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Abstract—Coverage is a fundamental problem in wireless sensor networks (WSNs). From both economic and applicable concerns,

designers always would like to provide guaranteed QoS of coverage of WSNs. In this paper, we address two path-coverage problems

in WSNs, maximum k-support path coverage (a.k.a. best case coverage) and minimum k-breach path coverage (a.k.a. worst case

coverage), in which every point on the desired resultant path is covered by at least k sensors simultaneously while optimizing certain

objectives. We present two polynomial-time approaches to find optimal solutions for both maximum k-support coverage problem and

minimum k-breach coverage problem. The time complexity of both algorithms are Oðk2n lognÞ, where n is the number of deployed

sensor nodes and k is the coverage degree. In addition, a number of properties of kth-nearest point Voronoi diagram are presented,

which is new to the literature.

Index Terms—Optimum k-coverage, k-support path, k-breach path, wireless sensor networks
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1 INTRODUCTION

BEING a major benchmark when applying wireless sensor
networks (WSNs) into real applications, coverage-

related problems of WSNs have drawn considerable
research interests in the past two decades while posing
many new challenging research questions. In most WSNs,
two seemingly contradictory, yet related viewpoints of
coverage exist: best case coverage and worst case coverage [10].
Generally speaking, the optimization objective of a best case
coverage problem is to make areas, paths or points have
much observability from deployed sensors, on the contrary,
less observability from deployed sensors when we target at a
worst case coverage problem. Here, the observability of an
area, a path or a point from a sensor node can be explained as
the sensing ability of the sensor to the area, the path or the
point. For instance, for a sensor node v equipped with a
temperature sensor, the observability of a point p (within the
valid coverage range of v) from v indicates the accuracy
when we use the reading value of v to denote the
temperature of the point p. Generally speaking, the closer v
and p are, the more accurate the reading is. When the
observability is limited to one sensor node, it is usually called
1-coverage problem; when the observability is determined
by k (k is usually, but not limit to a constant) sensor nodes
simultaneously, it belongs to the k-coverage problem.

Let us consider the following application scenario which
is typically considered as a k-coverage problem. Assuming
that there are a group of anchor sensor nodes deployed in
some area used to track the movement of a mobile sensor
node inside this area. When some fading effects-based
approach (e.g., using received signal strength indicator) is
used to localize the moving sensor, generally, we need at
least three anchor sensors that are able to detect (commu-
nicate with) the moving sensor node directly at any time
without further hardware assistance in a real-time manner.
In addition, since the QoS of observability of the moving
sensor node from an anchor node is kind of proportional to
the euclidean distance between them (Fading Effects’
property), it is better to restrict the longest distance between
the moving sensor and any one of three anchor nodes
during its movement. In other words, the QoS is kind of
limited by the furthest node (the third-nearest node in this
case) such that we would like to bound the longest distance
between the mobile node and its third-nearest anchor node
all the time during its movement. This problem belongs to
the family of best case coverage problems, i.e., maximum
support coverage problem, more precisely, maximum k-support
coverage problem where k is a critical parameters (or say
coverage degree) determining the QoS of coverage. Let us
take another application scenario as an example. Assuming
there are some soldiers who have to sneak through some
area. Unfortunately, the enemies have deployed a bunch of
sensor nodes that are able to detect the movement of objects
in this area. Clearly, the soldiers should move forwarder
following a path which is keeping away from deployed
sensor nodes. This type of problems belongs to the family of
worst case coverage whose objective is to decrease the
observability from sensor nodes.

In this paper, we aim to solve the following two k-
coverage path problems:

1. optimum k-support path problem. Finding a path
connecting any given source/destination pair of
points S and T inside the given area, which
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maximizes the smallest observability of all points
along the path [10]; and

2. optimum k-breach path problem. Finding a path
connecting any given source/destination pair of
points S and T inside the given area, which
minimizes the largest observability of all points
along the path.

Here, the definition of observability of a point p depends on
different applications. For instance, some existing work [8],
[9], [10] focus on the 1-coverage problem and assume that
the observability of a point p is simply the shortest
euclidean distance from p (on the region or path) to the set
of sensors U , i.e., minv2Ukpvk. In this paper, we consider
the more general case, k-coverage problems, i.e., given a
set U of sensors deployed in a two-dimensional region �,
we would like to determine how well the area � is k-
covered through investigating the observability of paths
connecting any given source/destination pairs of points. In
this case, the observability of a point p from the sensor
node set U is defined as the shortest euclidean distance
from p to the kth-nearest sensor out of U . From now on,
we use distance to denote euclidean distance when there is
no confusion.

To the best of our knowledge, [11], [3] and [15] are the
only work so far which aim at addressing the problem of
finding an optimal k-covered path. In [11], Mehta et al.
suggested that the worst case k-coverage problem may be
addressed by adopting the kth-nearest point Voronoi
diagram. However, no algorithm and theoretical results
were given. In [3], Fang and Low gave a polynomial time
algorithm to identify a k-covered path based on binary
search and growing disk techniques. Unfortunately, their
algorithms cannot guarantee an optimum solution. This is
because the binary search method in their algorithm may
not return the optimal k-support path when kth-distance of
some point on the path is not integer. Furthermore, they
assumed that k is a given constant, which reduces the
generality of the algorithm because the value of k could be
up to the number of sensor nodes n depending on different
applications and QoS requirements. Clearly, the 1-coverage
problem is a special case of the proposed problem in the
paper, where k ¼ 1.

The main contributions of our paper are as follows:

1. We present and prove a number of theoretical
results about the properties of kth-Nearest Point
(kth-NP) Voronoi diagram, which are new to the
literature and have independent interests.

2. We further propose an efficient algorithm to
generate the kth-NP Voronoi diagram by combining
computational geometry techniques with graph
theoretical and algorithmic techniques.

3. We design and implement centralized polynomial
time algorithms, which are able to find optimum k-
support and k-breach paths in sensor networks with
general k. A distributed algorithm is further given
for the k-support path problem. Both our algorithms
run in polynomial time Oðk2n lognÞ, where n is the
number of wireless sensor nodes deployed and k is
the coverage degree.

4. To the best of our knowledge, this is the first work
that presents polynomial time algorithms finding

optimal k-support paths and optimal k-breach paths
for a general k.

