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Abstract

Wireless network topology control has drawn considerable attention recently. Priori arts assumed that the

wireless ad hoc networks are modeled by unit disk graphs (UDG), i.e., two mobile hosts can communicate as long

as their Euclidean distance is no more than a threshold. However, practically, the networks are never so perfect

as unit disk graphs: the transmission ranges may vary due to various reasons such as the device di�erences, the

network control necessity, and the perturbation of the transmission ranges even the transmission ranges are set

as the same originally. Thus, we assume that each mobile host has its own transmission range. The networks are

modeled by mutual inclusion graphs (MG), where two nodes are connected i� they are within the transmission

range of each other. Previously, no method is known for topology control when the networks are modeled as

mutual inclusion graphs.

The paper proposes the �rst distributed mechanism to build a sparse power eÆcient network topology for

ad hoc wireless networks with non-uniform transmission ranges. We �rst extend the Yao structure to build a

spanner with a constant length and power stretch factor for mutual inclusion graph. We then propose two eÆcient

localized algorithms to construct connected sparse network topologies. The �rst structure, called extended Yao-

Yao, has node degree at most O(log ), where  = maxumaxuv2MG
ru

rv
. The second structure, called extended

Yao and Sink, has node degree bounded by O(log ), and is a length and power spanner. The methods are based

on a novel partition strategy of the space surrounded each mobile host. Both algorithms have communication

cost O(n) under a local broadcasting communication model, where each message has O(log n) bits.
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1 Introduction

Ad hoc wireless networks comprise mobile nodes that communicate via multi-hop wireless channels, which are

usually deployed in unattended environments. Though single hop wireless networks (or infrastructured networks)

are common, there are a growing number of applications which require multi-hop wireless infrastructure which

does not necessarily depend on any �xed base-station, i.e., ad-hoc. It has a lot of promising applications, such as

emergency search-and-rescue operations, meetings, law enforcement or military applications in which persons wish

to quickly share information and data acquisition operations in inhospitable terrain.

Multi-hop structures in wireless networks provide enhanced capacity and fault-tolerance. This capacity allows

the use of wireless nodes as repeaters and thus not only enhances the range of communication at low power levels,

but also causes less spatial interference and allows reuse of the bandwidth available on the frequency channels at

the same time. An important requirement of these networks is that they should be self-organizing, i.e., data paths

or routers are dynamically restructured with changing topology.

Ad hoc wireless network needs some special treatment as it intrinsically has its own special characteristics

and some unavoidable limitations compared with other wired or wireless network. For example, a transmission

by a wireless device is often received by all nodes within its vicinity, which possibly causes signal interferences at

these neighboring nodes. On the other hand, we can utilize the property to save the communications for some

application. Wireless devices are usually powered by batteries only and have limited memories, which demands

high communication eÆciency and small routing table. Also, unlike most traditional static communication devices,

the wireless devices are often moving or adjusting its transmission range during the communication, which could

change the network topology in some extent. Therefore, it is more challenging to design a network topology for ad

hoc wireless networks.

In the past several years, topology control algorithms for ad hoc networks have drawn signi�cant research

interest. Centralized algorithms can achieve optimality or its approximation, which are more applicable to static
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networks due to the lack of adaptability to topology changes. In contrast, distributed algorithms are more suitable

for mobile ad hoc networks since the environment is inherently dynamic and they are adaptive to topology changes

at the cost of possible less optimality. Furthermore, these algorithms only attempt to selectively choose some

neighbors of each node. The primary distributed topology control algorithms for ad hoc networks aims to maintain

network connectivity, optimize network throughput with power-eÆcient routing, conserve energy and increase the

fault tolerance.

However, priori arts [2, 5, 8, 9, 10, 14, 13, 16] on network topology control assumed that the wireless ad

hoc networks are modeled by unit disk graphs (UDG), i.e., two mobile hosts can communicate as long as their

Euclidean distance is no more than a threshold. However, practically, the networks are never so perfect as unit

disk graphs: the transmission ranges may vary due to various reasons such as the device di�erences, the network

control necessity, and the perturbation of the transmission ranges even the transmission radii are set as the same

originally. Thus, we assume that each mobile host has its own transmission range. The networks are modeled by

mutual inclusion graphs (MG), where two nodes are connected i� they are within the transmission range of each

other. Previously, no method is known for topology control when the networks are modeled as mutual inclusion

graphs.

In this paper, we concentrate on designing distributed topology control methods, aiming to build a sparse power

eÆcient network topology in MG. Our methods also works for wireless ad hoc networks with directional antennas.

Directional antennas have recently been studied in [12, 15, 4], which have the property that its peak gain is higher

than that of a similar antenna with an omni-directional pattern in addition to the advantage of reducing unwanted

interference. Ad hoc networks with directional antennas can transmit in speci�c antenna pattern (direction(s)) to

create the desired topology. The network nodes also rely on the discovered topology to communicate by using the

least transmission power possible. Observe that, the Yao graph is closely matching ad hoc networks with directional

antennas and has some other nice properties which are important for constructing wireless network topology.

