily larger than the optimum solution. Although
the instance illustrated here uses UDG as communication
graph, it is not hard to extend this to general communication
graph. See Figure 1 for an illustration. Assume that3 wireless
nodesu, v and w are distributed along a line with one unit
interval. The nodes’ costs ofu, v, and w are ∞, 1, and
1−ε respectively. The dominators selected by the first method
are nodesw and u, and the total cost of the solution is∞.
However, the optimal solution is formed byv with a total cost
1. Our method presented later does produce a dominating set
of total cost2− ε.

1 wvu

8 1−ε1

1

Fig. 1. An example where the first method fails to produce low cost weighted
connected dominating set.

The second method of constructing a dominating set [5],
[45] is based on minimum weighted set cover [46]. The
method can be described in a centralized way as follows: in
each round, we select an unselected nodei with the minimum
ratio c(i)/di, wheredi is the number of nodes not covered
by previously selected dominators. It is well-known that this
centralized method produces a dominating set whose total
cost is no more thanlog(∆ + 1) times of the optimum,
where ∆ is the maximum original degree of all nodes. In
[6], Alzoubi et al. gave an example (as in Figure 2(a)) with
a family of instances for which the size of the solution
computed by the second method is larger than the optimum
solution by a logarithm factor when all nodes have the same
weight. Although the instance illustrated here uses UDG as
communication graph, obviously, we can extend this to a
general communication graph. In this example, all nodes have
a unit weight. For the detail of this example, see [6]. Moreover,
this method is expensive to implement in a distributed way. It
is expensive to find the nodei with the minimum ratioc(i)/di

among all unchosen nodes. Our method described later will
produce a dominating set whose size is no more than5 times
of the optimum for unit weighted UDG. More importantly, our
method is a fully distributed method.

The third method to select the dominating set is proposed
by Bao and Garcia-Luna-Aceves [28]. Unlike the previous two
methods, this is a fully localized method and it can be executed
in 2 rounds using synchronous communication model. A node
decides to become a dominator if either one of the following
two criteria are satisfied: 1) the node has the smallest cost in
its one-hop neighborhood; 2) the node has the smallest cost in
the one-hop neighborhood of one of its one-hop neighbors. We
show by an example that the produced dominating set may be

arbitrarily larger than the optimum solution. See Figure 2(b)
for illustration of an instance in UDG. Assume that2n + 1
wireless nodes are distributed as shown in Figure 2(b). The
nodes’ costs ofui, vi, and w are 1, 1 − ε, and 1 − 2ε,
respectively. The dominators selected by the third method are
nodesw and vi (0 ≤ i < n), the total cost of the solution
is n(1 − ε) + 1 − 2ε. However, the optimal solution formed
by nodew and seven nodes fromui has total cost8 − 2ε.
It is easy to show that seven unit disks centered at7 nodes
among someui can cover allui. Our method described later
will produce an optimal dominating set in this special case.

V. EFFICIENT LOW-COST BACKBONE FORMATION

ALGORITHMS

In this section, we will propose a distributed algorithm
that can construct a low-cost backbone (weighted connected
dominating set) for a wireless ad hoc networkG by assuming
that each wireless nodeu has a costc(u) of being on the
backbone. We will prove that the total cost of the constructed
backbone is no more thanmin(α[2](G) log(∆+1), (α[1](G)−
1)δ + 1) + 2α[1](G) times of the optimum solution. Notice
that, for homogeneous wireless networks modeled by UDG, it
implies that the backbone produced by our method has a cost
no more thanmin(18 log(∆ + 1), 4δ + 1) + 10 times of the
optimum solution.

We assume that each node knows the IDs and costs of
all its 1-hop neighbors, which can be achieved by requiring
each node to broadcast its ID and cost to its 1-hop neighbors
initially. This protocol can be easily implemented using syn-
chronous communications as did in [7], [8]. If the number of
neighbors of each node is known a priori, then this protocol
can also be implemented using asynchronous communications.
Our method has the following two phases: the first phase
(clustering phase) is to find a set of wireless nodes as the
dominators1 and the second phase is to find a set of nodes,
called connectors, to connect these dominators to form the
final backbone. Notice that these two phases could interleave
in the actual construction method. We separate them just for
the sake of easy presentations.

A. Finding Dominators

We then propose our method of constructing a dominating
set whose total cost is comparable with the optimum solution.
Our method first constructs a maximal independent set (MIS)
using node weight as selection criterion. Then for each node
v in MIS, we run local greedy set cover method onlocal
neighborhoodN2(v) to find some nodesGRDYv to cover all
one-hop neighbors ofv. If GRDYv has a total cost smaller
thanv, then we useGRDYv to replacev, which will further
reduce the cost of MIS. Our method is illustrated in Algorithm
1.

For the example illustrated by Figure 1, the MIS will
be two nodesw and u, whose cost is large. Nodeu is

1We will interchange the terms cluster-head and dominator. The node that
is not a cluster-head is also calledordinary node ordominatee. A node is
calledwhitenode if its status is yet to be decided by the clustering algorithm.
Initially, all nodes are white. The status of a node, after the clustering method
finishes, could bedominatoror dominatee.
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Fig. 2. Examples where the greedy methods fail to produce low cost weighted connected dominating set.

Algorithm 1 Construct Low-cost Dominating Set
1: First assume that all nodes are originally markedWHITE.
2: A nodeu sends a messageItryDominator to all its one-

hop neighbors if it has the smallest cost among all its
WHITE neighbors. Nodeu also marks itselfPossible-
Dominator.

