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Abstract—Wormhole attack is a severe threat to wireless ad
hoc and sensor networks. Most existing countermeasures either
require specialized hardware devices or make strong assumptions
on the network in order to capture the specific (partial) symptom
induced by wormholes. Those requirements and assumptions
limit the applicability of previous approaches. In this work, we
present our attempt to understand the impact and inevitable
symptom of wormholes and develop distributed detection meth-
ods by making as few restrictions and assumptions as possible.
We fundamentally analyze the wormhole problem using a topol-
ogy methodology, and propose an effective distributed approach,
which relies solely on network connectivity information, without
any requirements on special hardware devices or any rigorous
assumptions on network properties. We formally prove the
correctness of this design in continuous geometric domains and
extend it into discrete domains. We evaluate its performance
through extensive simulations.

I. INTRODUCTION

Wireless ad hoc and sensor networks are emerging as

promising techniques for many important applications such

as homeland security, military surveillance, environmental

monitoring, target detection and tracking etc. Many of those

applications involve a large number of sensing devices dis-

tributed in a vast geographical field to collaborate. Security

is crucial for those mission-critical applications, which often

work in unattended and even hostile environment. One of the

most severe security threats [1] in ad hoc and sensor networks

is wormhole attack, which has been independently introduced

in previous works [2–4] and has spurred extensive research

studies [5–17].

In wormhole attacks, the attackers tunnel the packets be-

tween distant locations in the network through an in-band or

out-of-band channel. The wormhole tunnel gives two distant

nodes the illusion that they are close to each other. The

wormhole can attract and bypass a large amount of network

traffic, and thus the attacker can collect and manipulate net-

work traffic. The attacker is able to exploit such a position

to launch a variety of attacks, such as dropping or corrupting

the relayed packets, that significantly imperils a lot of network

protocols including routing [4, 10], localization [18], and etc.

This work focuses on typical wormhole attacks. The adversary

is an outsider, who does not have valid network identity and

does not become part of the network. The most severe feature

of wormhole attack lies in the fact that the attacker can easily

launch a wormhole attack without understanding the protocols

used in the network or requiring compromising any legitimate

node or cryptographic mechanisms. The attacker requires very

little resources, i.e. a long-range directional wireless link,

to replay packets verbatim. The establishment of wormhole

attacks is independent of the general security mechanisms

(in terms of confidentiality, integrity and authenticity of data)

employed in the network. The attacker can forward each bit of

a communication stream over the wormhole directly without

breaking into the content of packets. Thus the attacker does

not need to compromise any node and obtain valid network

identities to become part of the network. The attacker with

weak capabilities can launch an effective wormhole timely.

Using the wormhole links, the attacker is able to gather enough

packets and exploit the wormhole attack as a stepping stone for

other more sophisticated attacks, such as man-in-the-middle

attacks, cipher breaking, protocol reverse engineering, and etc.

Wormhole attacks have posed a severe threat to wireless ad

hoc and sensor networks.

The wormhole attack problem has received considerable

attentions recently. Many countermeasures have been pro-

posed to detect wormholes in wireless ad hoc and sensor

networks. Those solutions typically catch the attacks by de-

tecting partial symptoms induced by wormhole. Generally,

existing symptom-based methods either depend on specialized

hardware devices or make relatively strong assumptions on the

networks. For example, some approaches employ specialized

hardware devices, such as GPS [4, 8], directional antennas [5],

or special radio transceiver modules [13], which introduce sig-

nificant amounts of extra hardware costs for the systems. Other

types of approaches are based on strict assumptions, such as

global tight clock synchronization [4], special guard nodes

[7], attack-free environments [14], or unit disk communication

models [12]. These rigorous requirements and assumptions

largely restrict their applicability in networks composed of a

large number of low-cost resource-constrained nodes.

To fully address wormhole attack in ad hoc and sensor

network, we need to answer the following two questions:

(1) what symptoms feature the most essential characteris-

tics caused by wormhole attacks and (2) how to gracefully

design the countermeasures without critical requirements or

assumptions. Our design goal is to rely solely on network

connectivity information to detect and locate the wormholes.

We focus our study on a fundamental view on the multihop

wireless network topologies, aiming at catching the topological

impact introduced by the wormhole. More concretely, we

explore the fact that a legitimate multihop wireless network

deployed on the surface of a geometric terrain (possibly with

irregular boundaries, inner obstacles, or even on a non-2D

plain) can be classified as a 2-manifold surface of genus

0, while the wormholes in the network inevitably introduce

singularities or higher genus into the network topology. We

classify wormholes into different categories based on their

impacts on topology. We then design a topological approach,

which captures fundamental topology deviations and thus,



locates the wormholes by tracing the sources leading to such

exceptions. Our approach solely explores the topology of the

network connectivity. We do not require any special hardware

devices, yet have no additional assumptions on the networks,

such as awareness of node locations, network synchronization,

unit disk communication model, or special guard nodes. The

detection algorithm is carried out in a distributed manner

across the network to avoid dependence on a small portion of

the network, which could become the target of the adversaries.

Although node density impacts on the detection performance

of the method, our method works well in networks with fair

node densities(e.g. node degree is greater than 7 in perturbed

distributions and 16 in random distributions, respectively),

which is verified by our simulations.

The rest of this paper is organized as follows. We first

discuss those existing studies in Section II, and then formally

define the wormhole problem and its detection methods in Sec-

tion III. Section IV characterizes the wormholes in topologies

and describes theoretical principles of a fundamental detection

method. Section V presents our topological detection approach

in discrete networks. We analyze the performance-cost trade-

offs and design light-weight approaches in Section VI. We

evaluate this work through comprehensive simulations and

analysis in Section VII. Finally we conclude this work in

Section VIII.

II. RELATED WORK

Existing countermeasures largely rely on observing the

derivative symptoms induced by wormholes residing in the

network. All of these approaches have their respective advan-

tages and drawbacks. Applicability of approaches is largely

dependent on specific system configurations and applications.

Some approaches observe the symptom of Euclidean dis-

tance mismatch in the network. Hu et al. [4] introduce geo-

graphic packet leash. By appending the location information

of the sending nodes in each packet, they verify whether the

hop-by-hop transmission is physically possible and accord-

ingly detect the wormholes. Wang et al. [8] instead verify

the end-to-end distance bounds between the source and the

destination nodes. Zhang et al. [19] propose location-based

neighborhood authentication scheme to locate the wormholes.

Such approaches require the pre-knowledge of node locations

to capture the distance mismatch.

Some approaches observe the symptom of time mismatch

in packet forwarding. Hu et al. [4] introduce temporal packet

leash, which assumes tight global clock synchronization and

detects wormholes from exceptions in packet transmission

latency. Capkun et al. [13] propose SECTOR which measures

the round-trip travel time (RTT) of packet delivery and de-

tects extraordinary wormhole channels. SECTOR eliminates

the necessity of clock synchronization, but assumes special

hardware equipped by each node that enables fast sending

of one-bit challenge messages without CPU involvement.

TrueLink proposed by Eriksson et al. [10] is another RTT

based approach. It relies on the exchange of vast verifiable

nonces between neighboring nodes. They modify the standard

IEEE 802.11 protocols for the implementation. It remains

unclear how effective such an approach is for the resource

constraint ad hoc or sensor network hardware.

Some approaches observe the symptom of neighborhood

mismatch that leads to physical infeasibility. Hu et al. [5]

adopt directional antennas and find infeasible communicating

links by utilizing the directionality of antenna communication.

Khalil et al. [14] propose LiteWorp, which assumes the

existence of an attack-free environment before the wormhole

attacks are launched. During the deployment phase, each

node collects its 2-hop neighbors and LiteWorp then selects

guard nodes to detect wormhole channel by overhearing the

infeasible transmissions among non-neighboring nodes. They

further propose MobiWorp [15] to complement LiteWorp with

the assistance of some location-aware mobile node.

Some approaches observe the symptom of graph mismatch

under special assumptions of network graph models. Pooven-

dran et al. [7][11] present a graph based framework to tackle

wormholes. Their approach assumes the existence of guard

nodes with extraordinary communication range. The direct

communication links between guard nodes and regular nodes

implicitly form a geometric graph and the wormholes will

break the constraints. Wang et al. [6] graphically visualize the

presence of wormholes. They reconstruct the layout of the

networks by multi-dimensional scaling (MDS). Through the

distance measurements between neighboring nodes, a central

controller calculates the network layout and captures the wrap

introduced by wormholes. Recently, authors in [12] propose a

completely localized approach to detect wormholes with only

network connectivity. By exploiting the forbidden packing

number in the Unit Disk Graph (UDG) embedding of network

graphs, the approach is able to detect wormholes with high

accuracy. As a clear and elegant approach, however, it has its

own limitations due to the assumption of UDG graph model

and its basis on the symptom of packing number. It may

fail when a wormhole does not cause an increase of packing

number. It is thus inaccurate under non-UDG graphs.