The paper proposes the �rst distributed mechanism to build a sparse power eÆcient network topology for

non-uniform ad hoc wireless networks. The method also works for networks with directional antennas. We �rst

extend the Yao structure to build a spanner with a constant length and power stretch factor for mutual inclusion

graph. We then propose two eÆcient localized algorithms to construct connected sparse network topologies. The
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�rst structure, called extended Yao-Yao, has node degree at most O(log ), where  = maxumaxuv2MG
ru
rv
. The

second structure, called extended Yao and Sink, has node degree bounded by O(log ), and is a length and power

spanner. The methods are based on a novel partition strategy of the space surrounded each mobile host. Both

algorithms have communication cost O(n), where each message has O(log n) bits.

The following sections provide further details of the proposed approach. Preliminaries are presented in Section

2. The proposed approach is described in Section 3. We describe three distributed methods for topology control

and analyze their communication complexities, and the stretch factors. We conclude the paper in Section 4 with

the discussion of possible future works.

2 Preliminaries

2.1 Network Model

We consider a wireless ad hoc network composed of nodes distributed in a two-dimensional plane. Assume that

all wireless nodes have distinctive identities and each static wireless node knows its position information 1 either

through a low-power Global Position System (GPS) receiver or through some other way. By one-hop broadcasting,

each node u can tell its location information to all nodes within its transmission range. Notice, throughout this

paper, a broadcast by a node u means u sends the message to all nodes within its transmission range. The main

communication cost in wireless networks is to send out the signal while the receiving cost of a message is neglected

here. Consequently, throughout this paper, we are interested in designing a protocol with small total number of

messages.

All previous known structures are de�ned solely on the given point set or the unit disk graph. However,

graphs representing communication links are rarely so completely speci�ed as the unit disk graph. For example,

for wireless communications, di�erent nodes may have di�erent transmission radius. Consequently, two nodes can

communicate directly only if they are within the transmission range of each other. Assume each wireless node u

has a �xed transmission range ru. A mutual inclusion graph, denoted by MG, used in wireless ad hoc networks,

1More speci�cally, it is enough for our protocol when each node knows the relative position of its one-hop neighbors. The relative

position of neighbors can be estimated by the direction of arrival and the strength of signal.
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has an edge uv if and only if kuvk � min(ru; rv), as shown in Figure 1 (a). Hereafter, let D(u; ru) be the disk

centered at node u with radius ru.

u v

Figure 1: Mutual inclusion graph MG.

2.2 Yao Graph

The Yao graph [17] with an integer parameter k � 6, denoted by
��!
Y Gk(G), is de�ned as follows. At each node

u, any k equal-separated rays originated at u de�ne k cones. In each cone, choose the shortest edge uv among

all edges from u, if there is any, and add a directed link �!uv. Ties are broken arbitrarily or by ID. The resulting

directed graph is called the Yao graph. Let Y Gk(G) be the undirected graph by ignoring the direction of each link

in
��!
Y Gk(G). Some researchers used a similar construction named �-graph [11, 7], the di�erence is that it chooses

the edge which has the shortest projection on the axis of each cone instead of the shortest edge in each cone.

2.3 Spanners and Stretch Factors

Spanners have been studied intensively in recent years [1, 3, 6, 11]. Let G = (V;E) be a n-vertex weighted connected

graph. The distance in G between two vertices u; v 2 V is the length of the shortest path between u and v and

it is denoted by dG(u; v). A subgraph H = (V;E0), where E0 � E, is a t-spanner of G if for every u; v 2 V ,

dH(u; v) � t � dG(u; v). The value of t is called the stretch factor. When the graph is a geometry graph and

the weight is the Euclidean distance between two vertices, the stretch factor t is called the length stretch factor,

denoted by `H(G). For wireless networks, the mobile devices are usually powered by battery only. We thus pay

more attention to the power consumptions. The power, denoted by pG(u; v), needed to support the communication

between a link uv in G is often assumed to be kuvk
�
, where 2 � � � 5 is a constant depending on the transmission

environment, and kuvk is the Euclidean distance between u and v. When the weight of the geometry graph G is

de�ned as the power to support the communication of the link, the stretch factor of H is called the power stretch
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factor, denoted by �H(G) hereafter.

Obviously, for any weighted graph G and a subgraph H � G, we have

Lemma 1 Graph H has stretch factor Æ if and only if for any link uv 2 G, dH(u; v) � Æ � dG(u; v).

2.4 Sparseness and Bounded Degree

The sparseness of all well-known proximity graphs implies that the average node degree is bounded by a constant.