3: When a nodev received a messageItryDominator from its
one-hop neighbors, nodev then marks itselfDominatee.
Node v then sends a messageIamDominatee to all its
one-hop neighbors.

4: When a nodew receives a messageIamDominatee from
its neighborv, nodew removes nodev from its list of
WHITE neighbors.

5: Each nodeu marked with PossibleDominator collects
the cost and ID of all of its two-hop neighborsN2(u).

6: Using the greedy method for minimum weighted set cover
(like the second method), nodeu selects a subset of its
two hop-neighbors to coverall the one-hop neighbors
(includingu) of nodeu. If the cost of the selected subset,
denoted byGRDYu, is smaller than the cost of nodeu,
then nodeu sends a messageYouAreDominator(w) to
each nodew in the selected subset. Otherwise, nodeu
just marks itselfDominator.

7: When a nodew received a messageYouAreDomina-
tor(w), nodew marks itselfDominator.

PossibleDominator and thus performs the local set cover.
ClearlyN2(u) = {u, v, w} andN1(u) = {u, v}. The local set
cover will selectv to cover all nodes inN1(u) sincev covers
both nodes inN1(u). Note thatc(v) < c(u), so nodeu will
let v be a dominator. The otherPossibleDominator w will
keep itself as a dominator since the local set cover gets worse
solution than itself. The final dominating set is then{v, w},
which is close to optimum{v}.

B. Finding Connectors

The second step of weighted connected dominating set
formation is to find someconnectors(also calledgateways)
among all the dominatees to connect the dominators. Then the
connectors and the dominators form aconnected dominating
set (or called backbone).

Several methods [7], [8], [29], [31], [35] have been proposed
in the literature to find the connectors. However, all of these
methods only consider the unweighted scenario. We can show
by examples that these methods generally do not produce a
weighted connected dominating set with good approximation
ratio.

Given a dominating setS, let V irtG be the graph connect-
ing all pairs of dominatorsu and v if there is a path in the
original graphG connecting them with at most3 hops. It is
well-known that the graphV irtG is connected [6]. It is natural
to form a connected dominating set by finding connectors to
connect any pair of dominatorsu andv if they are connected
in V irtG. This strategy was used in several previous methods,
such as [6]–[8], [29], [32].

Algorithm 2 Low-cost Connector Selection
1: Every dominatee nodev broadcasts to its 1-hop neighbors

the list of its one-hop dominatorsD1(v) using message
OneHopDominatorList(v,D1(v)). When a nodew re-
ceives OneHopDominatorList(v,D1(v)) from one-hop
neighborv, it puts the dominatoru ∈ D1(v) to D2(w) if
u /∈ D1(w). Update the pathP3(z, u) asuvw if it has a
smaller cost.

2: When a dominatee nodew received messagesOne-
HopDominatorList from all its one-hop nodes, for each
dominator nodeu ∈ D2(w), nodew sends out message
TwoHopDominator(w, u, x, c(x)), wherewxu is the least
cost pathP2(w, u).

3: When a dominatorz receives a messageTwoHopDom-
inator(w, u, x, c(x)) from its neighborw, it puts u to
D3(z) if u 6∈ D2(z), and updates the pathP3(z, u) as
uwxz if c(w) + c(x) has a less cost.

4: Each dominatoru builds a virtual edgẽuv to connect each
neighboring dominatorv. The length ofũv is the cost of
path P3(u, v). Notice that here the cost of end-nodesu
and v is not included. All virtual edges forms anedge
weightedvirtual graph V irtG in which all dominators
are its vertices.

5: Run a distributed algorithm to build a MST on graph
V irtG. Let V MST denoteMST (V irtG).

6: For any virtual edgee ∈ V MST , select each of the
dominatees on the path corresponding toe as a connector.



Our connector selection method for weighted connected
dominating set is also based on this observation. First, we
define two dominatorsu and v as neighboring dominators
if they are at most3 hops away,i.e., they are neighbors
in the graphV irtG. Let LCP(u, v,G) denote the least cost
path uv1v2 · · · vkv between verticesu and v on a weighted
graph G, and L(u, v,G) denote the total cost of nodes on
path LCP(u, v, G) excluding u and v, i.e., L(u, v, G) =∑

1≤i≤k c(vk). For every pair of neighboring dominatorsu
and v, our method will find the shortest path with at most
3 hops to connect them. The nodes on this shortest path
will be assigned a role of connector. Our method uses the
following data structures and messages: 1)Dk(v) is the list
of dominators that arek-hops away from a nodev; 2) Pk(v, u)
is the least cost path fromv to u using at mostk-hops (Notice
u andv may be less thank-hops away); 3)OneHopDomina-
torList(v, D1(v)): nodesD1(v) are the dominators of nodev
that are1-hop fromv; 4) TwoHopDominator(v, u, w, c(w)):
nodeu is a 2-hop dominator of nodev and the pathuwv has
the least cost. Algorithm 2 illustrates our method in detail.

The graph constructed by combining all of dominators and
the connectors selected by the above algorithm is called a
weighted connected dominating set (WCDS) graph (orback-
bone). Notice that since we run MST on graphV irtG, the
constructed backbone is a sparse graph, i.e., it has only linear
number of links.

VI. PERFORMANCEGUARANTEE

In this section, we first study the performances of the
proposed weighted backbone in term of the total node cost.
Then, by a small modification of the backbone formation
algorithm, we can make our weighted backbone more efficient
for the unicast routing.