Some approaches observe the symptom of traffic flow mis-

match based on statistic analysis on the network traffic. Song

et al. [16] observe the fact that the wormhole links are selected

for routing with abnormally high frequency and by comparing

with normal statistics they can identify the wormhole links.

Another statistical approach proposed by Buttyan et al. [17]

captures the abnormal increase of the neighbor number and the

decrease of the shortest path lengths due to wormholes. The

base station then centrally detects wormholes using hypothesis

testing based on pre-statistics of normal networks.

To sum up, existing approaches heavily rely on specialized

hardware or rigorous assumptions to capture the wormhole

symptoms. Indeed, there are still no perfect symptoms found

to establish an all-round method in the resource-limited ad

hoc and sensor networks. Our design, based on topological

observation, is orthogonal to existing approaches and takes a

step towards relaxing these assumptions and expanding the

applicability of methods.

There is another completely different class of attacks than

the classic wormhole attack, called Byzantine wormhole [20],

which is a Byzantine variant of traditional wormhole attack.

In a Byzantine wormhole attack, the attacker no longer come



from outside the network, but from inside the network. The ad-

versary has compromised one or more nodes, thus overwhelm-

ing the authentication-based security mechanisms. Insider at-

tacks are more difficult to address since a compromised device

can exhibit arbitrary malicious behavior. Awerbuch et al.

[20, 21] propose a secure routing protocol, ODSBR. The goal

of ODSBR is to provide routing survivability under Byzantine

attacks, including black hole, flood rushing, and Byzantine

wormhole attack etc. Khalil et al. [14] present LiteWorp, which

uses local monitoring to address packet dropping and relaying

in Byzantine wormholes. Eriksson et al. [22] propose a secure

routing protocol, called Sprout, to defense multiple colluding

insider attackers. Sprout is resilient to the shortcuts triggered

by wormholes. More related techniques [23, 24] have also

been proposed to address the issue of compromised nodes,

including tamper-proof hardware, software tamper resistance

and proofing, intrusion detection etc. The essence of those

works, however, is to mitigate the malicious behaviors of

wormhole attackers in several aspects, not to explicitly catch

the wormholes.

III. PROBLEM FORMULATION

In this section, we present wormhole attack model and

system assumptions. We formulate the generalized wormhole

problem with network connectivity.

A. Assumptions and Attacker Model

We consider a collection of homogeneous nodes deployed

over a surface of terrain. Each node performs the homogeneous

transmission control, and is only capable of communicating

with adjacent nodes in its proximity. We do not force a unit

disk graph communication model. Two nodes may or may not

communicate with each other even their distance is within

the maximum communicational range. We assume that the

coordinates of nodes are unavailable, such that nodes can

determine neither distances nor orientations of other nodes.

In wormhole attacks, the attackers tunnel the packets between

distant locations in the network through a high-speed out-of-

band channel. The wormhole tunnel gives two distant nodes

the illusion that they are close to each other. Figure 1 (a)

displays a classic example of a wormhole attack. The attacker’s

link is referred to as a wormhole link or simply a wormhole.

The two ends of a wormhole link are wormhole endpoints. In

this example, AB represents a wormhole link in the network

connecting two distant areas. The adversary can capture and

replay the packet signals in the physical layer or simply

retransmit the packet in the link layer [4]. In this case,

as illustrated in Figure 1 (a), node n1 and node n2 can

communicate directly as if they were direct neighbors.

We make the common assumptions on wormhole attacks,

which are widely adopted in most previous wormhole coun-

termeasures [4–12]. Wormhole attacks are defined based on

the minimum capabilities required by the attacker to perform

these attacks. In particular, wormhole attacks are launched

with mere hardware requirements. The attacker does not need

to compromise any node, or have any knowledge of the

network protocol used. Wormhole endpoints deployed by the
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Fig. 1: Two examples of wormhole attack.

adversary do not have valid network identities and do not

become part of the network. The adversary launches outsider
wormhole attacks in the network. We assume that in the

network exist mechanisms that authenticate legitimate nodes

and establish secure links between authenticated nodes. The

communications can be protected by light-weight symmetric-

key or asymmetric cryptographic mechanisms for sensor net-

works in link and upper layers[25, 26]. Confidentiality, in-

tegrity and authenticity of communications can be preserved

in the networks under wormhole attacks. The adversary cannot

fabricate and deliberately tamper with a message while escap-

ing the detection of message authentication mechanism. The

encrypted messages among valid network nodes keep confi-

dential from the wormhole attacker, and thus the adversary

can only drop and corrupt the relayed packets blindly. Those

corrupted packets can be handled by techniques of reliable

routing [27], such as retransmission on unstable links. To

summarize, although wormhole attacks impact neighboring

discovery mechanisms in the physical or link layer greatly,

transmitted data over encrypted network protocols remains

transparent and unobservable to the wormhole attacker, as

formulated in most previous works [4–12].

B. Connectivity-Based Wormhole Problem

Poovendran et al. gave a formal definition of the wormhole

problem based on the UDG communication graph model in

Euclidean space [11]. According to their definition, a com-

munication link is a wormhole link if the distance between

its two endpoints exceeds the regular communication range.

This concise definition, however, also has its own limitations.

First, the definition is given under the constraints of the UDG

communication graph model, which has been proven far from

practical in many analytical and experimental works. Second,

the distance-based definition in Euclidean space naturally

binds the wormhole features with external geometric envi-

ronments, and thus neglects the inherent topological impacts

introduced by wormholes.

For example, consider the network shown in Figure 1 (b).

The Euclidean distance between node n1 and n2 can be very

little and even within the maximum possible communication

range of the two nodes, but they simply cannot directly

communicate due to the obstacle or disturbance between them.

Hence, the current shortest communication path between node

n1 and n2 in the network is a long journey, denoted as

the black lines in Figure 1 (b). If the external bold-line

link is inserted into the network connecting n1 and n2, the

two nodes then are able to communicate directly and the

shortest path between them is shortened remarkably, which

also significantly influences the communication between many

other nodes. Obviously, in this case a wormhole attack occurs



but it is not covered by the definition in [11], because the

distance between nodes n1 and n2 does not exceed the

maximum communication range. Such a wormhole attack

cannot be detected by approaches based on Euclidean distance

mismatch, as the geometric distance does not correctly reflect

the network communication path. We hereby present a more

general and fundamental definition of the wormhole attack

based only on network topologies and aim to present the

inherent characteristics of wormholes.

Definition 1: (Generalized Wormhole Attacks) Let G be

a communication graph of a network, and w be an attack

on the network. Let Gw be the perceived communication

graph after the attack w. Let L(u, v) and Lw(u, v) denote

the lengths of the shortest paths between an arbitrary pair

of nodes u, v ∈ V (G) ∩ V (Gw) on G and Gw respectively.

If Lw(u, v) < L(u, v), we say that Gw is under wormhole

attacks (or w launches a wormhole attack). λuv = L(u, v) −
Lw(u, v) quantifies the shortened path length of w between u
and v. The intensity of the wormhole attack w is defined as

λ = max{λuv|u, v ∈ V (G) ∩ V (Gw)}.

Definition 1 formalizes the wormhole attack based only on

the network topologies. The wormholes defined by Pooven-

dran et al. are indeed all included by our definition. The

attack intensity λ describes the intensity of the topological

distortion brought by the wormhole attack. Intuitively, a larger

λ corresponds to a more intensive distortion on network

topologies. We then present our definition on generalized

wormhole detection method.

Definition 2: (Generalized Wormhole Detection Methods)

Let GL ⊆ G denote the set of legitimate network commu-

nication graphs, where G is the set of arbitrary communica-

tion graphs. Let K denote the pre-knowledge on legitimate

network communication graphs. Let P denote the set of

network properties, including graph or topological invariants.

MK : G → P is a mapping from the set of communication

graphs to the set of network properties. If for any G ∈ GL,

MK(G) ⊆ MK(GL), MK provides a detection method,

which does not cause false positive results. If for any graph

G /∈ GL, MK(G) � MK(GL), MK is a detection method

without false negative. MK is a perfect method if it produces

neither false negative nor false positive results.

Essentially, Definition 2 covers all possible methods that

rely on network topologies for detecting wormholes. Different

specific methods differ on assuming what pre-knowledge on

the legitimate network and exploring what properties of the

network topologies. For example, we explain this by an in-

stance of wormhole detection methods which has been recently

introduced by Maheshwari et al. [12]. Their method assumes a

pre-knowledge K that the legitimate network communication

graph is UDG, and mainly relies on the property P ∈ P
that the lune packing number in an UDG embedding of the

legitimate network communication graph is 2.

An ideal wormhole detection method should require as little

pre-knowledge assumptions about the network as possible. The

only pre-knowledge that we will assume is the fact that the

network is deployed on a continuous geometric surface (2-

manifold), where each node locally communicate with neigh-

boring ones. We do not assume the availability of locations
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Fig. 2: Four different types of wormholes on the surface.

and Euclidean distance or time measures, yet we do not rely

on any specific graph models like UDG or quasi-UDG for

the network communications. In this paper, we deepen our

study into a macroscopic view of the network topologies

and characterize the essential impact of wormholes through.