We prefer the node degree be bounded by a constant, because wireless nodes have limited resources. Unbounded

degree (or in-degree) at node u will often cause large overhead at u, whereas bounded degree increases the network

throughput. On the other hand, bounded degree will also give us advantages when apply several routing algorithms.

Therefore, it is often imperative to construct a sparse network topology such that both the in-degree and the out-

degree are bounded by a constant while it is still power-eÆcient.

However, in all known primitive proximity graphs, Li et al. [9] showed that the maximum node degree could

be as large as n� 1 as shown in Figure 2. The instance consists of n� 1 points lying on the unit circle centered at

a node u 2 V . Then each edge uvi belongs to the RNG(V ), GG(V ) and
��!
Y Gk(V ). Thus, node u has degree n� 1

(in-degree for
��!
Y Gk(V )) in RNG(V ), GG(V ) and

��!
Y Gk(V ), although

��!
Y Gk(V ) has a bounded out-degree k.

i

n−2

i+1 n−1

2

1αuv

v
v

v

v
α

α

v

Figure 2: Node u has degree (or in-degree) n� 1.

Recently, some improved or combined primitive proximity graphs [10] have been proposed to build degree-

bounded sparse power eÆcient topology for UDG.

3 Proposed Approaches

Usually, simple extension of the Yao structure from UDG to MG even does not guarantee the connectivity. Re-

member that, in UDG, Li et al. [9] uses induction to prove the Yao structure on UDG is connected. For any link
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uv 2 UDG, if uv is not in Yao structure, then there is a node w such that uw is in Yao structure and link wv is

in UDG, and with length less than uv. The property that link wv 2 UDG and kwvk < kuvk is essential there.

However, as shown in Figure 3, for MG this property does not hold anymore since node w could have transmission

range smaller than kwvk, so deleting link uv will violate connectivity. Thus we need more sophisticated extensions

of the Yao structure to MG. Notice that UDG is a special case of MG.

v

u
w

Figure 3: Simple extension of the Yao structure does not guarantee the connectivity.

In following sections, we present several new algorithms that constructs a sparse and power eÆcient topology

for MG.

3.1 Extended Yao Graph

Assume that each node vi of MG has a unique identi�cation number ID(vi) = i. The identity of a bidirectional

link uv is de�ned as ID(uv) = (kuvk; ID(u); ID(v)). Please note that we use the bidirectional links instead of the

directional links to enhance connectivity. In other words, we require that both node u and node v can communicate

with each other through this link. In this paper, all proofs about connectivity or stretch factors take the notation

uv and vu as same, which is meaningful. Only in the topology building algorithm or proofs about bounded-degree,

uv is di�erent than vu: the former is initiated and built by u, whereas the latter is by node v. Sometimes we denote

a directional link from v to u as �!vu if necessary. Then we can order all bidirectional links (at most n(n� 1) such

links) in an increasing order of their identities. Here the identities of two links are ordered based on the following

rule: ID(uv) > ID(pq) if

1. kuvk > kpqk or

2. kuvk = kpqk and ID(u) > ID(p) or

3. kuvk = kpqk, u = p and ID(v) > ID(q).
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Correspondingly, the rank of each link uv, denoted by rank(uv), is its order in the sorted bidirectional links.

Notice that, we actually only have to consider the links in MG. For the remainder of the subsection, we present our

network topology control algorithm and then show that the constructed network topology is a connected spanner.

Algorithm 1 Constructing-EYG

1. Each node u divides the disk centered at u with radius ru by k equal-sized cones centered at u. We generally

assume that the cone is half open and half-close. Let Ci(u), 1 � i � k, be the set of nodes v inside the ith

cone of node u with a larger radius than u. Initially, Ci(u) is empty.

2. In the beginning, each node u broadcasts a message with ID(u), ru and its position (xu; yu) to all nodes in

its transmission range.

3. At the same time, each node processes the incoming broadcast messages from some node v. If v is inside the

ith cone of node u and rv � ru, then set Ci(u) = Ci(u)
S
fvg. If v 62 D(u; ru), v is not considered here.

4. Node u chooses a node v from each cone Ci(u) so that the link uv has the smallest ID(uv) among all links

uvj with vj in Ci(u), if there is any.

5. Finally, each node u informs all 1-hop neighbors of its chosen links through a broadcast message.

Let
���!
EY Gk(G) be the union of all chosen links. In other words, the above method computes the Extended

Yao graph
���!
EY Gk(G) for MG. Since the symmetric communications are required, let EY Gk(G) be the undirected

graph by ignoring the direction of each link in
���!
EY Gk(G). Graph EY Gk(G) is the �nal network topology. Since

node u chooses a node v 2 D(u; ru) with rv � ru, link uv is indeed a bidirectional link, i.e., u and v are within

the transmission range of each other. Additionally, this strategy could avoid the possible disconnectivity by simple

Yao extension we mentioned before.