The rest of the paper is organized as follows: In Section 2,
we define terms, notations, and problems studied, follow-
ing which we detail the procedure of computing the kth-NP
Voronoi diagram of any given sensor node set U . We
present the polynomial time algorithms that solve the
optimum k-support path problem efficiently in Section 3,
and further propose the distributed algorithm that can
obtain an optimal k-support path in Section 4. Section 5
describes the details solving the optimum k-breach path
problem efficiently. We give the running procedure of our
algorithms with some simulation results in Section 6. We
review the some related work in Section 7 and conclude our
paper in Section 8. In the supplementary file (Appendix,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2012.329), we further discuss the methods to find
both k-support and k-breach paths when each sensor node
has (different) bounded sensing range, provide detailed
proofs of theorems and lemmas and give more simulation
results, respectively.

2 PRELIMINARIES

In this section, we formally define the terms, notations used

throughout the paper, and give the formal definitions of

questions to be studied.

2.1 Problem Formulation

Assume that there is a connected WSN consisting of

n identical and stationary wireless sensor nodes U ¼
fu1; u2; . . . ; ung deployed inside a continuous two-

dimensional field �, where the location ðxi; yiÞ of each

sensor node ui : 1 � i � n is known a priori. Here, the

location information of each sensor node could be

measured by precise GPS equipments when deployed.

Since the localization problem of wireless sensor nodes is

out of the scope of this work, we assume the location

information of each wireless sensor node is precise.
In addition, we assume that each sensor node v has

enough sensing range such that it is able to observe any

point p in � where the observability of p from v depends on

the distance kvpk between them. Generally speaking, the

sensing ability of a sensor node to a point has monotone

decreasing property with the increment of the distance

between an object (point) being sensed and the sensor

node’s location. In this paper, we use euclidean distance as

the measurement of QoS. Before we formulate the questions

to be studied in this paper, we introduce some definitions

which will be used in the paper.

Definition 1. Given a point p in the field � and the set of sensors

U , the kkth-distance of p, with respect to U , denoted as

‘kðp; UÞ, is defined as the euclidian distance from p to its kth-

nearest sensor node in U .

Definition 2. Given a path P connecting a source point S and a

destination point T , the kk-support of P , denoted by SkðP Þ, is

defined as the maximum kth-distance of all points on P , i.e.,

SkðP Þ ¼ maxp2P ‘kðp; UÞ, where p is a point on the path P .
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Definition 3. Given a path P connecting a source point S and
a destination point T , the kk-breach of P , denoted by
BkðP Þ, is defined as the minimum kth-distance of all
points on P , i.e., BkðP Þ ¼ minp2P ‘kðp; UÞ, where p is a
point on the path P .

The main questions studied in the paper are as follows;
Question 1. Optimal k-Support Path (Best Case Coverage)

Problem. Given a pair of points S and T in the region �,
finding a path P inside � to connect S and T such that
SkðP Þ is minimized.

Question 2. Optimal k-Breach Path (Worst Case Coverage)
Problem. Given a pair of points S and T in the region �,
finding a path P inside the field � to connect S and T such
that BkðP Þ is maximized.

In the remaining part of this section, we present some
key concepts that are critical to our polynomial solutions.

2.2 The kkth-Nearest Point Voronoi Diagram

Definition 4. Given a set of identical sensor nodes U ¼
fu1; u2; . . . ; ung deployed in the field �, we assign a geometry
point p in � to the sensor node ui 2 U if ui is the kth-nearest
sensor node of p. Following this assignment rule, we assign
all points in the field to at least one sensor node in U . As a
result, we obtain a collection of regions associated with sensor
nodes in U , denoted by VVk ¼ fVkðu1Þ; . . .VkðunÞg, which
forms a tessellation. We call the tessellation VVk the kkth-

Nearest Point Voronoi Diagram ( kkth-NP Voronoi
Diagram) of U , and the region VkðuiÞ the kkth-NP Voronoi

region of node ui.

Clearly, according to the definition of kth-NP Voronoi
diagram, all points inside region VkðuiÞ have the same kth-
nearest sensor node ui 2 U . It is worth observing that
VkðuiÞ may consist of several independent polygons. Here,
we call each independent polygon as the kkth-NP Voronoi
cell (denoted by CkðuiÞ) of node ui and name ui as the kkth-

owner (abbreviated to owner) of CkðuiÞ. In addition, an
edge of some kth-NP Voronoi cell is called a kkth-NP

Voronoi edge and the intersection point of any two kth-NP
Voronoi edges is named as the kth-NP Voronoi vertex.
When some point (e.g., falling on some kth-NP Voronoi
edge) has multiple owners, it randomly chooses one of
them as the owner.

Definition 5 (Perfect Support Location). The perfect support
location of a kth-NP Voronoi edge is defined as the point with
the minimum kth-distance on the edge, i.e., point p is the
perfect support location of the kth-NP Voronoi edge e iif
kpuik ¼ min8p2efkpuikg, where ui 2 U is the owner of e.

It is worth mentioning that for each kth-NP Voronoi
edge, it has one and only one perfect support location.

2.3 Difference between kkth-NP Voronoi Diagram
and Order-kk Voronoi Diagram

Since most of our results are based on kth-NP Voronoi
diagram, most properties of which are unknown to the
literature, it is helpful to briefly discuss the differences
between kth-NP Voronoi diagram and another well-known
concept, order-k Voronoi diagram [2].

Definition 6 (The Order-k Voronoi Diagram[2]). The order-

k Voronoi diagram is a partition of the plane into regions such

that points in each region have the same k closest sensor nodes

in set U ½k�, where U ½k� is a subset of nodes in U with cardinality

k. Each polygon is named order-k Voronoi cell CokðU ½k�Þ
corresponding to the subset U ½k� of U .

According to the Definition 4 and Definition 6, the kth-

NP Voronoi diagram of a set of sensor nodes U partitions

the plane into cells such that all points in the same cell have

the same kth-nearest sensor node 2 U while the order-k

Voronoi diagram [2] of a set of sensor nodes U partitions the

plane into cells such that all points in the same cell have the

same set (maybe in different distance orders) of k-nearest

sensors out of U . Please refer to the examples shown in Fig.

5 (in Appendix, available in the online supplemental

material) for details.

