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Abstract—Mobile crowdsensing is a new paradigm in which a crowd of mobile users exploit their carried smart phones to conduct

complex sensing tasks. In this paper, we focus on the makespan sensitive task assignment problems for the crowdsensing in mobile

social networks, where the mobility model is predicable, and the time of sending tasks and recycling results is non-negligible. To solve

the problems, we propose an Average makespan sensitive Online Task Assignment (AOTA) algorithm and a Largest makespan

sensitive Online Task Assignment (LOTA) algorithm. In AOTA and LOTA, the online task assignments are viewed as multiple rounds of

virtual offline task assignments. Moreover, a greedy strategy of small-task-first-assignment and earliest-idle-user-receive-task is

adopted for each round of virtual offline task assignment in AOTA, while the greedy strategy of large-task-first-assignment and earliest-

idle-user-receive-task is adopted for the virtual offline task assignments in LOTA. Based on the two greedy strategies, both AOTA and

LOTA can achieve nearly optimal online decision performances. We prove this and give the competitive ratios of the two algorithms. In

addition, we also demonstrate the significant performance of the two algorithms through extensive simulations, based on four real MSN

traces and a synthetic MSN trace.

Index Terms—Crowdsensing, delay tolerant network, mobile social network, online task assignment
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1 INTRODUCTION

WITH the explosive increase of smartphones and iPads,
crowdsensing has become an appealing paradigm for

collecting sensing data over urban environments. This para-
digm involves a crowd ofmobile users that exploit the sensors
embedded in their carried smart phones or iPads, such as
GPS, camera, accelerometer, digital compass, and so on, to
cooperatively perform some mobile sensing tasks [2]. Since
the mobile users can conduct sensing tasks in a large-scale
urban area without deploying extra devices, crowdsensing
has stimulated a number of attractive applications, such as
urban WiFi characterization, traffic information collection,
map labeling, and so on [3], [4], [5], [6], [7]. So far, some frame-
works, incentive mechanisms, and task assignment schemes
have been designed for crowdsensing, such as in [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20].

In this paper, we focus on the task assignment problem
in the crowdsensing based on Mobile Social Networks
(MSNs). Consider a crowdsensing example, as shown in

Fig. 1. A requester, called Alice, intends to collect the infor-
mation about air quality, traffic flow, and WiFi signal
strength at different time in some urban areas. The whole
information collection is divided into many sensing tasks
according to type, time, and area. The sensing results of air
quality, traffic flow, and WiFi characterization can be
recorded by using the photo, video, and data files, respec-
tively. In this crowdsensing, Alice first assigns the sensing
tasks to some MSN users, such as Bob and David. After hav-
ing performed sensing tasks, these users will send the
results back to Alice. Since sending tasks and returning
results involve large-size data transmissions, they adopt
the short-distance wireless communication technologies,
instead of 3G/4G, so as to save the communication costs.
For example, Alice and Bob encounter frequently, so that
they can communicate with each other via Bluetooth (called
direct encounter). Alice and David might encounter never,
but they can communicate with each other via WiFi net-
works when they visit access points, respectively (called
indirect encounter). In such a crowdsensing system, an
important problem is how the requester assigns the tasks to
other mobile users, so as to minimize the average makespan
of different types of sensing tasks or minimize the largest
makespan of the same type of sensing tasks.

In the above problems, the makespan of a task not only
includes the time of this task being conducted by a mobile
user, but also contains the time of the task being sent from
the requester to this user and the time of the result being
sent back to the requester. Nevertheless, the task can be sent
and the result can be returned, only when the requester
meets the mobile user directly or indirectly. In fact, due to
the mobility of users, it will take some time for the requester
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to meet other users. The time of sending tasks and results is
not negligible, so it needs to be counted into the makespan.
Such characteristics make our problem different from previ-
ous task assignment problems in crowdsensing, such as [1],
[10], [11], [12], [18], [20], where tasks and results are sent via
cellular networks immediately, so that the corresponding
time can be ignored.

Moreover, in the above problems, we consider two kinds
of mobile sensing tasks: independent sensing tasks and col-
laborative sensing tasks. For independent sensing tasks, the
makespan of each task is independent from others. We need
to minimize the makespans of all tasks. Then, we focus on
the Minimum-Average-Makespan (MAM) task assignment
problem for this case. For collaborative sensing tasks, the
whole sensing results can make sense only after all tasks
have been completed. Since the makespan of the whole col-
laborative sensing tasks is the largest makespan of all tasks,
we focus on the Minimum-Largest-Makespan (MLM) task
assignment problem for this case.

To solve the MAM and MLM task assignment problems
in mobile crowdsensing, we propose two online task assign-
ment algorithms: the Average makespan sensitive Online
Task Assignment (AOTA) algorithm and the Largest make-
span sensitive Online Task Assignment (LOTA) algorithm.
In AOTA and LOTA, the online task assignments are
viewed as multiple rounds of virtual offline task assign-
ments to be tackled with two greedy strategies. More specif-
ically, our major contributions include:

1) We propose and formalize the makespan-sensitive
task assignment problems for crowdsensing based
on MSNs. Unlike existing crowdsensing task assign-
ment problems, our problems take into consideration
the time of sending tasks and results between mobile
users, which is subjective to users’ mobility.

2) We propose the online algorithm AOTA for the MAM
task assignment problem. This algorithm is based on
the greedy strategy of Small-Task-First-Assignment
(STFA) and Earliest-idle-User-Receive-Task (EURT),
in which the requester assigns the task with the small-
est workload, one-by-one, to the earliest idle mobile
user (i.e., the user who finished the tasks in hand earli-
est). Moreover, we analyze the estimation error and
the competitive ratio of theAOTA algorithm.

3) We also propose the online algorithm LOTA for the
MLM task assignment problem. The LOTA algorithm
is based on the greedy strategy of Large-Task-First-
Assignment (LTFA) and Earliest-idle-User-Receive-
Task (EURT), in which the requester assigns the task
with the largest workload, in turn, to the earliest idle

mobile user. Furthermore, we also analyze the estima-
tion error and the competitive ratio of this algorithm.

4) We conduct extensive simulations on four real traces
and a synthetic trace to evaluate the proposed online
algorithms. The results show that the proposed algo-
rithms can achieve better performances on the aver-
age makespan and the largest makespan than other
compared algorithms, respectively.

The remainder of the paper is organized as follows. We
introduce the crowdsensing model and the problem in Sec-
tion 2. The AOTA and LOTA algorithms are proposed in
Sections 3 and 4, respectively. In Section 5, we evaluate the
performance of our algorithms through extensive simula-
tions. After reviewing related work in Section 6, we con-
clude the paper in Section 7.

2 MODEL & PROBLEM

In this section, we introduce the crowdsensing model, fol-
lowed by the problem definition.

2.1 Model

We consider an MSN that is composed of a crowd of mobile
users, denoted by the set V ¼ fv0; v1; . . . ; vng. Suppose that
there is a user in this MSN, called the requester, who has
some indivisible mobile sensing tasks. However, the total
workload of these tasks is beyond its processing ability.
Then, it starts crowdsensing. Other users in this MSN are
assumed to be willing to participate in this crowdsensing
due to some incentive mechanisms, such as [9]. Neverthe-
less, when these users conduct the crowdsensing tasks, they
prefer to adopt the short-distance wireless communication
model, so as to save the communication costs. More specifi-
cally, the requester moves around. If it encounters another
mobile user, it assigns one or more tasks to this user. Then,
this user will process these tasks. This might take some
time. Also, the user will return the results of processed tasks
to the requester, when they meet in the future.

We say that two mobile users “encounter” or “meet”,
which means that they move close and can directly commu-
nicate with each other via Bluetooth, or they enter the com-
munication range of some WiFi access points, so that they
can indirectly contact each other by using social network
softwares via WiFi networks, as shown in Fig. 1. Here,
when two users contact each other via WiFi networks, they
might visit two different access points at different time,
respectively. In this paper, we assume that the communica-
tion duration and bandwidth are enough for each user to
receive tasks or return results. Additionally, we consider
such a mobility model that the inter-meeting time between
each user vi 2 V and the requester follows the exponential
distribution, whose rate parameter is �i. This is because pre-
vious studies on mobility models (e.g., [21], [22], [23]) have
proved that the inter-meeting time of mobile users in many
real MSN traces follows the power law distribution, which
can be approximately seen as an exponential distribution.
Due to this reason, the mobility model based on the expo-
nential distribution is widely adopted, such as [24], [25]. In
this mobility model, the rate parameter �i is actually equal
to the reciprocal of the expected inter-meeting time between

user vi 2 V and the requester, i.e.,
R1
0 t�ie

��itdt ¼ 1
�i
. Real

Fig. 1. Mobile crowdsensing in MSNs: Alice assigns tasks to and collects
the results from other mobile users via Bluetooth when they meet, or via
WiFi networks when they visit some connected access points.
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trace analysis has also revealed that the mobile behaviors of
users are generally predicable. Therefore, we assume that
the requester can record the average value of the historical
inter-meeting time between itself and each user, and then it
can use the historical value to estimate each rate parameter.
In practice, along with the eclipse of the time, the average
inter-meeting time might vary gradually, so that the cumu-
lative variation might be non-negligible. For this case, we
also assume that the rate parameter is allowed to be
updated when the requester meets each user.