Obviously, each node only broadcasts twice: one for broadcasting its ID, radius and position; and the other

one for broadcasting the selected neighbors. Remember that it selects at most k neighbors. Thus, each node sends

messages at most O((k + 1) � logn) bits. Here, we assume that the node ID and its position can be represented

using O(log n) bits for a n-node wireless network.
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Theorem 2 The length stretch factor of the Yao graph EY Gk(G), k > 6, is at most ` = 1
1�2 sin(�

k
) .

Proof. From Lemma 1, it is suÆcient to show that for any nodes u and v with kuvk � min(ru; rv), i.e. uv 2MG,

there is a path connecting u and v in EY Gk(G) with length at most `kuvk. We construct a path u$ v connecting

u and v in EY Gk(G) as follows.

Assume that ru � rv. If link uv 2 EY Gk(G), then set the path u $ v as the link uv. Otherwise, there

must exist another node w in the same cone as v, which is a neighbor of u in EY Gk(G). Then set u $ v as the

concatenation of the link uw and the path w $ v. Notice that the angle � of each cone section is 2�
k
. When k > 6,

then � < �
3 . It is easy to show that kwvk < kuvk. Consequently, the path u $ v is a simple path, i.e., each node

appears at most once.

We prove by induction that the path u$ v has total length at most `kuvk.

Obviously, if there is only one edge in u $ v, d(u $ v) = kuvk < `kuvk: Assume that the claim is true for

any path with l edges. Then consider a path u $ v with l + 1 edges, which is the concatenation of edge uw and

the path w $ v 2 with l edges, as shown in Figure 4 where kwvk = kxvk.

ϕ

w

xu vα

Figure 4: The length stretch factor of the Extended Yao graph is at most ` = 1
1�2 sin(�

k
) .

2In the procedure of induction, if rw � rv then we induct on path w$ v, otherwise we induct on path v $ w. In fact, here w$ v

is same as v $ w since the path is bidirectional for communication. Directional link is only considered in building process and is

meaningless when we talk about the path. This induction rule is applied throughout the remainder of the paper.
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Notice, from induction, d(w $ v) � `kwvk. Then, let ' = \wuv and � = \uvw, we have

kuwk

kuxk
=

sin(\uxw)

sin(\xwu)
=

sin(�2 +
�
2 )

sin(�2 +
�
2 + ')

=
cos(�2 )

cos(�2 + ')
=

1

cos'� sin' tan �
2

�
1

cos'� sin' tan(�4 �
'
4 )

(Since 0 � � �
�

2
�
'

2
)

=
cos(�4 �

'
4 )

cos(�4 +
3
4')

�
cos(�4 �

�
2k )

cos(�4 +
3�
2k )

(Since 0 � ' �
2�

k
)

=
1

1� 2 sin(�
k
)

De�ne ` = 1
1�2 sin(�

k
) . Consequently,

d(u$ v) = kuwk+ d(w $ v) < `kuxk+ `kwvk = `kuvk:

That is to say, the claim is also true for the path w $ v with l+ 1 edges.

So, the length stretch factor of the Extended Yao graph is at most ` = 1
1�2 sin(�

k
) . This �nishes the proof.

Theorem 3 The power stretch factor of the extended Yao graph EY Gk(G), k > 6, is at most � = 1
1�(2 sin �

k
)� .

Proof. The proof is similar to that in UDG [9, 10] except the induction procedure. For the completeness of

presentation, we shall give the detail here.

From Lemma 1, it is suÆcient to show that for any nodes u and v with kuvk � min(ru; rv), i.e. uv 2 MG,

there is a path connecting u and v in EY Gk(G) with power consumption at most �. We construct a path u $ v

connecting u and v in EY Gk(G) as follows.

Assume that ru � rv . If link uv 2 EY Gk(G), then set the path u $ v as the link uv. Otherwise, there must

exist another node w in the same cone as v such that the directed link uw is in
���!
EY Gk(G) from Algorithm 1. Then

set the path u $ v as the concatenation of the undirected link uw and path w $ v. Remember that if rw > rv ,

we actually construct path v $ w. Notice that the angle � of each cone is 2�
k
. When k > 6, then � < �

3 . It is easy

to show that kwvk < kuvk. Consequently, the path u$ v is a simple path, i.e., each node appears at most once.
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We then prove by induction, on the number of its edges, that the path u $ v has power cost, denoted by

p(u$ v), at most �kuvk�.

Obviously, if there is only one edge in u$ v, p(u$ v) = kuvk
�
< �kuvk

�
: Assume that the claim is true for

any path with l edges. Then consider a path u $ v with l + 1 edges, which is the concatenation of edge uw and

the path w $ v with l edges. We consider two cases.