2.4 Compute the kkth-NP Voronoi Diagram in
Polynomial Time

We first present the method to compute the kth-NP Voronoi

diagram with respect to sensor node set U in polynomial

time since the kth-NP Voronoi diagram plays an important

role in our solutions.

Definition 7 (The Farthest Point Voronoi Diagram). The

farthest point Voronoi diagram is a special case of kth-NP

Voronoi diagram when k ¼ n. It is a partition of the plane into

polygons such that points in the same polygon have the same

farthest sensor node ui out of U with cardinality n. Each

polygon is called a farthest Voronoi cell.

Lemma 1. For any point p in the plane �; p 2 CkðuiÞ if and only

if p is located in some order-k Voronoi cell CokðU ½k�Þ where

ui 2 U ½k� and ui is p’s farthest sensor node among all k sensor

nodes in U ½k�.

Proof. Please refer to the supplementary file, available

online. tu

Based on Lemma 1, we propose the following Algorithm 1

with time complexity Oðk2n lgnÞ (proved in Lemma 6) to

compute the kth-NP Voronoi diagram of the sensor node

set U . The main idea of our method is as follows:

1. Compute the order-k Voronoi diagram of the given
sensor nodes set U using the algorithm given in [7].

2. For each order-k Voronoi cell CokðU ½k�Þ (defined in
[7]), we compute the farthest Voronoi diagram of its
corresponding k sensor nodes set U ½k� following the
method in [14]; and for each sensor node ui 2 U ½k�,
return the corresponding farthest Voronoi cell as a
part of ui’s kth-NP Voronoi cell.

3. For each sensor node ui, we union any two kth-NP
Voronoi cells computed in step 2 as one kth-NP
Voronoi cell if they both have the same owner and
share at least one edge. After the union operation,
we get kth-NP Voronoi diagram G of U .

Now, we are ready to present our polynomial time

algorithms computing the optimal k-support path and the

optimal k-breach path within Oðk2n lognÞ time.
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Algorithm 1. Computing kth-NP Voronoi Diagram.
Input: The set of sensor nodes U .

Output: The kth-NP Voronoi diagram G of U .

1: Compute U’s order-k Voronoi diagram;

2: for Each order-k Voronoi cell CokðU ½k�Þ do

3: Compute the farthest point Voronoi diagram using

corresponding k sensor nodes in U ½k�;

4: end for

5: for Each kth-NP Voronoi edge e do

6: if If two polygons having the same owner share e then

7: Merge these two polygons into one polygon;

8: end if

9: end for

10: for Each sensor node ui do

11: Return the union of all polygons belongs to ui as ui’s

kth-NP Voronoi cells;

12: end for

Given a set of sensor nodes U with cardinality n and
the continuous field �, our algorithm computing the
optimum k-support path mainly consists of two phases. In
the first phase, we use Algorithm 1 to compute the kth-NP
Voronoi diagram G in time Oðk2n lognÞ. During the second
phase, we construct a new weighted graph G0 based on
kth-NP Voronoi diagram VVk ¼ fVkðu1Þ; . . .VkðunÞg (output
of Algorithm 1) and then compute the optimal k-support
path on G0 in time Oðk2n lognÞ.

3 BEST CASE COVERAGE: OPTIMAL kk-SUPPORT

PATH

In this section, we address the optimal k-support path
problem, i.e., for any source/destination pair of points S
and T in the given area �, finding a path with minimum k-
support among all possible paths connecting S and T in �.

3.1 Preliminaries

Before we introduce the main idea of our solutions, we first
present some useful theoretical results which are useful for
proving the correctness of our algorithms.

Theorem 2. Given any path P1 connecting a source node S and a
destination node T inside region �, we can always construct
another (maybe same) path P2 consisting of only a finite
number of line segments such that

SkðP2Þ � SkðP1Þ:

Proof. Please refer to the supplementary file, available
online. tu

Based on Theorem 2, we further prove the following
Theorems 3 and 4.

Theorem 3. Given any path P1 connecting the source S and the
destination T inside of region �, we can always find a path P3

consisting of line segments whose end points are perfect
support locations only such that

SkðP3Þ � SkðP1Þ:

Proof. Please refer to the supplementary file, available
online. tu

Theorem 4. There is one optimal k-support path consisting of

only line segments whose end points are located exactly at

some perfect support locations of kth-NP Voronoi edges.

Proof. Please refer to the supplementary file, available
online. tu

3.2 Compute the Optimum kk-Support Path

As shown in Theorem 4, there must exists at least one

optimum k-support path connecting the given source/
destination pair of points S and T , which consists of only
line segments whose end points are the perfect support
locations of some kth-NP Voronoi edges. Hence, we can
limit the solution space to all paths consisting of only line

segments, which connect perfect support locations of kth-
NP Voronoi edges. Among all paths consisting of these line
segments, the one with the minimum k-support must be
one of the desired optimal k-support path. The main idea is
as follows; First, we construct a new graph G0 based on kth-

NP Voronoi diagram G as follows:

1. For each kth-NP Voronoi edge e in kth-NP Voronoi
diagram VV, we add a new node v0 (to V ½G0�)
whose location is the perfect support location of e.
Notice that when multiple kth-NP Voronoi edges
share the same perfect support location, we only
add one node. In other words, we establish a one-
to-one (or many-to-one) mapping between each
kth-NP Voronoi edge e in VV and each node
v0 2 V ½G0�. Finally, we add the source and destina-
tion points S and T to V ½G0�.

2. Use the following rules to assign weight to each
node in V ½G0�. If node v0 2 V ½G0� is S or T , the weight
of v0 (denoted by wðv0Þ) is equal to the kth-distance of
S or T in VV (i.e., wðv0Þ ¼ ‘kðS; UÞ if v0 ¼ S or wðv0Þ ¼
‘kðD;UÞ if v0 ¼ D). Otherwise, wðv0Þ is equal to the
kth-distance of the perfect support location of edge
e 2 VV, where e 2 VV is corresponding to v0 2 G0 in
the one-to-one (or many-to-one) mapping.

3. Divide all nodes in V ½G0� into groups such that a
bunch of nodes (including S and T ) are in the same
group iff their mapping kth-NP Voronoi edges in VV
belong to the same kth-NP Voronoi cell. Notice,
different groups may contain same node(s) since
multiple kth-NP Voronoi edges may map to the
same node in G0. For each group of nodes, we sort all
nodes by their weights in decreasing (or increasing)
order. After that, we add an edge to E½G0� between
each pair of adjacent two nodes in the sorted list
such that we have a simple graph G0.