A. Total Cost of the Backbone

First, we would like to build a weighted backbone whose
total node cost is as less as possible. We will show that the
backbone constructed by our method is comparable to the
optimum when the network is not dense, or the costs of the
nodes do not have a dramatic change,i.e., being smooth. Our
analysis following is on the homogeneous networks, but it
can be extended to general heterogeneous networks without
difficulty. Before describing our result, we first review an
important observation of thedominating seton UDG, which
will play an important role in our proofs later. After clustering,
one dominator node can be connected to many dominatees.
However, it is well-known that a dominatee node can only be
connected to at mostfive independent nodes in the unit disk
graph model. In other words, the1-local independence number
of UDG, α[1](UDG), is 5. Generally, it is well-known that, for
each node, there are at most a constant number (α[k](UDG))
of independent nodes that are at mostk units away. The
following lemma which bounds the number of independent
nodes withink units from a nodev is proved in [29] by using
a simple area argument.

Lemma 1:For every nodev, the number of independent
nodes inside the disk centered atv with radius k-units,
α[k](UDG), is bounded by a constant`k = (2k + 1)2.

The bounds oǹ k can be improved by a tighter analysis.
In [30], Li et al. gave the detailed proof to show that for
unit disk graph the number of independent nodes in2-hops
neighborhood (not including the1-hop neighbors) is at most13
while the number of independent nodes in1-hop neighborhood
is at most5. Therefore, there are at most18 independent
nodes inside the disk centered at a nodev with radius2, i.e.,
α[2](UDG) = 18.

Theorem 2:Algorithm 1 constructs a dominating set whose
total cost is no more thanmin(18 log(∆ + 1), 4δ + 1) times
of the optimum for networks modeled by UDG.

Proof: First, we prove the total cost of the maximal
independent setMIS formed by all PossibleDominator
nodes is no more than4δ + 1 times of the optimum. Assume
node u is a node from the optimumOPT . If u is not a
PossibleDominator node then there are at most5 Possible-
Dominator nodes aroundu. Let vu

1 , vu
2 , · · · , vu

5 denote them.
The cost of one of these five nodes is smaller than the cost of
u, otherwise nodeu will be selected as aPossibleDominator
node. W.l.o.g., letc(vu

1 ) ≤ c(u). We also know thatc(vu
i ) ≤

δ · c(u) for 2 ≤ i ≤ 5. Thus,
∑

1≤i≤5 c(vu
i ) ≤ (4δ + 1)c(u).

If we summarize the inequations for all nodes in the optimum
dominating setOPT , we get

∑

u∈OPT

∑

1≤i≤5

c(vu
i ) ≤ (4δ+1)

∑

u∈OPT

c(u) = (4δ+1)c(OPT ).

Notice that every node in MIS will appear asvu
i for at

least one nodeu ∈ OPT since OPT is a dominating set.
Thus, c(MIS) =

∑
v∈MIS c(v) ≤ ∑

u∈OPT

∑
1≤i≤5 c(vu

i ).
It follows that

c(MIS) ≤ (4δ + 1)c(OPT ).

Then, we prove the total cost of the nodes selected by the
greedy method in Step 6 of Algorithm 1 is no more than
18 log(∆ + 1) times of the optimum. Assume that nodeu
runs the greedy algorithm and gets the subset asGRDYu,
and the cost of the selected subsetc(GRDYu) is at most
c(u). It is well known that the dominating set generated by
the greedy algorithm for set cover is no more thanlog f
times of the optimum if every set has at mostf items.
Here, we know that every dominator can cover at most∆
dominatees, thus,c(GRDYu) ≤ log(∆+1) ·c(LOPTu). Here
LOPTu is an optimum dominating set (using nodes from
N2(u)) when the set of nodes to be covered are the1-hop
neighborhood ofu (including u). Assume thatOPTu is the
subset of the global optimum solution, denoted as OPT, for
MWCDS which falls in the2-hops neighborhood ofu, i.e.,
OPTu = OPT

⋂
N2(u). Obviously OPTu is a dominating

set forN1(u). Thus, we havec(LOPTu) ≤ c(OPTu), since
LOPTu is the local optimum. Therefore,c(GRDYu) ≤
log(∆ + 1) · c(LOPTu) ≤ log(∆ + 1) · c(OPTu). Consider
all nodes in the MIS, we get

c(GRDY ) ≤
∑

u∈MIS

c(GRDYu) ≤ log(∆ + 1) ·
∑

u∈MIS

c(OPTu).

Remember that for each nodev, the number of independent
nodes in the 2-hops neighborhood ofv is bounded by18.
Therefore, each dominator is counted at most18 times (once



for each nodeu ∈ MIS that selectsv to GRDYu). Thus,∑
u∈MIS c(OPTu) ≤ 18c(OPT ).
For each nodeu in MIS, we either useu as a dominator

or useGRDYu as dominators, whichever has a smaller cost.
Then, the total weight of the final dominating set is at most

∑

u∈MIS

min(c(u), c(GRDYu))

≤min(
∑

u∈MIS

c(u),
∑

u∈MIS

c(GRDYu))

≤min(4δ + 1, 18 log(∆ + 1)) · c(OPT ).

This finishes our proof.
Notice that here the approximation ratio ismin(18 log(∆+

1), 4δ + 1). So if one of log(∆ + 1) and δ is a constant,
the approximation ratio is a constant. Our analysis is also
pessimistic. As our simulation shows that the practical per-
formance is much better than this theoretical bound. It is easy
to generalize the above result to heterogeneous networks.

Theorem 3:For a network modeled by a graphG, Algo-
rithm 1 constructs a dominating set whose total cost is no
more thanmin(α[2](G) log(∆ + 1), (α[1](G)− 1)δ + 1) times
of the optimum.