Deeply understanding of the topological impacts of worm-

holes, we accordingly propose the fundamental wormhole

detection approach and analyze the performance-cost trade-

offs in topological wormhole detections.

IV. CHARACTERIZING WORMHOLES

In this section, we model and characterize wormhole at-

tacks on network topologies, and then propose the detection

approach accordingly. Aiming at a distributed algorithm based

on minimum assumptions on the pre-knowledge of a network,

we intend to detect wormholes by solely depending on local

cooperation and estimations. Nevertheless, the topological im-

pact of wormholes is global, so how to characterize the global

properties of wormholes from local information becomes a

major challenge. We address the above problem through alge-

braic topology, by using homology and homotopy in general

topological space. We introduce concepts, develop principles

and present related theorems in continuous domain. We first

introduce topological preliminaries. We then characterize the

topological features of wormholes and classify the wormholes.

Finally, we present the principles for the wormhole detection

and prove theoretical guarantees. We extend our discussion to

practical discrete networks in the next section.

A. Preliminaries

We use concepts and terminologies in combinatorial and

computational topology. We first give a brief overview on the

concepts and theories involved in our later discussions. Not all

definitions are necessarily standard. For detailed explanations,

see the books by Hatcher [28].

Given a topological space T , a path is a continuous function

p : [0, 1] → T ; a path whose endpoints coincide is called a

loop. A homotopy between two paths p and q with the same

endpoints is a continuous function h : [0, 1][0, 1] → T , such

that h(0, t) = p(t) and h(1, t) = q(t) for all t, and h(s, 0) =
p(0) = q(0) and h(s, 1) = p(1) = q(1) for all s. Two paths

are homotopic if there is a homotopy from one to the other.

A loop is contractible if it is homotopic to a point.

In our work, we consider network deployment region as

connected, compact and orientable (two-sided) 2-manifold

surfaces that are topological Hausdorff spaces, where each

point has a neighborhood homeomorphic either to the plane

or to the closed half plane. This definition contains almost all

ordinary surfaces observable in our daily life. In the rest of

the paper, all surfaces mean such surfaces unless we explicitly
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Fig. 3: (a) Link AB glued on a spherical surface X; (b) Link AB is contracted
to a single point O; (c) Torus Y , which may collapse into X\AB by
contracting a longitudinal cycle into one point.

state otherwise. When topological space T is a given surface

S, a curve is a path and a closed curve is a loop. A simple
closed curve is an injective closed curve that does not intersect

itself. Two curves with the same endpoints on S are homotopic
to each other if and only if one can be smoothly deformed

to the other without leaving the surface. A closed curve is

contractible if it is homotopic to a point, otherwise it is non-
contractible. A closed curve is non-separating if the surface

keeps connected after its removal. A closed curve is separating
if it splits the surface into two or more components. The

genus of a surface represents the maximum number of simple

closed curves that can be removed without disconnecting the

manifold. For example, a sphere and a disc have genus 0, while

a torus has genus 1. Homotopy is actually an equivalence

relation on the set of closed curves on S with any fixed

basepoint. It classifies the set of cycles on a given surface

into a set of homotopy classes, where cycles in each class are

transformable to one another while cycles in different classes

are not.

B. Characterizing Wormholes

Normally, a wireless multihop network is deployed on the

surface of a geometric environment, such as a plane or a rough

terrain. In this section, we develop principles in continuous

domain, assuming continuous deployment of nodes over the

geometric surface with one-to-one mapping to the points on

the surface. In the continuous setting, a legitimate network is

a 2-manifold surface without singular points and of genus 0,

which is homotopic to the plane area with a certain number of

boundaries (holes). We refer to the surface of the legitimate

network as original surface. A wormhole link is a continuous

line segment with extremely short length that connects two

points on the surface.

A new topology space is formed after the wormhole is

glued on the original surface. We subsequently analyze how

the different topology spaces are generated after gluing dif-

ferent types of wormholes. We classify wormholes into four

categories, according to their topological impacts. Figure 2

shows the four types of wormholes. For Class I wormhole,

both of its two endpoints locate inside the surface. Class II

wormhole has one endpoint inside the surface and the other

on the boundary of the surface. Class III wormhole has its

endpoints on two different boundaries. Class IV wormhole has

both of its endpoints on the same boundary. The four types of

wormholes have different topological impacts on the original

surface, and the complex wormhole attack can be considered

as a finite combination of them. We first consider the impact

of a single wormhole. We then analyze the impact of the

combination of multiple wormholes.

1) Single Wormhole Impact:
In this section, we analyze the impact of a single wormhole

in different types, from Class I to IV. The main results are

presented in Theorem 1.

Theorem 1: After inserting one wormhole into the original

surface, Class I or II wormhole adds one degenerated genus,

Class III wormhole adds one genus and reduces a boundary,

and the Class IV wormhole adds a boundary.

Class I and II wormholes. Figure 3 shows an example of

how a spherical surface X is affected by a wormhole link

AB, which represents a Class I or II wormhole. Figure 3 (a)

shows the new topology quotient space X\AB [28], with link

AB glued on the spherical surface X . Figure 3 (b) shows

a homotopy equivalent topology with Figure 3 (a), which

contracts the line AB into a single point O. The new topology

space can be considered as collapsed from a torus Y , as shown

in Figure 3 (c). By contracting a longitudinal cycle around the

torus, Y collapses into X\AB. Clearly, such a collapse is

not a homotopy equivalence from Y to X\AB. In this sense,

we say that X\AB contains degenerated genus 1. Strictly

speaking, the new topology space after the injection of Class

I or II wormhole is no longer a surface, as the neighborhood

of the wormhole endpoint is not homeomorphic with a plane

or closed half plane. Informally, we call it as a surface with

singularities.

Class III wormholes. When the surface is of multiple

boundaries (the network containing physical holes), Class

III wormhole might appear as shown in Figure 4 (a). The

topology space of Figure 4 (a) is homotopy equivalent to

that in Figure 4 (b), which contracts the wormhole link into

a point. We focus on the two non-contractible cycles α and

β in Figure 4 (b). Cycle α goes through the wormhole, and

cycle β wraps the inner boundary. Figure 4 (b) can be seen

as the deformation retract of Figure 4 (c), where the cycles α
and β in Figure 4 (c) correspond to α and β in Figure 4 (b)

respectively. Indeed, Figure 4 (a-c) are homotopy equivalent

to each other. Typically, a Class III wormhole concatenates

two different boundaries and increases the genus by 1. An

interesting phenomenon happens under Class III wormhole.

The twisted cycle α and cycle β are actually symmetrical

to each other in the sense of topology. Imaging that if we

overturn the surface in Figure 4 (c), the meridional circle α
becomes a longitudinal circle, while the longitudinal circle β
becomes a meridional circle. Without the knowledge that β
is homotopic to a physical boundary beforehand, we are not

able to differentiate α and β in Figure 4 (b) through only

topologies.

Class IV wormholes. A Class IV wormhole connects two

points on the same boundary. Thus Class IV wormhole adds a

bridge to the original surface and separates the boundary into

two.

In summary of above discussions, we obtain the Theorem

1.

2) Combination of Multiple Wormholes:
When two or more wormholes exist on the surface, Class

I or II wormholes still introduce independent impacts, each

leading to the increase of degenerated genus by 1. Multiple
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Fig. 4: The impact of wormholes. (a) A single Class III wormhole; (b) The homotopic surface when contracting the wormhole link in (a); (c) The homotopic
surface to (a) and (b); (d) Two Class IV wormholes crossing each other.
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Fig. 5: Tracing wormholes by topologies.

Class III and Class IV wormholes, however, might introduce

interchangeable effects. As the example shown in Figure 4 (d),

two Class IV wormholes w1 and w2 are injected on the surface

crossing each other. A single wormhole w1 or w2 adds a

boundary to the surface, but the combination of them adds

genus by 1. As a matter of fact, Figure 4 (d) is homotopy

equivalent to Figure 4 (a-c). The example above can be

explained as follows. After the first Class IV wormhole w1 or

w2 is glued on the surface, the boundary of the original surface

is split into two. When we add the second Class IV wormhole,

its two endpoints are then on two different boundaries, so the

wormhole is slid to a Class III wormhole to the new surface.

The consequence is a combination of a Class IV wormhole

and a Class III wormhole, leading to the increase of genus.

When multiple wormholes are injected to the original sur-

face, we can consider them as being sequentially glued to the

surface. The type of each wormhole is determined according to

the instant surface when it is glued. Class I and II wormholes

will not be affected by previous injected wormholes, while

Class III and IV wormholes might interchange their types

according to the boundary separation or concatenation. The

sequence in gluing the wormholes does not affect the final

topological impact. We look into the final impact of multiple

wormholes and characterize the topology surface with genus

g, degenerated genus d and b boundaries as τ(g, d, b), where

g, d and b are non-negative integers.