4. Assign each edge u0v0 2 E½G0� with weight wðu0; v0Þ,
which is equal to maxfwðu0Þ; wðv0Þg.

Next, we use Algorithm 2, which originates from

Dijkstra’s shortest path algorithm, to find a minimum
weight path P 0 in G0 to connect S and T . Here, the weight
of a path is equal to the maximum weight of all edges it
contains and a path P 0 (connecting S to T ) in G0 is said to
be a minimum weight path iff P 0 has the minimum

weight among all paths connecting S to T . Finally, we get
one optimum k-support path P in G by directly applying
P 0 to G.
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Algorithm 2. The Optimal k-Support Path Algorithm.
Input: G0; source node S; destination node T .

Output: Minimum k-support Path Connecting S to T .

1: for each vertex v0 in graph G0do

2: k-support[v0]  infinity

3: previous[v0]  undefined

4: end for

5: k-support[S’]  wðSÞ
6: Q all nodes in graph G0

7: while Q is not empty do

8: u0  node in Q with smallest k-support

9: remove u0 from Q

10: for Each neighbor v0 of u0: do

11: alt maxfwðu0; v0Þ; k� support½u0�g
12: if alt < k-support[v0] then

13: k-support[v0] alt

14: previous[v0] u0

15: end if

16: end for

17: end while

18: Return P 0 which is the minimum weighted path

connecting S to T

3.3 Correctness

We show the correctness of our algorithm by proving the
following theorem.

Theorem 5. Given any source/destination pair of points S and T
inside the region � where sensor nodes in set U have
been deployed, the path P returned by algorithm 2 is an
optimal k-support path.

Proof. Please refer to the supplementary file, available
online. tu

Remembering that we have claimed that there are
multiple approaches for connecting all perfect support
locations inside one kth-NP Voronoi cell such that we may
have multiple choices of graph G0. For example, we can
connect all perfect support locations in a complete graph
manner, i.e., adding an edge between each pair of perfect
support locations (assume that the resultant graph is G00).
Clearly, running Algorithm 2 on G00 definitely returns an
optimum k-support path as well since G00 is a complete
graph containing all edges connecting each pair of perfect
support locations. The reason for us to connect perfect
support locations linearly, i.e., connecting them after sorted,
is that we try to reduce the time complexity of our
algorithm since the smaller the number of edges in G0 is,
the less running time is.

3.4 Time Complexity Analysis

In this section, we prove that the time complexity of our
algorithm is Oðk2n lognÞ, which is better than that of the
work [15]. Here, n is the number of deployed sensor nodes
and k is the coverage degree. As shown before, our
algorithm is composed by two phases, one is to compute
the kth-NP Voronoi diagram, and the other one is to find
the optimal k-support path based on the solution of the first
phase. We analyze the time complexity of these two phases
one by one. We first give a bound of the time complexity for
the first phase.

Lemma 6. The time complexity of Algorithm 1 computing the
kth-NP Voronoi diagram is Oðk2n lgnÞ, where n is the
cardinality of the set U containing all deployed sensor nodes
and k is the coverage degree.

Proof. Please refer to the supplementary file, available
online. tu

Next, we show the time complexity of the second phase.
Since the time complexity of the second phase is determined
by the number of kth-NP Voronoi cells and the number of
kth-NP Voronoi edges, we first prove some properties of
kth-NP Voronoi diagram, which is new to the literature.

Lemma 7. For a set of sensor nodes in U with cardinality n on the
field � and its kth-NP Voronoi diagram VV, the total number
of kth-NP Voronoi edges is bounded by Oðk2nÞ and the
number of edges of each kth-NP Voronoi cell is OðnÞ.

Proof. Please refer to the supplementary file, available
online. tu

Lemma 8. The time complexity of our algorithm to compute the
optimum k-support path based on kth-NP Voronoi diagram is
Oðk2n lognÞ.

Proof. Please refer to the supplementary file, available
online. tu

Combining Lemma 6 and Lemma 8 together, we have the
following theorem.

Theorem 9. The time complexity of our algorithm to find an
optimum k-support path is Oðk2n lognÞ, where n is the
cardinality of the set U containing all deployed sensor nodes
and k is the coverage degree.

4 DISTRIBUTED ALGORITHM FOR COMPUTING THE

OPTIMAL kk-SUPPORT PATH

In this section, we present the distributed algorithm to
compute the optimal k- support path after getting the kth-NP
Voronoi diagram of U by Algorithm 1. First, we let each
sensor node record its owned kth-NP Voronoi cells, including
the geometry information of each edge of each kth-NP
Voronoi cell. Here, we assume that each kth-NP Voronoi edge
is assigned with an unique identity. It is worth observing that
every kth-NP Voronoi edge may belong to one or two cells
such that it can have multiple owners. The main idea of our
distributed algorithm is based on Theorem 4.

First, we construct a new graph G0 based on kth-NP
Voronoi diagram G in a distributed manner. Our key point
is to let each sensor node ujð1 � j � nÞ construct a new
graph G

uj
Ci locally for each of its own kth-NP Voronoi cells

Ci. And G0 is the union of all such new constructed local
graphs, i.e.,

G0 ¼
[

uj owns Ci
G
uj
Ci : 8uj 2 U:

For each cell Ci owned by the sensor node uj; uj constructs a
local graph for cell Ci by the following steps:

. Initially, the vertex set V ðGuj
Ci Þ and the link set EðGuj

Ci Þ
are initiated to be empty.

2400 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013



. For each kth-NP Voronoi edge e belonging to Ci
(owned by uj), uj adds a corresponding point v0 to
G
uj
Ci . Let v0 utilize the perfect support location of e as

its location and let the weight of v0, denoted by wðv0Þ,
be equal to the k-distance of the perfect support
location of edge e. In addition, we let the node v0 has
the same unique ID as its corresponding edge.

. If the source point S or the destination point T (or
both) is owned by uj; uj adds the source point S or
the destination point T (or both) to G

uj
Ci as well. The

weight of S (resp. T ) is equal to the kth-distance of S
(resp. T ) in VV.

