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Abstract—We propose an accurate acoustic direction finding
scheme, Swadloon, according to the arbitrary pattern of phone
shaking in a rough horizontal plane. Swadloon leverages sensors of
the smartphone without the requirement of any specialized devices.
Our Swadloon design exploits a key observation: the relative dis-
placement and velocity of the phone-shaking movement corresponds
to the subtle phase and frequency shift of the Doppler effects experi-
enced in the received acoustic signal by the phone. Swadloon tracks
the displacement of smartphone relative to the acoustic direction with
the resolution less than 1 millimeter. The direction is then obtained
by combining the velocity from the displacement with the one from
the inertial sensors. Major challenges in implementing Swadloon are
to measure the displacement precisely and to estimate the shaking
velocity accurately when the speed of phone-shaking is low and
changes arbitrarily. We propose rigorous methods to address these
challenges, and apply Swadloon to several case studies: Phone-
to-Phone direction finding, indoor localization and tracking. Our
extensive experiments show that the mean error of direction finding is
around 2.1o within the range of 32m. For indoor localization, the 90-
percentile errors are under 0.92m. For real-time tracking, the errors
are within 0.4m for walks of 51m.

Index Terms—Direction Finding; Indoor Localization; Smartphone.

1 INTRODUCTION

Direction finding is attractive in mobile social net-
works nowadays for supporting various applications,
e.g., friending, and sharing. Recent mobile apps have
made similar functions, such as Facebook’s Friend-
shake [1] and Google Latitude [2]. However, they
are based on GPS and cannot be applied to indoor
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environment. An accurate method of direction finding
is by using antenna array [3], [4] in localization,
but it requires specialized hardware and limits the
availability to regular users. Several approaches of
direction finding by smartphones have been proposed
[5]–[7]. However, it remains a challenge for accurate
direction finding by phone under long distance.

Precise indoor localization is also important for lo-
cation based services. Those methods achieving high
accuracy usually require special hardware not readily
available on smartphones [8], or infrastructures ex-
pensive to deploy [9]. Pure WiFi-based localization
can achieve reasonable accuracy (e.g., 3∼4m), but
there always exist large errors (e.g., 6∼8m) unaccept-
able for many scenarios [10]. Though there have been
many proposals for improving the accuracy of WiFi
based localization (e.g., with 80-percentile errors about
1m [10]) by exploiting additional signals, low-cost
precise indoor localization is still challenging.

We propose Swadloon, a Shake-and-Walk Acoustic
Direction-finding and indoor LOcalizatiON scheme
using smartphones. Suppose that there is an acoustic
signal emitted from a speaker or a phone. Swadloon
exploits the fact that shaking the smartphone or walk-
ing with the smartphone will cause Doppler effects on
the acoustic signal received by the smartphone. Swad-
loon precisely measures the real-time phase and fre-
quency shift of the Doppler effect, which corresponds
to the relative displacement and velocity from the phone
to the acoustic source respectively. Swadloon then
obtains the accurate direction of the acoustic source
by combining the relative velocity calculated from the
Doppler shift with the one from the inertial sensors
of the smartphone.

The main challenges of implementing Swadloon are
noisy data collected from inertial sensors, and mea-
surement of subtle frequency shift when the motion
velocity of the phone is slow or fluctuates contin-
uously. We propose several rigorous methods (dis-
cussed in detail in Section 4) in Swadloon to address
these challenges, e.g., we use Phase Locked Loop
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(PLL) to precisely measure the phase and frequency
shift.

We evaluate the performance of Swadloon in the
case study of phone-to-phone direction finding, where
the object phone of direction finding serves as an
acoustic source, and the finder shakes his/her phone
gently to produce the Doppler effect. We also explore
the feasibility of applying Swadloon to real-time in-
door localization, which uses a few anchoring nodes
with known locations. The scheme does not rely on
any fingerprints and is very easy to use: a user only
needs to shake the phone for a short duration before
walking and localization. These anchoring speakers
will emit acoustic signals using non-audible frequency
(typically around 20kHz). The smartphones play the
role of receivers. As it is difficult for a smartphone to
find an accurate North as base for absolute direction,
our localization method does not exploit the absolute
direction. Instead we use a simple “triangulation”
method by exploring the accurate opening angle from
phone to two anchoring speakers. It measures the di-
rection to the source and its relative displacement for
achieving precise localization and real-time tracking
respectively. Anchor nodes will not perform any com-
putation or communication. Thus, dummy speakers
such as loudspeakers can serve as anchors.

Our extensive experimental results show that Swad-
loon supports high accuracy for both Phone-to-Phone
direction finding and real-time indoor localization.
In our testing of Swadloon, the finder only needs
to shake the phone gently and in arbitrary patterns
in a rough horizontal plane. For the phone-to-phone
direction finding, the mean error of the measured
angle is 2.10o within the range of 32m, and the errors
are under 2.06o, 4.43o, 5.81o at 50%, 90%, 95% respec-
tively, when the acoustic source faces towards to the
phone. Since our acoustic direction finding achieves
both long distance (about 32m) and high accuracy
(around 2 degrees), it supports a variety of poten-
tial applications, such as direction-based advertising
that recommends new goods in a shopping mall, or
sharing virtual business card with surroundings in
a big party, where the former application requires
advertisement being broadcasted as long as possible
to be detected by users, and the latter one requires
accurate direction finding. For indoor localization,
we deploy one acoustic source per 6 meters, which
broadcasts signals at a predefined frequency. For static
localization, Swadloon achieves 90-percentile accu-
racy of 0.92m, maximum error of 1.73m, and the mean
error of 0.5m. For real-time indoor tracking, the error
is always kept within 0.4m even when users walk for
more than 50 meters.

The rest of the paper is organized as follows. We
review related work in Section 2 and present technical
preliminaries in Section 3. We present the design
of Swadloon in Section 4, We report our extensive
experimental results in Section 5. We conclude the

paper in Section 6.

2 RELATED WORK

2.1 Direction Finding

Specialized Hardware: Former approaches requires
special hardwares for achieving high accuracy, e.g., by
using directional antenna [11]–[13] or antenna array
[3], [4] to implement Angle of Arrival (AOA) [14] in
localization. For example, by rotating the beam of its
antenna, a receiver can pinpoint the direction of the
AP as the direction that provides the highest received
strength [11].
Non-specialized hardware: [5] effectively emulates
the functionality of a directional antenna by rotating
the phone around the user’s body, to locate outdoor
APs. [7] leverages 4 microphones for calculating 3D
position of each other by using the distance ranging
method [15]. As the work is intended for high-speed,
locational, phone-to-phone (HLPP) games, it does not
show the result when two phones are in long dis-
tances. [16] calculates direction by head nodding or
shaking using smart glasses. Other methods [17], [18]
close to direction finding are to identify which target
the user is pointing at when s/he moves mobile phone
towards the target phone.