Theorem 2: Given the original surface τ0 = τ(g0, d0, b0)
and the final surface τ(g, d, b) after N wormholes are injected,

there is N = 2(g − g0) + (d − d0) + b − b0. Among the N
wormholes, there are d − d0 Class I or II wormholes and

2(g − g0) + b − b0 Class III or IV wormholes.

Proof: The proof is by induction on the number N of

wormholes. Let τi = τ(gi, di, bi) denote the intermediate sur-

face after adding i wormholes on τ0. Without losing generality,

we add the N wormholes sequentially. We denote the sequence

as [w1, w2, · · · , wN ]. When i = 1, there is a single wormhole

added to the network. It is clear from Theorem 1 that this

theorem is true. Assume the theorem is true for i = k, i.e., in

current surface τk = τ(gk, dk, bk), there are dk − d0 Class

I or II wormholes and 2(gk − g0) + bk − b0 Class III or

IV wormholes to τ0. When a new wormhole wi+1 is added,

the surface becomes τk+1 = τ(gk+1, dk+1, bk+1). There are

three cases: 1) if wi+1 is a Class I or II wormhole to τ0,

it is still a Class I or II to τk. Thus, we have gk+1 = gk,

dk+1 = dk + 1, bk+1 = bk. So the number of Class I and II

wormholes to τ0 is dk −d0 +1 = dk+1 −d0, by the induction

hypothesis, the number of Class III and IV wormholes to τ0

is still 2(gk − g0) + bk − b0 = 2(gk+1 − g0) + bk+1 − b0. 2)

if wi+1 is a Class III wormhole to τ0, it might be a Class

III or IV wormhole to τk. In the previous case, we have

gk+1 = gk + 1, dk+1 = dk, bk+1 = bk − 1. In the latter

case, we have gk+1 = gk, dk+1 = dk, bk+1 = bk + 1. In

either case, the number of Class I and II wormholes to τ0 is

dk−d0 = dk+1−d0, and the number of Class III and IV worm-

holes to τ0 is 2(gk−g0)+bk−b0+1 = 2(gk+1−g0)+bk+1−b0.

3) if wi+1 is a Class IV wormhole to τ0, it is similar with case

2. Thus, this theorem is true for the case of i = k + 1.

According to our per-knowledge on the legitimate network

graph, the original surface has genus 0 and degenerated genus

0, so the original surface can be characterized as τ(0, 0, b0)
where b0 is the number of boundaries (which is equal to the

number of inner holes + 1). According to Theorem 2, we can

calculate the number of different types of wormholes if we

can characterize the final topology space.

C. Tracing Wormholes

We hereby present the principle of tracing wormholes in

continuous topology surface. For the convenience of presen-

tation, we take a macroscopic view on the global network.

In real implementation, the algorithm does not depend on

centralization throughout the network. A node makes decisions

solely based on its local information. We use an example

of a surface with wormholes shown in Figure 5 to explain

this design. The proposed algorithm aims to trace wormholes



through detecting the genus and degenerated genus. The main

idea of the algorithm is to find the non-separating cycles

associated with wormholes. Two circular lines in Figure 5 (a)

indicate two potential non-separating cycles in this example.

The algorithm is described in Algorithm 1.

1) Finding Cut Locus and Candidate Loops:
Given the wormhole infected surface S, we first select an

arbitrary point in S as the root and run a continuous Dijkstra
shortest path algorithm [29], as shown in Figure 5 (a). Each

point is thereafter aware of its shortest geodesic paths to the

root. We call the set of points that have more than one shortest

path to the root the cut locus [29], denoted by CS . After

discovering the Dijkstra shortest paths to the root, we find a cut

locus forms there. If we cut the surface along the cut locus, the

surface becomes a topological disk. The paths marked by bold

dashed lines are part of the cut locus. The point in cut locus

which has at least three shortest paths to the root is called a

branch vertex of the cut locus, like point v in Figure 5 (b). The

branch vertices separate the cut locus into cut paths, like path

p1, p2 and p3 in Figure 5 (b). Each cut path has two endpoints.

The endpoint of a cut path can be a branch vertex or not. We

call the endpoint leaf vertex, if it is not a branch vertex. The

leaf vertex can be on the boundary or in the interior of the

surface. We further distinguish them as boundary leaf vertex
and interior leaf vertex. We can transform the cut locus CS into

its subgraph reduced cut locus through repeatedly removing all

interior leaf vertices [29]. We denote the obtained reduced cut

locus as C(P, V ), where P is the set of cut paths and V is

the set of branch and boundary leaf vertices.

Let p ∈ P be a cut path in the reduced cut locus and

a ∈ p be an arbitrary point on p. There are at least two non-

homotopic shortest paths from a to the root. By concatenating

the two non-homotopic paths, we obtain a loop la and it is

clear that loop la is non-contractible. We say that a is the

witness of la. For any two points a, b ∈ p, if la and lb
are the loops witnessed by a and b respectively, la and lb
are homotopy equivalent [29]. For each cut path p∈P , we

arbitrarily select a loop witnessed by one point p and denote

it as lp. Thus we obtain a set of loops L = {lp| p ∈ P}, which

we call the candidate loop set. Figure 5 (c) displays the three

candidate loops l1, l2 and l3, corresponding to the three cut

paths p1, p2 and p3 in Figure 5 (b) respectively. Following

Lemma 4.2 in [30], there are at most 4(g +d)+2b−2 branch

vertices, and 6(g + d) + 3b − 3 cut paths. Hence, the number

of candidate loops |L| < 6(g+d)+3b−3. For each candidate

loop l ∈ L, we do the following steps to clarify the situations

of wormholes.

2) Locating Class I or II Wormholes:
To begin with, for checking whether or not the loop passes

through a degenerated genus (Class I or II wormholes), we

consider a small closed ε-neighborhood N(l) of l. N(l) =
{ε(x)|x ∈ l}, where ε(x) denotes the ε-neighborhood of point

x on the surface. As shown in Figure 5 (d), the bold line

denotes the candidate loop l, which passes through a Class

I wormhole with its two endpoints labeled as e1 and e2. If

there exists a sufficiently small simple closed curve l′ in N(l)
that crosses l odd times (two curves are not crossed if they

touch [28]), l can be marked as a loop through Class I or

II wormhole. We call l an independent non-separating loop.

We can further contract the cycle l′ in the figure as much

as possible while keeping it crossing l odd times. The cycle

l′ eventually contracts to one endpoint of the wormhole, i.e.,

node e1 in Figure 5 (d). By this means, we can detect the

endpoints of all Class I and II wormholes.

3) Detecting Class III or IV Wormholes:
The case of Class III and IV wormhole is different. As

both endpoints of such wormholes are on the boundaries of

a surface, we cannot find such a small cycle enclosing each

endpoint of a wormhole. Instead, we directly detect the genus

by checking whether the candidate loop l is a separating or

non-separating loop. There is an essential difference between

the two types of loops. The separating loop is two-sided but

the non-separating loop is one-sided. Figure 5 (e) displays a

separating loop that is formed due to the plain holes on the

surface. It is two-sided in the sense that if we flood from the

loop with different colors, e.g., the two colors never meet. The

loop shown in Figure 5 (f), however, is a non-separating loop

formed by genus. If we flood light grey and dark grey to its

two sides, as shown in Figures 5 (f) and (g), the two colors

ultimately meet with each other because the loop is one-sided.

By detecting the non-separating loop l, we detect the genus

introduced by Class III or Class IV wormholes. Let t be a

point on the cut between the two color areas. Let s ∈ l be an

arbitrary point on l. There is a pair of non-homotopic paths

from s to t, one across the area of one color and the other

one across the other color area. The two paths form a loop,

which we denote in Figure 5 (g) as l′. Apparently, l′ crosses

l at a single point s. As we will later see in Lemma 4, both

l and l′ are non-separating loops. We call l a dependent non-
separating loop and l′ the partner loop of l. Further, we call

the two non-separating loops that cross each other knit non-
separating loop pair. We can conclude that there must be at

least one Class III or IV wormhole in the knit non-separating

loop pair. Yet as we mention in Figure 4 (c), the two loops are

topologically indistinguishable and we cannot conclude which

loop passes through the wormhole.

To summarize, for each candidate loop l ∈ L, we classify it

into one of the three types: separating loop, independent non-

separating loop, or dependent non-separating loop. We detect

and locate Class I and II wormholes from independent non-

separating loops. We detect Class III and IV wormholes from

dependent non-separating loops.

D. Correctness and Optimality

We prove that our method is able to detect all the detectable

wormholes correctly. We first discuss the correctness and

capability of this method, and then analyze the theoretical

bound in topologically detecting wormholes.

Theorem 3: Let L be the set of candidate loops, all worm-

holes reside within L.

