Protecting Privacy in Mobile, Social Network, & Cloud Computing

Xiang-Yang Li

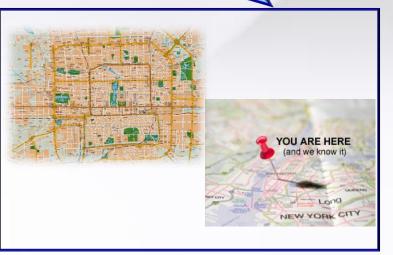
Illinois Institute of Technology, Tsinghua University, EMC Visiting Chair Professor <u>www.cs.iit.edu/~xli</u> <u>xli@cs.iit.edu</u>

Results collaborated with: Taeho Jung, Lan Zhang, ShaoJie Tang, and many other students

Acknowledgments

Students

Outline: Part I



Trace and Location

Picture and Image Search

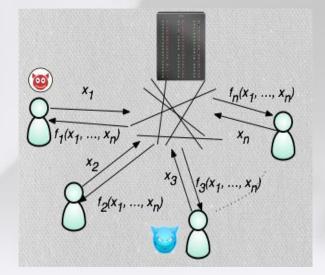
Mask

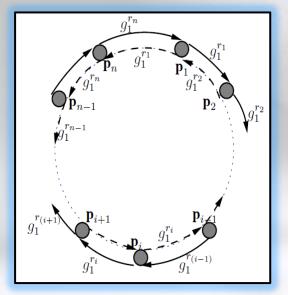
P3

Blur

Smart Devices

Outline: Part II

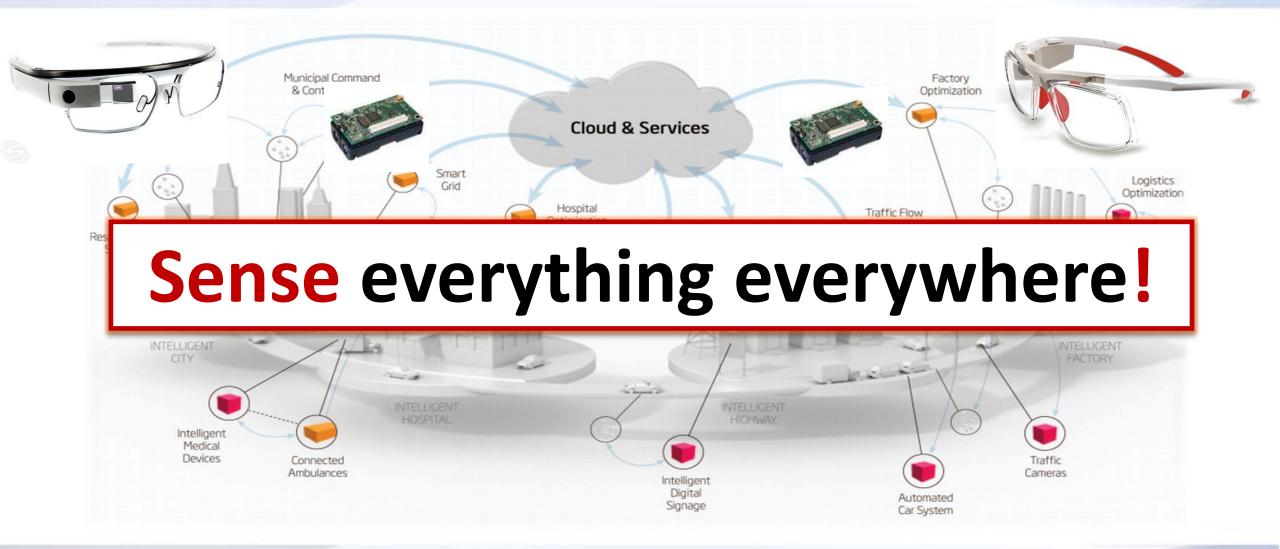




Theoretical Framework: Efficiency, Privacy, and Verifiable

Motivation: Mobile, Social, Cloud and Privacy

Internet of Things



Mobile Social Networks

⁸ motivation

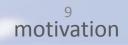
Online User Behavior

From

- Online payment
- Online browsing
- Electronic Medical record

Infer everything everywhere!

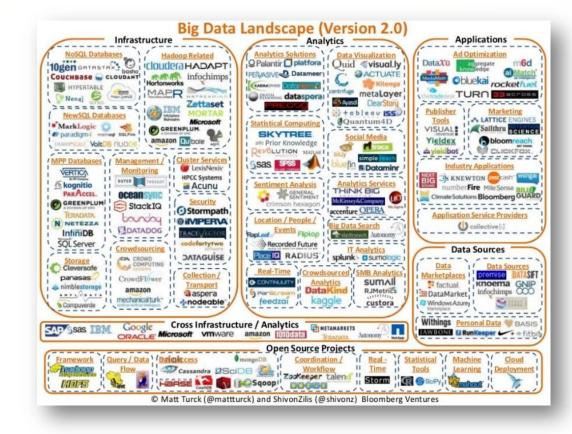
- Infer
- Your age
- Your profession
- Your income
- Home address
- emotions



VISA

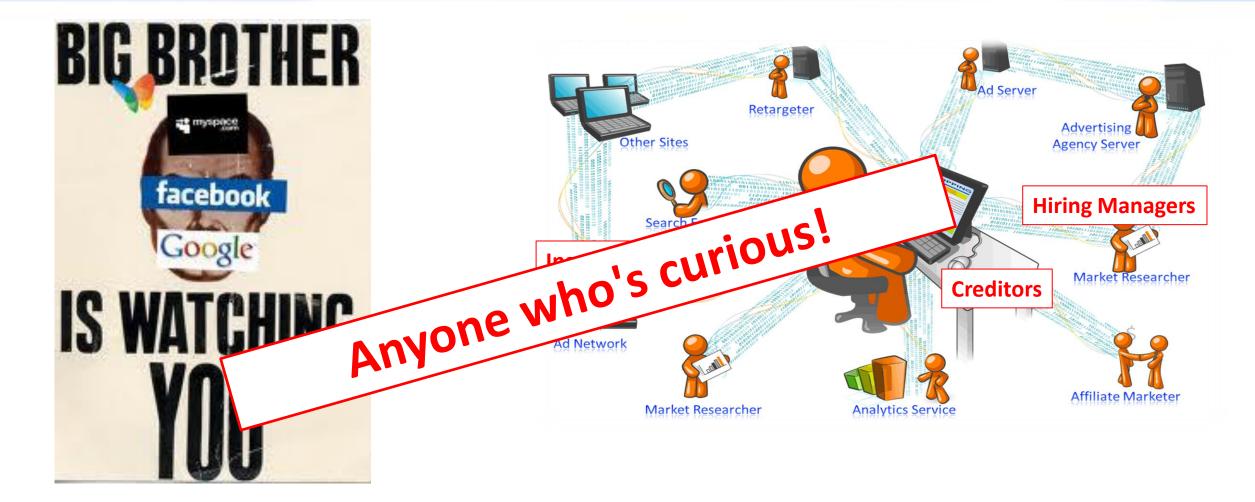
More risk in big data

- 12 TB of Tweets
- 1G photos,10M videos per week
- 5 million trade events
- **3PB camera** data per day in Beijing
- 2.7ZB data created in 2012 =2,700,000,000TB

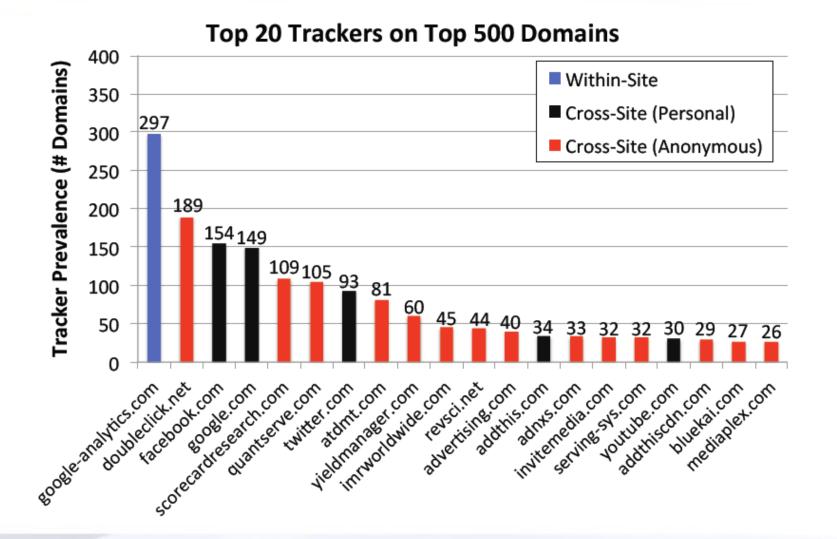


Big data may increase the power and prevalence of privacy leakages.

Who can observe those?

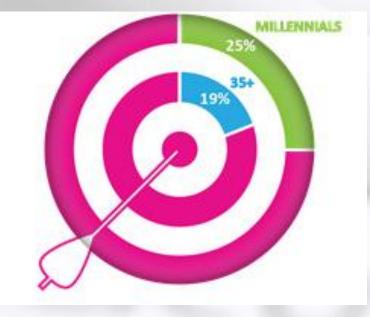


Not Trustworthy Companies



Snowden Effect: We do care, a lot!

 > 70%: No one should ever be allowed to have access to my personal data or web behavior.