Now, we need to prove the total cost of connectors selected
by Algorithm 2 is also bounded. The following lemma about
the relationship betweenL(u, v, G) andL(u, v, V irtG) will
be used in the proof.

Lemma 4:For any pair of dominators u and v,
L(u, v, V irtG) ≤ 2 · L(u, v, G).

Proof: Notice that the original graph is node weighted
while the virtual graphV irtG is edge weighted. Here, letc(e)
be the weight of edgee = ũiuj andc(e) = L(ui, uj , G). We
assume that pathuv1v2 · · · vkv is the least cost path connecting
u andv in the original graph G, as shown in Figure 3.

For any dominatee nodep in original communication graph,
it must be dominated by at least one dominator. Thus, we can
assume that nodeui is nodevi’s dominator as shown in Figure
3. For dominatorsui and ui+1, we argue that the length of
ũiui+1 is at most the summation of the cost ofvi and vi+1.
Notice thatuivivi+1ui+1 is a3-hops path betweenui andui+1

whose length isc(vi)+ c(vi+1). Thus, the length of̃uiui+1 is
at mostc(vi) + c(vi+1). Thus we havec(ũiui+1) ≤ c(vi) +
c(vi+1) for 1 ≤ i ≤ k − 1. Similarly, we also havec(ũu1) ≤
c(v1) andc(ũkv) ≤ c(vk). Summing all these inequalities, we
get

L(u, v, V irtG) ≤ c(ũu1)+c(ṽkv)+
k−1∑

i=1

c(ũiui+1) ≤ 2
k∑

i=1

c(vi).

This finishes our proof.

uk

vk

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

Fig. 3. L(u, v, G) ≥ 2 · L(u, v, V irtG).

In graph G, we set all dominators’ cost to0 to obtain a
new graphG′. AssumeTopt is the tree with the minimum cost

that spans all dominators selected by Algorithm 1. Following
lemma shows that there exists a treeT ′opt whose cost equals
the cost ofTopt and every dominatee nodeu in T ′opt has a
node degree at mostα[1](G).

Lemma 5:There exists a treeT ′opt in G′ spanning all
dominators selected in Algorithm 1 and connectors in this tree
has degree at mostα[1](G).

Proof: We prove this by construction. Consider any
optimum cost treeTopt spanning all dominators. In treeTopt,
assume there exist some connectors whose degrees are greater
than α[1](G). We choose any one of them as the root. The
depth of a connector is defined as the hops from this connector
to the root in Topt. We process all connectorsu in Topt

whose degree is greater thanα[1](G) in an increasing order
of their depths. Notice that, as we will see later, the depth
of a node does change in our construction, but it will only
increase. Assume that currently we are processing a nodeu
with more thanα[1](G) neighbors. Clearly, there are at least
two neighbors ofu in treeTopt that are connected, sayp, q.
Notice eitherp or q’s depth is greater thanu since u only
has one parent. Without loss of generality, we assume thatp’s
depth is bigger thanu’s depth. We then remove edgeuq and
add edgepq. Then,u’s degree decreases by1 while all other
connectors whose depth is less than or equal tou’s remains
unchanged andp’s degree increases by1. Notice this will result
in a new tree spanning all dominators while keep the cost of
the tree unchanged. Update the depth of nodeq and all nodes
of the subtree rooted atq (the depths will increase by one).
Repeat the above iteration until all nodes are processed. It is
obvious that the above process will terminate. The resulting
tree isT ′opt.

For treeT ′opt, we define its weightc(T ′opt) as the sum of
the cost of all connectors. We also definec(T ) =

∑
e∈T c(e)

for an edge weighted treeT . The above lemma implies that
there is an optimum tree connecting all dominators with node
degree at most5 for networks modeled by UDG.

Theorem 6:The connectors selected by Algorithm 2 have
a total cost no more than2 ·α[1](G) times of the optimum for
networks modeled byG.

Proof: Let KG be another virtual complete graph whose
vertices are all dominators selected in Algorithm 1 and edge
length equal the cost of least cost path between two dominators
on original graphG. Following we argue the weight of MST
on graphKG is at mostα[1](G) times the weight of treeT ′opt.

For spanning treeT ′opt, we root it at an arbitrary node
and duplicate every link inT ′opt (the resulting structure is
called DT ′opt). Clearly, every node inDT ′opt has an even
degree now. Thus, we can find an Euler circuit, denoted by
EC(DT ′opt), that uses every edge ofDT ′opt exactly once,
which is equivalent to say that every edge inT ′opt(G) is used
exactly twice. Consequently, every nodevk in V (T ′opt) is used
exactly dT ′opt

(vk) times. HeredG(v) denotes the degree of a
nodev in a graphG. Thus, the total weight of the Euler circuit
is at mostα[1](G) times ofc(T ′opt), i.e.,

c(EC(DT ′opt)) ≤ α[1](G) · c(T ′opt).

Notice that here if a nodevk appears multiple times in
EC(DT ′opt), its weight is also counted multiple times in



c(EC(DT ′opt)).
If we walk along EC(DT ′opt), we visit all dominators,

and the length of any subpath between dominatorsui and
uj is not smaller thanL(ui, uj , G). Therefore, the cost of
EC(DT ′opt) is at leastc(MST (KG)) since MST (KG) is
the minimum cost tree spanning all dominators and the edge
uiuj in MST (KG) corresponds to the path with the least cost
betweenui anduj . In other words,

c(EC(DT ′opt)) ≥ c(MST (KUDG)).