Proof: It is not difficult to prove that there exists a subset

L′ ⊆ L, which constitutes a homotopy basis of the original

surface [29]. Let w be an arbitrary wormhole on the surface,

and lw is an arbitrary loop on the surface that passes through

w. Since L′ is a homotopy basis, there must exists a loop lc
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Fig. 6: Wormhole detection in discrete environments.

Algorithm 1 Tracing Wormholes in Continuous Domain

Input: The surface S, i.e. original surface attached with wormholes.
Output: The location of wormholes.
1: Select a root r ∈ S to run a continuous Dijkstra shortest path algorithm

in S; Obtain the cut locus CS of S.
2: Recursively remove interior leaf vertices of CS , and transform CS into

the reduced cut locus C(P, V ); Candidate loop set L = ∅.
3: for Each cut path p ∈ P do
4: Randomly select a point a ∈ p; Concatenate two non-homotopic paths

from a to root r, and obtain the loop la; L := L ∪ la.
5: end for
6: for Each candidate loop l ∈ L do
7: if Successfully find a contractible cycle l′ in the ε-neighborhood N(l)

of l, which l′ crosses l odd times then
8: With keeping cycle l′ crossing l in odd times, contract l′ into a

point o; Report a Class I or II wormhole locates at o.
9: else

10: Flood two colors in the two sides of l.
11: if Two colors meets and find a partner loop l′ of l then
12: Report that there is at least one Class III or IV wormhole in the

knit non-separating loop pair (l′, l).
13: end if
14: end if
15: end for

homotopy equivalent to lw while lc can be represented as the

concatenation of some proper loops in L′. It means w must

be passed through by at least one loop in L′ ⊆ L.

From Theorem 3, we have confined the locations of all

possible wormholes within the candidate loops L, although

we may not be able to locate exactly the endpoints of all

wormholes on L. Now, we prove our method is effective

and accurate on detecting Class I and II wormholes. We first

present Lemma 4, which reveals the parity property of the

non-separating loops.

Lemma 4: On surface S, a cycle c is non-separating if there

is a cycle c′ such that c′ crosses c odd times.

Proof: Following Lemma 2.1 in [31], if c is separating,

S − c has two components S1 and S2, each with c as its

boundary. If we trace the curve c′, it must switch between

S1 and S2 each time it crosses c, and never otherwise. Hence

there must be an even number of switches, contradicting the

fact that c and c′ cross oddly.

Theorem 5: All Class I and II wormholes are detected and

exactly located by our method.

Proof: Let w be an arbitrary Class I or II wormhole.

According to Theorem 3, there exists a loop lw ∈ L which

passes through w. Since w is a Class I or II wormhole,

w increases one degenerated genus on the surface. For the

degenerated genus, there exists a contractible simple closed

curve at one end of the genus that crosses lw one time, i.e., all

Class I and II wormholes can be effectively detected without

false negative. On the other hand, let l be an arbitrary loop in

L. If there exists a contractible loop l′ in the ε-neighborhood

of l crossing l oddly, according to Lemma 4, l must be non-

separating. l′ is both non-separating and contractible, so l′

is continuously deformed and contractible to an endpoint of

at least one degenerated genus, never otherwise. When ε is

sufficiently small, it guarantees that there is only one endpoint

inside l′. Thus the detection method accurately locates the

Class I and II wormholes.

Theorem 6: Let l and l′ be a pair of knit non-separating

loops. There is at least one Class III or IV wormhole on l and

l′.
Proof: Suppose that neither l nor l′ passes a wormhole,

then l and l′ are also loops on the original surface without

wormholes. Since l and l′ form a knit non-separating loop

pair, l and l′ cross in odd times, thus l and l′ are both non-

separating according to Lemma 4. On the other hand, since

the original surface is homotopic to a plane area with holes,

according to Jordan Curve Theorem [28], a loop in the original

surface must separate the original surface into at least two

components. Hence, both l and l′ are separating, which leads

to contradiction and finishes this proof.

Theorem 6 shows that our detection method is accurate

on Class III and IV wormholes, i.e., each pair of knit non-

separating loops captures at least one Class III or IV worm-

hole. We successively show by Theorem 7 and 8 that our

method detects all topologically detectable wormholes on the

original surface.

Theorem 7: The instant Class IV wormhole is homotopy

equivalent to a plain bridge on previous surface, and thus is

undetectable with topological method.

Proof: As we characterize in Section IV-B, an instant

Class IV wormhole adds a bridge on the same boundary. In

the sense of homotopy equivalence, it is indistinguishable with

a plain bridge on previous surface. Thus Class IV wormhole

is undetectable with topological method.

Theorem 8: Given the original surface τ0 = τ(0, 0, b0),
and the surface τ(g, d, b) after wormhole attacks. Our method

locates all d Class I and II wormholes and detects at least g
Class III or IV wormholes while the rest of wormholes are

topologically undetectable.

Proof: First, according to Theorem 5, our method is able

to locate all d Class I and II wormholes exactly. Second,

according to Theorem 6, we can detect at least g Class III or IV

wormholes by detecting g non-separating loop pairs for genus

g. Third, we consider an arbitrary order of inserting the worm-

holes into the network. According to Theorem 1 and 2, an

increase of genus happens when and only when instant Class

III wormholes (might be Class IV to the original surface) are

inserted. While the genus is increased by g, there are g+b−b0



instant Class IV wormholes inserted. According to Theorem 7,

their topological impacts on the network are indistinguishable

from bridges and thus topologically undetectable.

To summarize this section, we introduce concepts, develop

principles and present related theorems in continuous domain.

We first introduce topological preliminaries. We then charac-

terize the topological features of wormholes and classify the

wormholes. Finally, we present the principles for the wormhole

detection and prove theoretical guarantees. We extend our

discussion to practical discrete networks in the next section.

V. WORMHOLE DETECTION IN DISCRETE ENVIRONMENTS

We have characterized the impact of wormholes and de-

scribed the principles of wormhole detection under continuous

settings in the previous section. In a real multi-hop network,

however, nodes are deployed discretely on the field. In this

section, we present our approach in discrete environments.

First, we construct a shortest path tree from an arbitrarily

selected root node, so that each node obtains shortest paths

to the root. We accordingly select the candidate loops from

the cut pairs on the shortest path tree. Second, we detect and

locate Class I or II wormholes by testing whether a candidate

loop is an independent non-separating loop. Specifically, we

check whether there exists a contractible cycle that crosses the

loop one time. Third, we check the existence of Class III or

IV wormholes by seeking the knit non-separating loop pairs.

All operations are carried out in a distributed manner in the

discrete network. The principle of this design follows what we

introduced in the continuous settings. When applied in discrete

environment, however, there exist substantial technical chal-

lenges in transforming the principles into concrete protocols

as follows. (1) It is non-trivial to test in discrete networks

whether or not a cycled path is contractible, especially with

only connectivity information among local neighborhoods. (2)

Determining the crossing of two curves without any geometric

information is challenging. To calculate the accurate crossing

times of the two curves is even more difficult. (3) To seek the

knit non-separating loop pairs, we need to check whether a

candidate loop is one-sided or two-sided. Having solely the

connectivity information, to determine the two sides of a path

is also difficult.

We address above challenges in this design, which includes

three components: Candidate Loop selection, Finding Indepen-
dent Non-Separating Loops, and Seeking Knit Non-Separating
Loop Pairs. We illustrate the operations using the example

shown in Figure 6, where we have all four different types of

wormholes residing in a network, denoted from 1 to 4.

A. Candidate Loop Selection

After the shortest path tree is established, each node knows

its shortest paths to the root node. The neighboring nodes

exchange the information of their shortest paths. There are

some pairs of nodes connected with each other but with their

least common ancestor far away. These nodes form cut pairs
[32]. The cut pairs witness the candidate loops. The two

shortest paths from the cut pair constitute a loop and we

qualify a candidate loop by setting a threshold on the length of

the loop. The threshold depends on the expectation of the span

of wormhole attacks, i.e., if we aim to detect all wormholes

across h hop span, we can set the threshold to h hops.

Figure 6 (a) plots the detected cut pairs (big nodes) and

corresponding candidate loops (thin line paths). The shortest

path tree is constructed by flooding from the big root node

in the center. As shown in this example, there are variations

on the candidate loops, including misreported ones. Due to

the randomness and discreteness of the network deployment,

it is indeed difficult to obtain the cut locus accurately un-

der discrete settings. To tackle this problem, we perform

all consecutive operations on all candidate loops, instead of

selecting only one loop for each cut path as in continuous

principles. Such operations might introduce extra network cost.

In practice, we can filter most of redundant candidate loops

simply by checking their neighboring relationship, which leads

to significant savings on the overhead.

B. Finding Independent Non-Separating Loops

Let l denote a candidate loop. To test whether l passes

a Class I or II wormhole, we verify whether or not l is an

independent non-separating loop. As described in previous

section, we need to find a small contractible circle that crosses

l one time.