. Sort all vertices of G
uj
Ci in decreasing (or increasing)

order by their weights. Add an edge between each
pair of adjacent two vertices in the sorted list to
EðGui

Ci
Þ. In other words, the graph G

uj
Ci consists of a

series of continuous line segments.
. Assign weight to each newly added edge e0; wðe0Þ ¼

maxfwðv01Þ; wðv02Þg, where v01 and v02 are two end
points of e0.

Clearly, the graph G0 ¼
S
uj owns Ci G

uj
Ci : 8uj 2 U is a

connect graph. Then, we run a distributed minimum weight
path algorithm (modification from work in [19]) on graph G0

to compute the minimum weighted path connecting S and T
because all sensor nodes construct a connect network and
they can exchange information via one- or multihop. A path
is said to be a minimum weighted path connecting S and T

if the maximum weight of all its line segments is minimized
among all paths connecting S and T .

Then, we use Algorithm 3, which originates from
Dijkstra’s shortest path algorithm, to identify a path P 0 in
G0 to connect S and T such that the maximum weight
among its edges’ is minimized. Finally, by applying P 0 to
graph G directly, we get an optimum k-support path P .

Algorithm 3. Distributed Optimum k-Support Path

Algorithm.

Input: the kth-NP Voronoi diagram VV of the sensor node

set

U , the source point S and destination point T .
Output: the minimum k-support path connecting S and T .

1: V ½G0�  ;; E½G0�  ;;
2: for Each sensor node ui 2 U do

3: for Each kth-NP Voronoi cell Cj owned by ui do

4: Use Algorithm 4 to distributively construct a new

graph Gui
Cj .

5: V ½G0� ¼ V ½G0�
S
V ½Gui

Cj �. (The vertices with same

ID will be merge to one single vertex after union.)
6: E½G0� ¼ E½G0�

S
E½Gui

Cj �
7: end for

8: end for

9: Run distributed minimum weighted path algorithm

(in [19]) on G0 to get an minimum weight path P 0

connecting S and T .

10: Return P 0

Algorithm 4. Distributed Constructing New Graph G0.

Input: Sensor node ui 2 U and a kth-NP Voronoi cell Cj
owned by ui
Output: New constructed graph Gui

Cj .

1: V ½Gui
Cj �  ;; E½G

ui
Cj �  ;;

2: for Each kth-NP Voronoi edge e 2 Cj do

3: ui adds a new vertex v0 at the perfect support

location point of e;

4: Assign v0 with the same unique ID as that of e;

5: Consider the kth-distance of the perfect support

location of e as the weight of vertex v0 (wðv0Þ);
6: end for

7: if ui owns S or T (or both) then

8: Add the source vertex S or the destination vertex T

(or both);

9: Let the weight of S (resp. T ) in Gui
Ci

be equal to the

kth distance of S (resp. T ) in VV.

10: end if

11: Sort all new added vertices by their weights. Add an

edge between each adjacent pairs of vertices in the

sorted list.
12: Let the weight of each new added edge be equal to the

bigger one of its two end vertices’ weights.

13: Return Gui
Cj ;

5 WORST CASE COVERAGE: OPTIMAL kk-BREACH

PATH

In this section, we address the optimum k-breach path
problem. By taking advantages of the previous work [10],
we prove that an optimal k-breach path lies along the kth-
NP Voronoi edges only except the subpath connecting S
(resp. T ) to some point on some kth-NP Voronoi edge if S
(resp. T ) lies inside some kth-NP Voronoi cell rather than on
some kth-NP Voronoi edge. The first step of finding an
optimal k-breach path is to compute the kth-NP Voronoi
diagram of the sensor node set U , which can be computed
by Algorithm 1.

5.1 Preliminaries

Before we go through the details of the algorithm to solve
the optimal k-breach path problem, we give some theore-
tical results in advance, which illustrate the main idea and
the correctness of our algorithm.

Theorem 10. Given any path P1 connecting source point S and

the destination point T , we can always construct another

(maybe same) path P4 which only uses kth-NP Voronoi edges

(neglecting the subpath from S or T to one of edges of the kth-

NP Voronoi cell containing S or T ) such that

BkðP4Þ � BkðP1Þ:

Proof. Please refer to the supplementary file, available

online. tu

Obviously, the following theorem immediately follows:

Theorem 11. There is one maximum k-breach path which lies

along the kth-NP Voronoi edges (except the first edge or last

edge when S or T is not on some Voronoi edge).

5.2 Compute the Maximum kk-Breach Path

We are now ready to present our algorithm to compute the

optimum k-breach path. For any given set of sensor nodes U
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and source/destination pair of points S and T , The main
idea of our approach is as follows:

1. Use Algorithm 1 to generate kth-NP Voronoi
diagram VV of U .

2. Add all kth-NP Voronoi vertices (including S and T )
and all kth-NP Voronoi edges to new graph G0.

3. Each kth-NP Voronoi vertex v 2 VV is assigned a
weight wðvÞ, which is equal to the kth-distance of v,
i.e., ‘kðv; UÞ.

4. If S (resp. T ) is inside some kth-NP Voronoi cell
CkðuiÞ, rather than on some kth-NP Voronoi edge,
we draw a line from ui to S (resp. T ), where ui is the
owner of the kth-NP Voronoi cell CkðuiÞ. We further
extend this line segment to some edge of CkðuiÞ
(assuming that the intersection point is a). We add
an edge between S (resp. T ) and a along with the
point a itself to G0. When S (resp. T ) exists inside
some kth-NP Voronoi cell whose edges contain part
of the boundary of �, we can add an edge between
S (resp. T ) to each perfect support location of this
cell (explained later).

5. For each edge ðu; vÞ (ðu; vÞ may be a newly added
edge or a kth-NP Voronoi edge in G0), we let the
weight of ðu; vÞ be equal to the minimum kth-
distance among all points on ðu; vÞ.

6. Finally, by applying Algorithm 5 to G0, we get one
optimal k-breach path connecting S to T .

Algorithm 5. Compute the Optimum k-Breach Path.

Input: G, source point S, destination point T .

Output: An optimum k-breach path connecting S to T .