Case 1: the angle \uwv is not acute. See Figure 5 (a). We have kuwk2+kwvk2 � kuvk2. Notice that kuwk
kuvk � 1

and kwvk
kuvk � 1. It implies that

�
kuwk

kuvk

��
+

�
kwvk

kuvk

��
�

�
kuwk

kuvk

�2

+

�
kwvk

kuvk

�2

� 1

Therefore,

kuwk
�
+ kwvk

�
� kuvk

�

for any � � 2. Since kwvk < kuvk, we can apply induction on the path w $ v also. Therefore, p(w $ v) � �kwvk�

by induction. Then

p(u$ v) = kuwk
�
+ p(w $ v) � kuwk

�
+ �kwvk

�
� �kuvk

�
:

u

w

v

w

u v
(a) (b)

Figure 5: (a) The angle \uwv is not acute. (b)The angle \uwv is acute.

Case 2: the angle \uwv is acute. See Figure 5 (b). We bound the length kwvk respecting to kuvk. Notice

that kuwk � kuvk and \wuv < �. The maximum length of vw is achieved when kuwk = kuvk because the angle

\uwv is acute. Therefore

kwvk � 2 sin
�

2
kuvk = 2 sin

�

k
kuvk:
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By induction, we have

p(u$ v) = kuwk
�
+ p(w $ v) � kuwk

�
+ �kwvk

�
� kuvk

�
+ � � (2 sin

�

k
)�kuvk

�
= �kuvk

�
:

This �nishes the proof.

3.2 Novel Space Partition

Partitioning the space surrounding a node into k equal-sized cones enables us to bound the node out-degree using

the Yao structure. Using the same space partition, Yao-Yao structure [9, 10] produces a topology with bounded

in-degree when the networks are modeled by UDG. They also showed that another structure YaoSink [9, 10] has

not only the bounded node degree but also constant bounded stretch factors. The network topology with bounded

degree can increase the communication eÆciency. These methods [9, 10] may fail when the networks are modeled

by MG: they cannot even guarantee the connectivity.

Let I(v) = fw j wv 2
���!
EY Gk(G)g. In other words, I(v) is the set of nodes that have directed links to v

in
���!
EY Gk(G). Let Ii(v) be the nodes in I(v) located inside the ith cone. Remember that Yao-Yao and YaoSink

structures will pick the closest node in Ii(v). In addition, YaoSink structure will recursively build a sink tree to

connect all nodes I(v). See [9, 10] for more detail. Figure 6 illustrates an example such that a node v has p + 1

incoming neighbors wi, 0 � i � p, in the Yao structure. Node v will only select the closest neighbor w0 in the

Yao-Yao structure. The connectivity of the �nal Yao-Yao structure is proved by induction on the length of links

[10]. Here the existence of links wjw0, 1 � j � p, is essential and this is trivially satis�ed in UDG. However, this

is not the case in MG. Assume that each node wi has a transmission radius rwi = 3ia � rv and kvwik = rwi . Here

a is a positive real number satisfying 3pa � rv . Obviously, kwiwjk > min(rwi ; rwj ), i.e., any two nodes wi; wj are

not directly connected in MG. Clearly, the Yao-Yao structure will only have one edge uw0 left in this con�guration

of nodes, thus disconnecting the network.

Selecting the closest incoming neighbor in each cone is too aggressive to guarantee the connectivity. Observe

that, to guarantee the connectivity, when we delete a directed link ��!wiv, we need to keep some link, say wjv, such

that wiwj is a link in MG. Thus, we want to further partition the cone into a limited number of smaller regions and
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w

w2

wp

w 0

1

v

Figure 6: All nodes wi has a directed edge to node v in the Yao structure.

we will keep the closest node in each region. Clearly, we have to make sure that any two nodes wi, wj 2 I(v) that

co-exist in a same small region are directly connected in MG. Consequently, if the number of regions is bounded by

a constant, a degree-bounded structure could be generated. In the remainder of this subsection, we will introduce

a novel space partition strategy based on pigeon-hole principal.

b

b

b
b

v a a a a

c

c
c

c1

2 31

2

1

3 h

3

2

h

h

Figure 7: The space partition for each cone.

Method 1 Partition-EYG

For each node v, let v = maxw2I(v)
rv
rw
. Remember that all nodes in I(v) have transmission radius at most rv . Let

h be the positive integer satisfying 2h�2 < v � 2h�1. We then discuss in detail our partition strategy of the cones,

which is illustrated by Figure 7. Each node v divides each cone centered at v into limited number of triangles and

caps, where kvaik = kvbik =
1

2h�i rv and ci is the mid-point of the segment aibi, for 1 � i � h. Notice that this

partition can be conducted by node v locally since it can collect the transmission radius information of nodes in

I(v). The triangles 4va1b1, 4aibici+1, 4aiai+1ci+1, 4bibi+1ci+1, for 1 � i � h � 1, and the cap [anbn form the

�nal space partition of each cone. For simplicity, we call such a triangle or the cap as a region. We then prove that

this partition indeed guarantees that any two nodes in any same region are connected in MG.