To the best of our knowledge, the approach closest
to ours in direction finding is [6]. It estimates the
direction and achieves the mean angular errors within
18o while ours is around 2o. This approach requires
that the searching user generates Doppler Effects to
all directions, e.g., the user stretches the arm while
holding the searching device, and then swings it
through 180 degrees. Correspondingly, as Swadloon
tracks the displacement with the resolution under
1mm, Swadloon only requires that the user shakes the
phone gently in an arbitrary path.

2.2 Indoor Localization and Tracking

In indoor localization, to avoid the use of special-
purpose infrastructure, e.g., [19]–[26], wireless local-
ization, which only leverages an existing infrastruc-
ture instead of special-purpose hardware, has attracts
many research efforts, e.g., [10], [27]–[35]. However,
it is found [10] that pure wireless localization can
achieve reasonable accuracy (e.g., 3 ∼ 4m), but there
always exist large errors (e.g., 6 ∼ 8m) unacceptable
for many scenarios. ByteLight [36] claims to be able
to provide low-price infrastructure for localization
using ceiling-embedded LEDs which send out Morse
Code-like signals to be detected by the smartphone’s
camera. Our case study provides another choice for
precise indoor localization, which only needs ceiling-
embedded low-price speakers instead.
Leveraging acoustic wave by phone: The methods
of leveraging the acoustic wave in smartphone ap-
plications have been well addressed. Most of them
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are leveraging the low speed of the acoustic wave
for ranging, such as the mechanism of TOA [15] and
TDOA [37], [38]. BeepBeep [15] detects the distance
between two smartphones with high accuracy. It has
been used by many other schemes, such as HLPP
games [7], [39], device pairing [17] and indoor local-
ization [10], [40]. Instead of precise ranging, [41], [42]
use acoustic background spectrum for coarse-grained
indoor localization.

In this work, we leverage Doppler effects of acoustic
waves (i.e., measuring the precise relative displace-
ment and velocity of phone) to design Swadloon.
Swadloon is precise enough to be another basic tool
of AOA, while it only requires off-the-shelf speakers.
Furthermore, Swadloon supports arbitrary number of
users and the phones of users do not need to send
any signals to get the location, which avoids the signal
interference when the number of users increases.
Leveraging the Doppler effects: Doppler effects have
been leveraged in wide areas, such as radar, satel-
lite communication, medical imaging and blood flow
measurement, etc. There are also localization ap-
proaches leveraging the Doppler shift of wireless sig-
nals in localization [43] and tracking [44] in wireless
sensor networks. But it also needs special hardware
not available for smartphone users. Meanwhile, by
using the phase shift, Swadloon easily implements
precise tracking without complicated algorithms com-
pared with [44] which uses frequency shift.
Leveraging the inertial sensors: Inertial sensors have
been used for pedestrian dead-reckoning [45] in in-
door localization. The challenge is that it suffers from
a large accumulation of errors. The complementary
approaches to this problem are proposed in [30], [31].
Swadloon uses the accelerometer and gyroscope to
obtain the direction of the acoustic source.

3 PRELIMINARY APPROACHES

3.1 Mapping from Doppler Effects to Motion
Our scheme is based on the relationship between Do-
ppler effects and the relative motion from the phone
to the acoustic source, when the phone moves and
causes Doppler effects on the received acoustic waves.
Suppose the acoustic source is emitting the sinusoidal
signal at the frequency of fa, the observed frequency
fr [46] is fr = va+v

va+vs
fa. Here v is the velocity of the

receiver; positive if the receiver is moving towards the
source and negative in the opposite position. vs is the
velocity of the source and va is the traveling speed of
the acoustic wave.

In this paper, we only consider the circumstance
that the acoustic source is motionless or the velocity
of the phone is far greater than the source, i.e., v � vs.
As typically va � vs, we simplify the computing of
the frequency shift f as follows:

f = fr − fa =
v − vs
va + vs

fa ≈
v

va + vs
fa ≈

fa
va
v (1)

We also assume the acoustic source sends the consec-
utive sinusoidal acoustic wave at constant frequency
fa. To derive the relative displacement from Doppler
effect, we assume that the received signal has the
form:

r(t) = A(t) cos(2πfat+ φ(t)) + σ(t) (2)

where A(t) is the amplitude which changes contin-
uously, φ(t) is the phase which is affected by the
Doppler effect and σ(t) is the noise. Assuming φ(t) is
a continuous function, the observed frequency fr at
time t is fr(t) = 1

2π
d(2πfat+φ(t))

dt = fa + 1
2π

dφ(t)
dt . From

Eq. (1), the frequency shift f at time t is

f(t) =
1

2π

dφ(t)

dt
(3)

From Eq. (1)(3), we get the velocity and displace-
ment relative to the acoustic source:{

v(t) = va
2πfa

dφ(t)
dt

s(t) = va
2πfa

φ(t)− va
2πfa

φ(0)
(4)

where s(t) is the relative displacement from the phone
to the acoustic source. Specifically, s(t) = L(0)− L(t),
where L(t) is the distance between the phone and the
source at time t. In Section 4.3, we further show how
to calculate φ(t) in order to obtain v(t) and s(t).

3.2 Basic Direction-Finding Using Doppler Effect
for Simple Motion
We make a simple case of phone-to-phone direc-
tion finding to illustrate the intuition in designing
Swadloon. Then we show the practical limitations of
the simple case and implementation challenges. In
latter sections, we propose our method on a more
complicated case to address these issues.

Assume that the phone and the acoustic source
are at the same height and the mobile phone starts
moving in north and in a path of rectangle with
the constant velocity u1, u2, u3, u4 in each direction,
shown in Figure 1a. So, frequency shifts are generated,
where fi corresponding to ui. If the velocities and
the frequency shifts are obtained, from Eq. (1), we
can calculate the acoustic direction α in the following
equations:{

u1 sinα = va
fa
f1; u2 cosα = va

fa
f2;

−u3 sinα = va
fa
f3; −u4 cosα = va

fa
f4

(5)

Intuitively from Eq. (5), if u1 = u2 = u3 = u4,
f2 > f1 > 0 > f3 > f4, which indicates that the
0 < α < 45o. Formally, only two equations are needed
to calculate α if the velocity in one equation is not
parallel to the other. The additional equations can
enhance the accuracy by using maximum likelihood
estimation.