1: for each vertex v in graph G do

2: k-breach[v]  infinity

3: previous[v]  undefined

4: end for

5: k-breach½S�  wðSÞ
6: Q the set of all nodes in graph G

7: while Q is not empty do

8: u node in Q with largest k-breach[]

9: remove u from Q

10: for each neighbor v of u: do

11: alt  minfwðu; vÞ; k� breach½u�g
12: if alt > k-breach[v] then

13: k-breach[v]  alt

14: previous[v]  u

15: end if

16: end for

17: end while

18: Return P , which is the maximum weighted path

connecting S to T

5.3 Correctness

Based on Theorem 11, we know that there is one optimal k-
breach path using the kth-NP Voronoi edges only (except
the first edge and last edge which are used to connect S to T
to some kth-NP Voronoi edge when S or T is not on some
kth-NP Voronoi edge). Since the path P computed by our
algorithm has maximize the minimum k-breach of it, P
must be the optimal k-breach path among all those paths
which lie on the kth-NP Voronoi edges.

5.4 Time Complexity Analysis

Compared to the algorithm used to identify the optimal
k-support path in the previous section, the procedure of
constructing a new graph G0 is simpler. The following
Theorem 12 gives us an upper bound on the time
complexity of our method.

Theorem 12. The time complexity of our algorithm computing
an optimum k-breach path is Oðk2n lognÞ.

Proof. Please refer to the supplementary file, available
online. tu

6 RUNNING PROCEDURE

In this section, we give the details of entire running
procedure of proposed algorithms, including all the
intermediate and final results. We implement and test
our proposed k-support and k-breach algorithms to find
the optimum k-support and k-breach paths by Matlab
R2006a [1].

6.1 Experimentation Platform—Sample Results

In the simulation, a set of wireless sensor nodes with
cardinality n (n varies from 5 to 20 with step 1) is randomly
and uniformly deployed in the target square region with
size 900� 900 meter2. We change the coverage degree k
from 3 to 10 with step 1 for different cases. For each round,
we randomly generate the position of each wireless sensor
node. After that, we run Algorithm 1 to obtain order-k
Voronoi diagram (intermediate results), based on which we
get the corresponding kth-NP Voronoi diagram. (Some
detailed examples are given in the Appendix, available in
the online supplemental material.)

Next, we show how to find the optimum k-support path
and the optimum k-breach path, respectively. Fig. 1
describes a complete procedure for obtaining an optimum
3-support path connecting source/destination pair of S and
T in a 900� 900 meter2 square region where 10 wireless
nodes have been randomly deployed. Given the area,
deployed sensor nodes, and the positions of S and T , we
first get the third-NP Voronoi diagram which is shown in
Fig. 1a. We use different colors to distinguish third-NP
Voronoi cells for different sensors such that a third-NP
Voronoi cell has the same color as its owner’s. The two
black nodes inside of the square region denote the positions
of S and T , respectively.

As we can see from Fig. 1a, each sensor could have
several corresponding third-NP Voronoi cells. Next, we find
the perfect support location for each third-NP Voronoi edge.
For all perfect support locations (including S and T )
belonging to the same third-NP Voronoi cell, we sort them
in decreasing order by their third-distance, and use line
segments to connect them one-by-one, thus get a graph G0

(shown in Fig. 1b). Here, the node set of G0 consists of
source/destination pair of vertices S and T , and perfect
support locations for all kth-NP Voronoi edges, and the edge
set consists of line segments connecting the sorted perfect
support locations inside each kth-NP Voronoi cell. As we
can see, all boundaries in the original third-nearest point
Voronoi cell turn into points in the new graph G0 as well.
One thing needs to be mentioned that when the boundaries
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of � are not available, our algorithm still gets correct
solutions. Then, we assign weights to the edges of graph G0

such that the weight of each edge is equal to the bigger one
of two third-distance of its two end points’. By considering S
and T as the source/destination pair of vertices in graph G0,
the problem becomes to find a minimum weighted path
connecting S and T in G0 where the weight of a path is equal
to the maximum one among all weights of line segments it
contains. By running our k-support path algorithm, we
obtain the minimum weight path connecting S and T in
graph G0, which is shown in Fig. 1c (the solid path). Clearly,
this path can be applied to graph G directly, hence it is the
final optimal k-support path. It is worth mentioning that
there may exist multiple optimum k-support paths depend-
ing on the different ways to connect all perfect support
locations of a single kth-NP Voronoi cell. In our case, we
connect all perfect support locations inside a single kth-NP
Voronoi cell by sorted kth-distance of them in decreasing
order such that we get a graph G0 with fewer edges (a tree
inside each cell) to reduce the time complexity of our
algorithms. Some other connection methods also can get

optimum solutions, for example, we can connect each pair
of perfect support locations inside each kth-NP Voronoi cell
such as to have a clique.

According to the optimum k-breach path problem, we
have proved that there must exist an optimum k-breach
path using kth-NP Voroni edges only (Theorem 11). Hence,
the first step is still to get the kth-NP Voronoi diagram,
which is the same operation as obtaining a k-support path
(shown in Fig. 1a’) did. Next, we consider the graph G0

consisting all kth-NP Voronoi edges and kth-NP Voronoi
vertices. Notice that, if S (resp. T ) is inside some kth-NP
Voronoi cell, we use the method in Section 5.2 to connect S
(resp. T ) to some point on some kth-NP Voronoi edge,
please refer to the Fig. 2a for illustration. Here, since both S
and T are falling in some cells whose edges contain part of
boundaries of �, we use two different ways to handle S

and T to illustrate different cases. For instance, when all
boundaries of � are available, we draw a line from wireless
sensor node (assuming with ID 0) to S and further extend
the line to the boundary. If all boundaries of � are not
available, we can add edges connecting the destination
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Fig. 2. k-breach path when k ¼ 3 and n ¼ 10. (a) Graph G0 consisting of third-NP Voronoi vertices and edges including S; T , and corresponding
edges incident to them. (b) The optimum 3-breach path (solid line segments) based on graph G0 shown in dash line segments.