Consequently, we have

c(MST (KG)) ≤ c(EC(DT ′opt)) ≤ α[1](G) · c(T ′opt). (1)

Now we prove the weight ofMST (V irtG) is at most two
times the weight ofMST (KG). For any edgee = uiuj ∈
MST (KG), from Lemma 4, we have

c(e) ≥ L(ui, uj , G) ≥ L(ui, uj , V irtG)
2

.

For each edgee = uiuj ∈ MST (KG), we connect them in
graphV irtG using pathLCP(ui, uj , V irtG). This constructs
a connected subgraphMST ′ on graphV irtG whose cost is
not greater than twice of the weight ofMST (KG). Thus, we
have

c(MST (V irtG)) ≤ c(MST ′) ≤ 2 · c(MST (KG)). (2)

The theorem follows from combining inequalities (1) and
(2):

c(MST (V irtG)) ≤ 2c(MST (KG)) ≤ 2α[1](G) · c(T ′opt).

Notice that Theorem 6 also implies the following side-
product result: given a group of receivers in a node weighted
network, the connectors found through VMST have total cost
no more than2α[1](G) times of the minimum cost multicast
tree. For the special case of UDG, the total cost of the
connectors is no more than10 times of the optimum multicast
tree. Here we assume that the receivers have cost0.

Combining Theorem 3 and Theorem 6, we get the following
theorem which is one of the main contributions of this paper.

Theorem 7:For any communication graphG, our algorithm
constructs a weighted connected dominating set whose total
cost is no more than

min(α[2](G) log(∆ + 1), (α[1](G)− 1)δ + 1) + 2α[1](G)

times of the optimum.
Specifically, for homogeneous wireless networks modeled

by a unit disk graph, our algorithm constructs a weighted
connected dominating set whose total cost is no more than
min(18 log(∆ + 1), 4δ + 1) + 10 times of the optimum.

B. Unicast Performance

After we construct the backbone WCDS, if a nodeu wants
to broadcast a message, it follows the following procedure. If
nodeu is not a dominator, then it sends the message to one
of its dominators. When the message reaches the backbone,
it will be broadcast along the virtual minimal spanning tree.

In previous section, we prove that the total cost of WCDS is
no more than a constant times of the optimum, which implies
that our structure is energy efficient for broadcast.

Notice that in the construction of the low-cost backbone we
apply MST (virtual minimal spanning tree) to reduce the total
cost of the backbone, it makes the backbone very sparse which
may hurt the performance of the unicast routing, since less
power efficient pathes can be used for routing. Therefore, when
considering unicast routing, we can remove the MST step and
use the pathes in graphV irtG as the backbone. Specifically,
we can modify our backbone formation algorithms by 1)
removing steps 5, 6, and 7 (collecting 2-hop information and
running the greedy algorithm for set over) from Algorithm 1;
2) modifying PossibleDominator to Dominator in step 2 of
Algorithm 1; and 3) removing steps 5 and 6 (building VMST)
from Algorithm 2. Notice that the changes to Algorithm 1
are not necessary as will see later. LetUWCDS be the
constructed backbone. If a nodeu wants to unicast a message,
it follows the following procedure. If nodeu is not a dominator
and nodev is not a neighbor ofu, nodeu sends the message
to one of its dominators. Then the dominator will transfer the
message to the target or a dominator of the target through
the backbone. Now, we prove that the backbone is a spanner
for unicast application,i.e., every route in the constructed
network topology is efficient. Remember a route isefficient
if its total cost (or total hop number) is no more than a
constant factor of the minimum total cost (or total hop number)
needed to connect the source and the destination in the original
communication graph. The constant is called cost (or hops)
stretch factor.

We first prove the backbone has a bounded cost stretch
factor.

Theorem 8:For any communication graph, the cost stretch
factor of UWCDS is at most3.

Proof: Consider any source nodes and target nodet
that are not connected directly in the original communication
graphG. Assume the least cost pathLCP(s, t,G) from s to
t in G is ΠGh

(s, t) = v1v2...vk, wherev1 = s andvk = t, as
illustrated by Figure 3. We construct another path in UWCDS
from s to t and the total cost of this path is at most3 times
of the cost of the least cost pathLCP(s, t, G).

For any dominatee nodep in original communication graph
G, we will show that there must exist one dominatorq whose
cost is not greater thanp’s cost. First, from our selection
procedure of the maximal independent set, nodep is not
selected to MIS implies that, at some stage, there is a neighbor,
say u, with smaller cost selected to MIS, which will be
PossibleDominator. Notice that, thisPossibleDominator
nodeu may not appear in our final structure. However, this
node is not selected only ifc(GRDYu) is smaller thanc(u).
Notice that clearly, there is at least one node, sayv, in GRDYu

that dominates nodep sincep is a one-hop neighbor of node
u andGRDYu covers all one hop neighbors ofu (including
u). Clearly, all dominators inGRDYu has cost no more than
c(u) from c(GRDYu) ≤ c(u). If node u is in final structure,
we setq asu, otherwise, setq as nodev. We call nodeq as
nodep’s small dominator. Notice thatq andp can be the same
node.



For each nodevi in the pathLCP(s, t, G), let ui be its small
dominator if vi is not a dominator, else letui be vi itself.
Notice that there is a 3-hop pathuivivi+1ui+1 in the original
communication graphG. Then from Algorithm 2, we know
there must exist one or two connectors connectingui andui+1,
and also the cost summation of these connectors is at most the
cost summation ofvi andvi+1. We define a path, denoted by
LCP(s, t, UWCDS), to connects and t in UWCDS as the
concatenation of all pathsLCP(ui, ui+1, V irtG), for 1 ≤ i ≤
k − 2, and a least cost path (with≤ two hops) connecting
uk−1 and t. Remember that the pathLCP(ui, ui+1, V irtG)
is only the least cost path among all paths connectingui and
ui+1 using at most3 hops.