Lemma 4 Assume that k � 6. Any two nodes u;w 2 I(v) that co-exist in any one of the generated regions are

directly connected in MG, i.e., kuwk < min(ru; rw).
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Proof. There are four di�erent cases.

1. Two nodes are in triangle 4va1b1, as shown in Figure 8.

h

v

u
w

a a

cb

h
1

h

b

1

c1

Figure 8: Two nodes are in triangle 4va1b1.

Remember that all nodes in I(v) have transmission radius at least kva1k =
1

2(n�1) rv . We have min(ru; rw) �

kva1k = kvb1k and ka1b1k � kva1k. In addition, since uw is a segment inside 4va1b1, we have kuwk �

max(ka1b1k; kva1k; kvb1k). Consequently, kuwk < min(ru; rw), i.e. uw 2MG.

2. Two nodes are in triangle 4aibici+1, as shown in Figure 9.

c

a

b

b

v

c
u

w

a i+1
i

i i+1

i+1

i

Figure 9: Two nodes are in triangle 4aibici+1.

In this case, we have

(a) kvuk > kuci+1k, because aibi is the perpendicular bisector of vci+1 and u is at the same side of line aibi

as ci+1.

(b) kvuk > kuaik, because \vaiu > �
3 > \uvai.

(c) kvuk > kubik, because \vbiu >
�
3 > \uvbi.

(d) kuwk < max(kuci+1k; kuaik; kubik), because node w must be inside one of the triangles4aibiu,4aici+1u

and 4bici+1u.
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Thus, kuwk < kuvk. Similarly, kuwk < kwvk. Consequently, uw 2MG from

kuwk < min(kuvk; kwvk) < min(ru; rw):

3. Two nodes are in triangle 4aiai+1ci+1, as shown in Figure 10.

w

bi+1

b c

c

ai+1

i+1

av

i

i

i u

Figure 10: Two nodes are in triangle 4aiai+1ci+1.

We have

min(ru; rw) � kvaik = kaiai+1k = kaici+1k > kai+1ci+1k:

Since uw is a segment inside 4aiai+1ci+1, kuwk < max(kaiai+1k; kaici+1k; kai+1ci+1k) < min(ru; rw), i.e.

uw 2MG.

4. Triangle 4bibi+1ci+1 is the symmetric case with triangle 4aiai+1ci+1, so the claim holds similarly.

5. Two nodes are inside the cap dahbh, as shown in Figure 11, where ahz and bhz is the tangent of arc dahbh at

point ah and bh respectively.

h

u

w

z

v a

ch+1bh

hc

Figure 11: Two nodes are inside cap dahbh.
Since \ahvbh <

2�
k
, k � 6, we have

\vbhz =
�

2
< � �\ahvbh = \vbhch+1:
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Similarly, \vahz < \vahch+1. This means dahbh is inside 4ahbhch+1. The remaining of the proof directly

follows from the proof for the case of 4aibici+1.

This �nishes the proof.

3.3 Extended Yao-Yao Graph

In this section, using the space partition discussed in Section 3.2, we extend the Yao-Yao structure to build

distributed sparse ad-hoc network topology with bounded degree if  is bounded.

Algorithm 2 Constructing-EYY

1. Each node �nds the incident edges in the Extended Yao graph
���!
EY Gk(G), as described in Algorithm 1.

2. Each node v partitions the k cones centered at v using the partitioning method described in Method 1.

Notice that for partitioning, node v uses parameter v in Method 1, which can be easily calculated from local

information. Figure 12 (a) illustrates such a partition.

3. Each node v chooses a node u from each generated region so that the link uv has the smallest ID(uv) among

all links computed in the �rst step in the partition. Figure 12 (b) illustrates such a selection of incoming

links.

4. Finally, for each link uv selected by v, node v informs node u of keeping link uv.

v

u

v

u

(a) (b)

Figure 12: (a) Star formed by links toward to u. (b) Node v chooses the shortest link in EY Gk(G) toward itself
from each region to produce EY Y k(G).

The union of all chosen links is the �nal network topology, denoted by
���!
EY Y k(G). We call it extended Yao-Yao

graph. Let EY Yk(G) be the undirected graph by ignoring the direction of each link in
���!
EY Y k(G).
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Theorem 5 The out-degree of each node v in
���!
EY Y k(G), k � 6, is bounded by k and the in-degree is bounded by

(3dlog2 ve+ 2)k, where v = maxw2I(v)(
rv
rw
).

Proof. It is obvious that the out-degree of node v is bounded by k because the out-degree bound of
���!
EY Gk(G)

is k and this algorithm does not add any directed link.

For the in-degree bound, as shown in Figure 7, obviously, the number of triangle regions in each cone is 3h�2.