Fig. 1. (a) Third-nearest point Voronoi cell of 10 sensors in a 900� 900 meter2 square region. The IDs of nodes have been circled and filled with
different colors. Each sensor node’s third-NP Voronoi cell have been filled with the same color as its owner’s. Two blace nodes are the source point S
and destination point T , respectively. (b) Perfect support locations (indicated by black vertices) for each third-NP Voronoi edge (indicated by solid
line segments). (c) Planar graph G0 consisting of perfect support locations and edges (dotted line segments) connecting the perfect support locations
inside each cell. Solid line denotes the optimum k-support path. (k ¼ 3) in this case.



node T to all vertices of the kth-NP Voronoi cell containing
T . See Fig. 2b for details. Next, after assigning a weight to
each edge following the method in Section 5.2 and
applying Algorithm 5 to graph G0, we obtain an optimum
k-breach path finally (shown in Fig. 2b). As we can see,
although our methods for obtaining the k-support path and
the k-breach path are based on same kth-NP Voronoi
diagram, the intermediate graph G0s for them are quite
different. For k-support path problem, the intermediate
graph G0 contains perfect support locations only, each of
which is not necessarily a kth-NP Voronoi vertex, on the
contrary, any vertex in the intermediate graph G0 (when
we solve k-breach path problem) is exactly a kth-NP
Voronoi vertex except the source point S and the
destination point T .

We conduct more simulations and show some typical
results as follows: In one set of our simulation, we let the
number of sensors n increase gradually from 5 to 30 with
step 5, and find the optimum k-breach and k-support
paths for each k 2 f1; 3; 5g. The results shown in Figs. 3
and 4 indicate that both optimum k-support and optimum
k-breach decrease with the increment of the number of
sensors as we expected.

Clearly, this result can be used to estimate the coverage
quality when the number of sensors n and the required
coverage degree k are given. If the sensing radius for each
sensor node is fixed, it is better to deploy more sensor nodes
to get better coverage quality. On the contrary, if the sensor
can adjust its sensing (coverage) radius by power adjust-
ment, the results presented here could be used to estimate
the transmission power needed by sensors such that
different requirements (k-support or k-breach) can be
satisfied. In addition, we found that when the number of
sensors exceeds some threshold value (around 20 in our
case), the decreasing trend of the curve in Fig. 3 becomes
slowly. This illustrates that there is a tradeoff between the
number of sensor nodes needed and the desired coverage
quality if the sensing radius of each sensor node is fixed.

7 RELATED WORK

To evaluate the quality of coverage of the sensor
network, Meguerdichian et al. [10] formulated the 1-
coverage problem under two extreme cases: the best
case coverage (maximum support) problem and the
worst case coverage (minimum breach) problem. In [10],
the authors observed that an optimal solution for the
maximum support problem is a path which lies along the

edges of the Delaunay triangulation [2], [13], and an
optimal solution for the minimum breach problem is a path
which lies along the edges of the Voronoi diagram [2], [13].
They further proposed centralized algorithms for both
problems. Later, Mehta et al. [11] improved these algo-
rithms and made them more computational efficient.

There were some other work which aimed at solving the
1-coverage problem formulated in [10] in a distributed
manner. Li et al. [8] showed that the maximum support
path can be constructed by only using edges of the relative
neighborhood graph (RNG) of the sensor node set. They
attempted to address best case 1-coverage problem in
distributed manner. This is an improvement since the RNG
is a subgraph of the Delaunay triangulation and can be
constructed locally. On the other side, Meguerdichian et al.
[10] implied that a variation of the localized exposure
algorithm presented in [13] can be used to solve the worst
case coverage problem locally. Another localized algorithm
with more practical assumptions was proposed by Huang
and Tseng [4].

For the general coverage problem, Huang and Tseng [4]
studied the problem of determining if the area is
sufficiently k-covered, i.e., every point in the target area
is covered by at least k sensors. In [4], the authors
formulated the problem as a decision problem and
proposed a polynomial algorithm which can be easily
translated to distributed protocols. They further extended
this problem to three-dimensional sensor networks and
proposed the solution in [5]. The connected k-coverage
problem was studied and addressed in [18] by Zhou et al.
They studied the problem of selecting a minimum set of
sensors which are connected and each point in a target
region is covered by at least k distinct sensors. They gave
both a centralized greedy algorithm and a distributed
algorithm for this problem and showed that their centra-
lized greedy algorithm is near-optimal. Xing et al. [17]
explored the problem concerning energy conservation
while maintaining both desired coverage degree and
connectivity. They studied the integrated work between
the coverage degree and the connectivity and proposed a
flexible coverage configure protocol.

Some studies focused on the relationship between the
coverage degree k, the number of sensors n, and the sensing
radius r of sensor nodes. Kumar et al. [6] studied the
problem of determining the appropriate number of sensors
that are enough to provide k-coverage of a region under the
condition that sensors are allowed to sleep during most of
their lifetime. In [16], Wan and Yi analyzed the probability
of the k-coverage when the sensing radius or the number of
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sensors changes while taking the boundary effect into

account. To the best of our knowledge, [11], [3] and [15] are

the only work which aims to find an optimal k-covered

path. In [11], Mehta et al., suggested that the worst case k-

coverage problem can be addressed by adopting the kth-NP

Voronoi diagram. However, no details of the proposed

algorithm were given. In [3], Fang and Low gave a

polynomial time algorithm to identify a k-covered path

based on binary search and growing disk techniques.

Unfortunately, the time complexity of their algorithm

cannot be bounded if an optimum solution is required.

Furthermore, they assume that k is some constant which

may reduce the generality of their algorithm. In one of our

previous work [15], we designed a centralized polynomial

time algorithm that can find optimum k-support path

efficiently for general k. In this work, we further improved

the time complexity of our centralized algorithms and

proposed a distributed algorithm to solve this problem.

8 CONCLUSION

In this paper, we proposed polynomial time algorithms for

two k-coverage problems, i.e., the optimum k-support path

problem and the optimum k-breach path problem in

wireless sensor networks. Our algorithms can efficiently

find a path connecting two points in a given area where a

sensor network is randomly deployed with the best

observability (i.e., maximizing the minimum observability

of all points on the path), and the worst observability

(i.e., minimizing the maximum observability of all points on

the path). We proposed a number properties for kth-NP

Voronoi diagram, which are new to the literature. These

properties may be of independent interests.

ACKNOWLEDGMENTS

This work is supported by NSFC 61272426, China Post-

doctoral Science Foundation funded project under grant

No. 2012M510029, NSFC Major Program 61190110, National

High-Tech R&D Program of China (863) under grant No.

2011AA010100, and the China 973 Program under Grant

No. 2011CB302705. The research of Xiang-Yang Li is

partially supported by the US National Science Foundtion

(NSF) CNS-0832120, NSF CNS-1035894, NSF ECCS-1247944,

National Natural Science Foundation of China under Grant

No. 61170216, No. 61228202, and the China 973 Program

under Grant No.2011CB302705.