 < 25%: ok with trading some of personal information in exchange for more relevant advertising.

Scary?

"So what?"

Introduction

Countermeasures??

Lock Everything?

• Example : computing and search functionalities disabled.

¹⁶ motivation

Lock Everything?

Utility

Privacy

Our Goal

Privacy Issues in Real World

Protections on Data in mobile social networks & mobile devices

Privacy in Personal Devices

Privacy in Location Data

Privacy in Image Data

Privacy in Location Data

Trace Leakage in Crowdsoured Map

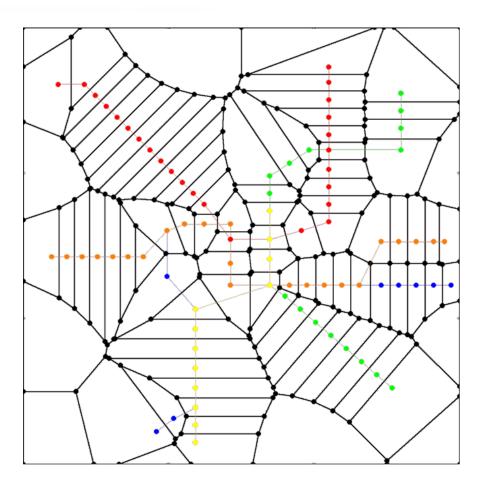
Crowdsourcing using location data reported by users.

Privacy-preserving High-quality Map Generation with Participatory sensing (IEEE INFOCOM 2014)

Trace from location data

²⁴ in Real World

Make it impossible!



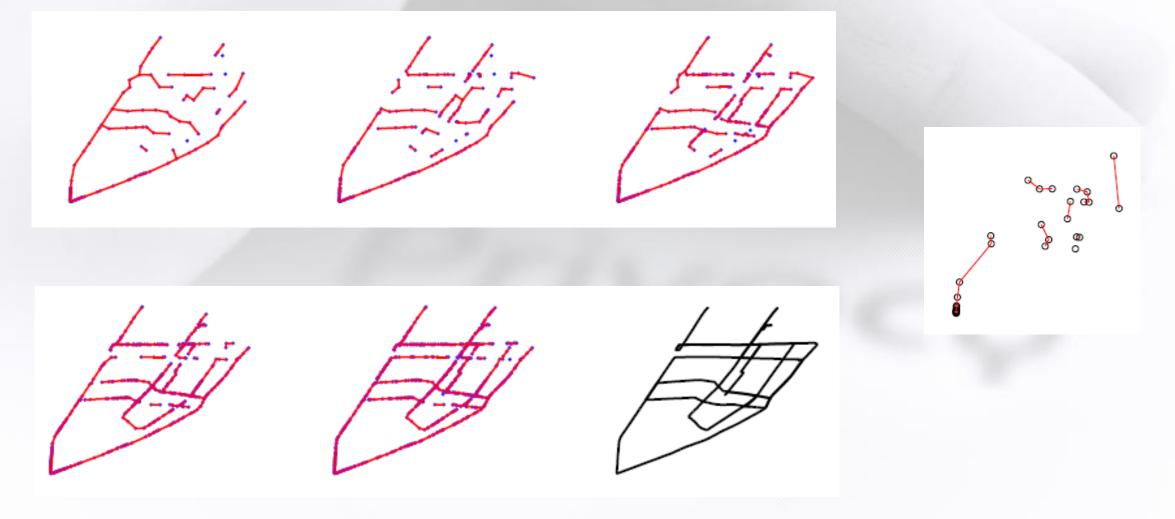
- Exploit the Voronoi diagram's properties and curve-reconstruction properties
- Manipulate the data publication
 - data density related to **curvature** of the route

in Real World

Make Route reconstruction become an **unsolvable** problem!

Privacy-preserving High-quality Map Generation with Participatory sensing (IEEE INFOCOM 2014)

Good accuracy, Good Privacy



Location, Location, Location

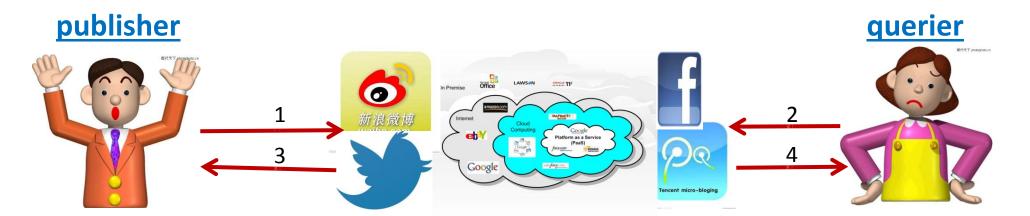
Location leakage in LBS



Search Me If You Can: Privacy-Preserving Location Query Service (IEEE INFOCOM, 2013)

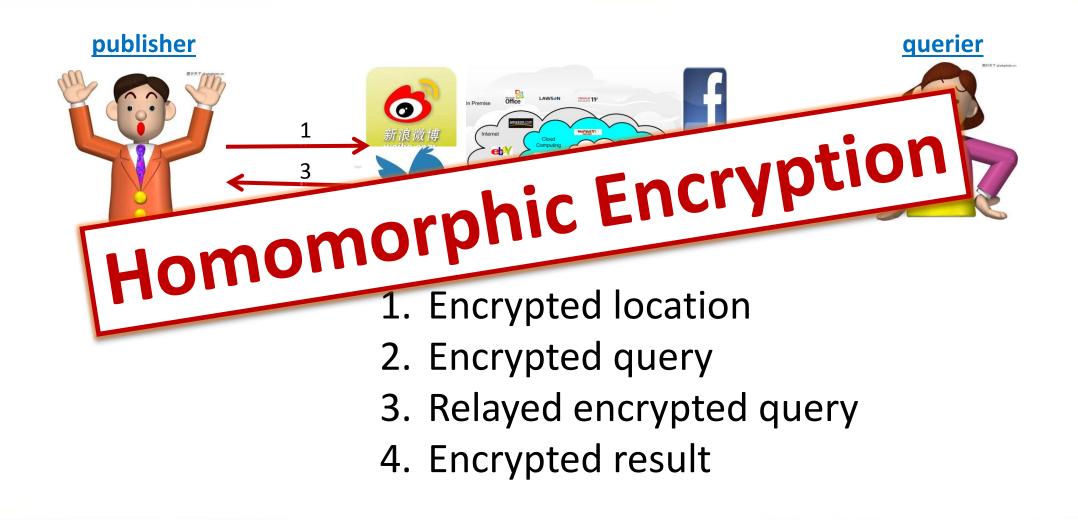
²⁸ in Real World

Our Design Strategy



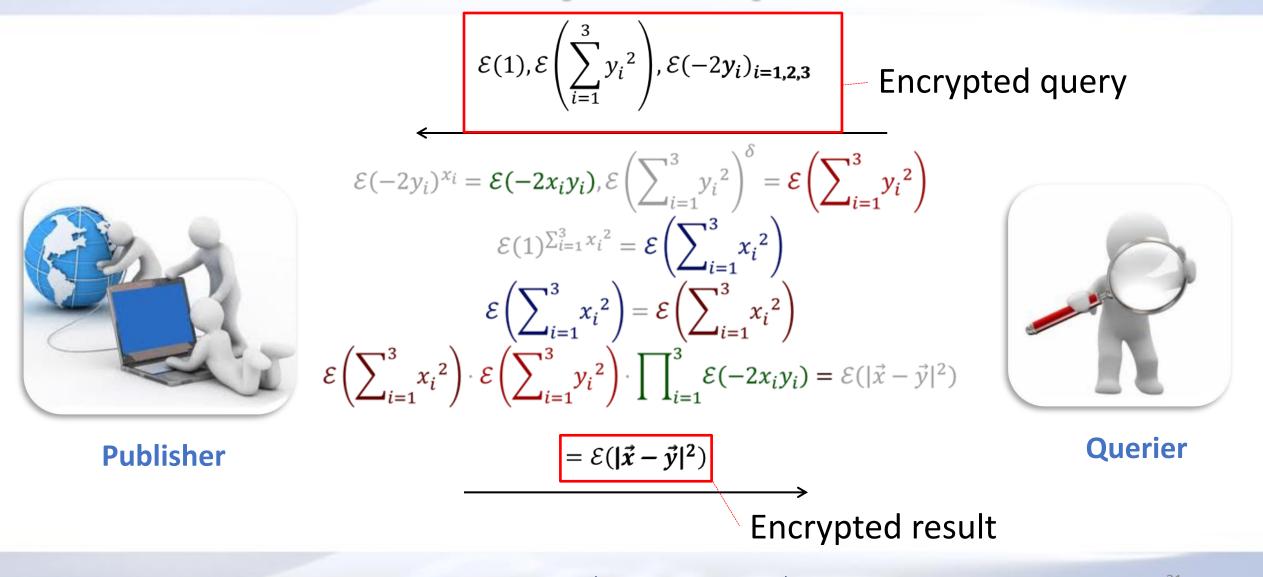
Search Me If You Can: Privacy-Preserving Location Query Service (IEEE INFOCOM, 2013)