Note that α is changing while the phone is moving,
so it will cause errors on obtaining α. However, it
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Fig. 1: A simple case of calculating the direction α. (a) The phone starts moving north and draw a rectangle.
(b) The velocity calculated from the inertial sensors. (c) FFT on the received acoustic signal.

won’t affect much on calculating the direction. In
Figure 1b, if the initial distance from the phone to
acoustic source is L and the maximum moving range
of the phone is d, the maximum angle error is αe =
arcsin d

L . As the phone moves gently, we assume that
d is 10cm at maximum. The maximum errors are 5.7o,
1.15o, 0.57o, 0.19o at L = 1, 5, 10, 30m respectively,
i.e., the errors get smaller when the distance becomes
longer. Note that the user can also shake phone with
wider range that the angle error caused by phone
movement is ignorable when L� d.

Moreover, if the phone calculates the position of
acoustic source by not only the direction α according
to Swadloon but also the distance L according to
other techniques such as BeepBeep [15] while the
measured L is accurate, the distance de from the
calculated position to the actual position is de =

2L sin αe

2 = 2L sin arcsin(d/L)
2 . When d � L, e.g., 10d ≤

L, arcsin(d/L) ≈ (d/L) and sin(d/2L) ≈ d/2L. So
we simplify de as de ≈ d. Then the maximum error
on computed location caused by shaking is close to
the shaking distance d, which is tolerable in direction
finding.

However, there are several problems on applying
this simple approach. First, the accurate velocity of
the phone is hard to be obtained by using the inertial
sensors. Though it can be calculated by the accelerom-
eter and other sensors if given the initial velocity of
the phone, the errors of the acceleration will be accu-
mulated on its integration, i.e., the calculated velocity.
For instance in Figure 1a, the velocity is zero at the
end of moving while the calculated one is−0.77m/s in
Figure 1c. Second, the mobile phone and the acoustic
source may not be of the same height. In this case, the
calculated f is lowered and the equations in Eq. (5)
are not right. Third, it would be hard and exhausting to
draw the regular rectangle for the phone users. Fourth,
the velocity of the phone v cannot be constant in each
direction. So we need a more general solution in cases
of different heights and arbitrary motion patterns.

An important practical challenge is that spectrum
analysis, such as Fast Fourier Transform (FFT), is not
efficient in calculating frequency shift f , when the
user shakes the phone gently, e.g., the peak value of
the phone speed is 0.2m/s ∼ 0.4m/s in our experi-
ment in Figure 7. Specifically, FFT cannot measure the
precise value of f if v changes quickly due to the time-

frequency resolution problem [47]. That is, for any
signal, the time duration ∆T and the spectral band-
width ∆F are related by ∆F∆T ≥ 1. For example,
if the time resolution is ∆T = 8192/44100Hz= 0.19s,
the frequency resolution ∆F ≥ 1/∆T = 5.38Hz. In
this case, the frequency resolution is far not enough
in our experiment where the peak value of frequency
shift is around 11.8Hz∼23.6Hz. Furthermore, it is still
challenging when the phone speed is high, e.g., the
maximum speed of a user’s hand is 2m/s [39]. In our
simple case, the maximum speed also reaches 2m/s
as shown in Figure 1c, where the maximum shift is
111.8Hz theoretically, which seems sufficient for direc-
tion finding. However, in Figure 1d we find that the
maximum frequency shift only reaches about 70Hz.
The main reason is that the direction α is about 45o

and the maximum shift is reduced to 111.8 cos 45o =
79Hz. Meanwhile, most of the time, the frequency
shift is far less than 70Hz. Note that, Spartacus [18]
improves the resolution of FFT but also requires peak
velocity at 2 ∼ 6m/s and achieves angular resolution
with 10o; Swadloon lose the limitation that it also
supports slow peak velocity (0.2 ∼ 0.4m/s) and
higher angular resolution (mean error ' 2o). Hence,
more accurate frequency measurement is preferred for
calculating accurate direction.

Besides the challenge of calculating the frequency
shift f(t) for direction finding, the further problem is
calculating the phase shift φ(t), from which f(t) can
be obtained by Eq. (3). We also show that the real-time
indoor tracking can be implemented by using φ(t) in
Section 5.2.2.

4 DESIGN OF SWADLOON

We study the more complicated case that the user
shakes the phone or walks in an arbitrary path. We
show the design of Swadloon in Figure 2. The phone
gathers samples from the microphone and inertial sen-
sors. The data are processed in real time to maximize
the utilization of the CPU. The phone dynamically
updates the direction of the source according to the
previously calculated samples.

In Figure 2, The noise σ(t) and variational am-
plitude A(t) in Eq. (2) is eliminated by BPF and
AGC respectively. The phase φ and frequency f , which
corresponds to the relative displacement and velocity
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respectively, are then obtained by PLL. Swadloon
further combines the velocity from the acoustic and
inertial sensor samples to get the source direction α
by Linear Regression. The phone returns the value
of α and φ in real time for direction finding, indoor
localization or tracking. We describe each component
of the design as follows.
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Fig. 2: Implementation of Swadloon.

4.1 Band Pass Filter (BPF)
To get rid of the interference of other acoustic waves,
we assume the phones of different users send acoustic
waves in different frequency bands. Hence, in our im-
plementation, the acoustic sample first walks through
the Band Pass Filter (BPF) such that only the waves at
the exact frequency pass through BPF. Interference by
other acoustic sources and low frequency noises that
human can hear are both eliminated.

Note that the type of BPF should be seriously
chosen. All frequency components of a signal are
delayed when passed through BPF. As the frequency
is changing in Doppler effect and we need to get
the precise phase, the delay at each frequency com-
ponents must be constant, such that the different
frequency component will not suffer distortion, which
is known as the linear phase property. As a result, we
choose equiripple FIR filter, which satisfies the linear
phase property.

Meanwhile, the bandwidth should be wide enough
to get the total signal. Normally, the maximum speed
of shaking the phone is less than 2m/s. Thus, if
the frequency of acoustic signal is fa = 19000Hz,
the maximum frequency shift fmax = 111.8Hz. So,
the minimum pass band of the filter is 223.6Hz. For
avoiding the interference by other acoustic sources,
there should not be multiple signals that pass through
the same BPF. Besides, acoustic bandwidth that al-
most all the smartphones support is limited to maxi-
mum of 22050Hz (i.e., sample rates of 44100Hz) and
we find that the lowest frequency that human can
hardly hear is about 17000Hz in our experiment. Thus,
the maximum number of acoustic sources that can
sound simultaneously in a small area (with radius
about 30m) and be successfully detected is limited
to (22050 − 17000)/223.6 ≈ 23. However, this is not
a challenge for Swadloon as we show that we only
need a small number (less than 10) of acoustic sources

in a small area for high accuracy. Though there are
possible ways to allow more simultaneous acoustic
waves such as dividing the signal into different time
slots, like TDMA in shared medium network, it is
beyond the scope of this paper.