Remember that 2h�2 < v � 2h�1, which implies h = 1 + dlog2 ve. Thus, considering the cap region also, the

in-degree of node v is at most (3dlog2 ve+ 2)k.

Notice that  � maxv v . Obviously, the maximum node degree in graph EY Yk(G) is bounded by (3dlog2 e+

3)k.

We then show that, in the worst case, any connected graph has degree at least O(log2 ), i.e., the structure

generated by our Algorithm 2 has degree within a constant factor of the smallest possible. Consider the example

illustrated by Figure 6. Edges vwi, 0 � i � p, are all possible communication links. Thus, node v in any connected

spanning graph has degree p+1. Assume that 3pa = rv . It is easy to compute v as rv=a = 3p. Thus, v has degree

log3 v + 1 = O(log2 ).

Notice that the extended Yao-Yao graph EY Yk(G) is a subgraph of the extended Yao graph EY Gk(G), there

are at most k �n edges in EY Yk(G). Thus, the total communications of Algorithm 2 is at most O(k �n), where each

message has O(logn) bits. It is interesting to see that the communication complexity does not depend on  at all.

Theorem 6 The graph EY Y k(G), k � 6, is connected if MG is connected .

Proof. Notice that it is suÆcient to show that there is a path from u to v for any two nodes with uv 2 MG.

Remember the graph EY Gk(G) is connected, therefore, we only have to show that 8uv 2 EY Gk(G), there is a

path connecting u and v in EY Y k(G). We prove this claim by induction on the ranks of all links in EY Gk(G).

u

w

Figure 13: EY Y k(G) is connected if EY Gk(G) is connected.
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If the link uv has the smallest rank among all links of EY Gk(G), then uv will obviously survive after the

second step. So the claim is true for the smallest rank.

Assume that the claim is true for all links in EY Gk(G) with rank at most r. Then consider a link uv in

EY Gk(V ) with rank(uv) = r + 1 in EY Gk(G). If uv survives in Algorithm 2, then the claim holds. Otherwise,

assume that ru < rv . Then directed edge vu cannot belong to
���!
EY Gk(G) from Algorithm 1. Thus, directed edge uv

is in
���!
EY Gk(G). In Algorithm 2, directed edge uv can only be removed by node v due to the existence of another

directed link wv with a smaller identity and w is in the same region as u. In addition, the angle \wvu is less than

� = 2�
k
(k � 6). Therefore we have kwuk < kuvk. Notice that here wu is guaranteed to be a link in MG, but it

is not guaranteed to be in EY Gk(G). We then prove by induction that there is a path connecting w and u in

EY Y k(G). Assume rw � ru. The scenario rw > ru can be proved similarly. There are two cases here.

Case 1: the link wu is in EY Gk(G). Notice that rank of wu is less than the rank of uv. Then by induction,

there is a path w $ u connecting w and u in EY Yk(G). Consequently, there is a path (concatenation of the

undirected path w $ u and the link wv) between u and v.

Case 2: the link wu is not in EY Gk(G). Then, from proof of Theorem 2, we know that there is a path

�EY Gk
(w; u) = q1q2 � � � qm from w to u in EY Gk(G), where q1 = w and qm = u. Additionally, we can show that

each link qiqi+1, 1 � i < m, has a smaller rank than wu, which is at most r. Here rank(q1q2 = wq2) < rank(w; u)

because the selection method in Algorithm 1. And rank(qiqi+1) < rank(w; u), 1 < i < m, because

kqiqi+1k � kqiuk < kqi�1uk < � � � < kq1uk = kwuk:

Then, by induction, for each link qiqi+1, there is a path qi $ qi+1 survived in EY Y k(G) after Algorithm 2. The

concatenation of all such paths qi $ qi+1, 1 � i < m, and the link wv forms a path from u to v in EY Y k(G).

This �nishes the proof.

Although EY Y k(G) is a connected structure, it is unknown whether it is a power or length spanner. We leave

it as a future work.
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3.4 Extended Yao-Sink Graph

In [9, 10], the authors applied the technique in [1] to construct a sparse network topology in UDG, Yao and sink

graph, which has a bounded degree and a bounded stretch factor. The technique is to replace the directed star

consisting of all links toward a node v by a directed tree T (v) with v as the sink. Tree T (v) is constructed recursively.

To apply this technique into MG, we need extend it by a more sophisticated way.

Algorithm 3 Constructing-EYG�

1. Each node �nds the incident edges in the Extended Yao graph
���!
EY Gk(G), as described in Algorithm 1. Each

node v will have a set of incoming nodes I(v) = fu j uv 2
���!
EY Gk(G)g.

2. Each node v partitions the k cones centered at v using the partitioning method described in Method 1.

Notice that for partitioning, node v uses parameter v in Method 1, which can be easily calculated from local

information. Figure 14 (a) illustrates such a partition.