Big picture of the solution



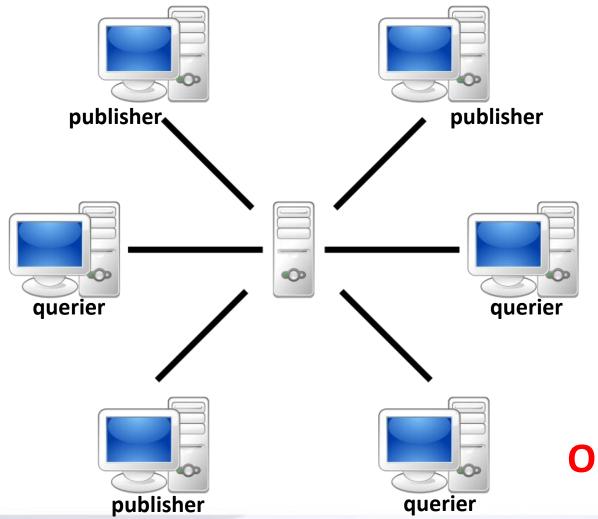
Search Me If You Can: Privacy-Preserving Location Query Service (IEEE INFOCOM, 2013)

Homomorphic Operations



Search Me If You Can: Privacy-Preserving Location Query Service (IEEE INFOCOM, 2013)

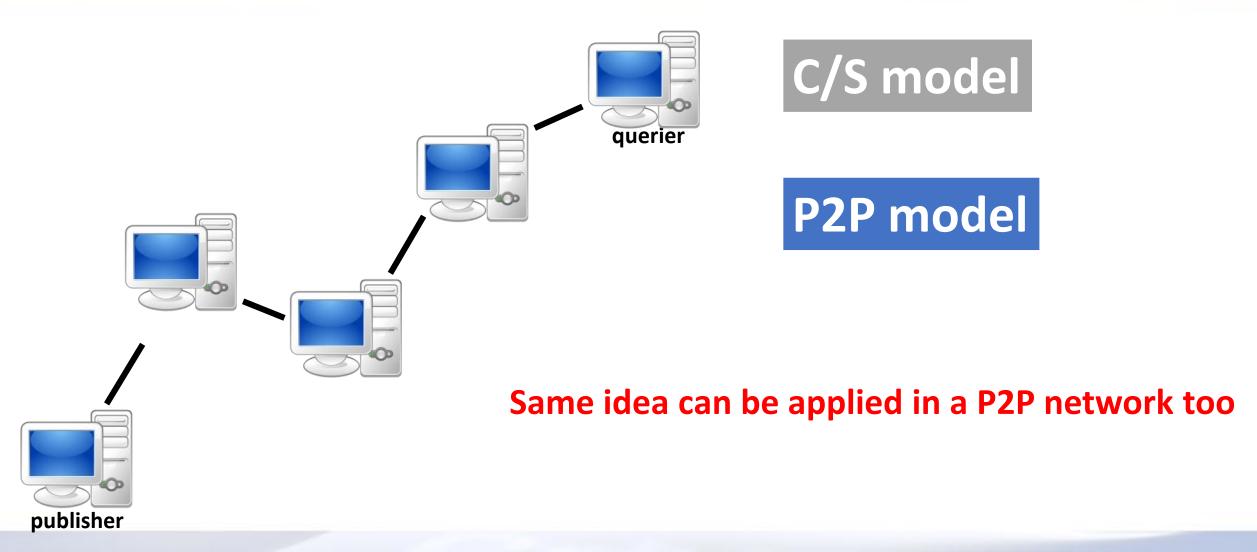
System Model



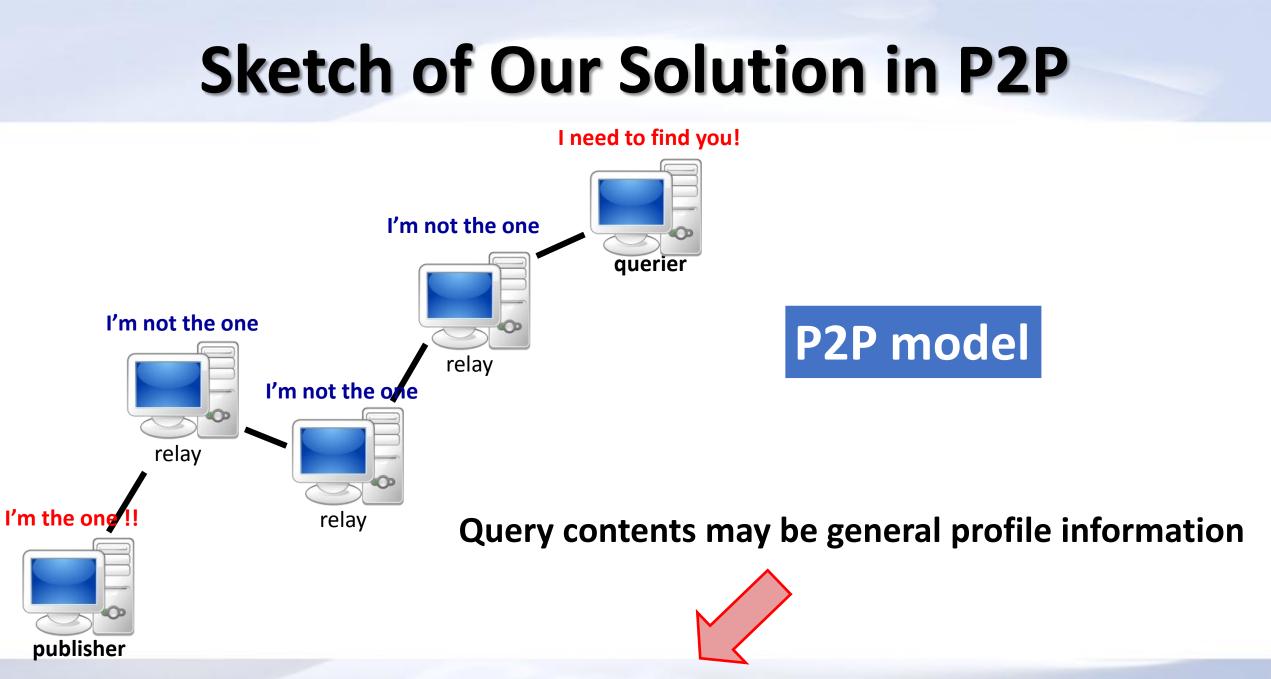
Our solution relies on C/S model

Search Me If You Can: Privacy-Preserving Location Query Service (IEEE INFOCOM, 2013)

Different System Model

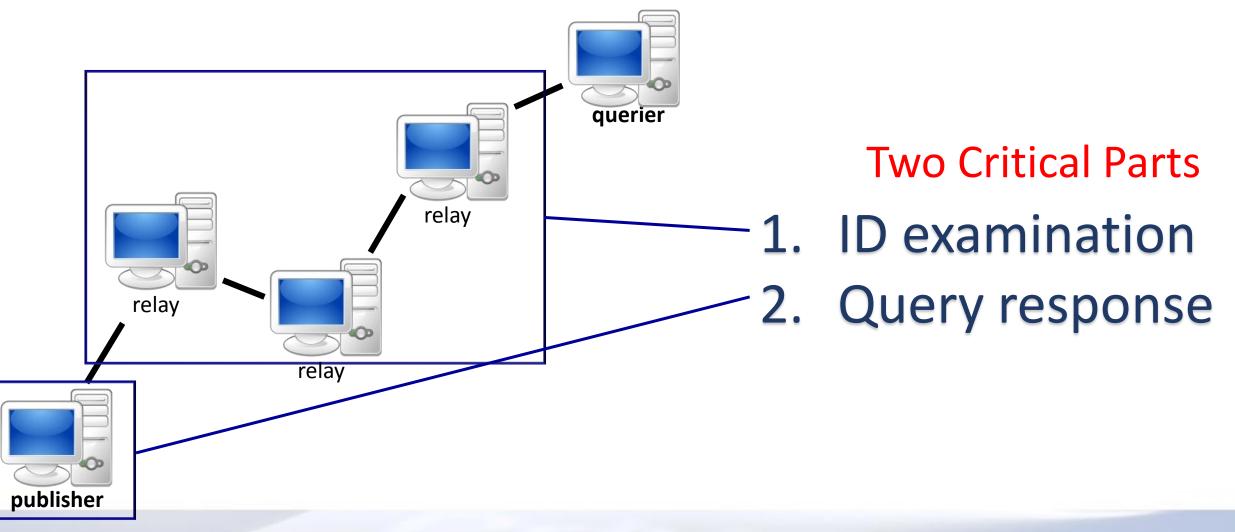


Message in a sealed bottle: Privacy preserving friending in social networks (IEEE ICDCS 2013)



Message in a sealed bottle: Privacy preserving friending in social networks (IEEE ICDCS 2013)