We then show that the pathLCP(s, t, UWCDS) has
a cost no more than3 times of the pathLCP(s, t, G),
where LCP(s, t,G) is the least cost path connectings
and t in the original communication graphG. Clearly,∑k−2

i=1 L(ui, ui+1, V irtG) ≤ c(v1)+2·∑k−2
i=2 c(vi)+c(vk−1).

Notice that, in our unicast routing algorithm, when the target
nodet is within two hops of the dominator nodeuk−1, node
uk−1 will not send the data to dominator nodeuk. Instead,
if target t is one hop neighbor of nodeuk−1, it will directly
send data to nodet; otherwise, nodeuk−1 will find a least
cost node, sayw, to connect to the target nodet directly.
Obviously, c(w) ≤ c(vk−1) since nodevk−1 connectsuk−1

and targett. Thus, the total cost of the path in the constructed
backbone is

k−2∑

i=1

L(ui, ui+1, V irtG) + L(uk−1, t, V irtG) +
k−1∑

i=1

c(ui)

≤ c(v1) + 2
k−2∑

i=2

c(vi) + c(vk−1) + c(vk−1) +
k−1∑

i=1

c(vi)

< 3
k−1∑

i=1

c(vi).

This finishes our proof.
Similar with the proof in [29], we can prove that
Theorem 9:For any communication graph (not necessarily

a UDG model), the hops stretch factor of UWCDS is at most
4.2

C. Message and Time Complexity

Compared with data processing, wireless node spends more
energy in data communication. Here we show that our algo-
rithms are efficient in term of communication complexity.

Theorem 10:Algorithm 1 usesO(n) messages if the net-
works are modeled by UDG and the geometry information of
all nodes is known.

Proof: First, for messagesItryDominator andIamDom-
inatee, every node at most sends out once this kind of
messages. Thus, the total number of these two messages is
O(n).

2Actually, the bound is3+ 2
k

, wherek is the number of hops of the shortest
hop path in the original communication graph. The basic idea of the proof is
similar with the idea used in proof of Lemma 4 and illustrated by the example
in Figure 3. Since 1-hop neighbors can directly communicate with each other,
for any nodes that are at least 2-hops away, the bound is4.

Second, for eachPossibleDominator node, it needs to
collect the costs and IDs of all of its two hop neighbors.
This step may cost lots of communications (at mostO(m)
messages when no geometry information is known, where
m in the number of links in the original UDG). Recently
Calinescu [47] proposed a communication efficient method
(usingO(n) messages) to collectN2(u) for every nodeu when
the geometry information is known for networks modeled by
UDG.

Third, after applying the greedy method nodeu may send a
messageYouAreDominator to nodev, but since the number
of independent nodesu in two hops ofv is bounded by a
constant, the total number of this kind of messages is also
O(n).

Consequently, Algorithm 1 usesO(n) messages.
It is easy to show that Algorithm 1 usesO(m) messages

for a general networks or the geometry information of all
nodes is unknown. For Algorithm 2, first, the number of
messages in the first three steps is at mostO(m). Obviously,
we can construct the minimum spanning tree onV irtG using
O(m+n log n) number of messages. In practice, we may not
need construct the minimum spanning tree exactly: a local-
ized approximation of the minimum spanning tree [48] may
perform well enough, which has a message complexity only
O(n). In addition, if only unicast running on the backbone, we
can ignore the MST construction, then the message complexity
is only O(m).

We also study the time complexity of our algorithms. For
Algorithm 1, the first four steps take at mostO(n) in time.
To collect the information of two-hop neighbors, we apply the
method proposed by Calinescu [47], which also takes at most
O(n) in time. Notice that the time complexity of the greedy
method in [5], [45] (based on the set covering method in [46])
is at mostO(m∆), wherem is number of nodes participating
in the algorithm and∆ is the maximum node degree. So the
sixth step of Algorithm 1 takes at mostO(∆2∆) where∆2

is the maximum number of two-hop neighbors. Since∆2 ≤ n
and∆2 ≤ ∆2, the sixth step takes at mostO(∆3) (or O(n∆)).
Therefore, the time complexity of Algorithm 1 isO(n∆) in
worst case. For Algorithm 2, the most time consuming step is
to build a MST onV irtG. Obviously, we can construct the
MST using at mostO(m + n log n) time.

VII. S IMULATION RESULTS

In this section, we conduct extensive simulations on random
networks to evaluate the performances of our proposed distrib-
uted weighted backbone and compared them with previously
greedy algorithms. The simulation platform was developed by
the authors using C++. In the simulation, we assume nodes
have unlimited buffering and ignore all possible retransmis-
sions at the MAC and PHY layer. The main purpose of these
simple settings of simulations is only to evaluate thenon-
networkperformances (geometric properties) of the different
backbones formed by different algorithms, such as the total
weight of the backbone and the hop (or cost) spanning ratios
of the backbone.