2.2 Problem

Consider a mobile crowdsensing in the above MSN. Without
loss of generality, we let the requester be user v0, and suppose
that the requester has m indivisible mobile sensing tasks,
denoted by J ¼ fj1; j2; . . . ; jmg. These tasksmight be different
types of tasks. Despite this, their workloads can be uniformly
indicated by the sensing time, denoted as t1; t2; . . . ; tm. For
simplicity, we assume that all tasks in J need to be assigned to
other users, and each taskwill be assigned to only one user.

In this paper, we focus on the makespan of each task in J ,
which is defined as follows:

Definition 1. Themakespan of a task j 2 J , denoted byMðjÞ, is
the time that the requester finally receives the result of this task,
including the time of this task being sent from the requester to
some user, the time of this task being conducted by this user, and
the time for the result of this task being sent back to the requester.

Before the problem definition, we define the task assign-
ment solution as follows:

Definition 2. A task assignment solution is a partition of the
universal task set J , denoted by P. More specifically,
P ¼ fJ1; J2; . . . ; Jng, in which Ji is the set of tasks that are
assigned to user vi (1 � i � n). Moreover, each Ji is an
ordered set of tasks, satisfying

Pn
i¼1 Ji ¼ J and Ji \ Ji0 ¼ ;

for 8Ji; Ji0 2 P. For 8j; j0 2 Ji, we use the order j � j0 to indi-
cate that task j will be processed prior to j0 in Ji (if j 6¼ j0).

In Definition 2, if Ji ¼ ;, the requester will not assign any
tasks to user vi. Otherwise, the requester will send the tasks
in Ji to user vi, and then, user vi will process these tasks
according to their orders in Ji.

Based on the above definitions, we define and formalize
our problems as follows:

Definition 3. The Minimum-Average-Makespan task
assignment problem is to determine a task assignment solution
P for the requester, which can minimize the average makespan
of all tasks. Let the average makespan of all tasks in P be
denoted byAMðPÞ. Then, the problem is formalized as follows:

Minimize : AMðPÞ ¼ 1

m

X
j2J

MðjÞjP

s:t: : P is an ordered set partition of J:

(1)

Definition 4. The Minimum-Largest-Makespan task assign-
ment problem is to determine a task assignment solution P for
the requester, which can minimize the largest makespan of all
tasks. Let the largest makespan of all tasks in P be denoted by
LMðPÞ. Then, the problem is formalized as follows:

Minimize : LMðPÞ ¼ MaxfMðj1ÞjP; . . . ;MðjmÞjPg
s:t: : P is an ordered set partition of J:

(2)

In the following sections, we use OP T to denote the opti-
mal task assignment solution. To distinguish, we use PA,
OP TA and PL, OP TL to denote the task assignment solu-
tions for the MAM and MLM problems, respectively. Addi-
tionally, for ease of the following presentation, we list the
main notations in Table 1.

3 THE MAM TASK ASSIGNMENT

In this section, we propose the online task assignment algo-
rithm, i.e., AOTA, for the MAM task assignment problem. In
AOTA, the requester makes multiple rounds of online task
assignment decisions, each of which is conducted when it
encounters a mobile user, until all tasks are assigned. In each
round of online decision, the key problem is how to deter-
mine the tasks that the requester should assign to the
encounteredmobile user.We regard this problem as a virtual
offline task assignment among the encountered user and the
users whom the requester might encounter in the future, as
shown in Fig. 2. Then, we adopt a greedy strategy to conduct
the task assignment among these users. However, this is
actually just a virtual task assignment. In the results, only the
tasks that are assigned to the encountered user are real
results (i.e., the final results of online decision), while other
tasks (assigned to the users that might be encountered in the
future) are virtual assignment results.

In the following, we first derive a formula to compute the
average makespan for a given task assignment solution.
Then, based on the formula, we present the greedy task
assignment strategy for the virtual offline task assignment,
as the building block of AOTA. Finally, we propose the
AOTA algorithm, followed by the performance analysis.

TABLE 1
Description of Major Notations

Notation Description

v, V mobile user and the universal set of users.
�i the rate parameter of exponential distribu-

tion of the inter-meeting time between user
vi and the requester.

di the average time of the requester sending
tasks to and receiving results from user vi
(Eq. (4)).

jk, tk, J the kth task, the workload of task jk, and
the universal set of tasks.

MðjÞ the makespan of task j (Definition 1).
Ji the set of tasks assigned to user vi.
P; PA; PL the task assignment solution (Definition 2),

where the subscripts “A” and “L” indicate
the solution for the MAM problem and the
MLM problem, respectively.

P�
A; P�

L the task assignment solutions produced by
AOTA and LOTA.

OP TA; OP TL the optimal task assignment solutions of the
MAM and MLM problems.

AMðPÞ the average makespan of tasks for the task
assignment solution P (Definition 3).

LMðPÞ the largest makespan of tasks for the task
assignment solution P (Definition 4).
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3.1 Basic Formula

Without loss of generality, we consider an arbitrary MAM
task assignment solution P, and derive the average make-
span of all tasks for this task assignment solution. More spe-
cifically, we have the following theorem:

Theorem 1. The average makespan AMðPÞ for the task assign-
ment solution P ¼ fJ1; J2; . . . ; Jng satisfies

AMðPÞ ¼ 1

m

Xn
i¼1

X
j2Ji

di þ
X

j02Ji^j0�j

tj0

0
@

1
A; (3)

where di is the average time of the requester sending tasks to
and receiving results from user vi, satisfying:

di ¼
1
�i
; the requester and user viis encountering;

2
�i
; otherwise:

(
(4)

Proof. We consider an arbitrary task j 2 Ji. It involves three
phases. At the beginning, the task j will be sent to user vi
by the requester. This happens only when the requester
meets user vi. Hence, if the requester is exactly meeting
the user vi, the time of sending the task will be zero (as
the transmission time is too small so that it can be
ignored). Otherwise, the time of sending the task is the
time that the requester waits for meeting user vi. Since the
inter-meeting time of user vi and the requester follows
the exponential distribution with a rate parameter �i, the
average time of the requester waiting for user vi is their

expected meeting time, i.e.,
R1
0 �ite

��itdt ¼ 1
�i
. In the sec-

ond phase, user vi will perform the sensing tasks in Ji.
Note that user vi will first perform those tasks that are
prior to j in Ji. Thus, the time of task j being processed in
this phase is

P
j02Ji^j0�j tj0 . In the third phase, the result of

task j will be returned to the requester by user vi when
they have another meeting. The average time is still equal

to the expected meeting time, i.e.,
R1
0 �ite

��itdt ¼ 1
�i
. Thus,

the average makespan of this task is MðjÞjP ¼ di þP
j02Ji^j0�j tj0 , where di ¼ 1

�i
, if the requester and user vi

encounter; otherwise, di ¼ 2
�i
. By putting MðjÞjP into

Eq. (1), we can get that the theorem holds. tu
Theorem 1 gives a formula, by which we can compute

the average makespan for a given task assignment solution.

According to the formula in this theorem, we can derive a
basic property of the optimal task assignment solution
OP TA, as follows.

Theorem 2. Suppose the optimal task assignment solution is
OP TA ¼ fJ1; J2; . . . ; Jng. Then, the tasks with small workloads
will be processed first. More specifically, for 8j; j0 2 Ji
(1 � i � n), if tj � tj0 , then the order of tasks j and j

0 in Ji satis-
fies j � j0.