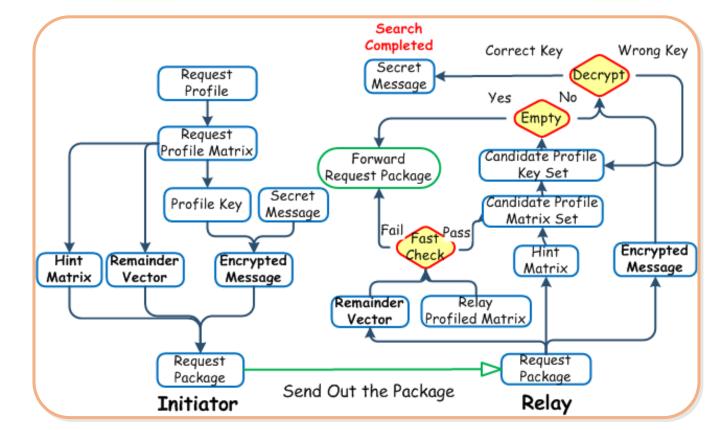
Sketch of Our Solution in P2P



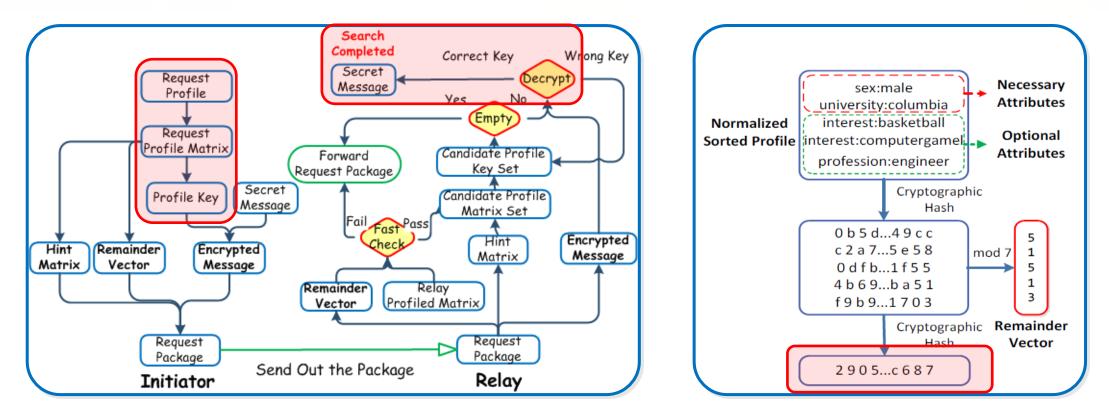
Message in a sealed bottle: Privacy preserving friending in social networks (IEEE ICDCS 2013)

Basic Mechanism

- Use common attributes
 between matching users to
 encrypt a message with a secret
 channel key
- Only a matching user can decrypt the message efficiently.
- In one round simultaneously
 - privacy-preserving matching
 - secure channel construction

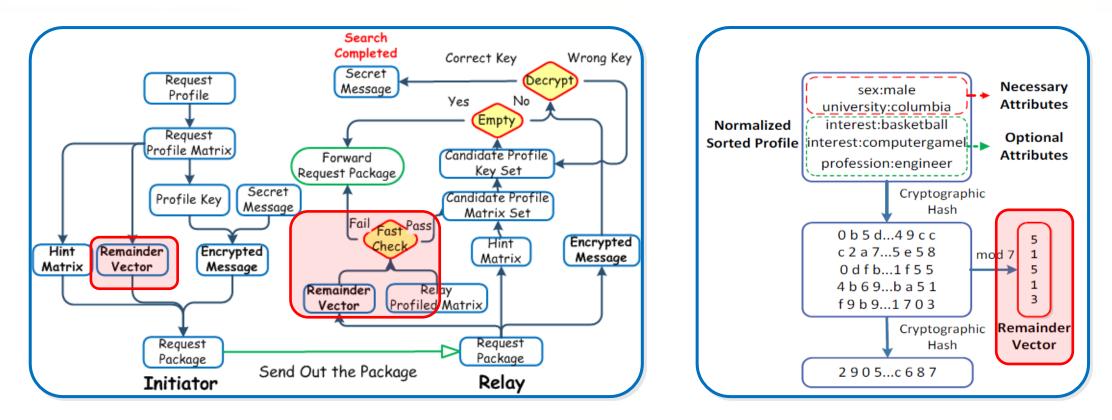


1. Profile Key Generation



- Profile key is generated from request profile.
- Used to encrypt communication key.

2. Remainder Vector



 Remainder vector of the profile vector is yield for fast exclusion by a large portion of unmatched persons.

Message in a sealed bottle: Privacy preserving friending in social networks (IEEE ICDCS 2013)

Privacy in Location Data

Privacy in Image Data

> ³⁹ in Real World

Privacy in images

Captured

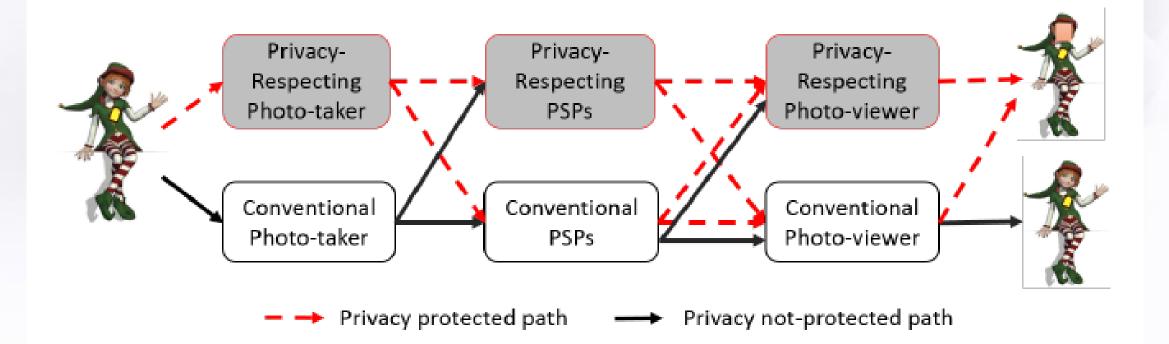
Strangers may be in my photo \leftrightarrow I may be in stranger's photo as well! **Too many cameras these days...**

Current protection against cameras

Google Glass Is Banned On These Premises

stopthecyborgs.org ⊚€§∋

Privacy Concern Expressed & Respected



Our Interactive solution

1. Photo taken

Interactive solution

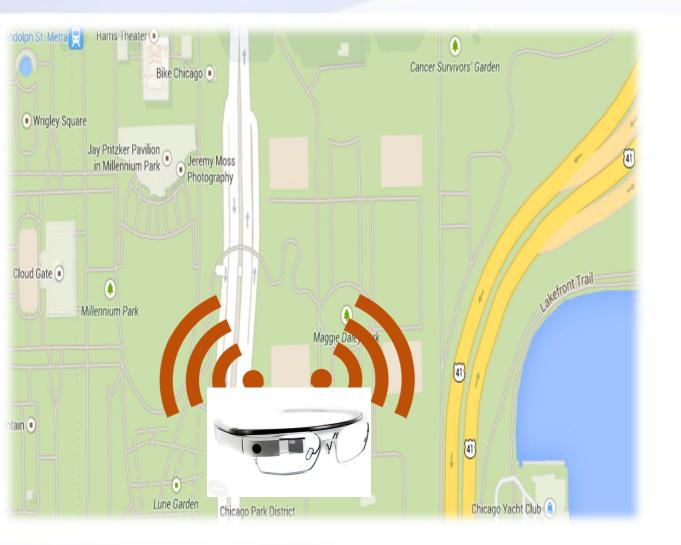
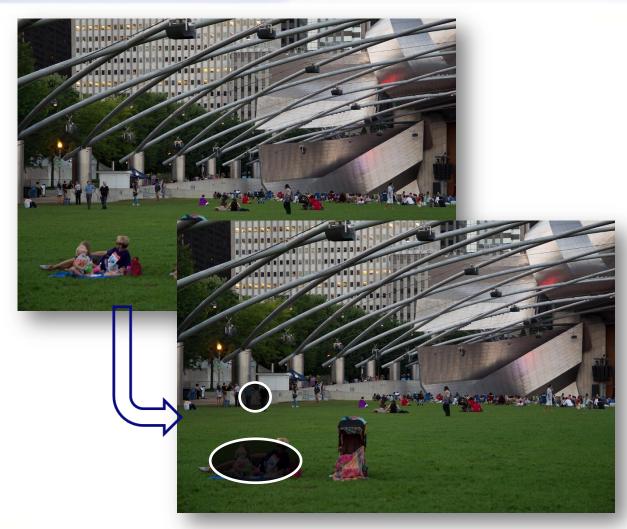


Photo taken Broadcast

Interactive solution

- 1. Photo taken
- 2. Broadcast
- 3. Privacy Request
 - Sending his photo using face features

Interactive solution



- 1. Photo taken
- 2. Broadcast
- 3. Privacy Request
- 4. Sanitize Image

Various sanitization in reality (eg: blur)

Evaluation setting

- Networking workshop with ≥ 50 people in $200m^2$
- 10 volunteers, 4 female 6 male, acted as invisible users and photographer
 - Took photos freely in 1 day
 - 208 photos are taken
 - 1326 pedestrian detected (belong to 42 people)
 - 412 faces are detected

Diversity and consistency

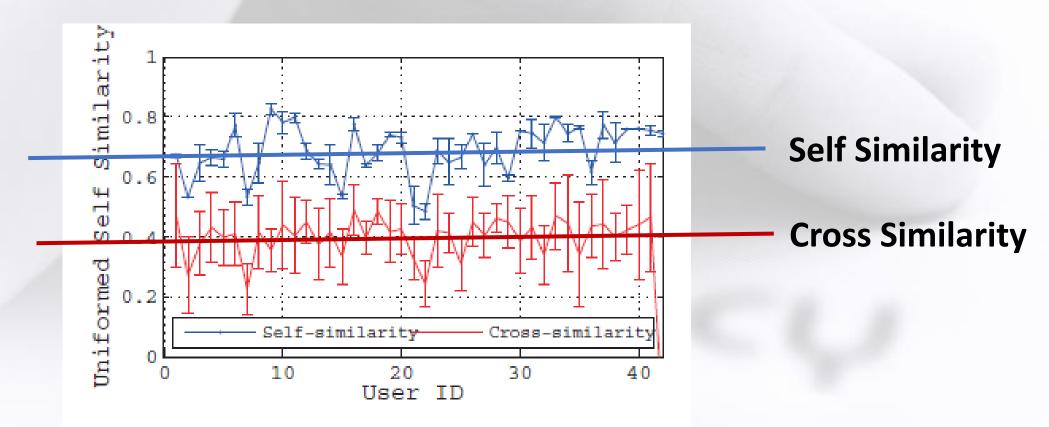
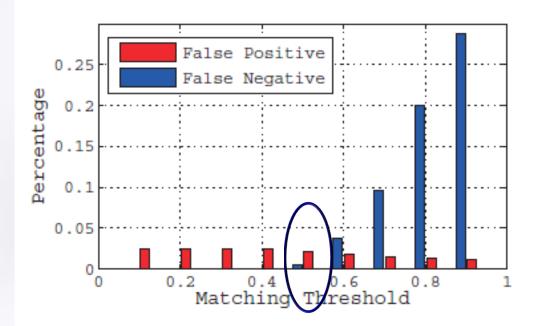


Figure 7: Portrait similarity variances.