A. Practical Implementation

Since the distributed construction of MST in Algorithm 2
is expensive in term of message complexity (O(m+n log n)),
we implement a localized approximation of MST,localized
minimum spanning tree(LMST) [48] to reduce the messages
to O(n). For a general edge weighted graphG, the k-local
minimum spanning tree (LMSTk(G)) contains adirected
edge−→uv if edge uv belongs toMST (Nk(u)). In our case,
for the edge weighted graphV irtG, each dominator nodeu
will first collect all dominator nodes that are at mostk-hops
away in V irtG. Typically k is 1 or 2 in our methods. Node
u then constructs the minimum spanning treeMST (Nk(u))
and keep all edgesuv ∈ MST (Nk(u)). The union of all
such selected links form the local minimum spanning tree.
Notice that here the weight of a linkuv is the cost of the
least cost path (with≤ 3 hops) connectingu and v in G.
It is easy to prove that the global minimum spanning tree
MST (G) is a subgraph of the local minimum spanning tree
LMSTk(G). Unfortunately, in the worst case, the total cost
of LMSTk(G) could be arbitrarily larger than the cost of
MST (G). However, our simulations show that it is within a
small constant factor on average. The advantage of using the
local minimum spanning tree instead of the global minimum
spanning tree is the significant reduction in the communication
cost.

B. Performance Comparisons

We then evaluate the performance of our new distributed
weighted backbone formation algorithm by simulations on
random networks. In our experiments, we randomly generated
a setV of n wireless nodes with random costs drawn from
[1, 100] and the inducedUDG(V ), then tested the connectivity
of UDG(V ). If it is connected, we construct different clus-
tering algorithms onUDG(V ) to form dominating sets and
measure the total costs of these dominating sets. Then, we
apply our new method to construct the weighted backbone.
We test the total cost of the final backbone and measure the
average and maximum cost/hop spanning ratios.

In the experimental results presented here,n wireless nodes
are randomly distributed in a500m × 500m square, and the
transmission range is set to100m. We tested all algorithms by
varying n from 50 to 275, where50 vertex sets are generated
for each case. The average and the maximum were computed
over all these50 vertex sets. Notice, the parameter setting of
our experiments here is just for demonstrations. We have tried
other various settings, the results and performances are stable,
due to space limit, we can not present all of them here.

1) Cost of Dominators:First, we compare our algorithm
with the three previous greedy algorithms to find a dominating
set. Figure 4 gives an example of the original communication
graph with node costs (Figure 4 (a)) and different dominating
sets by different greedy methods (Figure 4 (b)-(e), black
squares are the dominators).

We plotted the performances (average total cost of the
backbone and average number of dominators) of all methods in
Figure 5. Our method produces a dominating set whose cost is
significantly less than that produced by the MIS based method

(greedy 1) and is on the similar level with other two methods.
In addition, our method produces a dominating set whose size
is significantly less than that produced by the method in [28]
(greedy 3) and is on the similar level with other two methods.
The set-cover based method (greedy 2) is the only one that is
comparable with our method for both metrics. However, it is
a centralized method while our is a distributed method with a
small communication cost.

2) Cost of Backbone:After getting the dominating set
(Figure 4(e)) by Algorithm 1, we apply Algorithm 2 to find
the connectors. Figure 6(e) shows the backbone after adding
some connectors to the dominating set. Notice that we used
the local minimum spanning tree to find the connectors instead
of the global minimum spanning tree (that is why the graph
WCDS in Figure 6(e) is not a tree). We also apply Algorithm
2 to find the connectors for the other three greedy methods
for comparison, and the results shown in Figure 6(a)-(c). We
also implement a variation of another connected dominating
set method by Wu and Li [4], [12]. Their method using a
marking processplus two dominant pruning rulesto build
the CDS. We modified it to compare costs instead of IDs
in the dominant pruning rules. The result CDS is shown in
Figure 6(d). It is obviously that their method generate more
dominators than other methods, the reason is they did not
use MST (or LMST) in the formation. Also their original
method is used to minimize the size of CDS not its total cost.
Notice that more dominators in the backbone means better
performances during the unicast routing.

We plot the total cost of the weighted backbone in Figure
7 (a). As expected, the total cost of the backbone produced
by our method is less than that produced by the MIS based
method (greedy 1) and that produced by Wu and Li’s method.
However, the results from the other two greedy methods are
slightly better than ours (though on the similar level). The
main reason is that we use the same MST-based method to
selected the connectors for all greedy methods. One interesting
observation is: though the size of the backbone becomes stable
when the network becomes denser, the average total cost of the
backbone for greedy methods decreases over the increasing of
the network density. This may be due to that dense network
provides more candidates for backbone with potential lower
costs.

3) Cost of Unicast Routing:For unicast, we can simplify
Algorithm 2 by directly using VirtG as the final backbone.
Spanning ratios of the final unicast backbone are plotted in
Figure 7 (b). Notice that the average cost and hop spanning
ratios are indeed small (almost1). The maximum cost span-
ning ratio is less than3. The maximum hop spanning ratio is
no more than4. These maps well to the theoretical bounds,
which are3 and4 respectively.

VIII. P RACTICAL APPLICATIONS IN WIRELESSAD HOC

NETWORKS

As we mentioned in the introduction (Section I), the pro-
posed distributed algorithms for minimum weighted connected
dominating set can be used in wireless ad hoc networks to
form a low-cost network backbone for unicast routing or
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Fig. 4. Different dominating sets by different greedy methods from the same unit disk graph.
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broadcasting application. The cost which we used as the input
of our algorithms could be ageneric cost, which defined
by various practical applications. Here we list some possible
weights maybe used in wireless ad hoc networks.