We articulate the concept of contractible circle in discrete

settings. Given the communication graph G, and two positive

integers k and δ. For a vertex v ∈ V (G), let Γk(v) denote

the set of nodes within k hop distance to v. Let Γk,δ(v) =
Γk+δ(v) − Γk(v). Given a vertex set U ⊆ V (G), let G[U ]
denote the vertex induced subgraph of G from U . Thus, for

an arbitrary node v ∈ V (G) and r, δ ∈ N, if G[Γr,δ(v)] is

a connected circular strip, we find a skeleton circle within

G[Γr,δ(v)], as shown in Figure 7 (a). Tracing such a skeleton

circle is non-trivial. We conduct a restricted flooding from

an arbitrary node in the strip graph G[Γr,δ(v)] and build a

shortest path tree, as shown in Figure 7 (b). The big circle

is the selected root node and the lines show the shortest path

tree. In this shortest path tree, we find an arbitrary cut pair

among the leaf nodes depicted as triangle and square nodes

in Figure 7 (b), and connect them to form a loop, similarly as

what we do for constructing foregoing candidate loops. The

dotted line connects the two cut pair nodes, the triangle and

square nodes. We can thus trace back from the two cut pair

nodes to obtain a candidate cycle, denoted by the grey lines in

Figure 7 (c). We record it as C(v, r, δ). Apparently, when r and

δ are sufficiently small, C(v, r, δ) is contractible. Moreover,

we say that Γk(v) is a k-hop contractible disk at v, if for any

r0 ≤ r ≤ k, there exists a skeleton circle within G[Γr,δ(v)]. A

contractible disk represents a set of network nodes embedded

in a geometric region without voids and the skeleton circles

on different levels of the contractible disk are all contractible

circles. In our later example and simulations, we set r0 = 1,

k = 3 and δ = 2.

By creating a contractible disk, we explore the existence

of contractible circle C(v, r, δ) around each node v in the

candidate loop l. If there exists such a circle C(v, r, δ), there

must be intersection between C(v, r, δ) and l. In the discrete
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Fig. 7: Tracing a skeleton circle. (a) connected circular strip G(Γk,δ(v)), (b)
shortest path tree, (c) a candidate circle.
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Fig. 8: Distinguishing the two sides of loop l.

settings, however, with only network connectivity information,

it is yet challenging to determine how many times C(v, r, δ)
crosses l. The two general curves might intersect with no com-

mon nodes or even at multiple ambiguous intersection nodes.

Similar problems are also considered in [33]. Fortunately, we

can restrictively transform our case into a relatively easier one,

as we only need to judge if C(v, r, δ) crosses l once or not. We

let Γ1(C) and Γ1(l) denote the sets of nodes within one hop

distance to C(v, r, δ) and l respectively. Let I = Γ1(C)∩Γ1(l).
We check if there is only one single connected component

in I or not and accordingly conclude if C(v, r, δ) crosses

l only in one time. We confirm that the candidate loop l
is an independent non-separating loop if our test shows that

C(v, r, δ) crosses l one time. Thus there must be one endpoint

of the wormhole included in C(v, r, δ). Figure 6 (b) illustrates

that our approach works on a candidate loop across a Class I

wormhole. The vertical single line represents the candidate

loop that passes through the wormhole. The double-line paths

are the detected contractible circles that cross the candidate

loop one time. The circles nodes that filled with white and

grey are the one-hop neighborhoods of the single-line and

double-line pathes, respectively. The dark dot nodes show the

intersection set of the two kind of filled circle nodes. By

shrinking the contractible circles, we can eventually locate the

wormhole endpoints. As shown in Figure 6 (c), this approach

successfully finds the contractible circles and locates the two

endpoints of the Class I wormhole and one endpoint of the

Class II wormhole. By tracing the traffic flow from one end, we

can successively locate the other end of the Class II wormhole.

C. Seeking Knit Non-Separating Loop Pairs

To detect Class III or IV wormholes, we continue to test

whether a candidate loop l passes through a Class III or IV

wormhole. According to the principles in continuous case, we

seek the knit non-separating loop pair containing l.
The principle is simple, i.e., we conclude whether loop l

is separating or non-separating by checking whether l is one-

sided or two-sided. This can be easily achieved in continuous

settings by flooding two colors from l to its two sides and

checking whether the two colors ultimately meet with each

other. In discrete settings, however, it becomes difficult, as

with only network connectivity information, we cannot distin-

guish the two sides of l. We cannot locally determine a node

is on which side of l by solely connectivity.

We propose corresponding countermeasures to address the

issue above. We first flood from loop l and construct a shortest

path tree rooted at l. Each node is thus aware of its shortest

distance to l. Γa(l) denotes the set of nodes within a hop to l.
Indeed, as Figure 8 shows, we let nodes in Γa(l) keep silent,

separating the shortest path tree into two parts corresponding

to the two sides of l. We let each node within Γa,b(l) delivers

its specific color down to successive nodes. The color is

represented by its node ID or a randomly generated number.

The color value is first flooded within Γa,b(l). During flooding,

the smallest color value suppresses other color values. Then

along the shortest path tree, the dominant color value is

delivered and inherited by every node. In our implementations,

we set a = 2 and b = 4. After the colors spread over the

network, different colors classify the nodes in the network

into at least two types, as Figure 6 (d) shows. We then verify

whether the nodes with different colors neighbor to each

other by exchanging the color information among neighboring

nodes. If there does exist such a pair, loop l is one-sided. There

are two paths from the pair of nodes to loop l through the two

components of different colors, and accordingly the two paths

can constitute a loop l′. l and l′ compose a knit non-separating

loop pair, as the pair of single-line and double-line loops found

in Figure 6 (d). We then conclude that there is at least a Class

III or Class IV wormhole on l or l′.
Figure 6 (e) displays the testing result against a separating

loop formed in Figure 6 (a) due to the noise in finding accurate

candidate loops. The loop separates the network into two parts,

which confirms to be a two-sided. The loop, however, differs

from the loops in Figure 6 (d), and it can be verified to be

contractible loop by the local communication. Thus there will

be no wormhole reported in Figure 6 (e).

Figure 6 (f) displays a candidate loop formed by a Class

IV wormhole. As such a Class IV wormhole is topologically

indistinguishable from a bridge across the void hole, the loop

is also tested to be separating. Our approach cannot detect such

a type of wormholes, neither any other topological approaches.

VI. LIGHT-WEIGHT APPROACHES FOR WORMHOLE

DETECTION

In previous sections, we characterize the topological impacts

of the wormhole, and propose the fundamental wormhole

detection approach. This method can detect all wormholes that

are detectable in terms of topology, as discussed in Section IV.

In order to maximize the detection capability, this fundamental

topological method has its inherent complexity on protocol

design and implementation. In this section, we consider how

to strike a proper balance between sophisticated capabilities

and ease of implementation. Based upon the understanding of

the topological impacts of wormholes, we tailor our funda-

mental detection method and accordingly propose derivative

light-weight topological detection approaches to suit different

requirements.

To maximize the detection capability, topological wormhole

detection methods have to attempt to explore some global
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Fig. 9: Geometric and topological Wormcircle methods.

information, and have inherent complexity on protocol im-

plementation. If we relax the objective of maximizing the

detection capability of a topological method, i.e., leaving

Class III and IV wormholes aside, we likely expect a low-

complexity distributed or localized topological method with

trade-off detection capability. We next customize our protocol

to detect Class I and II wormholes efficiently with little global

collaboration or only local operations.

A. Geometrical Wormcircle

We present the simplified method, called geometrical Worm-
circle, focusing on detecting Class I and II wormholes. Sim-

ilarly, we introduce the idea of Wormcircle in the continuous

domain, and extend it into discrete networks. Consider an

example shown in Figure 9 where one Class I wormhole

resides on the surface. We select a random root point s,

and run a continuous Dijkstra shortest path algorithm [29],

as shown in Figure 9 (a). Each point thereafter is aware of

its shortest geodesic paths to the root. Our main idea is to

explore the structure of geodesic isolines, as the thin curves

depicted in Figure 9 (a). Specifically, let d(x, y) denote the

geodesic distance between x and y on the surface S. A ρ-
level isoline I(s, ρ) = {x ∈ S| d(x, s) = ρ} is the set of

points whose distances to root s are equal to ρ. The bold-

line circle and double-line curves in Figure 9 (a) show two

isolines of different levels. We can see that the double-line

isoline contains two connected branches, an arc and an circle

in the above example. We call the isoline circle around one

wormhole endpoint wormhole circle. Wormhole circles are

specific symptoms caused by wormholes. If we can detect the

wormhole circles, we then locate the wormhole accurately.

Geometrical Wormcircle detects wormhole circles through

exploring the geometrical characteristics of wormhole circles.