Performance



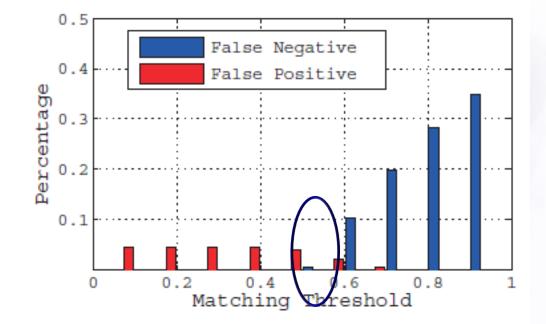


Figure 8: FP and FN in basic scheme

Figure 9: FP and FN in advanced scheme

Communication overhead is less than 1KB for each neighbor Less than 10KB for the photographer

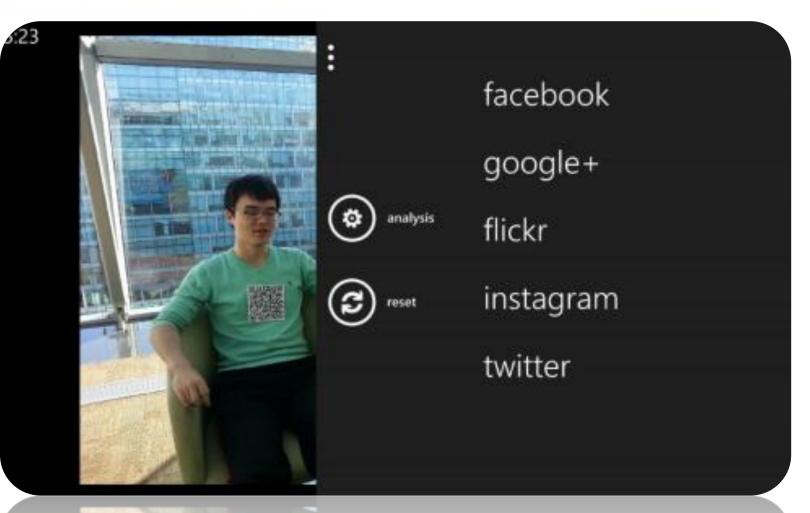
Non-interactive solution



1. Photo taken

Privacy.Tag: Privacy Expressed and Respected (ACM SenSys 2014)

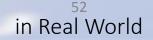
Non-interactive solution



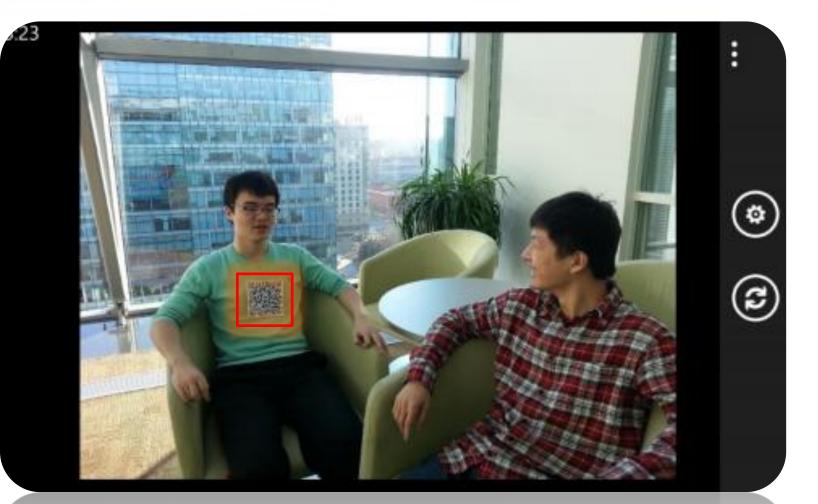
1. Photo taken

2. Privacy Seeker?

Privacy.Tag: Privacy Expressed and Respected (ACM SenSys 2014)



Non-interactive solution



1. Photo taken

- 2. Privacy Seeker?
- 3. Enforce privacy Conceal image: blur

Privacy.Tag: Privacy Expressed and Respected (ACM SenSys 2014)

Search on concealed images?

Typical image search

Face search

Image feature search

Metadata search

Concealing with image search enabled

1. Image separation

2. Search key encryption & access control

3. PP Vector search using HE

Mask (Black)

P3 (T:20)

Blur (Kernal=0.5w)

Publish public part, control secret part

Concealing with image search enabled

1. Image separation

2. Search key encryption & access control

3. PP Vector search using HE

Key is required to conduct 'search'

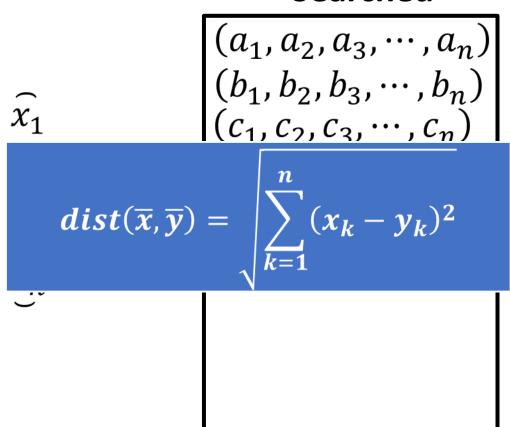
Concealing with image search enabled

Searched

1. Image separation

2. Search key encryption & access control

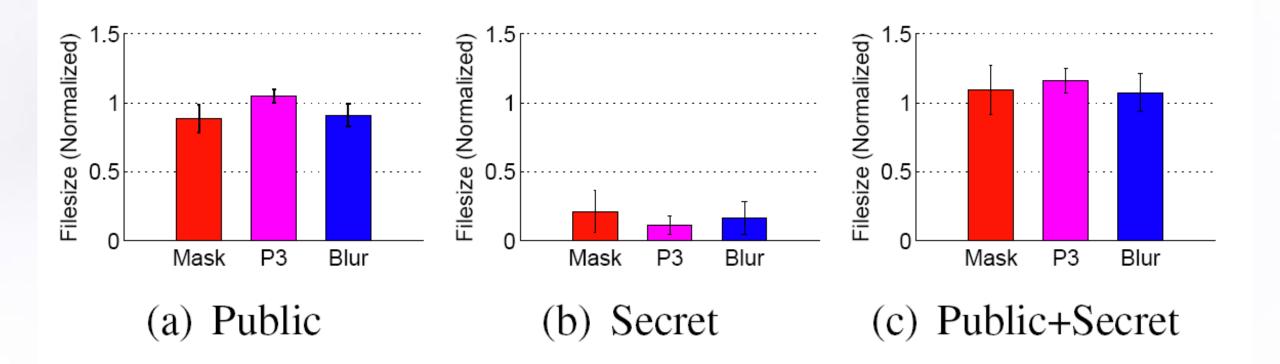
3. PP Vector search using HE



⁵⁸ in Real World

Performance: Image File Size

• 3000 real-life photos.