4.2 Automatic Gain Control (AGC)
We adjust the filtered data by Automatic Gain Control
(AGC) such that the amplitude of the acoustic signal
A(t) in Eq. (2) is replaced by another one that is close
to constant. The purpose is to successfully estimate
the phase φ(t) by using PLL in Section 4.3. We adopt
the design of AGC from [48]. Suppose Ts is the
sampling period of the received signal and k is the
step count of sampling, then t = kTs. The main
idea is for the input rb[k] from BPF, we estimate the
amplitude A[k] in Eq. (2) by updating A1[k] with the
equation:

log(A1[k]) = (1−Aα) log(A1[k−1])+Aα log(1/Ar[k−1])

Here Aα represents the sensitivity for adjusting A1[k].
Ar[k] represents the coarse-grained estimation of A[k].

Since |rb| ' 2
πA and the calculated |rb| is stable

when averaging consecutive 11 samples, in our imple-
mentation, Ar[k] = π

11∗2
∑k
i=k−10 |rb[i]| and Aα = 0.9.

Then, for the received filter data rb[k], the output

rc[k] = A1[k]rb[k]

For the amplitude of rc[k] is close to constant by
AGC, if A1[k] = A1[k − 1], A1[k]Ar[k − 1] = 1. Thus,
the amplitude of rc[k] is close to 1. Hence, we get
rc(t) ≈ cos(2πfat + φ(t)), where σ(t) and A(t) in
Eq. (2) is approximately eliminated by BPF and AGC
respectively.

4.3 Tracking Subtle Displacement by Phase
Locked Loop
According to Eq. (4), we use Phase Locked Loops
(PLL) to calculate the phase φ(t), in order to get the
precise relative displacement s(t) and velocity v(t) of
the phone. PLL can be thought as a device that tracks
the phase and frequency of a sinusoid [48]. In software
implementation, we draw the idea from [49]. To get
the precise φ(t), we update an adaptive estimation
of φ(t) in real time, denoted as θ(t) in order that
θ(t) ≈ φ(t). To make θ converge to φ after enough iter-
ations, we define the corresponding function JPLL(θ)
such that JPLL converges to its maximum at the same
time. Specifically, θ(t) is updated in the iterations as:

θ′ = θ +
dJPLL

dθ
(6)

As a result, JPLL should satisfy that

max(JPLL(θ)) = JPLL(φ) (7)

In Swadloon, we choose JPLL as follows:

JPLL(θ) = LPF{rc(t) cos(2πfat+ θ(t))}
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≈ 1

2
LPF{cos(φ(t)− θ(t))}

Here, LPF is the Low Pass Filter which excludes the
high frequency component in the above approxima-
tion. Hence, JPLL satisfies Eq. (7).

Next, we need to change the continuous estimation
process of Eq. (6) to the discrete one. Suppose Ts is
the sampling period of the received signal and k is
the step count of sampling, then t = kTs. Assuming a
small step size, the derivation in Eq. (6) with respect
to θ at kTs can be approximated1:

dJPLL
dθ

≈ LPF{d[rc[k] cos(2πfakTs + θ))]

dθ
}
∣∣∣∣
θ=θ[k]

= −LPF{rc[k] sin(2πfakTs + θ[k])}

As a result, the estimating of θ(t) is shown as
follows:

θ[k + 1] = θ[k]− µLPF{rc[k] sin(2πfakTs + θ[k])} (8)

where θ[k] = θ(kTs) and µ is a small positive value.
Hence, φ[k] ≈ θ[k] after enough iterations. According
to Eq. (4), if the max velocity of the phone is vmax =
2m/s, fs =44100Hz and fa = 19000Hz, the max offset
per sample |∆φmax| = 2πfa

vafs
vmax = 0.016. Besides,

rc[k] sin(2πfakTs + θ[k]) ≈ 1
2 sin(4πfakTs + 2θ[k]) ≤ 1

2

Thus, µ > 0.03 in Eq. (8), otherwise, the transition
rate of θ[k] cannot catch up with the real phase.
Furthermore, as 1

2 sin(4πfakTs + 2θ[k]) cannot always
be 1/2, µ needs to be much more than 0.03 to let
θ[k] converge to φ[k]. However, when µ is bigger,
the calculated phase is more sensitive to noises, and
cannot be precise either. Hence, there is a tradeoff on
choosing the µ. Specifically, as moving speed of the
phone is not always be 2m/s, we can choose a smaller
µ such that Swadloon is more robust to noises. In the
implementation, we choose µ = 0.03.

As the relative displacement is proportional to the
phase shift by PLL, we estimate the precision of
calculated displacement by Eq. (4). If the phase shift is
1 rad and the frequency of the source is 19000Hz, the
relative displacement is 2.8mm. We simply measure
the phase when the phone is motionless, and find
that the phase is oscillating around a constant central
value, i.e., the real phase, and the amplitude of the
oscillation is 0.005 rad when µ = 0.03. We also let the
phone move in an specific path towards the acoustic
source with length of 30cm, and measure the phase
shift from the starting point to the end point. The
standard deviation is 0.09 rad, which correpsonds
the displacement of 0.25mm. Hence, the measurement
resolution of the corresponding displacement is less
than 1mm. In section 5, We further evaluate Swad-
loon which depends on accuracy of PLL, to infer
the robustness of PLL against multipath effects, noisy
environment, etc.

1. The proof of the approximation is in G.13 of [49].

4.4 Getting Direction by Linear Regression (LR)
Assuming the direction vector of the acoustic source
relative to the phone is

−→
λ = (λx, λy, λz) and velocity

vector of the phone is −→u = (vx, vy, vz), then −→u ·
−→
λ =

va
fa
f according to Eq. (1). For the obtained array −→u [k]

and f [k], they satisfy the following equations

λxvx[k] + λyvy[k] + λzvz[k] =
va
fa
· f [k], ∀k (9)

Hence, the 3D direction
−→
λ can be obtained by solving

these equations using linear regression, where f [k]
can be calculated by Eq. (3), Eq. (8). Ideally, if u[k] is
obtained from inertial sensors and there are no errors
of u[k], there are 3 unknowns λx, λy, λz in the equation
set. Moreover, using this we can calculate the direction
when the phone moves in arbitrary paths, because
different motion patterns of the phone merely cause
different array −→u [k] and f [k]. We can also translate
3D direction

−→
λ to 2D direction α as follows:

α =

arcsin
λy√
λ2
x+λ

2
y

λx ≥ 0

π + arcsin
λy√
λ2
x+λ

2
y

λx < 0
(10)

We now address the non-ideal circumstance with
noisy sensor data, i.e., to minimize the error of velocity
which is derived from the calculated acceleration in
WCS. In phone-to-phone direction finding and indoor
localization, we only need the 2D direction α rather
than the 3D direction (λx, λy, λz). Thus, λz is not
needed. From Eq. (9), if λzvz[k] ≈ 0, i.e., the phone
moves in a horizontal plane or the two phones are at
the same height approximately, we can calculate the
direction by the following equation to eliminate the
error of vz :

λxvx[k] + λyvy[k] =
va
fa
· f [k] (11)

Suppose âx[i] = ax[i] + σx[i] where âx[i], ax[i], σx[i]
is the real acceleration, the calculated acceleration, the
error of the calculation on the acceleration of the ith
sample respectively. We can derive vx from

vx[k] = vx[0] +

k−1∑
i=0

T [i]ax[i] +

k−1∑
i=0

T [i]σx[i]

where T [i] is time interval from ax[i] to ax[i+ 1].
The error σx is related the natural quality of the

inertial sensors and challenging to be measured. In
this paper, we simply assume σx equals to a constant
ex at a short period. Suppose t[k] =

∑k−1
i=0 T [i], we get∑k−1

i=0 T [i]σx[i] = ext[k]. Similarly, we also assume the
error of ay is a constant ey at a short period.

We also consider the problem that there is clock
drift between acoustic source and smartphone. For
example, in our experiment the actual frequency of
received signal is 19000.13Hz when the one of sent
signal is 19000Hz. Denote the frequency shift caused
by clock drift as fd, the actual frequency of received
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signal is f ′r = fr+fd. Since the frequency shift caused
by Doppler effects f � fr, it can be inferred that
fd is close to constant when f changes. Hence, the
measured frequency shift f ′ = f+fd where fd is close
to constant.

As a result, from Eq. (13)(10)(11), we could calculate
the 2D direction by linear regression from the follow-
ing equation set which has 4 unknowns (λx, λy , λ0,
λ1)

wx[0] wy[0] 1 t[0]

wx[1] wy[1] 1 t[1]

· · · · · · · · · · · ·
wx[n] wy[n] 1 t[n]




λx

λy

λ0

λ1

 =
va
fa
·


f ′[0]

f ′[1]

· · ·
f ′[n]


(12)

Here, wx[k] =
∑k−1
i=0 T [i]ax[i], wy[k] =

∑k−1
i=0 T [i]ay[i],

λ0 = λxvx[0] + λyvy[0] + va
fa
fd and λ1 = λxex + λyey .

Note that, we allow that vx[0] 6= 0 and vy[0] 6= 0
in our solution, which means we don’t require the
phone to be motionless before shaking the phone and
calculating the direction. Similarly, we don’t need the
value of fd. vx[0], vy[0] and fd are put together as an
unknown λ0 in the equation.

4.5 Choosing the Direction in UCS for Evaluation
Vectors can be transformed between World’s Coor-
dinate System (WCS) and User’s phone Coordinate
System (UCS) by the rotation matrix. As the compass
is not accurate, we obtain the initial rotation matrix of
the phone by sensor fusion of the compass, gyroscope,
and accelerometer, but update the dynamic rotation
matrix by merely using the gyroscope.

Hence in our World Coordinate System (WCS), the
Z axis is considered to be accurate, but the X axis
may not point to east due to the error of the compass.
Hence, the calculated direction α in WCS may not be
the actual direction relative to the east. To evaluate the
performance of our direction finding, we will evaluate
the direction (denoted as the ground truth and the
measured value as αr and α′r respectively) of the
acoustic source using the UCS of the phone that is
placed horizontally such that its Z axis is same as
the Z axis of WCS, as shown in Figure 3a. When
phone is static, the value αr does not change. Thus, in
Section 5.1, we measure α′r to evaluate the accuracy
of direction finding shown in Figure 3b.

Y 
ax

is
 in

 W
C

S

Y 
ax

is
 in

 U
CS

α

αr

X axis in UCS

α0

X axis in WCS

(a) WCS vs. UCS

αr 

β 

Phone

Acoustic
Source

Reference 
object

L 

C

A B

(b) Experiment setup

Fig. 3: (a) WCS vs. UCS when the phone is horizontal.
(b) Experiment of direction finding.

Hence, suppose the phone is horizontal, we get
value α by using Swadloon and the opening angle
from X axis in UCS to the one in WCS (α0) by using
the rotation matrix from UCS to WCS. αr is calculated
by

αr = π/2− α− α0 (13)

5 CASE STUDIES AND EVALUATIONS

5.1 Phone-to-phone Direction Finding
We use Google Nexus 7 and Motorola XT 910 as
smartphone and acoustic source respectively. We
mainly use Android API to implement Swadloon and
the acoustic source. Specifically, the audio playing
and recording is implemented by using class Au-
dioTrack and AudioRecord respectively; the inertial
sensor samples are gathered through the function on-
SensorChanged(). The signal processing components,
(i.e., BPF, AGC and PLL), are implemented by pure
Java code without the requirement of any third-party
libraries or hardware. On calculation direction, we
adopt the implementation of linear regression (LR) in
Michael Thomas Flanagan’s java scientific library. The
audio sample rate is 44100Hz, and sample rate of the
inertial sensors is 200Hz.

5.1.1 Experiment Design
The vertical view of the phone and acoustic source is
shown in Figure 3b. The distance between the phone
and the acoustic source is L. The orientation angle of
the phone and acoustic source at the horizontal plane
is αr and β respectively. There are reference objects at
places A, B, C which are utilized to align the phones.
The place C is used to put new acoustic source
for further experiment. Additionally, we assume the
elevation angle of the acoustic source is γ which is
not shown in this 2D figure. The acoustic source is on
the floor. The height of phone from the floor is about
40cm.

The main process of evaluating performance of
direction finding is as follows: We vary L, αr, β, γ by
moving the reference objects. We obtain the measured
direction α′r by shaking the phone, aligning the phone
to the reference object, and reading the direction value
from the phone. We measure α′r 50 times for each
configuration.

5.1.2 Empty Room with Single Acoustic Wave
We first conduct the experiment in a large empty room
for examining the accuracy of direction finding when
there is only single acoustic wave. The sound pressure
in the room is −41 dBFS (about 30 dB SPL) measured
by Nexus 7. The amplitude of the acoustic source at
the distance of 1m is −20 dBFS.
Effect by L and αr. The case we mostly care about
is the performance when the distance L and the
orientation of the phone αr is changing. Hence, we set
β = 0 and γ = 0, and plot the standard deviations and
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cumulative distribution function (CDF) of the angular
errors when L and αr are changed in Figure 5.
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Fig. 5: The result of direction finding in an empty
room when β = 0 and γ = 0.