Proof. The contradiction method is adopted. Assume that
there exists the tasks j; j0 2 Ji 2 OP TA, satisfying tj � tj0
but j0 � j. Without loss of generality, we assume that j0

and j are the kth and hth tasks in Ji, respectively, where
k < h. Then, we construct another task assignment solu-
tion PA by exchanging the orders of tasks j and j0 in Ji.
Computing AMðOP TAÞ and AMðPAÞ according to
Eq. (3) in Theorem 1, and comparing them, we have:

AMðOP TAÞ �AMðPAÞ ¼ 1

m
ðh� kÞ�tj0 � tj

�
> 0: (5)

This means that the new task assignment solution PA

can achieve a smaller average makespan value than
OP TA. This is a contradiction to the optimality of OP TA.
Thus, the assumption is incorrect, and we have j � j0. tu
Theorem 2 shows that the optimal MAM performance can

be achieved only when small-workload tasks are processed
first. For example, we can compute the average makespan for
a task assignment solution in Fig. 3, where PA ¼ fJ1; J2g,
J1 ¼ fj1; j3g, J2 ¼ fj2; j4g, and d1 ¼ 2

�1
, d2 ¼ 2

�2
. The makespan

of task j1 contains the expected time for the requester sending
the task to user v1, the time for v1 performing the task, and the
expected time for v1 returning the corresponding result. Thus,

Mðj1Þ ¼ 2
�1
þ t1. Besides, the makespan of task j3 needs to

contain the waiting time for v1 processing task j1 which is

prior to j3. That is to say, Mðj3Þ ¼ 2
�1
þ t1 þ t3. Likewise, we

can get Mðj2Þ ¼ 2
�2
þ t2 and Mðj4Þ ¼ 2

�2
þ t2 þ t4. Then, the

average makespan for the task assignment solution PA is

AMðPAÞ ¼ 1
4 ðMðj1ÞþMðj2Þ þMðj3Þ þMðj4ÞÞ. In this exam-

ple, the workloads of tasks j1, j2, j3, and j4 satisfy
t1 < t2 < t3 < t4, and PA is actually the optimal task
assignment solution. In order to achieve the minimum aver-
age makespan, users v1 and v2 first process j1 and j2,
respectively.

Fig. 2. Illustration of online task assignment: the requester moves along
a road, and meets users v1; v2; . . ., in turn; when the requester meets a
user, it conducts a round of online decision, which can be seen as a vir-
tual offline task assignment (J1 in the first round and J2 in the second
round are real results, while J � J1 and J � J1 � J2 are virtual results).

Fig. 3. The average makespan of a task assignment solution
PA ¼ fJ1 ¼ fj1; j3g; J2 ¼ fj2; j4gg: AMðPAÞ ¼ 1

4 ðMðj1Þ þMðj2Þ þM

ðj3Þ þMðj4ÞÞ, whereMðj1Þ ¼ 2
�1
þ t1,Mðj2Þ ¼ 2

�2
þ t2,Mðj3Þ ¼ 2

�1
þ t1þ

t3, andMðj4Þ ¼ 2
�2
þ t2 þ t4.
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3.2 Building Block

Since the whole onlineMAM task assignment can be seen as a
series of virtual MAM offline task assignments, we first pres-
ent the greedy STFA and EURT strategy for the virtual MAM
offline task assignment, as the building block of the online
task assignment. Theorem 2 has shown that small-workload
tasks need to be assigned first, in order to achieve the optimal
MAM performance. Moreover, these tasks need to be
assigned to the earliest idle users. To determine the earliest
idle users, we define a concept of expected processing time.

Definition 5 (Expected Processing Time). The expected
processing time of a user, denoted by EPT , is the expected time
for the user to meet the requester, and perform all tasks in hand,
until it returns all results. More specifically, the expected proc-
essing time of a user vi who has the tasks fji1 ; ji2 ; . . . ; jikg is
EPTi ¼ di þ ti1 þ ti2 þ � � � þ tik . Specially, when the user has
no tasks in hand, its expected processing time is di.

Without loss of generality, we consider a virtual MAM
offline task assignment, in which the unassigned tasks are
fj1, j2; . . . ; jkg and the unassigned users are fv1, v2; . . . ; vig.
Moreover, the workloads of these tasks and the initial EPT
values of the users satisfy t1 < t2 < � � � < tk and d1 �
d2 � � � � � di, respectively. The greedy task assignment strat-
egy is that we always select the smallest workload task
among the unassigned tasks and assign it to the user with
the smallest expected processing time. Concretely, the task
assignment is conducted as follows. First, the requester
assigns task j1 to the user with the smallest EPT value. At
the beginning, user v1 has the minimum EPT. Therefore,
task j1 is assigned to user v1. Second, we focus on task j2.
Now, user v1 has task j1 in hand. Its EPT becomes d1 þ t1.
The minimum EPT will be Minfd1 þ t1; d2; . . . ; dig. Without
loss of generality, we assume that user v2 has the minimum
EPT at this time. Then, the requester assigns task j2 to user
v2. In this way, the remaining tasks are assigned in turn. In
Section 3.4, we will show that such a simple greedy strategy
can produce an optimal solution for the virtual MAM offline
task assignment problem.

Fig. 4 shows the process of greedily determining the opti-
mal MAM offline task assignment solution through a simple
example, in which four tasks j1; j2; j3; j4 are assigned to
three users v1; v2; v3. In this example, t1 ¼ 4; t2 ¼ 6; t3 ¼ 8;

t4 ¼ 10, and �1 ¼ 1
4 ; �2 ¼ 1

5 ; �3 ¼ 1
11. At the beginning, the

EPT values of users v1; v2; v3 are 2
�1
, 2
�2
, and 2

�3
, as shown in

Fig. 4a. Then, task j1 is assigned to user v1, as shown in

Fig. 4b. After this, the EPT value of user v1 becomes 2
�1
þ t1,

which is larger than that of user v2. Then, task j2 is assigned
to user v2, as shown in Fig. 4c. In the same way, task j3 is
assigned to user v1 again in Fig. 4d. Finally, task j4 is
assigned to user v2 again in Fig. 4e.

3.3 The AOTA Algorithm

The whole online task assignment in the AOTA algorithm is
composed of multiple rounds of online decision, each of
which is conducted when the requester encounters a user.
Moreover, each round of decision is treated as a virtual
MAMoffline task assignment problem.We adopt the greedy
method in the building block to produce a temporary task
assignment result, in which only the tasks that are assigned
to the encountered user are real results, while other assigned
tasks are virtual results. The virtual resultsmight be assigned
in next round of online decision. Denote the task assignment
solution produced by AOTA as P�

A. Then, the requester con-
ducts the AOTA algorithm as follows.

Algorithm 1. The AOTA Algorithm

Require: J ¼ fj1; j2; . . . ; jm : t1 � t2 � � � � � tmg,
V ¼ fv1; v2; . . . ; vn : �1; �2; . . . ; �ng.

Ensure: P�
A

When the requester meets user vi do
1: for each user vl 2 V do
2: Jl ¼ ;;
3: EPTl ¼ 2

�l
;

4: if vl ¼ vi then
5: EPTl ¼ 1

�l
;

6: for each task jk 2 J from k ¼ 1 to jJ j do
7: imin ¼ argmin

�fEPTl j vl 2 V g�;
8: Jimin

¼ Jimin
þ fjkg;

9: EPTimin
¼ EPTimin

þ tk;
10: Assign the tasks in Ji to user vi, i.e., P

�
A ¼ P�

A þ fJig;
11: J ¼ J � fJig;
12: V ¼ V � fvig;
13: return P�

A;

At the beginning, the requester holds all tasks in J . When
it encounters a mobile user vi, it starts the first round of
online decision, i.e., the first round of virtual MAM offline
task assignment. More specifically, the requester first com-
putes the EPT values of user vi and the users who have not
been met by itself. Then, it adopts the greedy strategy in the
building block to assign tasks. That is, it always assigns
the task with the smallest workload to the user who has the
minimum EPT value, until all tasks are assigned. Through
this process, the requester will get a temporary task assign-

ment result fJ ð1Þ
1 ; . . . ; J

ð1Þ
i ; . . . ; J ð1Þ

n g (the superscript ð1Þ indi-
cates the 1th round). However, only J

ð1Þ
i among them is the

real assignment result, while J � J
ð1Þ
i ¼ fJ ð1Þ

1 ; . . . ; J
ð1Þ
i�1,

J
ð1Þ
iþ1; . . . ; J

ð1Þ
n g are virtual assignment results. The requester

only assigns the tasks in J
ð1Þ
i to user vi (i.e., J

ð1Þ
i 2 P�

A), while

keeping the remaining tasks (i.e., the tasks in J � J
ð1Þ
i ) in

Fig. 4. A virtual MAM offline task assignment example: greedily assign tasks j1; j2; j3; j4 (t1 ¼ 4; t2 ¼ 6; t3 ¼ 8; t4 ¼ 10) to users v1; v2; v3 (�1 ¼
1=4; �2 ¼ 1=5; �3 ¼ 1=11), and the optimal MAM offline task assignment solution is fJ1; J2; J3g, where J1 ¼ fj1; j3g, J2 ¼ fj2; j4g, and J3 ¼ ;.
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hand. This ends the first round of task assignment. When
the requester encounters another mobile user vi0 , it starts
the second round of virtual MAM offline task assignment.
By using the greedy strategy in the building block, the

requester virtually assigns the tasks in J � J
ð1Þ
i to users

V � fvig. This will produce another temporary task assign-

ment result fJ ð2Þ
1 ; . . . ; J

ð2Þ
i�1, J

ð2Þ
iþ1; . . . ; J

ð2Þ
i0 ; . . . ; Jð2Þ

n g, in which

only J
ð2Þ
i0 is the real result, while the others (i.e., J � J

ð1Þ
i �

J
ð2Þ
i0 ) are virtual results. Next, the requester might continue

to meet other mobile users. For each encounter, it makes a
round of task assignment decision in the same way, to
assign some tasks to the encountered user, until all tasks are
assigned. If the requester meets all users in the order of v1,
v2; . . . ; vn, the final task assignment solution will be P�

A ¼
fJ ð1Þ

1 , J
ð2Þ
2 ; . . . ; J

ðiÞ
i ; . . . ; JðnÞ

n g.
The detailed AOTA algorithm is presented in Algo-

rithm 1. At the beginning, the set of unassigned tasks is J ,
and the set of users who have not been met by the requester
is V . Then, when the requester meets an arbitrary user
vi 2 V , it first initializes the EPT value and the assigned task

set for each user vl 2 V in Steps 1-5: EPTl ¼ 2
�l
, Jl ¼ ;. Spe-

cially, EPTi ¼ 1
�i
. From Step 6 to Step 9, the requester deter-

mines which tasks in hand should be assigned to the
encountered user vi by using the greedy method in the
building block. This will produce a temporal task assign-
ment result, in which Ji is the real result, and the others are
virtual results. Hence, the requester assigns the tasks in Ji
to the encountered user vi in Step 10, and updates the unas-
signed task set as J ¼ J � Ji in Step 11, which means that
the requester will hold these unassigned tasks in hand.
Meanwhile, the set of users who have not been met by the
requester is updated in Step 12. This ends a round of online
decision. Next, when the requester meets another user, this
algorithm will be conducted again to assign some of the
remaining tasks to the new encountered user, and so on,
until all tasks are assigned. The computation overhead is

dominated by Step 7, which is Oðmn2Þ.
Fig. 5 shows an example, in which the requester has four

tasks j1; j2; j3; j4 (t1 ¼ 4; t2 ¼ 9; t3 ¼ 10; t4 ¼ 11), and wishes

to assign them to three mobile users v1; v2; v3 (�1 ¼ 1
4 ;

�2 ¼ 1
6 ; �3 ¼ 1

7 ). In Fig. 5, the requester encounters v2 first.

Then, the requester computes the EPT values of v1, v2 and v3:

EPT1 ¼ 2
�1

¼ 8, EPT2 ¼ 1
�2

¼ 6, and EPT3 ¼ 2
�3

¼ 14, among

which EPT2 is the smallest. Thus, the requester assigns task
j1, which has the smallest workload, to user v2. Then, EPT2

becomes EPT2 ¼ 1
�2
þ t1 ¼ 10. Next, the requester adopts the

same greedy strategy to assign the remaining tasks. As a

result, we have J
ð1Þ
1 ¼ fj2g, J ð1Þ

2 ¼ fj1; j3g, and J
ð1Þ
3 ¼ fj4g, as

shown in Fig. 5a. Among them, only J
ð1Þ
2 ¼ fj1; j3g is the real

result, and J
ð1Þ
1 , J

ð1Þ
3 are virtual results. Then, the requester

assigns tasks j1 and j3 to v2, while keeping the remaining
tasks j2 and j4 in hand for future task assignments. In the sec-
ond round, the requester encounters user v1. Then, the
requester conducts the same task assignment process. The

result is J
ð2Þ
1 ¼ fj2; j4g, and J

ð2Þ
3 ¼ ;, as shown in Fig. 5b.

Moreover, J
ð2Þ
1 ¼ fj2; j4g is the final result. According to this

result, the requester assigns tasks j2 and j4 to v1. Now, there

are no remaining tasks. Then, J
ð2Þ
3 ¼ ; is also the final result.

Thus, the final result is P�
A ¼ fJ ð2Þ

1 , J
ð1Þ
2 , J

ð2Þ
3 g, where J

ð2Þ
1 ¼

fj2; j4g, J ð1Þ
2 ¼ fj1; j3g, and J

ð2Þ
3 ¼ ;.

3.4 Performance Analysis

In AOTA, each round of online decision is viewed as a vir-
tual MAM offline task assignment, conducted when the
requester encounters a mobile user. The greedy STFA and
EURT strategy is adopted to produce a temporary result for
each round of virtual MAM offline task assignment. With-
out loss of generality, we assume that the requester meets
other users in the order of v1; v2; . . . ; vn. Then, the temporary
result can be defined as follows:

Definition 6 (Temporary Task Assignment Result). We
use P

ðiÞ
A to denote the temporary result for the ith round of

virtual MAM offline task assignment (i.e., the case that
the requester encounters vi). More specifically, we let

P
ðiÞ
A ¼ fJ ð1Þ

1 ; . . . ; J
ði�1Þ
i�1 , J

ðiÞ
i , J

ðiÞ
iþ1; . . . ; J

ðiÞ
n g, in which

J
ðiÞ
iþ1; . . . ; J

ðiÞ
n are the virtual task assignment results deter-

mined by the ith round of decision, and J
ð1Þ
1 ; . . . ; J

ðiÞ
i are the

real task assignment results determined by the 1st, . . ., ith

rounds of decisions, respectively. Moreover, we use OP T
ðiÞ
A to

denote the optimal temporary result for the ith round of virtual
MAM offline task assignment.

To analyze the competitive ratio of AOTA, we first prove
that the greedy STFA and EURT strategy can achieve the
optimal MAM performance for each virtual offline task
assignment. Theorem 2 has shown the optimality of the
greedy STFA strategy. Here, we have the following theorem
to demonstrate the optimality of the greedy EURT strategy
for the offline task assignment:

Theorem 3. Consider an arbitrary ith round of virtual MAM
offline task assignment. Without loss of generality, suppose
that tasks j1; j2; . . . ; jm0 (1 � m0 � m) need to be assigned to
vi; . . . ; vn in this round, while other tasks have been assigned to
v1; . . . ; vi�1 before this round. Moreover, the workloads of these
tasks are assumed to satisfy t1 � t2 � � � � � tm0 . Among the
m0 tasks, we assume that tasks j1; j2; . . . ; jk�1 (1 � k � m0)
have been assigned to vi; . . . ; vn. Let the set of tasks that have
been assigned to user vl (i � l � n) be Jl and the current

expected processing time of this user be EPTl. Then, J
ðiÞ
i ,

J
ðiÞ
iþ1; . . . ; J

ðiÞ
n in the optimal virtual MAM offline task assign-

ment solution OP T
ðiÞ
A satisfies:

Fig. 5. An example of online task assignment, in which the requester
encounters users v2, v1, v3, in turn.
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1) The user who currently has the minimum expected
processing time will be assigned the maximum number
of tasks in the following rounds of task assignments:

EPTl ¼ MinfEPTi; . . . ; EPTng )
jJ ðiÞ

l � Jlj ¼ MaxfjJ ðiÞ
i � Jij; . . . ; jJ ðiÞ

n � Jnjg;
(6)

where jJ ðiÞ
l � Jlj is the number of tasks in set J

ðiÞ
l � Jl.

2) The task jk will be assigned to the user who currently
has the minimum expected processing time:

EPTl ¼ MinfEPTi; . . . ; EPTng ) jk 2 J
ðiÞ
l : (7)

Proof. 1) First, we prove part 1 by using the contradiction.
Assume that although EPTl ¼ MinfEPT1; . . . ; EPTng,
J
ðiÞ
l � Jl is not the set with the maximum tasks among

fJ ðiÞ
i � Ji; . . . ; J

ðiÞ
n � Jng. Without loss of generality, we let

jJðiÞ
l0 � Jl0 j ¼ MaxfjJ ðiÞ

i � Jij; . . . ; jJ ðiÞ
n � Jnjg (i � l0 � n,

l0 6¼ l). Moreover, we assume that J
ðiÞ
l � Jl ¼ fjl1 ; . . . ; jlsg,

J
ðiÞ
l0 � Jl0 ¼ fjl0

1
; . . . ; jl0rg, and r > s. Then, we construct

another task assignment solution PA ¼ fJ ð1Þ
1 ; . . . ;

J
ði�1Þ
i�1 ; . . . ; �J

ðiÞ
l ; . . . ; �J

ðiÞ
l0 ; . . . ; JðiÞ

n g, where �J
ðiÞ
l � Jl ¼ fjl0

1
; . . . ;

jl0rg, �J
ðiÞ
l0 � Jl0 ¼ fjl1 ; . . . ; jlsg, by exchanging the tasks in

J
ðiÞ
l � Jl and J

ðiÞ
l0 � Jl0 . After a careful computation on

AMðOP T
ðiÞ
A Þ and AMðPAÞ according to Theorem 2 and

Eq. (3) in Theorem 1, we have:

AMðOP T
ðiÞ
A Þ �AMðPAÞ ¼ 1

m
ðs� rÞðEPTl � EPTl0 Þ > 0:

(8)

Thus, the new task assignment solution PA can

achieve a smaller average makespan than OP T
ðiÞ
A . This is

a contradiction to the optimality of OP T
ðiÞ
A . Due to the

contradiction, we have that part 1 of the theorem holds.
2) We still adopt the contradiction method for part 2.