Performance: Processing Time

(b) Image search (average run time)

Laptop (sec)		
SouTu	64 dimension	128 dimension
Encrypt Vector (owner)	1.02	2.01
Encode Vector (querier)	0.55	1.12
Decrypt Distance	0.016	0.016
SouTu _{bin}	64 dimension	128 dimension
Encrypt Vector (owner)	0.51	1.03
Encode Vector (querier)	< 0.001	< 0.001
Decrypt Distance	0.016	0.016
Smartphone (sec)		
SouTu	64 dimension	128 dimension
Encrypt Vector (owner)	1.85	3.91
Encode Vector (querier)	0.64	1.37
Decrypt Distance	0.024	0.024
SouTu _{bin}	64 dimension	128 dimension
Encrypt Vector (owner)	0.56	1.33
Encode Vector (querier)	< 0.001	< 0.001
Decrypt Distance	0.024	0.024

Client side

• About 0.5s per image using labtop

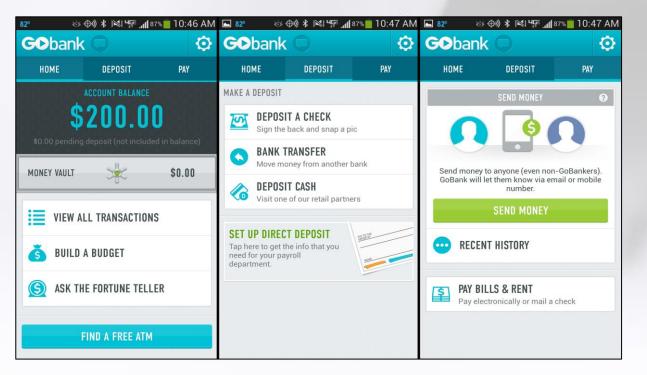
- Cloud Side
 - About 0.2s per image using labtop