We need to differentiate it from the legitimate isoline circles

around the root point. The bold-line circle in Figure 9 (a) is

a legitimate isoline circle that is not affected by wormhole in

this example. For the legitimate d-level isoline circle C in the

plane, its perimeter is |C| = 2πd. For the wormhole circle

Cw with the same isoline distance d, however, its perimeter

|Cw| = 2π(d − d0) is much smaller than the expected length

2πd, where d0 is the distance from the import endpoint of

the wormhole to the root. We can validate and apply such

an observation from continuous domain in discrete networks,

i.e., to trace the perimeters and distance of the isoline circles

from the root. We then obtain a distributed algorithm to detect

the wormhole circles with connectivity information, as shown

in Figure 9 (b). The procedures of tracing isoline circles

are mostly similar with that of finding a skeleton circle in

Section V-B. We skip the details here due to space limitations.

The single-line and double-line loops in Figure 9 (b) depict

the discovered discrete isoline circles. After detecting the

isoline circle, we can estimate the perimeter of the circle and

compares it with its isoline level to determine whether or not

the detected isoline circle is a wormhole circle. As mentioned

in the continuous case, for a legitimate d-level isoline circle C,

the perimeter-level ratio γ = |C|/d between perimeter |C| and

level d is 2π. In the discrete network, we qualify a legitimate

circle by validating its perimeter-level ratio. The legitimate

ratio is required to be greater than a threshold τ (in our most

experiments, we find that setting τ to a constant slightly less

than 2π, e.g. τ = 5 < 2π, is a proper choice). Through testing

perimeter-level ratio, we detect the wormhole circles denoted

by double-line loops in Figure 9 (b). On the contrary, the bold

single-line loops around the root node are legitimate because

their perimeters are compliant to their isoline distance level.

B. Topological Wormcircle

Geometrical Wormcircle only needs to build one global

shortest path tree, and thus reduce the complexity of fun-

damental method greatly. Geometrical Wormcircle, however,

is not perfect because its effectiveness is influenced by the

selection of the tree root. There are mainly two types of

failure cases for geometrical Wormcircle. First, when the two

endpoints of a wormhole are of nearly equal hop counts to the

root node, there will be no wormhole circles formed around

the wormhole ends. Second, when the outgoing end of the

wormhole locates at the network boundaries (inner or outer),

the wormhole circle is split by network boundaries and will not

be detected by geometrical Wormcircle. An intuitive solution

to handle such cases of geometrical Wormcircle is to launch

it multiple times independently with multiple different root

nodes. Thinking about this idea, we consider the extreme case

that each node gathers its localized connectivity and build

a localized tree rooted at itself, and propose the improved

Wormcircle method, called topological Wormcircle, relaxing

the dependence on the location of the root of the tree. As

mentioned before, finding the proper wormhole symptom is

the key to design a good countermeasure. Topological Worm-

circle aims at making each node use only local connectivity

information. The major challenges of topological Wormcircle

design lie in how to explore the local impacts caused by the

wormhole.



We first characterize the local topological features of worm-

holes in the continuous domain, and then explain its practical

implementation in the discrete networks. Let S denote a plane

region attached with one Class I or II wormhole link w.

Let s be an arbitrary interior point in S. Recall that given

a constant ρ, a ρ-level isoline around point s is I(s, ρ) =
{x ∈ S| d(x, s) = ρ}, i.e., the set of points of distances to

s equal to ρ. When ρ is small enough, supposing s is not

located in one endpoint of the wormhole link w, the isoline

I(s, ρ) of s will contain only one connected branch, being

a loop. Clearly, this loop is separating. We then analyze how

the Class I and II wormholes affect the structures of an isoline

locally. As a comparison, if s is located in one endpoint of the

wormhole link w, it is not difficult to see that isoline I(s, ρ)
will contain more than one connected branches. Specifically,

if wormhole link w is of Class I, I(s, ρ) will comprise two

cycles; if wormhole link w is of Class II, I(s, ρ) is composed

of two or more connected branches and one of them is a cycle.

Based on the above observations, we use the local structures

of an isoline of one point to determine whether or not there

exists a wormhole within the neighborhood of the point.

To summarize above observations, if local isoline I(s, ρ)
of a point s contains at least one loop and has more than

one connected branch, we can determine that there exists at

least one wormhole endpoint within the region enveloped by

I(s, ρ). This is the key idea of the topological Wormcircle.

We can implement the principle of topological Wormcircle

in the discrete wireless networks, as shown in Figure 9, where

a Class I and Class II wormhole resides in the upper and

lower network respectively. Considering the big-dot node s
located at one endpoint of a Class I wormhole in the upper

network shown in Figure 9 (e). Node s collects its k-hop

neighboring connectivity, and locally computes the isoline

around it. The local isoline of s contains two big connected

components. Node s further can find one isoline loop from

each component, denoted by the bold line. Similarly, we also

can find two connected components for the Class II wormhole

in the lower network when node s resides at one endpoint

of a Class II. We here skip the details about the procedures

of tracing isoline circles in discrete networks that have been

discussed previously.

C. Remarks on Wormcircle Methods

The Wormcircle methods can be regarded as simplified

instances of fundamental approach. We here focus on the case

of geometrical Wormcircle method. The case of topological

Wormcircle can be explained in the similar way.

Geometrical Wormcircle explores the geometrical charac-

teristics of wormhole circles to detect wormholes. Suppose

we cut along the double-line wormhole circle in Figure 9 (a).

The surface preserves to be connected because the two filled

gray regions are connected by the wormhole, while cutting

along the legitimate bold-line isoline circle in Figure 9 (a) will

divide the surface into two parts. The topological difference

between legitimate isoline circles and wormhole circles is

that a legitimate isoline circle is a separating loop while a

wormhole circle is non-separating.

We use Figures 9 (c) and (d) to illustrate procedures

of fundamental approach for the same example in Fig-

ures 9 (a) and (b). Fundamental approach shares the same

first step of building a shortest path tree with geometrical

Wormcircle. For convenience of intuitive understanding, we

describe the further procedures of fundamental approach both

in continuous domain and discrete network domain shown in

Figures 9 (a) and (b), respectively. The light bold line shows

the cut locus that contains only one cut path, and two thin

lines and bold-line wormhole link compose a triangle, which

forms a candidate loop. To detect Class I or II wormholes,

the fundamental approach tries to seek a simple closed curve

in the neighborhood of the candidate loop that crosses the

candidate loop in odd times. These procedures validate that

this candidate loop is an independent non-separating loop,

and is thus associated with a degenerated genus introduced

by the Class I or II wormholes. We therefore are ready to

paraphrase geometrical Wormcircle in the language of funda-

mental approach, i.e., a wormhole circle is an non-separating

loop that corresponds to the simple closed curve that is in the

neighborhood of the candidate loop and crosses the candidate

loop one time.

Wormcircle approaches focus detecting Class I or II worm-

holes in a light-weight manner and largely simplify the fun-

damental approach greatly. In particular, to detect all possible

wormholes, previous fundamental method needs to perform

further operations beside building the shortest path tree, in-

cluding finding cut locus and candidate loops, testing the non-

separating loops, and etc. Those further operations involve

collaboration among the entire network, such as flooding

different colors, which dominates the overall cost of computing

and communication complexity. Wormcircle approaches cut

down the construction of cut locus and candidate loops, and

replace those further operations with light-weight operations,

and thus simplify our algorithm dramatically while preserving

the detection effectiveness for Class I and II wormholes.

Hence, Wormcircle approaches make a beneficial trade-off

between simplicity and effectiveness in topologically detecting

wormholes.

VII. EVALUATION

In this section, we examine the performance of this design

in randomly generated networks and analyze the cost and

security.

A. Performance Analysis

We conduct extensive simulations under various situations

to evaluate the effectiveness of our approach. By varying node

placement, node density, as well as the number and type of

wormholes inside the network, we evaluate the rate of suc-

cessfully detected wormholes. We compare our fundamental

topology deviations based approach (denoted as FTD) with the

packing number based approach (denoted as PN) proposed by

Maheshwari et al. [12], which is to the best of our knowledge

the only distributed method using solely node connectivity to

detect wormholes.
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Fig. 10: Detection rates against different node degrees and types of wormholes in the perturbed grid distribution
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Fig. 11: Detection rates against different node degrees and types of wormholes in the random distribution.

1) Simulation Setup and Evaluation Approach:
In our simulations, the basic network layout is the same as

the example shown in Figure 6, i.e., a 600m by 600m square

area with multiple holes inside. We fill the area with a network

of 3200 nodes and embed a single wormhole in the network.

During our simulation we test our approach on various network

fields of different shapes, and obtain consistent results. We

omit presenting the results due to the space limitation. We

evaluate the algorithms with parameters in three orthogonal

dimensions, node distribution model, network density, and

wormhole classification. By default, for each set of simulation,

we conduct 100 runs with different node generations and

report the average.
Node distribution model. In our simulations, nodes are

deployed using two models: random placement and perturbed
grid. In the random placement model, nodes are randomly de-

ployed over the field, corresponding to an ad hoc organization

of a network, e.g., dropping sensors from an airplane. Such a

model contains inherent irregularities in the network topology.