Energy Consumption Rate: Most backbone-based unicast
routing or broadcasting protocols [1]–[3], [5] deliver packets
only through the backbone or restrict the flooding packets in
the backbone, thus the nodes serving as clusterheads or con-
nectors in the backbone consume more energy than ordinary
nodes. If we use the energy consumption rate at each node as
its weight, using the proposed low-cost backbone formation
algorithm, we can achieve an energy efficient backbone where
the total energy consumption of this backbone is at most
constant times of the energy consumption of the optimum.
Also the unicast carried on the backbone is also power
efficient, compared with the least energy consumption path
in the original communication graph. Another way to build
energy-efficient backbone is to select nodes with the maxi-
mum amount of remaining energy (equivalently, the minimum
amount of consumed energy if the initial energy of each node
is same).

Fault Tolerant Rate: Fault tolerance is also an important
issue in wireless ad hoc networks, since nodes are mobile
and in a dynamic environment. If each node estimates its
probability of being fault and we treat it as the weight,
we can use our proposed algorithm to build a fault-tolerant
backbone for routing. The fault tolerant rate can be evaluated
by considering the mobility (stability, speed) of the node, the
quality of links (link failures) around the node, the interference
level at the node, or other metric. Some research along this
line have been done in [14], [19], [21], [26]. Assume thatpi is
the probability that the wireless nodevi ∈ V will have fault in
computing or communicating with its neighbors. Two possible
criteria could be used to measure the fault-tolerant quality of
a backbone (i.e., a CDSS ⊂ V ):

∑
vi∈S pi or Πvi∈Spi. In the

first case, the cost (or called weight) of nodevi is assigned as
c(vi) = pi, while in the latter case, the cost ofvi is assigned
asc(vi) = log pi. Then building most fault-tolerant backbone
is equivalent to find a CDS with the minimum total cost.

Security Level: Our proposed algorithm can also be applied
in designing secure routing protocols. Since ad hoc networks
lack a central authority for authentication and key distribution,
security is hard to achieve. In [49], Liuat el. proposed a
dynamic trust model for ad hoc network. Each node has a
security level by observing its neighbor. By using the security
level information got from their method, we can apply our
low-cost method to build a backbone for routing with high
security. We could assign the cost to a node using a method
analog to the case of fault-tolerance discussed above.

More different metrics can be considered as the weight in
our method, such as traffic load, signal overhead, battery level,
and coverage. As done in [15], [18], [25], we can also use
a combined weight function to integrate various metrics in
consideration to form a more robust and efficient backbone
for wireless ad hoc networks in general applications.

Beside forming the backbone for routing or broadcasting,
our weighted clustering algorithm (Algorithm 1) can also be
used in other applications. For example, Zhenget al. [50]

studied thetime indexingproblem in sensor networks. To
enable time-indexed in-network storage of sensor data, they
selected a subset of sensors,i.e., rendezvous points to collect,
compress and store sensor data from its neighborhood for pre-
defined periods of time. To consider the energy and storage
balancing, we can apply our weighted clustering algorithm
to select the rendezvous points. Another example, in [51], a
simple clustering algorithm is used for selecting the mobile
agents to perform intrusion detection in wireless ad hoc
networks. We can also apply our method to their intrusion
detection system to achieve more robust and power efficient
agent selection.

IX. SUMMARY AND FUTURE WORK

In this paper, we present a new algorithm to construct a
sparse structure for network backbone in wireless ad hoc
networks. A communication efficient distributed algorithm
was presented for the construction of a weighted connected
dominating set, whose size is guaranteed to be within a
small constant factor of the minimum (when eitherδ or ∆
is a constant). We also show that with a small modification
the constructed backbone is efficient for both cost and hops
(though losing the low cost property). This topology can be
constructed locally. Our simulations confirmed that our new
backbone indeed has well performances in random networks.

Notice in our algorithm we assume that the nodes are
almost-static in a reasonable period of time. However, in some
ad hoc network applications, the network could be highly
dynamic. Therefore, after the generation of the weighted
backbone, the dynamic maintenance of the backbone is also
an important issue. Two major events may cause the backbone
obsoleted: 1)topology changesdue to node moving, node
joining or leaving, node failure; and 2)weight changeswhen
weights are assigned based on some observed status of nodes.
Notice that some of the practical weights we discussed above
change frequently, such as battery level and quality of links.
Therefore, a dynamic update method for our backbone is
needed. Usually, there are two kinds of update methods: on-
demand update or periodical update. Most of the existing
clustering algorithms are invoked periodically, while some
algorithms (such as [18]) perform the updating only when it
is required (i.e., on-demand). Our algorithm can adapt and
combine both of these two update methods. If no major
topology change or no remarkable weight change, no update
will be performed until some pre-set timer expires. In other
words, we perform our algorithm periodically with a pre-set
time. The time could be set quite long depending on the
types of the weight and applications. This kind of global
update also insures the load balance throughout the network.
But for some major topology change (such as a clusterhead
dies) or tremendous change of weights (such as a big drop of
security level), an on-demand update will be performed. Notice
that since our algorithm is a localized algorithm3, the update
process can be performed only in a local area where the change
occurs, in other words, the backbone is easy to maintain

3By using localized minimum spanning tree(LMST) instead of MST, our
distributed algorithm becomes a localized algorithm.



locally when the nodes move around. However, it remains an
open problem how to update the topology efficiently while
preserving the approximation quality.

There are many interesting open problems left for further
study. Remember that, we use the following assumptions
on wireless network model: omni-directional antenna, single
transmission received by all nodes within the vicinity of the
transmitter. The problem studied here will become much more
complicated if we relax some of these assumptions. It is also
interesting to see the practical performance differences of all
proposed methods such as methods by Bakeret al., Alzoubi
et al., and our methods proposed here, in mobile environment.
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