Privacy in Personal Devices

Privacy in Location Data

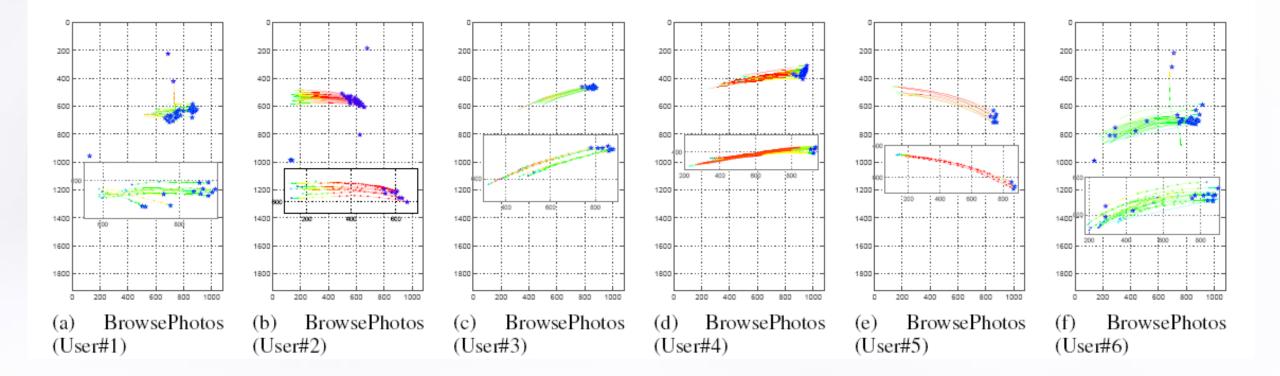
Privacy in Image Data

Continuous and Oblivious Authentication

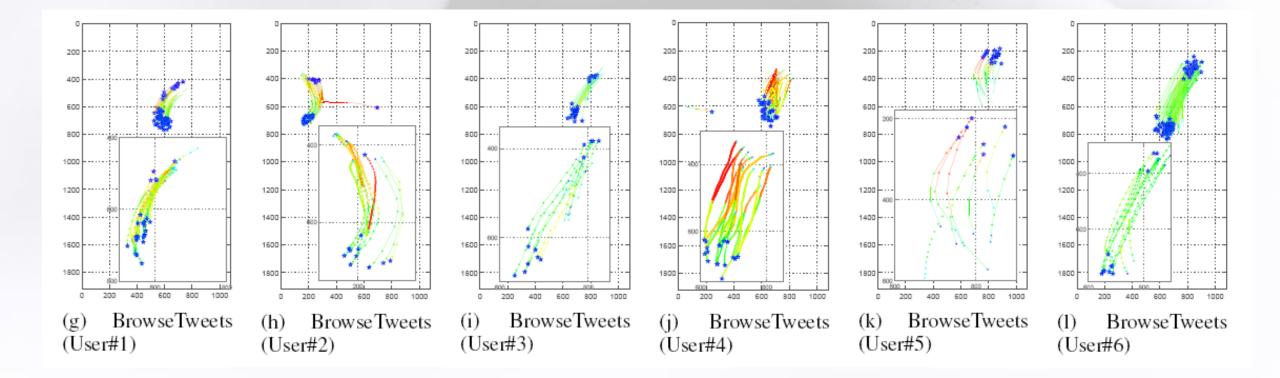


Biometric feature as evidence

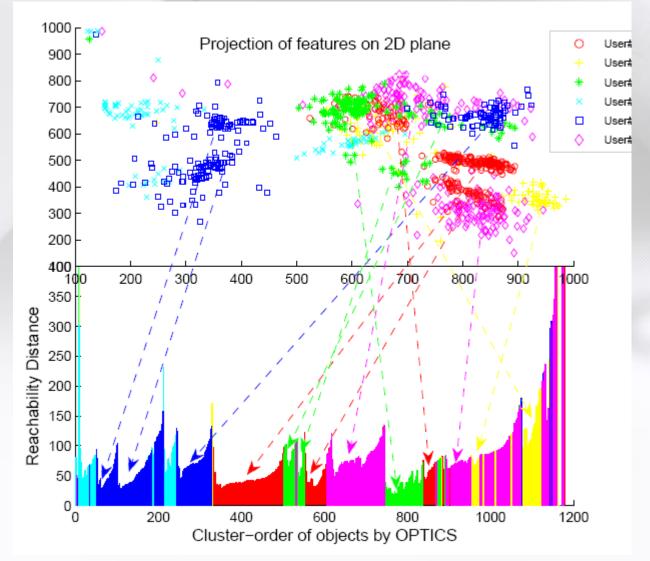
Micro-behavior difference



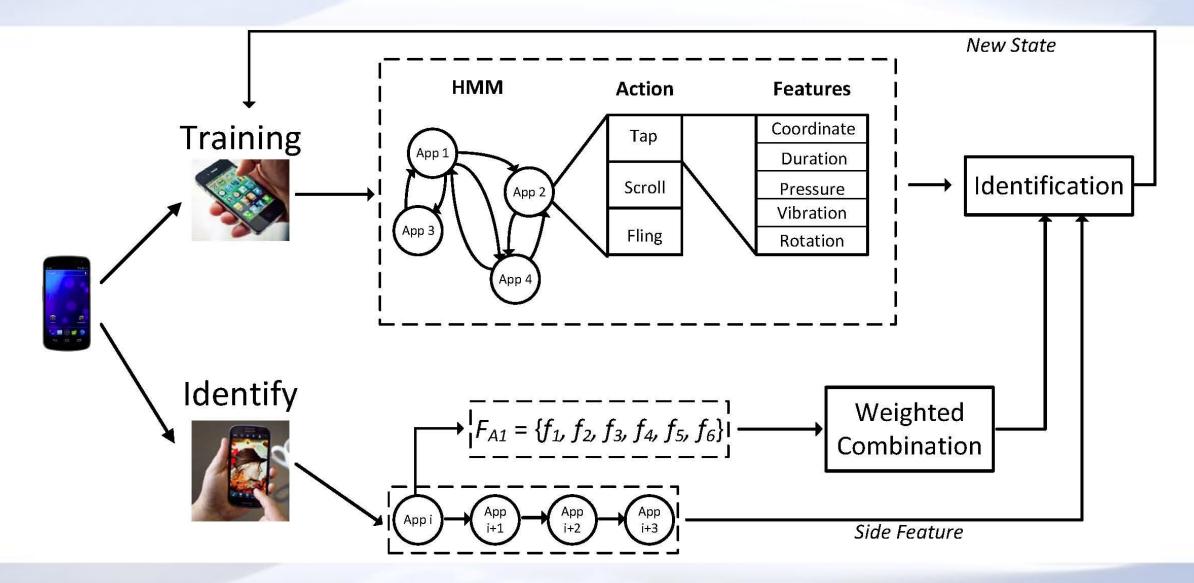
Micro-behavior difference



Diversity and consistency

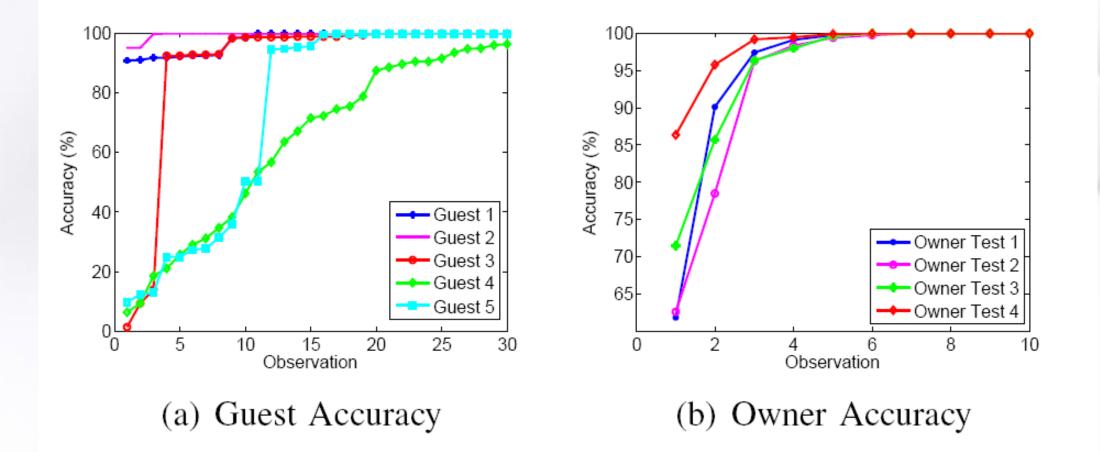


Flow of our predictive model

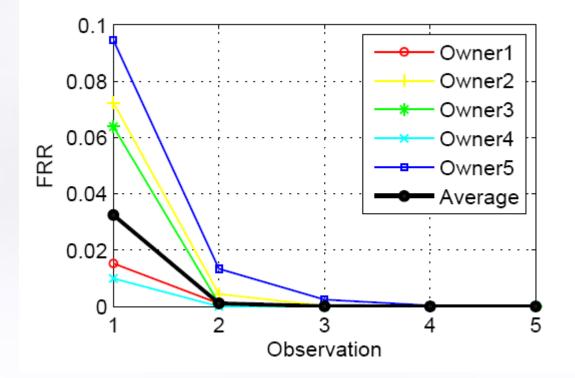


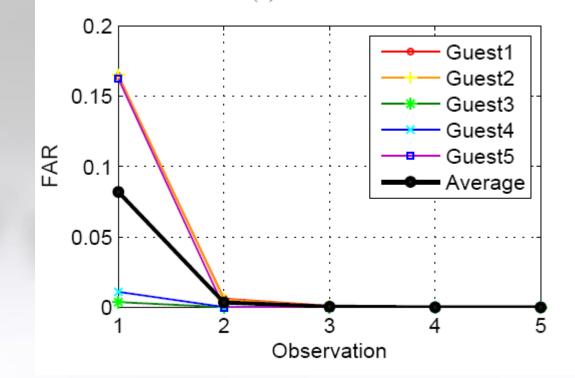
ACM MobiCom 2013, Poster

Accuracy performance



Rejection and acceptance accuracy





Theoretic Frameworks for Data Sharing

Data mining everywhere

- Calculating average salary of a company?
- Finding the most frequent events, places?
- Analyze statistics on sensitive individual data?

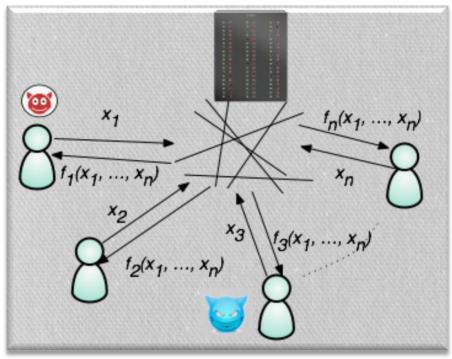
Privacy-Preserving Data Aggregation without Secure Channel: Multivariate Polynomial Evaluation (IEEE INFOCOM, 2013) Collusion-Tolerable Privacy-Preserving Sum and Product Calculation without Secure Channel (IEEE TDSC, 2014)

71 Theories

Modeling Privacy-Preserving Data Mining

Evaluate
$$f({x_1, \dots, x_n}) = \sum_{k=1}^m c_k \left(\prod_{i=1}^n x_i^{d_{ik}}\right)$$
 without disclosing \mathbf{x}_i to each other

General polynomial



72

Theories

Privacy-Preserving Data Aggregation without Secure Channel: Multivariate Polynomial Evaluation (IEEE INFOCOM, 2013) Collusion-Tolerable Privacy-Preserving Sum and Product Calculation without Secure Channel (IEEE TDSC, 2014)

Adversaries

Malicious semi-active adversary

- Deviate from the protocol specification
 - •Without affecting final result.
 - Eg: passive rushing attacker

Privacy-Preserving Data Aggregation without Secure Channel: Multivariate Polynomial Evaluation (IEEE INFOCOM, 2013) Collusion-Tolerable Privacy-Preserving Sum and Product Calculation without Secure Channel (IEEE TDSC, 2014)

73

Existing approaches (practice & academic)

 Cryptographic approaches SMC, secure secret sharing 	slow
 Change the data precision & accuracy Perturbation 	approximated
 Value distortion (e.g. differential privacy in databate Add dummy data, dummy users 	
 Change the data owners 	data is open &
 Anonymization 	de-anonymization works

Our contributions

 Unsecured channel: Our communication channels are open to anyone, and we can still achieve privacy and security.

Theoretically provable privacy

 Low computation overhead: Running time (computation only) is 10-1000 times less than SMC.

Theories

Simple observation

Inspired by the observation :

• Polynomial = Multiplications (*) & Additions (+)

Design two novel protocols

• Multi-party Product & Sum calculation protocols

76

Theories

Product Protocol

$$\prod x_i \Rightarrow \prod (x_i R_i) = \prod x_i (\prod R_i)$$

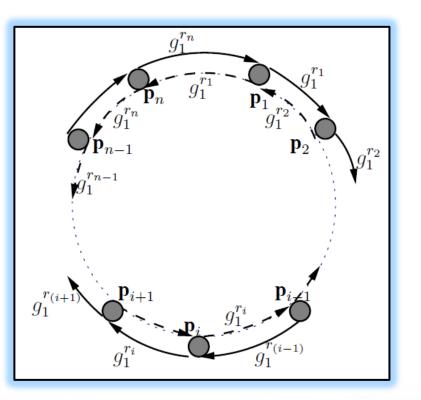
• Every participant *i* computes

Random mask

Random, selected by i

 $R_{i} = (g^{r_{i+1}}/g^{r_{i-1}})_{r_{i}}$ $= (g^{r_{i}r_{i+1}}/g^{r_{i-1}r_{i}})$

• $\prod x_i R_i = \prod x_i$



77

Theories

Integers,

modulo P

Sum Protocol

$$(1+p)^{x} = \sum_{i=0}^{x} {\binom{x}{i}} p^{i} = 1 + xp \pmod{p^{2}}$$

$$\Rightarrow \frac{\prod(1+p)^{x_{i-1}}}{p} \pmod{p^{2}}$$

$$= \frac{(1+(\sum_{i=0}^{x} p))^{-1}}{p} \pmod{p^{2}} \xrightarrow{\text{Use product}}_{\text{protocol}}$$

Privacy-Preserving Data Aggregation without Secure Channel: Multivariate Polynomial Evaluation (IEEE INFOCOM, 2013) Collusion-Tolerable Privacy-Preserving Sum and Product Calculation without Secure Channel (IEEE TDSC, 2014)

Put All Together

 Combine product and sum protocls to achieve general multivariant polynomial operation:

$$f(\{x_1, \cdots, x_n\}) = \sum_{k=1}^m c_k \left(\prod_{i=1}^n x_i^{d_{ik}} \right)$$

- Provable privacy preservation
 - Entropy, hardness

Privacy-Preserving Data Aggregation without Secure Channel: Multivariate Polynomial Evaluation (IEEE INFOCOM, 2013) Collusion-Tolerable Privacy-Preserving Sum and Product Calculation without Secure Channel (IEEE TDSC, 2014)

79

Run time comparison

FairplayMP by Ben et al. (SMC implementation)

Gates	64	128	256	512	1024
Run time (ms)	130	234	440	770	1394

26 additions in our schemes are equivalent to a 1066-gate circuit.

Our run time : 72.2 microseconds.

80

Theories

In arbitrary user groups

- In previous approaches, we are given a fixed user group.
 - What happens if user group changes?
 - Shall we distribute keys for EVERY different group?
 - NO, too much $(2^N \text{ groups for } N \text{ users})$.
- A protocol that only needs O(N) key space for each user
 - That can be used to evaluate any polynomial among any subgroup of N users.

Inspired by secret sharing!

In Shamir's secret sharing for polynomial y = f(x) of degree k - 1,

• k data points y_i are needed to re-construct it

$$f(x) = \sum_{i} y_{i} l_{i}(x)$$
Lagrange coefficients
$$l_{i}(x) = \prod_{j \neq i} \frac{x - x_{j}}{x_{i} - x_{j}}$$

Theories

• Sharing arbitrary k values \Rightarrow fixed value $f(x_0)$ can be derived

Goal is : $\prod_i R_i = C$

- Core idea
 - We want R_i 's such that $\prod R_i x_i = C \prod x_i$ for some constant C
 - We can distribute y_i , $l_i(x_i)$ \Rightarrow Any k set of $\langle y_i, l_i(x_i) \rangle$'s will lead to the same $f(x_0)$

- Proper initialization among n people
 ⇒ Any subgroup of k people can privately share their data.
- Security parameters must be carefully chosen to guarantee semantic security.

Detailed Protocol Description

- Key distribution
 - Let user *i* possess $EK_i = \left(q^{(2)}(i), q^{(3)}(i), \dots, q^{(n-1)}(i)\right)$ having n-2 parameters.