Assume that EPTl ¼ MinfEPTi; . . . ; EPTng, but jk 62 J
ðiÞ
l

(i.e., jk 62 J
ðiÞ
l � Jl). Without loss of generality, we assume

that task jk is assigned to user vl0 in the optimal offline

task assignment solution OP T
ðiÞ
A , i.e., jk 2 J

ðiÞ
l0 � Jl0

(l0 6¼ l), and assume that the task with the smallest work-

load in the task set J
ðiÞ
l � Jl is jh (k < h � m0). According

to Theorem 2, tasks jk and jh are the first tasks to be proc-

essed in J
ðiÞ
l0 � Jl0 and J

ðiÞ
l � Jl, respectively. Now, we

construct another task assignment solution PA by

exchanging the tasks jk 2 J
ðiÞ
l0 � Jl0 and jh 2 J

ðiÞ
l � Jl.

Then, computing AMðOP T
ðiÞ
A Þ and AMðPAÞ according

to Eq. (3) in Theorem 1, and comparing them, we have:

AMðOP T
ðiÞ
A Þ � AMðPAÞ ¼ 1

m
ðjJ ðiÞ

l0 � Jl0 j � jJðiÞ
l � JljÞðtk � thÞ:

(9)

Since EP Tl ¼ MinfEP Ti; . . . ; EP Tng, we have jJ ðiÞ
l �

Jlj > jJðiÞ
l0 � Jl0 j according to the proof of part 1.Moreover,

we have tk < th due to k < h. Thus, we can get

AMðOP T
ðiÞ
A Þ �AMðPAÞ > 0: (10)

This shows that the new task assignment solution PA can

achieve a smaller average makespan than OP T
ðiÞ
A . This is

a contradiction to the optimality of OP T
ðiÞ
A . Thus, the

assumption is incorrect, and we have jk 2 J
ðiÞ
l � Jl � J

ðiÞ
l .

The theorem holds. tu
Theorems 2 and 3 show the optimality of the greedy

STFA and EURT strategy. According to this strategy, the
task with the smallest workload should always be assigned
to the user who has the minimum expected processing time
in each round of virtual offline task assignment. This is
exactly the strategy adopted by the AOTA algorithm. Thus,
we directly have:

Corollary 4. The AOTA algorithm can achieve the optimal
MAM performance for each round of virtual offline task assign-
ment, i.e., OP T

ðiÞ
A ¼ P

ðiÞ
A for 8i 2 ½1; n	.

Here, it is important to highlight that the temporary task
assignment result produced in each round is optimal only
for that round of decision. From the view of the whole
online task assignment process, it is not globally optimal.
When the requester encounters another user after this
round, the virtually assigned tasks might be re-assigned.
Accordingly, the MAM performance will be improved.
Along with the more users the requester encounters, the
MAM performance will become better and better. We show
this in the following theorem:

Theorem 5. Assume that the requester meets other users in the
order of v1; v2; . . . ; vn. Then, the temporary task assignment

results satisfy AMðPð0Þ
A Þ 
 AMðPð1Þ

A Þ 
 � � � 
 AMðPðnÞ
A Þ.

Here, the 0th round refers to the virtual MAM offline task
assignment before the requester encounters any other users.

Proof. We consider the ith round of virtual MAM offline

task assignment result P
ðiÞ
A ¼ fJ ð1Þ

1 ; . . . ; J
ði�1Þ
i�1 , J

ðiÞ
i ,

J
ðiÞ
iþ1; . . . ; J

ðiÞ
n g and the ði� 1Þth round of virtual offline

task assignment result P
ði�1Þ
A ¼ fJð1Þ

1 ; . . . ; J
ði�1Þ
i�1 , J

ði�1Þ
i ,

J
ði�1Þ
iþ1 ; . . . ; J ði�1Þ

n g (1 � i � n). Since J
ð1Þ
1 ; . . . ; J

ði�1Þ
i�1 are the

real task assignment results which are determined before

the ith round, they are the same in P
ðiÞ
A and P

ði�1Þ
A . More-

over, J
ði�1Þ
i , J

ði�1Þ
iþ1 ; . . . ; J ði�1Þ

n are the virtual task assign-

ment results in the ði� 1Þth round, which are re-assigned

as J
ðiÞ
i , J

ðiÞ
iþ1; . . . ; J

ðiÞ
n in the ith round when the requester

encounters user vi. According to Corollary 4, the re-
assignment can make the requester achieve the optimal
MAM performance in the ith round. This means

AMðPði�1Þ
A Þ 
 AMðPðiÞ

A Þ. Due to the arbitrariness of i, we

can get the correctness of this theorem. tu
Based on the above analysis, we give the competitive

ratio of the AOTA algorithm now, which is ratio of the aver-
age makespan values of AOTA and the globally optimal
online task assignment solution.

Theorem 6. Assume that there is a god, who can foresee the
mobilities of all mobile users, so that it knows at what time the
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requester will meet which user. Based on this, the god can give a
globally optimal online task assignment solution, denoted by
OP TA. Then, we have:

1) The average makespan for the task assignment solution
P�

A produced by AOTA satisfies:

AMðP�
AÞ �AMðOP TAÞ �

Xn
i¼1

2

�i
: (11)

(2) The competitive ratio of the AOTA algorithm satisfies:

AMðP�
AÞ

AMðOP TAÞ � 1þ
n
Pn

i¼1
2
�iPm

j¼1 tj
: (12)

Proof.Without loss of generality,we assume that the requester
meets users v1; v2; . . . ; vn at the time t1; t2; . . . ; tn, and it also
takes the time t01; t

0
2; . . . ; t

0
n for these users to return their

results to the requester, respectively. Moreover, we assume
that the globally optimal solution given by the god is
OP TA ¼ fJ�

1 ; . . . ; J
�
ng. Since the god has known the time at

which the requester meets other users and the time of other
users returning results, this globally optimal task assignment
can be seen as a special offline task assignment. Then, we can
use Eq. (3) in Theorem 1 to calculate the averagemakespan:

AMðOP TAÞ ¼ 1

m

Xn
i¼1

�
ðti þ t0iÞjJ�

i j þ
X
j2J�

i

X
j02J�

i
^j0�j

tj0

�
:

(13)

Furthermore, we consider another special offline task
assignment case, where there is no god, and the requester
has not encountered any other users. Although there is
no god, the requester in this case still uses OP TA as its
offline task assignment solution, denoted by PA. Then,
according to Theorem 1, we have:

AMðPAÞ ¼ 1

m

Xn
i¼1

�
2

�i
jJ�

i j þ
X
j2J�

i

X
j02J�

i
^j0�j

tj0

�

¼ AMðOP TAÞ þ 1

m

Xn
i¼1

�
2

�i
� ti � t0i

�
jJ�

i j:

(14)

Note that, as an offline task assignment solution with-
out a god, PA is not optimal. Actually, we have

AMðPAÞ 
 AMðPð0Þ
A Þ according to Corollary 4. On the

other hand, according to Theorem 5, we have AMðPð0Þ
A Þ


 AMðPðnÞ
A Þ ¼ AMðP�

AÞ. Thus, we can get AMðPAÞ 

AMðP�

AÞ. Replacing AMðPAÞ in this inequality by using
Eq. (14), we have:

AMðP�
AÞ �AMðOP TAÞ � 1

m

Xn
i¼1

2

�i
� ti � t0i

� �
jJ�

i j

� 1

m

Xn
i¼1

2m

�i
¼

Xn
i¼1

2

�i
:

(15)

Thus, the part 1 of this theorem is correct. Further,
we can straightforwardly get AMðOP TAÞ 
 1

n

Pm
j¼1 tj.

Therefore, according to Eq. (15), we have:

AMðP�
AÞ

AMðOP TAÞ � 1þ
Pn

i¼1
2
�i

AMðOP TAÞ � 1þ
n
Pn

i¼1
2
�iPm

j¼1 tj
: (16)

Thus, this theorem holds. tu
Theorem 6 shows that the absolute error of AOTA is no

more than a fixed value, i.e.,
Pn

i¼1
2
�i
, which only depends on

the expected meeting time between the requester and other
users. When the average expected meeting time is very small,
our algorithm can even achieve the nearly optimal result. On
the other hand, the competitive ratio of AOTA is subject to
both the average workload of tasks and the expected meeting
time. When the average workload is very large, the competi-
tive ratio of AOTA will be very close to 1, although the abso-
lute error might change not much. In fact, our simulation
results in Section 5 have also captured these observations.