In the perturbed grid model, we deploy nodes on a grid and

then perturb each node with a random shift. This model has

been adopted [12, 32] to approximate manual deployments of

nodes, corresponding more closely to planned organizations

of a wireless network, e.g., organizing nodes in an indoor

environment. Perturbed grid uniformly fills sensors into the

field.
Network density. We evaluate the rate of successfully de-

tected wormholes by varying the average node degree. We

use basic UDG model to build the network. Note that our

detection approach does not enforce the compliance to specific

communication models for the network. Using UDG model is

for the convenience of comparison with PN approach, which

strictly relies on the UDG model. We vary the communication

radius of sensors to yield average node degrees from 6 to 20.
Wormhole Classification. As mentioned before, different

types of wormholes are of different difficulty to detect. We

verify the effectiveness of our approaches about wormholes in

varied classes. In each run, we randomly place a wormhole

with different Classes inside the network with at least 8 hop

span. More concretely, the nodes in the network locating near

on the borderline of network deployment area are regarded as

boundary nodes [32]. One wormhole endpoint is considered

to locate at the boundary of the network, if this endpoint

only allures nodes on the boundary. The wormhole endpoint is

regarded to be inside the network if all nodes neighboring to

this endpoint are distant to network boundary above k hops,

e.g., 4 hops.
2) Analyzing the Results:
The results are displayed in Figures 10 and 11. Let us

first consider the results in the network of perturbed grid

model in Figure 10. For Class I wormholes both our approach

and the packing number based approach can achieve nearly

100% detection rate even under low node density. For the

cases of Class II and III wormholes, the packing number

based approach bears relatively low detection rate, while our

approach rapidly approaches 100% detection rate when the

node degree rises above 9. This is mainly because in packing

number based approach, the probability of the appearance of

forbidden structures around Class II and III wormholes reduces

dramatically when wormhole endpoints locate on network

boundaries. Instead, our approach successfully captures the

global impact of Class II and III wormholes by detecting non-

separating loops (pairs). Further, an interesting behavior can be

observed from Figure 10 (c). The detection rate of Class III in

our approach is independent of the average node degree. This

is due to that the partner loops in the detection of Class III

wormholes is much longer than the locally contractible cycles

in the case of Class I and II. These long cycles can still form

even when the average degree is relatively low.
We then examine the results in the random deployment

model and display the results in Figure 11. For both our

approach and the packing number based approach, the ran-

dom deployment provides slightly lower but still increased

detection rates as the node density increases. For our method,



TABLE I: Message Complexity of Different Approaches

Approaches FTD GW TW PN

Message Complexity O(n3/2) O(n) O(n) O(n)

it approaches nearly 100% when the average node degree in-

creases to 18 for both Class I and II wormholes. Generally, the

performance in random node deployment is not as satisfactory

as perturbed grid, due to more irregularities in the random

deployment. When the node density is small (average node

degree <12), it is difficult for one node to find discrete circles

of sufficiently small sizes to verify the non-separating loops

(pairs) because of the poor connectivity.

B. Cost Analysis

We analyze the message complexity of our fundamen-

tal approach, geometrical Wormcircle (GW), and topological

Wormcircle (TW) approaches, and compare them with PN

approach. Summary of those analytical results is shown in

Table I. It is not difficult to obtain the O(n) complexity for

PN, TW and GW approaches, where n is the total number of

nodes in the network.

We here mainly investigate the complexity of our funda-

mental method. We examine the message complexity in each

step of this method. The first step involves building a shortest

path tree, and has a message complexity of O(n). The second

step is to find cut pairs from the shortest path tree to build

candidate loops. From continuous version of this algorithm

as described in Section IV, we know that there are at most

Ncut = 6(g +d)+3b−3 number of cut paths in a wormhole-

infected surface τ(g, d, b) with genus g, degenerated genus

d and boundaries b. We assume that the original surface

τ0 = τ(0, 0, b0) has a constant b0 number of boundaries and

is mounted a constant N number of wormholes. We know

N = 2g + d + b − b0 from Theorem 2. The number Ncut of

cut paths is then bounded in a constant less than 6(N + b0).
Correspondingly, the number of cut pairs in the discrete case

is bounded in DNcut, where D is the network diameter. From

each cut pair, one candidate loop is constructed at the cost

of message complexity O(D), based on two conditions as

discussed by Wang et al. [32], including checking the least

common ancestor of the pair of nodes etc. The message com-

plexity of building all candidate loops is O(D2). Each node in

a candidate loop can utilize the localized connectivity to check

Class I or II wormholes. Hence, the message complexity of

detecting all Class I or II wormholes is O(D2). To detect Class

III wormholes, our protocol needs flooding two colors from

the two sides of each cut path to find knit non-separating loop

pairs. The total message complexity in this step is O(Dn).
After we aggregate these message costs together and set the

approximation order of network diameter D to be
√

n, we

obtain the message complexity of our fundamental approach

O(n3/2).

C. Discussion of security issues

Having examined the performance and cost of our protocol,

we discuss the security of this wormhole detection method

and possible security enhancements for our detection protocol.

This section mainly gives heuristic arguments and a rigorous

analysis is left as future work.

During the execution of this protocol, data packets are

generated and transmitted among nodes to detect wormholes.

If data communication over each hop is secured, our protocol

is secured accordingly. We mainly need to protect the data

transmission over wormhole links. If the wormhole attacker

performs packets tunneling reliably and honestly, data packets

can be transmitted over wormholes as normal links. The

adversary, however, can implement unauthorized malicious

attacks on the packets passing wormholes, i.e. overhearing,

corrupting, replaying, injecting, or dropping messages in the

communication channel. In the following, we present specific

security mechanisms to ensure the correctness of this protocol.

We first discuss the assumptions and security objectives. In

wormhole attack model described in Section III-A, we adopt

the Dolev-Yao attacker model and consider wormhole attacks

as outsider attacks, the same as most previous works [4–12].

We assume the reasonable security level to outsider attacks,

i.e., the network is provided with key management mecha-

nisms to establish symmetric keys between each sender and

its receivers, e.g., through key pre-distribution or agreement

techniques during network bootstrap. The requirements (or

objectives) of data security over wormhole links are basically

the same as those well defined in the traditional networks,

i.e., data confidentiality, authenticity, freshness and availability.

More specifically, those requirements can be further elaborated

in wormhole attacks as follows. Confidentiality means that

we prevent adversaries from learning information about the

messages passing wormholes. Authenticity and integrity re-

quire preventing unauthorized parties from participating in the

network. Legitimate nodes are able to detect messages from

the unauthorized attacker and reject them. If the adversary

modifies a legitimate message passing wormholes, the receiver

is able to detect such a tampering. Freshness ensures that the

messages passing the wormholes are just-in-time instead of old

messages replayed by the adversary. Availability means that

the expected data communication over wormhole links can be

successfully performed instead of being dropped.

We can employ the security mechanisms in both link

layer and the upper layers to achieve those objectives in

the above. For example, MiniSec [25] can efficiently achieve

authenticated encryption with low energy and communication

consumption, i.e. 1.1% overhead in energy and 8.3% overhead

in communication, respectively. In MiniSec, data authenti-

cation is achieved by attaching the message authentication

code (MAC) to a packet. The receiver uses shared secret

key and nonce to recompute the MAC of the packet and

matches it with the received MAC to validate the packet.

Data confidentiality is provided by a cryptographic encryption

scheme with a probabilistically unique initialization vector

for each encryption. MiniSec provides both authentication

and secrecy using block-cipher encryption mode with a non-

repeating counter. Meanwhile, every node maintains a record

of the last value from every sender it receives, it rejects

packets with an equal or smaller counter value. Therefore,

an attacker cannot replay any packet that the receiver has

previously received. MiniSec is able to provide the three



important properties of secure communication in the link

layer: confidentiality, authenticity, and freshness. With such

a setting, the adversary still can drop data packets in the

link or physical layers. Such drops, however, are blind and

they can be easily recovered by techniques of reliable routing

[27], e.g. retransmission for unstable links, or be explicitly

identified as unreliable links through reputation based schemes

[14, 20, 34].

VIII. CONCLUSIONS

Wormhole attack is a severe threat to wireless ad hoc and

sensor networks. Most existing countermeasures either require

specialized hardware devices or have strong assumptions on

the network, leading to low applicability. In this work, we fun-

damentally analyze the wormhole issue by topology method-

ology and by observing the inevitable topology deviations

introduced by wormholes. We generalize the definition of

wormholes, classify the wormholes according their impacts on

the network and propose a topological approach. By detecting

non-separating loops (pairs), our approach can detect and

locate various wormholes and relies solely on topological

information of the network. To the best of our knowledge,

we make the first attempt towards a purely topological ap-

proach to detect wormholes distributedly without any rigorous

requirements and assumptions. Our approach achieves superior

performance and applicability with the least limitations.
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