The key observation is that the measurement is very
accurate when L ≤ 32m. We examine the reason in
Figure 6, which plots the calculated φ(t) on random
samples with different L values. The calculated φ(t)
is always smooth when L ≤ 24m, while there are
small noises when L = 32m and much bigger noises if
L = 40m. Hence, the calculated related displacement
and velocity become much less scrupulous when L =
40m, which affects the calculation of direction. It is
similar that most of the following cases mainly affect
the calculated phase which finally affect the precision
of direction finding.

1 2 3 4
-40

-20
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20

Time (s)
(a) L=24m

φ
 (

ra
d
)
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40
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Time (s)
(c) L=40m

Fig. 6: The calculated phase φ(t).

In Figure 5a, when L ≤ 32m, the mean error and
standard deviation of the measurement is 2.10o and
2.66o. The angular errors are within 2.06o, 4.43o, 5.81o

at 50%, 90%, 95% respectively. Though the errors
become larger when L = 40m, it is still tolerable. We
also test angle errors when L > 40m, but it becomes
much unstable as the signal is too weak. So we do not
show the result of this case.

In Figure 5a, we also find when αr is chosen from
−90o to 90o, it has little effect on precision. As the
errors are so close for different αr, we don’t show the
CDF of different αr.

Effect by β and γ. We test the errors when the orien-
tation of the acoustic source is not directly pointing to
the phone. In this case, we set αr = 45o. In Figure 4a,
4b, we show the mean and standard deviation with
different choices of β, γ, L.

It shows an interesting result that when β changes,
the mean value changes more when L = 8m in Figure
4a than the one when L = 32m in Figure 4b. The main
reason is that the acoustic source we choose is not
omnidirectional, and the signal is much stronger right
in front of the source. The signal reflected from the
wall affects the result, which is so-called the multipath
effect. When the phone is further from the source, the
signal reflected from the wall becomes much weaker
than the one directly from the acoustic source.

Another observation is that if the acoustic source
turns up, such as γ = 45o, 60o, 90o, the mean value
will not change a lot no matter L = 8m in Figure
4a or L = 32m in Figure 4b. That is, though there
is multipath from the ceiling, it has little effect on
the mean direction. We find a new phenomenon on
multipath effect in latter experiment, which explains
these observations here.
Motion Pattern. We also analyze the angular errors
caused by the inertial sensors. As we claim that Swad-
loon supports arbitrary pattern of phone movement,
we test errors caused by different motion patterns of
the phone. In this case, we set L = 32m, αr = 45o, β =
γ = 0. As we calculate the direction by Eq. (11) instead
of Eq. (9) for better accuracy, it requires λzvz[k] ≈ 0.
Note that in most cases of phone-to-phone direction
finding, λz ≈ 0. Hence, we do not strictly require
vz[k] = 0 that the experimenter shakes the phone in
rough horizontal plane in the experiment.

a

c
Pattern A
(arbitrary)

a

c

Pattern B

a

c

Pattern C Pattern D

Fig. 8: Tested shaking patterns of the phone.

The experimenter shakes the phone with arbitrary
patterns in rough horizontal plane, e.g., pattern A
in Figure 8. More specifically, we do not constrain
the speed or the amplitude of the phone-shaking
movement. Even the subtle movement is tested in
the experiment. As the PLL measures the relative
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Fig. 7: Examples of direction finding which combines velocity from relative displacement va
2πfa

φ(t) with the
one from inertial sensors (wx(t) and wy(t)) .

displacement with high resolution, the result is ac-
ceptable shown in Figure 4c: the standard deviation
of the measurement is 4.96o.

We also show results of other regular patterns in
Figure 8. The pattern B, C, D is the circle, the rectangle,
and mix of the circle and rectangle respectively. We
also specify the repeat times and the direction of
motion pattern. For example, D-caca in Figure 4c
means that the phone is shaked for 4 times in pattern
D: clockwise, anticlockwise, clockwise, anticlockwise.
The rest of the patterns can be explained similarly.
Note that in the experiment, the real shaking pattern
is merely close to the specified one, instead of strict
match of the two patterns.

The results in Figure 4c shows that Swadloon is
accurate for all motion patterns. We further analyze
the detailed results of each pattern in Figure 7. More
specifically, we calculate unknowns (λx, λy, λ0, λ1) by
Eq. (12). Then, we substitute the solutions into Eq. (12)
and compare the values of expression on the left side
of Eq. (12) with the ones on the right side. The values
represent real-time velocity relatively from a smart-
phone to an acoustic source. The key observation is
that the compared values are very close in all cases.
It means that our PLL is accurate to track relative
velocity (e.g., values on the right side of Eq. (12)) and
Swadloon is very robust in case of different motion
patterns. Figure 7 also shows that Swadloon is very
accurate when the phone moves with very small
amplitude (5cm) and velocity (0 ∼ 0.4m/s).

We also find that when the phone moves clockwise,
there is a positive shift in the mean value. When
the phone moves anti-clockwise, there is a negative
shift. Since for the arbitrary pattern A, there exist

both positive and negative shifts in the measurement,
the standard deviation becomes a little bigger. We
also observed that when the phone was shaken in
other regular patterns compared to pattern A, the
standard deviation becomes smaller. That is, the error
shift is close to invariable in these cases. We also find
that when we shake the phone in C-ca, D-caca, the
means are close to the same. Based on the results,
we choose D-caca as the default motion pattern in
the entire experiment. We leave it as a future work to
understand why the phenomena happen.
Non-line of sight. We set L = 8m, αr = 45o,
β = γ = 0, and test a simple case on the effect
by Non-line of sight (NLOS). In Figure 4d, a person
stands between the phone and the acoustic source,
and we measure the errors related to the distance from
the person to the phone. It becomes apparent that
when the person stands at either ends, the standard
deviation is enlarged, while the person stands in the
middle, it is close to the one without obstruction.
Hence, the person has little effect on direction finding,
as long as s/he is not too close to the acoustic source
or the receiver. This is also verified in the experiment
of noisy environments.

Another case of NLOS is that the user put his
back to the source. The signal turns so weak and the
result becomes unstable. In this case, the user can turn
around to get the precise direction. The other possible
complementary method is to let user rotate the phone
around the user’s body, similar to [5].
Multipath effect. As the multipath effect is hard to
measure exactly, we first make a man-made multipath
to find its impact. Then, we make a simple real case
to verify our finding.
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Fig. 9: (a) Errors on different cases when L ≤ 24m,
αr = β = γ = 0. (b) The opening angle errors w.r.t.
multiple signals.