4 THE MLM TASK ASSIGNMENT

In this section, we propose the Largest makespan sensitive
Online Task Assignment (LOTA) algorithm. In LOTA, the
requester also makes multiple rounds of online task assign-
ment decisions, each of which is seen as a virtual MLM off-
line task assignment and is conducted when the requester
encounters a mobile user, until all tasks are assigned. Nev-
ertheless, the virtual MLM offline task assignment is an NP-
hard problem. The greedy LTFA and EURT task assignment
strategy lets the small-workload tasks be conducted latest,
so that it can make the latest task be completed as soon as
possible. Therefore, LOTA adopts this greedy strategy in
each round of virtual MLM offline task assignment, so as to
obtain a nearly optimal solution.

In the following, we first derive a formula to compute the
largest makespan for a given task assignment solution.
Then, we present the task assignment strategy for the vir-
tual offline task assignment, as the building block of LOTA.
Finally, we propose the LOTA algorithm, followed by the
performance analysis.

4.1 Basic Formula

Without lose of generality, we consider an arbitrary task
assignment solution PL ¼ fJ1; . . . ; Jng for the MLM task
assignment problem, and compute the largest makespan
of all tasks in the solution PL. Since the largest makespan of
all tasks is the makespan of the task to be completed latest,
it is actually equal to the largest expected processing time of
all users, according to Definition 4. That is, we have:

LMðPLÞ ¼ MaxfEPT1; . . . ; EPTng

¼ Max d1 þ
X
j12J1

tj1 ; . . . ; dn þ
X
jn2Jn

tjn

( )
:

(17)

Eq. (17) shows that the largest makespan LMðPLÞ only
depends on the latest performed task. The performing order
of the tasks in each Ji will not affect the largest makespan
value, different from the average makespan.

4.2 Building Block

Likewise, each round of online decision in LOTA is viewed
as a virtualMLMoffline task assignment. However, different
fromAOTA, determining theMLM task assignment solution
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for each round of virtual offline task assignment in LOTA is
NP-hard. This can be proved by the following theorem:

Theorem 7. The (virtual) MLM offline task assignment problem
is NP-hard.

Proof. According to Eq. (17), the MLM offline task assign-
ment problem can be seen as an MLM parallel machines
scheduling problem. Actually, the n mobile users can be
seen as n identical parallel machines, and d1; . . . ; dn can be
seen as the start time of the n parallel machines. Then, the
problem becomes the MLM job scheduling problem for n
identical parallel machines with different start time,
which is a well-known NP-hard problem. Therefore, the
MLM offline task assignment problem is NP-hard. tu
For the virtual MLM offline task assignment in each

round of decision, we adopt the greedy LTFA and EURT
strategy to assign tasks. Consider an arbitrary round of vir-
tual MLM offline task assignment, in which the remaining
unassigned tasks are assumed to be fj1; j2; . . . ; jkg � J , and
their workloads satisfy t1 
 t2 
 � � � 
 tk. The detailed task
assignment is conducted as follows. First, the requester com-
putes the EPT values for the users who have not been met.
Without loss of generality, they satisfy d1 � d2 � d3 � � � � .
Since user v1 has the smallest EPT value, task j1 is virtually
assigned to this user. Next, the requester updates the EPT
value of user v1 by using d1 þ t1, and determines the new
smallest EPT value, i.e., Minfd1þ t1; d2; d3; � � �g. We assume
that user v2 has the minimum EPT at this time. Then, the
requester assigns task j2 to user v2. In this way, all of the
remaining tasks are virtually assigned, in turn.

Fig. 6 illustrates a simple example, in which four tasks
j1; j2; j3; j4 are assigned to three users v1; v2; v3. In this exam-

ple, t4 ¼ 10; t3 ¼ 8; t2 ¼ 6; t1 ¼ 4, and �1 ¼ 1
4 ; �2 ¼ 1

5 ; �3 ¼
1
11 . At the beginning, the EPT values of users v1; v2; v3 are

2
�1
,

2
�2
, and 2

�3
, as shown in Fig. 6a. Then, task j4 is assigned to

user v1, as shown in Fig. 6b. After this, the EPT value of user

v1 becomes 2
�1
þ t4, which is larger than that of user v2.

Then, task j3 is assigned to user v2, as shown in Fig. 6c. In
the same way, task j2 is assigned to user v1 again in Fig. 6d.
Finally, task j1 is assigned to user v2 again in Fig. 6e.

4.3 The LOTA Algorithm

The LOTA algorithm is composed of multiple rounds of vir-
tual MLM offline task assignments. Each round of virtual
MLM offline task assignment is conducted when the
requester encounters a user. Moreover, the task assignment
result is produced by using the greedy LTFA and EURT
strategy in the building block. In this result, only the tasks
that are assigned to the encountered user are real results,

while other assigned tasks are virtual results, which might
be re-assigned in next round.

Algorithm 2. The LOTA Algorithm

Require: J ¼ fj1; j2; . . . ; jm : t1 
 t2 
 � � � 
 tmg,
V ¼ fv1; v2; . . . ; vn : �1; �2; . . . ; �ng.

Ensure: P�
L

When the requester meets user vi do
1: for each user vl 2 V do
2: Jl ¼ ;;
3: EPTl ¼ 2

�l
;

4: if vl ¼ vi then
5: EPTl ¼ 1

�l
;

6: for each task jk 2 J from k ¼ 1 to jJ j do
7: imin ¼ argmin

�fEP Tl j vl 2 V g�;
8: Jimin

¼ Jimin
þ fjkg;

9: EP Timin
¼ EP Timin

þ tk;
10: Assign the tasks in Ji to user vi, i.e., P

�
L ¼ P�

L þ fJig;
11: J ¼ J � fJig;
12: V ¼ V � fvig;
13: return P�

L;

The detailed LOTAalgorithm is presented in Algorithm 2.
At the beginning, the set of unassigned tasks is J , and the set
of users who have not been met by the requester is V . Then,
when the requester meets an arbitrary user vi 2 V , it con-
ducts a round of virtual MLM offline task assignment. First,
the requester initializes the EPT value and the assigned task
set for each user vl 2 V (Steps 1-5). Next, it determines which
tasks in hand should be assigned to the encountered user vi
by using the greedy LTFA and EURT strategy (Steps 6-9).
This will produce a temporary offline task assignment result,
in which Ji is the real result, and fJ1; . . . ; Ji�1; Jiþ1; . . . ; Jng
are virtual results. Then, the requester assigns the tasks in Ji
to the encountered user vi, and updates the unassigned task
set as J ¼ J � Ji (Steps 10-11). Meanwhile, the set of users
who have not been met by the requester is also updated
(Step 12). This ends a round of online task assignment. When
the requester meets another user, this algorithm will be con-
ducted again to assign some of the unassigned tasks to the
new encountered user, until all tasks are assigned. The com-

putation overhead is dominated by Step 7, which isOðmn2Þ.

4.4 Performance Analysis

Without loss of generality, we assume that the requester
meets other users in the order of v1; v2; . . . ; vn. Moreover, we

use P
ðiÞ
L ¼ fJ ð1Þ

1 ; . . . ; J
ði�1Þ
i�1 , J

ðiÞ
i , J

ðiÞ
iþ1; . . . ; J

ðiÞ
n g to denote the

temporary result for the ith round of virtual MLM offline

task assignment, and let OP T
ðiÞ
L denote the optimal tempo-

rary solution for this round. To analyze the competitive

Fig. 6. A virtual MLM offline task assignment example: greedily assign tasks j4; j3; j2; j1 (t4 ¼ 10; t3 ¼ 8; t2 ¼ 6; t1 ¼ 4) to users v1; v2; v3 (�1 ¼
1=4; �2 ¼ 1=5; �3 ¼ 1=11), and the corresponding task assignment solution is fJ1; J2; J3g, where J1 ¼ fj2; j4g, J2 ¼ fj1; j3g, and J3 ¼ ;.
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ratio of LOTA, we first give an error estimation for each vir-
tual MLM offline task assignment solution produced by
using the LTFA and EURT strategy.

Theorem 8. Let tmax ¼ Maxft1; t2; . . . ; tmg. Then, for the
arbitrary ith (0 � i � n) round of virtual MLM offline task
assignment (here, the 0th round refers to the virtual MLM off-
line task assignment before the requester encounters any other
users), we have:

LMðOP T
ðiÞ
L Þ � LMðPðiÞ

L Þ < LMðOP T
ðiÞ
L Þ þ tmax: (18)

Proof. First, we consider the optimal MLM offline task
assignment solution OP T

ðiÞ
L . Obviously, the best OP T

ðiÞ
L

can be achieved, only when all users complete their
received tasks at the same time. That is,

LMðOP T
ðiÞ
L Þ 
 1

n

�Xn
h¼1

dh þ
Xm
j¼1

tj

�
: (19)

Now, we focus on the task assignment solution P
ðiÞ
L .