Secret parameters

- Data publication
 - When a polynomial evaluation is needed among m users
 User i publishes C(x_i) = x_iH(t)^{q^(m-1)(i)l_i(0)}

 x_i masked by secret parameter

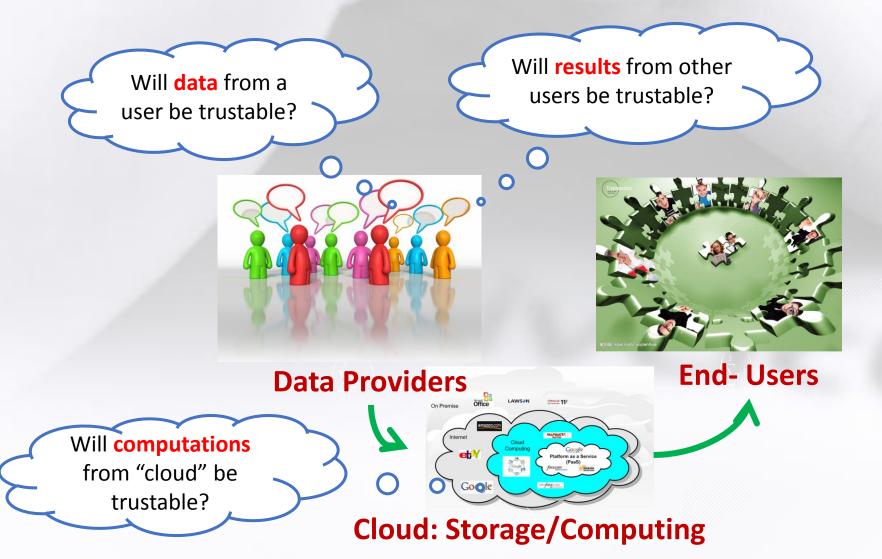
Theories

Data aggregation

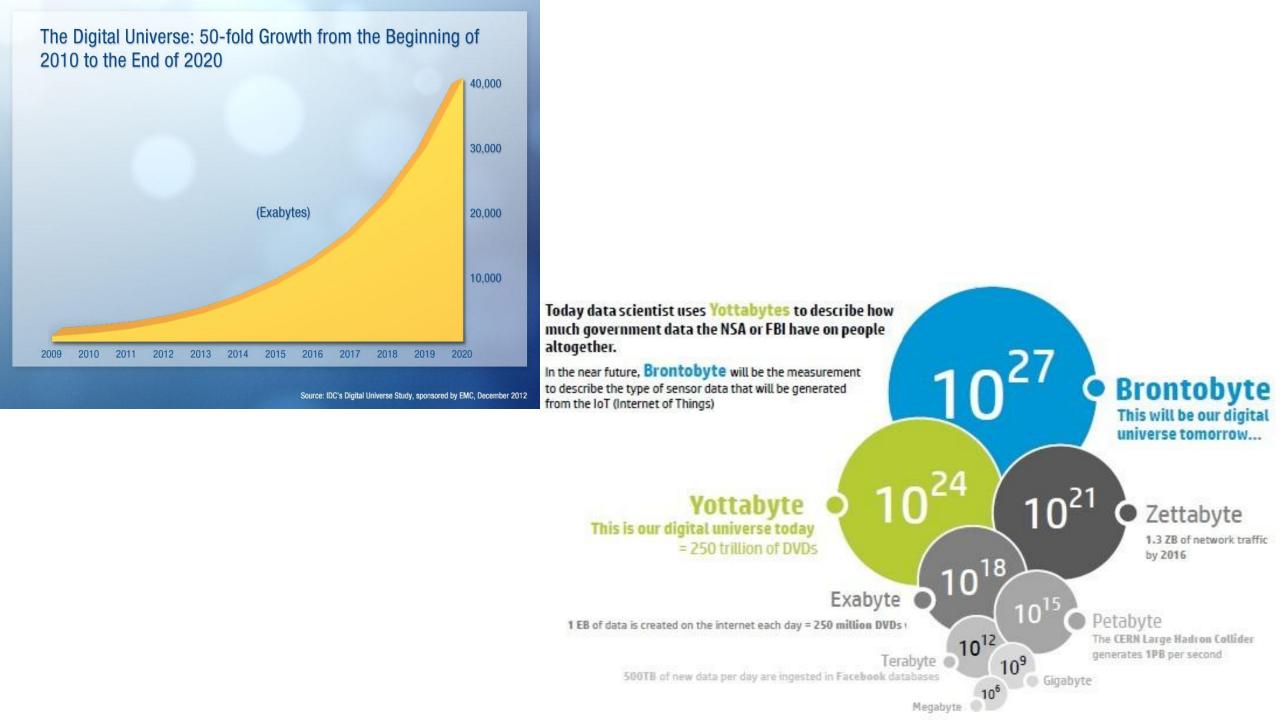
$$\prod_{i} C(x_{i}) = \left(\prod_{i} x_{i}\right) \cdot H(t)^{\sum_{i} q^{(m-1)}(i)l_{i}(0)}$$

$$= \left(\prod_{i} x_{i}\right) \cdot H(t)^{q^{(m-1)}(0)}$$
(Polynomial interpolation)
If $q^{(m-1)}(0)$ is set as 0, the entire product is equal to $\prod x_{i}$

Illegally altered inputs?



Challenges: Secure yet Efficient Computation for Big Data Era



Efficiency, Efficiency

Computing is not powerful enough

Effi

as

 Security often requires efficiency drop

Even our own methods

- Even our super-efficient microsecond-level operation may be unacceptable.
- Needless to talk about other millisecond-level or even secondlevel operations.

New Security/Privacy Metrics?

Current security guarantees

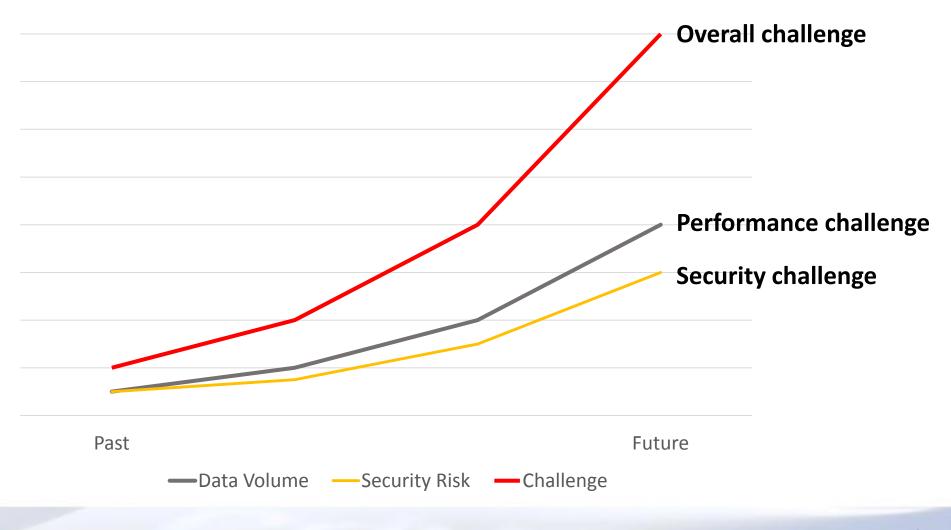
Randomness or indistinguishability

may bacama absolata

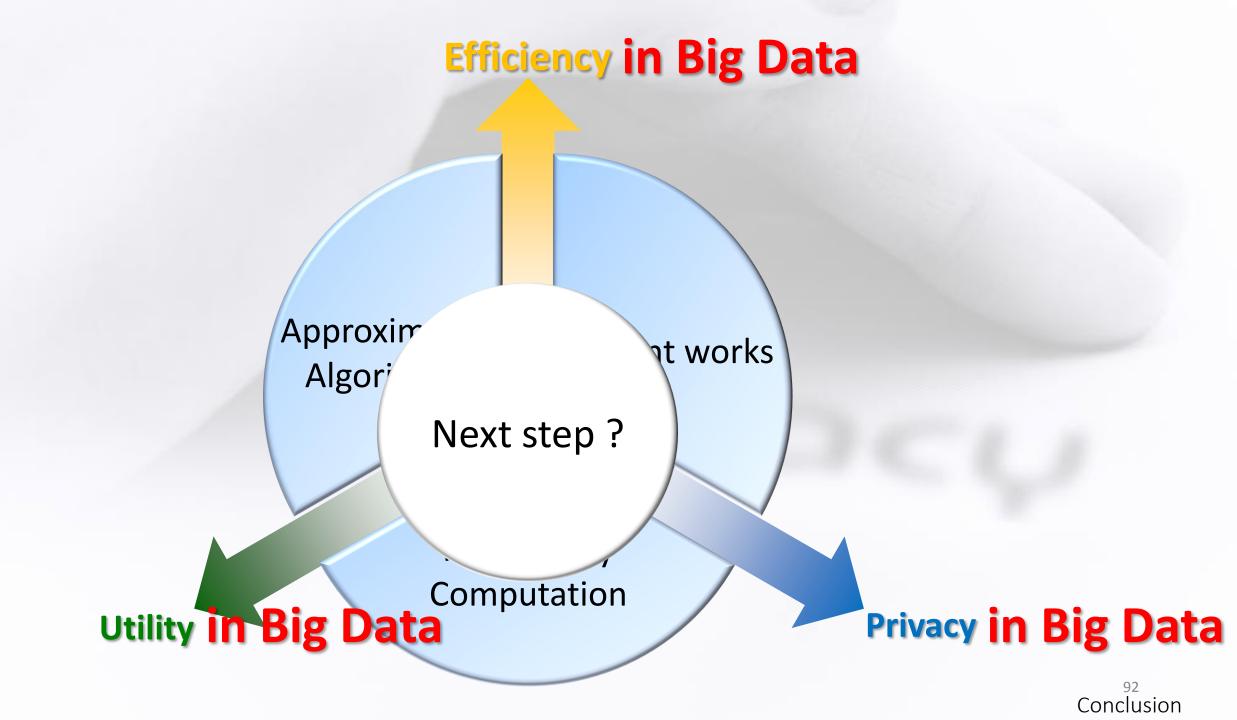
Current security guarantees are not enough!

90 Conclusion

Still a very long way to go...



⁹¹ Conclusion



Thanks for you attention!

Thank you !

Xiang-Yang Li (李向阳) Professor, IIT, USA <u>www.cs.iit.edu/~xli</u>

www.cs.iit.edu/~winet xli@cs.iit.edu