We set L = 8m, αr = 45o, β = γ = 0 and add
another phone as acoustic source placed at position C
in Figure 3b. The new source is also 8 meters from the
phone. It beeps at the same frequency with the source
at B. The volume of the source at B is constant 60%.
We change the volume of the source at C from 0% to
100%, and plot the Figure 4e. When the volume is less
than 20%, it has little effect: the standard deviation is
low, and the mean value is slightly lowered. There
is an interesting phenomenon that when the volume
becomes larger, the angle becomes lower which is
close to the direction of the new source. However, the
standard deviation becomes bigger when both sources
have high volume.

We then conduct an experiment with both acoustic
source and phone near the wall. The wall is on the
right hand side of the user while shaking the phone.
We set αr = β = γ = 0 and L = 8, 16, 24, 32m. The
mean and stand deviation of α′r is shown in Figure
4f. α′r becomes bigger for all the distances which can
be inferred from the above conclusion. It can also
be inferred that the strengths of the reflected signals
relative to the respective direct signals are different at
each L, which causes different mean shifts of α′r. The
additional observation is that the standard deviation
is low for each distance. Hence, reflected signal is
weak compared to the one directly from the acoustic
source.

5.1.3 Empty Room with Multiple Acoustic Waves
To validate the robustness of Swadloon, we conduct
two types of experiments: (1) an acoustic source
broadcasts multiple signals at different frequencies,
(2) multiple sources broadcast signals at different
frequencies.

In experiment (1), we measure the angular errors
when the acoustic source sends 6 sinusoidal signals
at the frequency from 17000Hz to 19500Hz. The ex-
periment is performed by setting αr = β = γ = 0.
We find that the results are similar for different L
that L ≤ 24m, while the ones at L = 32m are
a little worse. It is because that when the phone
sends multiple signals, the signal strength of each
component becomes weaker. We plot CDF at L ≤ 24m
in Figure 9a. The performance is almost the same with
the one sending a single wave. It can be deduced that

we can use loudspeakers in the mall as anchor nodes
while they are playing music.

We now analyze the performance of direction find-
ing when there are multiple acoustic sources. The
performance in this case will have direct impacts on
the accuracy of the localization to be studied later
in Subsection 5.2.1. Recall that as the computing of
the absolute direction requires the accurate compass
which is hard to get, in our localization method we
use the opening angle ∠AiPAj from the phone with
location P to two arbitrary anchor nodes Ai and
Aj instead of the absolute orientation of any vector
PAi or PAj . Thus, here we measure the accuracy of
estimated angle ∠AiPAj by varying the locations of
P , Ai, and Aj .

Figure 9b shows the opening angle errors in three
cases: (1) single source, multiple waves, super market,
(2) single source, multiple waves, empty room, (3)
multiple source, multiple waves, empty room. We find
that the opening angle errors in cases (1), (2) are less
than the direction errors in Figure 9a. Furthermore, we
observe that case (3) is much worse than (2). Though
it is unfair to compare the two cases that the acoustic
sources are different, it shows the possibility of im-
provement on the precision of indoor localization by
using better acoustic sources, as we use the worse case
for calculating the latter position.

5.1.4 Noisy Environment
We conduct this experiment in a super market, where
it is noisy (−21 dBFS) and there are people walking
around and blocking the line from the acoustic source
to the phone. We also let the phone send multiple
signals. In Figure 9, the result becomes a little worse
than the one in empty room. Almost all errors are less
than 10 degrees, which are acceptable.

5.1.5 Overhead
As Swadloon calculates the direction in real time,
we only evaluate the CPU usage. When Swadloon
processes one acoustic signal, the CPU usage of the
phone is 20.5%. When processing multiple signals,
the pass band of BPF narrows down, which causes
higher computation overhead per signal. There are
multiple solutions for reducing the overhead, e.g.,
choosing IIR filter instead of the FIR filter, processing
the signal in the network server, etc. Above all, as we
only need to shake the phone for a short duration to
get the directions, the overhead is low that the total
computation time is only within several seconds.

5.2 Real-time Localization
We now describe our basic method of applying Swad-
loon to fine-grained indoor localization illustrated in
Figure 10a, which is based on the direction α and the
phase φ in Section 4. Note that there are sophisticated
methods leverage merely the Doppler frequency shift
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for localization, e.g., [44], we just provide a simple
method as a case study to evaluate the accuracy of
direction finding and phase shift measurement.

We require that there are at least three acoustic
sources as anchor nodes installed, which send sinu-
soid signals at the specific different frequencies. Users
need to get the position and frequency of each anchor
node from network service. It includes two phases:
finding the initial position and real-time tracking.

5.2.1 Static Position Localization

The user needs to shake the phone first in order
to get his/her initial position. The phone calculates
the direction of each anchor node in WCS and then
gets the position. Note that as the compass is not
precise, the calculated directions, such as α1, α2 in
Figure 10a, are not directly used in calculating the
position. However, observe that the opening angle
(α1−α2) is fixed no matter which WCS is chosen. We
calculate the initial position using this opening angle.
Taking the positions (x1, y1) and (x2, y2) of two anchor
nodes A1 and A2 and the relative directions PA1, PA2

from phone (with unknown position P ) to A1 and A2,
we can compute the distance D = ‖A1 − A2‖ and
the opening angle αd = ∠A1PA2, as illustrated in
Figure 10a. It can be inferred that the position P is on
a fixed circle illustrated in Figure 10b, 10c. If αd is an
acute angle as in Figure 10b, αc = 2αd. So, the radius
of the circle R = D

2 sinαd
. Then we get at most two

possible solutions of the position of the circumcenter
O by using radius R and the given coordinates of two
nodes A1 and A2. If αd is an acute angle, then O and
P are on the same side of A1A2. Similarly, if αd is an
obtuse angle, as in Figure 10c, O and P are on the
opposite side of A1A2.