Without loss of generality, we assume that task jk is the
last one to be completed, and this task is assigned to user
vl. Then, we have:

LMðPðiÞ
L Þ ¼ EPTl � 1

n

Xn
h¼1

EPTh þ tk (20)

¼ 1

n

�Xn
h¼1

dh þ
Xm
j¼1

tj

�
þ tk (21)

� LMðOP T
ðiÞ
L Þ þ tmax: (22)

On the other hand, LMðOP T
ðiÞ
L Þ � LMðPðiÞ

L Þ due to

the optimality of OP T
ðiÞ
L . Thus, the theorem holds. tu

Second, like AOTA, we can also derive that along with
the increasing of the rounds of online decision, the MLM
performance of the temporarily optimal virtual task assign-
ment solutions will become better and better, as shown in
the following theorem:

Theorem 9. Suppose that the requester meets other users in the
order of v1; v2; . . . ; vn. Then, the temporarily optimal MLM task

assignment solutions satisfy LMðOP T
ð0Þ
L Þ 
 LMðOP T

ð1Þ
L Þ


 � � � 
 LMðOP T
ðnÞ
L Þ.

Proof. We consider the ith round of temporarily optimal

MLM offline task assignment solution OP T
ðiÞ
L ¼ fJ ð1Þ

1 ; . . . ;

J
ði�1Þ
i�1 , J

ðiÞ
i , J

ðiÞ
iþ1; . . . ; J

ðiÞ
n g and the ði� 1Þth round of tem-

porarily optimal solution OP T
ði�1Þ
L ¼ fJð1Þ

1 ; . . . ; J
ði�1Þ
i�1 ,

J
ði�1Þ
i , J

ði�1Þ
iþ1 ; . . . ; Jði�1Þ

n g (1 � i � n). Since J
ð1Þ
1 ; . . . ; J

ði�1Þ
i�1

are the real task assignment results which are determined

before the ith round, they are the same in OP T
ðiÞ
L and

OP T
ði�1Þ
L . Moreover, J

ði�1Þ
i , J

ði�1Þ
iþ1 ; . . . ; J ði�1Þ

n are the virtual

task assignment results in the ði� 1Þth round, which are

re-assigned as J
ðiÞ
i , J

ðiÞ
iþ1; . . . ; J

ðiÞ
n in the ith round when the

requester encounters user vi. According to the optimality

of OP T
ðiÞ
L , the re-assignment can make the requester

achieve the optimal MLM performance in the ith round.

This means LMðOP T
ði�1Þ
L Þ 
 LMðOP T

ðiÞ
L Þ. Due to the

arbitrariness of i, we can get the correctness of this
theorem. tu
Based on the above analysis, we can give the competitive

ratio of the LOTA algorithm now, which is ratio of the larg-
est makespan of AOTA and the globally optimal online task
assignment solution OP TL.

Theorem 10. Assume that there is a god, who can foresee the
mobilities of all mobile users, so that it knows at what time the
requester will meet which user. Based on this, the god can give
a globally optimal online task assignment solution OP TL.
Then, we have:

1) The largest makespan of the task assignment solution
P�

L produced by LOTA satisfies:

LMðP�
LÞ � LMðOP TLÞ � tmax þ 2

�min
; (23)

where tmax ¼ Maxft1; t2; . . . ; tmg, and �min ¼ Min
f�1; �2; . . . ; �ng.

2) The competitive ratio of the LOTA algorithm satisfies:

LMðP�
LÞ

LMðOP TLÞ � 2þ 2

�mintmax
: (24)

Proof. Without loss of generality, we assume that the
requester meets users v1; v2; . . . ; vn at the time t1; t2; . . . ; tn,
and it also takes the time t01; t

0
2; . . . ; t

0
n for these users to

return their results to the requester, respectively. More-
over, we assume that the globally optimal solution given
by the god is OP TL ¼ fJ�

1 ; . . . ; J
�
ng. Since the god has

known the time at which the requester meets other users,
and the time of these users returning results, this globally
optimal task assignment can be seen as a special offline
task assignment. Then, we can use Eq. (17) to calculate
the largest makespan:

LMðOP TLÞ ¼ Max t1 þ t01 þ
X

j12J1�
tj1 ; . . . ; tn þ t0n þ

X
jn2Jn�

tjn

( )
:

(25)

Furthermore, we consider another special offline task
assignment case, where there is no god, and the requester
has not encountered any other users. Although there is
no god, the requester in this case still uses OP TA as its
offline task assignment solution, denoted by PL. Then,
according to Eq. (17), we have:

LMðPLÞ ¼ Max

�
2

�1
þ

X
j12J1�

tj1 ; . . . ;
2

�n
þ

X
jn2Jn�

tjn

�

� LMðOP TLÞ þMax

�
2

�1
� t1 � t01; . . . ;

2

�n
� tn � t0n

�

� LMðOP TLÞ þMax

�
2

�1
; . . . ;

2

�n

�
:

(26)

Note that, as an offline task assignment solutionwithout
a god, PL is not optimal. Hence, we have LMðPLÞ 

LMðOP T

ð0Þ
L Þ. On the other hand, according to Theorem 9,
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we have LMðOP T
ð0Þ
L Þ 
 LMðOP T

ðnÞ
L Þ. Thus, we can get

LMðPLÞ 
 LMðOP T
ðnÞ
L Þ. Furthermore, according to The-

orem 8, we have:

LMðP�
LÞ ¼ LMðPðnÞ

L Þ � LMðOP T
ðnÞ
L Þ þ tmax

� LMðPLÞ þ tmax:
(27)

Replacing LMðPLÞ in Eq. (27) by using Eq. (26), we have:

LMðP�
LÞ � LMðOP TLÞ � tmax þMax

�
2

�1
; . . . ;

2

�n

�

¼ tmax þ 2

�min
:

(28)

Thus, the part 1 of this theorem is correct. Straightfor-
wardly, we have LMðOP TLÞ 
 tmax. Therefore, accord-
ing to Eq. (28), we have:

LMðP�
LÞ

LMðOP TLÞ � 1þ
tmax þ 2

�min

LMðOP TLÞ � 2þ 2

�mintmax
: (29)

Thus, this theorem holds. tu
Theorem 10 shows that the absolute error of LOTA is no

more than a fixed value, i.e., tmax þ 2
�min

, dominated by the larg-

est workload and the average expected meeting time between
the requester and other users. When the average expected
meeting time and the workloads of tasks are very small, our
algorithm can even achieve the nearly optimal result.

5 EVALUATION

We conduct extensive simulations to evaluate the perform-
ances of the proposed algorithms. The compared algo-
rithms, the traces that we used, the simulation settings, and
the results are presented as follows.

5.1 Algorithms in Comparison

To the best of our knowledge, AOTA and LOTA are the first
online task assignment algorithms for crowdsensing in
mobile social networks that take the time of delivering tasks
and results into consideration. Existing crowdsensing task
assignment algorithms cannot be tailored to address our
problems. Consequently, we select three most related algo-
rithms from MSNs and the parallel machine scheduling
area for comparison:

First, we implement the Water Filling (WF) algorithm
which is a task allocation algorithm in MSNs [26]. The WF
algorithm assigns tasks, in turn, to the earliest idle user. Dif-
ferent from our algorithms, the tasks in WF are assigned
according to their initial orders. Since the initial orders of
tasks are generally random, WF can also be viewed as
assigning tasks in a random order. Second, we realize the
classic task schedule algorithm in the parallel machine
scheduling area, denoted by LF (Largest-task-First-pro-
cess) [27]. The LF algorithm assigns tasks to earliest idle
user/machine in the decreasing order of their workloads,
which actually is the same as the task assignment strategy
for the virtual offline task assignment in LOTA. Third, for
the integrity, we also implement the SF (Smallest-task-First-
process) algorithm, in which tasks are assigned to earliest
idle user in the ascending order of their workloads. This

actually is the same as the task assignment strategy for the
virtual offline task assignment in AOTA. Note that, the
three algorithms exactly consist of the most typical task
assignment strategies.

In addition, as the benchmark of the evaluation for the
MAM performance, we design the optimal MAM online
task assignment algorithm OP TA according to Theorem 6.
Here, we have not implemented the OP TL algorithm due to
the NP-hardness of the MLM problem. Moreover, we con-
sider multiple requesters in the simulations. It is possible
that multiple requesters assign tasks to a same user. In this
case, the user only receives the tasks from the first requester,
until it has finished these tasks. The remaining requesters
will re-assign their tasks.