REFERENCES

[1] http://www.mathworks.com/, 2013.
[2] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,

Computational Geometry: Algorithms and Applications. Springer,
1997.

[3] C. Fang and C.P. Low, “Redundant Coverage in Wireless Sensor
Networks,” Proc. IEEE Int’l Conf. Comm. (ICC), 2007.

[4] C. Huang and Y. Tseng, “The Coverage Problem in a Wireless
Sensor Network,” Proc. ACM Int’l Workshop Wireless Sensor
Networks and Applications (WSNA), 2003.

[5] C. Huang, Y.C. Tseng, and L. Lo, “The Coverage Problem
in Three-Dimensional Wireless Sensor Networks,” Proc. IEEE
GLOBECOM, 2004.

[6] S. Kumar, T. Lai, and J. Barlogh, “On k-Coverage in a Mostly
Sleeping Sensor Network,” Proc. ACM MobiCom, pp. 144-158,
2004.

[7] D. Lee, “On k-Nearest Neighbor Voronoi Diagrams in the Plane,”
IEEE Trans. Computers, vol. C-31, no. 6, pp. 478-486, June 1982.

[8] X. Li, P. Wan, and O. Frieder, “Coverage in Wireless Ad-Hoc
Sensor Networks,” IEEE Trans. Computers, vol. 52, no. 6, pp. 753-
763, June 2003.

[9] S. Megerian, F. Koushanfar, M. Potkonjak, and M. Srivastava,
“Worst and Best Case Coverage in Sensor Networks,” IEEE Trans.
Mobile Computing, vol. 4, no. 1, pp. 84-92, Jan. 2005.

[10] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M.B.
Srivastava, “Coverage Problems in Wireless Ad-Hoc Sensor
Networks,” Proc. IEEE INFOCOM, pp. 139-150, 2001.

[11] D.P. Mehta, M.A. Lopez, and L. Lin, “Optimal Coverage Paths in
Ad-Hoc Sensor Networks,” Proc. IEEE Int’l Conf. Comm., vol. 1,
2003.

[12] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu, Spatial Tessella-
tions. Wiley Series in Probability and Statics. John Wiley & Sons
2000.

[13] J.O. Rourke, Computational Geometry in c. Cambridge Univ. Press,
1998.

[14] S. Skyum, “A Sweepline Algorithm for Generalized Delaunay
Triangulations,” Technical Report DAIMI PB-373, CS Dept.,
Aarhus Univ., 1991.

[15] S. Tang, X. Mao, and X.Y. Li, “Evaluating Coverage Quality
through Best Covered Paths in Wireless Sensor Networks,” Proc.
IEEE Int’l Conf. Network Protocols (ICNP), pp. 99-108, 2011.

[16] P. Wan and C. Yi, “Coverage by Randomly Deployed Wireless
Sensor Networks,” IEEE Trans. Information Theory, vol. 52, no. 6,
pp. 2658-2669, June 2006.

[17] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill,
“Integrated Coverage and Connectivity Configuration for Energy
Conservation in Sensor Networks,” ACM Trans. Sensor Networks,
vol. 1, pp. 36-72, 2005.

[18] Z. Zhou, S. Das, and H. Gupta, “Connected k-Coverage Problem
in Sensor Networks,” Proc. Int’l Conf. Computer Comm. and
Networks (ICCCN), 2004.

[19] S. Zhu and M. Huang, “A New Parallel and Distributed Shortest
Path Algorithm for Hierarchically Clustered Data Networks,”
IEEE Trans. Parallel and Distributed System, vol. 9, no. 9, pp. 841-
855, Sept. 1998.

Xufei Mao (M’10) received the bachelor’s
degree in 1999 and the MS degree in 2003 from
Shenyang University of Technology and
Northeastern University, respectively. He re-
ceived the PhD degree in 2010 in computer
science from the Illinois Institute of Technology,
Chicago. He is a postdoctor at School of
Software, Tsinghua University, Beijing, China.
He is also an associate researcher in Internet of
Things Center, TNLIST, Tsinghua University

China. His research interests include wireless ad hoc networks, wireless
sensor networks, pervasive computing, mobile cloud computing and
game theory, and so on. He is a member of the IEEE.

Yunhao Liu (M’02-SM’06) received the BS
degree in automation from Tsinghua University,
Beijing, China, in 1995, and the MS and PhD
degrees in computer science and engineering
from Michigan State University, East Lansing, in
2003 and 2004, respectively. He is a professor
with the Tsinghua National Lab for Information
Science and Technology, School of Software,
and the director of the MOE Key Lab for
Information Security, Tsinghua University. He

is also a faculty member with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology, Hong
Kong. He is a senior member of the IEEE.

MAO ET AL.: FINDING BEST AND WORST K-COVERAGE PATHS IN MULTIHOP WIRELESS SENSOR NETWORKS 2405



ShaoJie Tang received the BS degree in radio
engineering from Southeast University, P.R.
China in 2006. He has been working toward
the PhD degree from the Department of Com-
puter Science at Illinois Institute of Technology
since 2006. His research interests include
algorithm design and analysis for wireless ad
hoc networks, wireless sensor networks, and
online social networks. He is a member of the
IEEE.

Huafu Liu is a professor in the Department of
Computer Science and Technology Changsha
University China. His primary research interests
include the design and implementation of wire-
less sensor networks, pattern recognition, and
so on.

Jiankang Han received the BS and master’s
degrees in 2009 and 2012, respectively,
in computer science from Haishi University,
China and Beijing University of Posts and
Telecommunications, respectively. He is an
engineer of Tsinghua National Lab of Informa-
tion Science and Technology. His research
interests include hardware design and imple-
ment of wireless sensor networks.

Xiang-Yang Li (M’99-SM’08) received the
bachelor’s degree from the Department of
Computer Science and the bachelor’s degree
from the Department of Business Management
from Tsinghua University, P.R. China, both in
1995. He received the MS degree in 2000 and
the PhD degree in 2001 from the Department of
Computer Science, University of Illinois at
Urbana-Champaign. He has been an associate
professor (since 2006) and an assistant profes-

sor (from 2006) of computer science at the Illinois Institute of
Technology. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2406 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