For a system of n anchor nodes, there are n(n−1)
2

pairs of anchor nodes. As a result, phone P lies on
n(n−1)

2 circles. Thus, with at least 3 anchor nodes,
we can get the position of P . It is worth mentioning
that for the circle formed by a node pair, the circle is
divided into two arcs by the node pair. Node P only
lies on one of the arcs, depending on whether αd is an
acute angle or an obtuse angle. Hence, for localization
we search for the point P to minimize

∑
i di where di

is the distance from P to the ith arc.
We claim that it will result in better localization

accuracy if we place the anchor nodes in a line as
in Figure 10d compared to the one in Figure 10e. In

Figure 10e, the centers of the circles are too close,
which causes big potential errors. The root reason is
that the 4 points A1, A2, A3, P are nearly at the same
circle, which means the arbitrary point, e.g., A1, is
close to the circle which is constructed by the rest of
3 points, e.g., A2, A3, P .
Experimental setup: In Figure 11, we place 6 phones
as anchor nodes in the same empty room in the previ-
ous subsection. The positions are (0,−3), (6, 0), (12, 0),
(18, 0), (24, 0), (30,−3) (meters) respectively. The beep
frequencies are from 17000 to 19500Hz. We choose
spots at y ∈ {−3,−6} and x ∈ {6, 9, 12, 15, 18, 21, 24}.
We conduct the localization when people stay at these
spots, and repeat the experiment 30 times for each
spot.

x

y

6 12 18 24

0

-6

(a) Indoor environment (b) Layout of anchors
Fig. 11: Indoor localization testing prototype.

Evaluation: The accuracy of static localization is
shown in Figure 12a. Swadloon achieves localization
errors within 0.42m, 0.92m, 1.08m, 1.73m at the per-
centage of 50%, 90%, 95%, and 100% respectively. The
mean error and the standard deviation is 0.50m and
0.59m respectively. We also find that the localization
accuracy at spots with y = −3m is better than the ones
on y = −6m. Specifically, on y = −3m, the localization
errors are within 0.28m, 0.73m, 0.91m, 1.73m at the
percentage of 50%, 90%, 95%, and 100% respectively.

Meanwhile, we find that there are nearly constant
error shifts of the calculated position at all locations.
Thus, we further adjust the position by linear regres-
sion. That is, we build a polynomial function model
from the calculated positions to more precise positions
by learning the results from half of the samples. We
then apply the function to the other half and the result
is plotted in Figure 12b. It shows that the precision
is greatly enhanced (i.e., the errors are within 0.67m,
0.82m, 1.56m at the percentage of 90%, 95%, 100%
respectively).

We then measure the errors of static localization
in a large office (-34 dBFS), where the environment
is much more complicated. The layout of the anchor
nodes is nearly the same with the one in Figure 11,
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Fig. 13: Precise real-time indoor tracking.
except the anchor nodes are installed on the ceiling.
Figure 12b shows that the error is within 0.94m,
1.23m, 2.59m at the percentage of 80%, 90%, 100%
respectively after linear regression.

We also choose specific number of nodes (i.e., 3 ∼ 6)
from the 6 nodes to calculate the position. In Figure
12c, it shows that the precision is greatly enhanced
when the number of nodes increases. Besides, preci-
sion in case of 3 nodes becomes much worse for it
is more sensitive by the layout shown in Figure 10d,
10e.

5.2.2 Real-time Tracking
In this phase, the user does not need to shake the
phone again to obtain the position. The position is
tracked in real time by tracking the relative dis-
placement to each anchor using Eq. (4)(8), and the
update rate is 0.05s or 0.25s in our experiment. In
Figure 10a, if the location of phone at time t has
been calculated, denoted as (x, y), we calculate its
location (x̃, ỹ) at the latter time t̃ by getting s(t) and
s(t̃) using Eq. (4), Eq. (8). Then we calculate next
location according to (x̃, ỹ) iteratively. Specifically, if
the user gets the location (x, y), then the distance from
(x, y) to (xi, yi) is Li =

√
(x− xi)2 + (y − yi)2 + h2i ,

where hi is the relative height between the phone
and the source (xi, yi). Thus, s/he gets the distances
from all the available acoustic sources at time t. For
s(t) = L(0)−L(t) and L(0) is constant initial distance,
we can infer from Eq. (4) that

L̃i = Li −
va

2πfa
(φ̃i − φi) (14)

where L̃i = Li(t̃) and φ̃i = φi(t̃). Since φi and φ̃i can
be calculated by Eq. (8) and Li is already calculated,
the latter L̃i can be derived from Eq(14). Then we
search for location (x̃, ỹ) near (x, y) to minimize

∑
iMi

where Mi =
∣∣L̃i −√(x̃− xi)2 + (ỹ − yi)2 + h2i

∣∣.
We conduct real time indoor tracking using the

same environment as in Figure 11. In our experiments
reported here, a user starts from spot (6,−6) shown
in Figure 13. Then, the user walks in some specific
paths with length more than 50m with the phone in
his/her hand to the destination at spot (24,−3). The
errors are kept within 0.4m shown in Figure 13.

We then consider the case that there are errors on
the calculated initial position when the user starts
walking. For each test, we uniformly choose a spot
which is 0.25m, 0.5m, 0.75m, or 1m from (6,−6), and
measure the localization accuracies at the destination,
i.e., distances from (24,−6) to the calculated final po-
sitions in Figure 12e. We can observe that the errors at

the initial position do not affect the real time tracking,
where the error is still within 2m when the user walks
in 51 meters and the initial position error is 1m.

To reduce the computation overhead, we let the
phone process 20% of the samples, instead of full
samples. Specifically, it processes consecutive samples
of 0.05s for each 0.25s. Hence, the phone can deal
with the samples and track the position in real time.
The result is close to the one which processes full
samples in Figure 13. We plot the localization errors in
Figure 12d. The mean error and standard deviation in
this case is 0.29m and 0.34m respectively, which is still
very precise. CPU usage can also be lowered down by
using 10% of the sample with the mean error of 1.02m,
if the CPU of some other phone is not fast enough.

Note that the phone still constantly uses extra en-
ergy when the user is not shaking the phone. Actu-
ally, to determine when we can stop displacement
tracking to save energy, we could use the inertial
sensors to detect whether the user is static. We can
further reduce the energy cost by designing more
complicated algorithm, e.g., combining step counting
(rough tracking) with our displacement measurement
(precise tracking). Since we mainly concern the accu-
racy and energy cost of displacement tracking by PLL,
we do not make further optimization and evaluations
in this case.

6 CONCLUSION

In this paper, we propose Swadloon, a novel acoustic-
based method to find the direction of the acoustic
source. Swadloon effectively leverages the Doppler
effects of the acoustic waves received by phones by
exploiting the sensors in the smartphone and existing
speakers to send sinusoidal signals. Our extensive
evaluations show that Swadloon performs extremely
well in phone-to-phone direction finding and real-
time indoor localization. Note that in localization, we
do not directly use the ranging result as accurate
ranging often needs either time-synchronization or
communication between two nodes, which require
special hardware as anchor. Hence, some future work
is to develop some mechanism achieving both ranging
and direction finding simultaneously, and achieve
the mechanism without the requirement of phone-
shaking movement.
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