3. Each node v chooses a node u from each region 
, let 
u(v) be the region 
 partitioned by node v with node

u inside, so that the link uv has the smallest ID(uv) among all links computed in the �rst step in the region


u(v). In other words, in this step, it constructs
������!
EY Yk(G).

4. For each region 
u(v) and the selected node u, let S
(u) = fw j w 6= u; w 2 
u(v) \ I(v)g. For each node

u, node v uses the following function Tree(u,S
(u)) to build a tree T (u) rooted at u. We call T (u) a sink

tree and call the union of all links chosen by node v the sink structure at v. Figure 14 (b) illustrates a sink

structure at v, which is composed of all trees T (u) for u selected in the previous step.

5. Finally, node v informs nodes x and y for each selected link xy in the sink structure rooted at v.

Algorithm 4 Constructing-Tree Tree(u,S
(u))

1. Partition the disk centered at u by k equal-sized cones: C 1 (u), C 2 (u), � � � , C k (u).

2. Find the node wi 2 S
(u) in C i (u), 1 � i � k, with the smallest ID(wiu), if there is any. Link wiu is added

to T (u) and node wi is removed from S
(u).
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v

u u

v

(a) (b)

Figure 14: (a) Star formed by links toward to v. (b) The sink structure at v.

3. For each node wi, call Tree(wi, S
(u) \ C i (u)) and add the created edges to T (u).

The union of all chosen links is the �nal network topology, denoted by EY G�
k(G). We call such structure

as the Extended Yao-Sink graph. Notice that, sink node v, not u, constructs the tree T (u) and then informs the

end-nodes of the selected links to keep such links if already exist or add such links otherwise.

Theorem 7 The maximum node degree of the graph
���!
EY G

�

k(G) is at most k2 + 3k + 3k � dlog2 e.

Proof. Initially, each node has at most k out-degrees after constructing graph EY Gk(G). In the algorithm, each

node v initiates only one sink structure, which will introduce at most (3dlog2 e+ 2) � k in-degrees. Additionally,

each node x will be involved in Algorithm 4 for at most k sink trees (once for each directed link xy 2 EY Gk(G)).

For each sink tree involvement, Algorithm 4 assigns at most k links incident on x. Thus, at most k2 new degrees

could be introduced here. Then the theorem follows.

Since the total number of edges is at most (k2 + 3k + 3k � dlog2 e) � n, the total communication cost of our

method is O(log2  � n). Here each message has O(log n) bits.

Theorem 8 The length stretch factor of the graph EY G�
k(G), k > 6, is at most ( 1

1�2 sin(�
k
) )

2.

Proof. We have proved that EY Gk(G) has length stretch factor at most 1
1�2 sin(�

k
) . We thus have only to

prove that, for each link vw 2 EY Gk(G), there is a path connecting them in EY G�
k(G) with length at most

1
1�2 sin(�

k
)kvwk. If link vw is kept in EY G�

k(G), then this is obvious. Otherwise, assume rw � rv , then directed

link wv belongs to
���!
EY Gk(G). Then, there must have a node u in the same region (partitioned by node v) as node

w. Using the same argument as Theorem 2, we can prove that there is a path connecting v and w in T (u) with

length at most 1
1�2 sin(�

k
)kvwk. It implies that the length stretch factor of EY G�

k(G) is at most (
1

1�2 sin(�
k
) )

2.
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Similarly, we have:

Theorem 9 The power stretch factor of the graph EY G�
k(G), k > 6, is at most ( 1

1�(2 sin �
k
)�
)2.

4 Conclusion

In this paper, we extended the Yao graph to MG model, which is more practical and useful in real communication

environment, especially our algorithms could be used in application of ad hoc networks with directional antennas.

We presented several eÆcient localized algorithms to construct network topologies with bounded node degrees

for wireless ad hoc networks. We showed that EY Gk(G), EY Y k(G), and EY G�
k(G) are connected if MG is

connected, while EY Gk(G) and EY G�
k(G) have constant bounded power and length stretch factors. Additionally,

we showed that EY Y k(G) and EY G�
k(G) have bounded node degrees O(log2 ). We show by example that in the

worst cast any connected graph will have degree at least O(log2 ). In other words, the structures constructed by

our method is almost optimum. Our algorithms are all localized and have communication cost at most O(log2  �n),

where each message has O(log n) bits.

These structures can be constructed eÆciently even when the wireless nodes are not static. For mobile wireless

network, there are three events that will possibly trigger the change of the Yao structure, namely, a node leaving

the transmission range, a node entering the transmission range, and a node switching the cone region. Updating

the Yao structure is fast in all these three scenarios.

Notice that, it is an open problem whether graph EY Y k(G) is a length or power spanner. Some other future

works could be, what are the conditions that we can build a structure with some other properties for MG, such as

planar or low weight.
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