5.2 Real-Traces Used and Simulation Settings

The Cambridge Haggle Trace [28] includes three traces of
Bluetooth device connections by people carrying mobile
devices (iMotes) over a certain number of days. These traces
are collected by different groups of people in office environ-
ments, conference environments, and city environments,
respectively. The nodes in the trace are classified into two
groups: internal nodes and external nodes. Since there is no
meeting record between internal nodes, we only use these
internal nodes as requesters, and let the external nodes
receive and process tasks. Table 2 shows some statistics of
the traces that we used.

The UMassDieselNet Trace [29] contains the bus-to-bus
contacts (the durations of which are relatively short) of 40
buses. Our simulations are performed on traces collected
over 55 days during the Spring 2006 semester, with week-
ends, Spring break, and holidays removed due to reduced
schedules. The bus system serves approximately ten routes.
There are multiple shifts serving each of these routes. Shifts
are further divided into morning (AM), midday (MID),
afternoon (PM), and evening (EVE) sub-shifts. Drivers
choose buses at random to run the AM sub-shifts. At the
end of the AM sub-shift, the bus is often handed over to
another driver to operate the next sub-shift on the same
route, or on another route. For this trace, we select 4 buses
with long trace records as the requesters, and let the remain-
ing buses act as other mobile users.

In addition, we estimate the rate parameter �i of each
user vi by using the ratio of its meeting times with reques-
ters and the total duration in the traces. Moreover, we ran-
domly produce the tasks for each requester. The number of
tasks is selected from f200;400; . . . ; 1;000g. The average
workload of all tasks, denoted by t, is selected from
f10; 20; . . . ; 50g (hours). Moreover, the maximum variance
of the workload of each task is also t. That is, the workload
of each task is randomly selected from [0, 2t].

TABLE 2
Statistics of the Real Traces

Trace Contacts Length
(hours)

Requester Other
users

Intel 2,766 99.8 9 128
Cambridge 6,732 145.6 12 223
Infocom 28,216 76.6 41 264
UMassDieselNet 227,657 95.3 4 36
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5.3 Synthetic Traces and Simulation Settings

In order to evaluate the performances of our algorithms
with different numbers of users and inter-meeting times,
we also conduct a series of simulations on synthetic traces.
First, we determine the number of mobile users, which is
selected from f100; 200; . . . ; 1;000g. Then, we randomly
select 5 � 10 percent of these users as the requesters. Next,
we determine the average rate parameter � for the exponen-
tially distributed inter-meeting time between the requesters
and other users, which is selected from f0:01; 0:02; . . . ; 0:10g
(1/hour). Then, for each pair of requesters and mobile users,
we randomly select a value from [0, 2�] as the rate parame-
ter between them. Based on these network parameters, we
construct an MSN to produce the synthetic trace. Finally,
like the simulations on the real traces, we also generate the
tasks for each requester, where the number of tasks is
selected from f100; 200; . . . ; 1;000g, and the average work-
load is selected from f5; 10; . . . ; 50g hours.

5.4 Evaluation Results

First, we evaluate the average makespan performances of
AOTA, WF, LF, SF, and OP TA through two groups of simu-
lations on real traces, with different numbers of tasks and
diverse average workloads. In the first group of simulations,
we conduct these algorithms by changing the average work-
load, while keeping the number of tasks fixed. The results of
the average makespans are shown in Fig. 7. In the second
group of simulations, we change the number of tasks, while
keeping the average workload of all tasks fixed. The results
of the average makespans are shown in Fig. 8. In these simu-
lations, the average makespan value of AOTA is about 12.2
percent larger than that ofOP TA, and the average makespan
values of SF, WF, LF are about 7.86, 73.3, 86.3 percent larger
than that of AOTA, respectively. That is to say, AOTA
achieves the average makespan value closest to that of
OP TA, having a better performance than all other compared
algorithms. This is because AOTA adopts an online task
assignment strategy, which is composed of multiple rounds
of virtual optimal offline task assignments. In addition, along
with the increase of the average workload or the number of
tasks, the absolute errors of our algorithms compared to

OP TA in both groups of simulations have little change. This
is because the absolute errors of our algorithms mainly
depend on the inter-meeting times between requesters and
other users, and these inter-meeting times are actually
derived from the real traces so that they keep unchanged in
the whole simulations. Moreover, when the number of tasks
and the average workload increase, the average makespans
of all algorithms become larger, and the ratios of average
makespans between our algorithms and OP TA become very
close to 1, since the absolute errors change little. These obser-
vations exactly validate our theoretical analysis results.

Second, we evaluate the average makespan performan-
ces of AOTA, WF, LF, SF, and OP TA on the synthetic traces,
in which we take into account the different number of users,
the average workload, the number of tasks, and the average
rate parameter. When we evaluate the performances for a
parameter, we keep the other three parameters fixed. The
results are shown in Fig. 9. The average makespan values of
SF, WF, LF are about 10.2, 69.5, 70.1 percent larger than that
of AOTA respectively, which also prove that AOTA has the
better performance than WF, LF, and SF. As in the simula-
tions on real traces, along with the increase of the average
workload or the number of tasks, the absolute errors of our
algorithm also have little change. Nevertheless, along with
the increase of the average rate parameter, the absolute
errors of our algorithms become smaller and smaller. This is
because the average inter-meeting time decreases, which
leads to a decrease in absolute errors. Additionally, when
the number of mobile users increases, the average time for a
requester to meet a user and the average number of tasks
assigned to each user both decrease, so that the average
makespans of all algorithms become smaller and smaller.
Moreover, the performance gains of online task assignment
decision also become smaller. As a result, the average make-
span values of AOTA and SF become closer and closer, as
shown in Fig. 9a.

Third, we evaluate the largest makespan performances of
LOTA, LF, WF, and SF through the simulations on the real
traces and the synthetic traces, respectively. For the simula-
tions on the real traces, we change the average workload or
the number of tasks, while keeping other parameters fixed.

Fig. 7. Performance comparisons on real traces: the average makespan versus the average workload of tasks (The number of tasksm¼300:).

Fig. 8. Performance comparisons on real traces: the average makespan versus the number of tasks (The average workload of tasks t¼20:).
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The results are shown in Figs. 10 and 11. For the simulations
on the synthetic traces, we change the number of users, the
average workload, the number of tasks, and the average
rate parameter, respectively. The results are illustrated in
Fig. 12. All of these results prove that LOTA has a better
performance on the largest makespan than other compared
algorithms, regardless if we adopt the real or synthetic
traces. Here, in Fig. 12a, LOTA and LF achieve almost the
same results on the largest makespans, when the number of
mobile users exceeds 1,400. This is due to the reason that
when the number of users is larger than the number of
tasks, the number of tasks assigned to each user is very
small. As a result, the online decision can only slightly
improve the task assignment performance.

6 RELATED WORK

This paper focuses on the task assignment problem in
mobile crowdsensing. By far, many task allocation

algorithms have been designed for mobile crowdsensing
[1], [10], [11], [12], [18], [30]. For example, M. Cheung et al.
in [10] formulate a movement-related task allocation prob-
lem as a task selection game, and propose a distributed
algorithm for each user to select its task and determine its
movement. He et al. in [12] propose a greedy approximation
algorithm and a genetic algorithm for the user recruitment
problem of crowdsensing in vehicular networks, where
future trajectories of users are taken into account. He et al.
in [18] considered the task allocation problem with the con-
straint of time budgets. Additionally, several incentive
mechanisms are designed for crowdsensing [9], [13], [14],
[15], [19]. For instance, Peng et al. in [9] propose a quality-
based incentive mechanism. However, none of these exist-
ing works discussed the makespan sensitive task assign-
ment problem in mobile crowdsensing.

On the other hand, our task assignment problem is also
different from traditional parallel machine scheduling prob-
lems. In fact, there have been thousands of papers on

Fig. 9. Performance comparisons on the synthetic traces: the average makespan versus the number of users, the average workload, the number of
tasks, or the average rate parameter.

Fig. 10. Performance comparisons on real traces: the largest makespan versus the average workload of tasks (The number of tasksm¼100:).

Fig. 11. Performance comparisons on real traces: the largest makespan versus the number of tasks (The average workload of tasks t¼20:).

Fig. 12. Performance comparisons on the synthetic traces: the largest makespan versus the number of users, the average workload, the number of
tasks, or the average rate parameter.
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parallel machine scheduling problems by far. Litera-
tures [27], [31] have made a detailed review on these works.
Even in recent years, there is still much research on the com-
plex parallel machine scheduling problems, such as [32],
[33]. The most related works among the existing researches
are the parallel machine scheduling algorithms that take the
setup time into consideration. In these works, each task is
assumed to have a different setup time, but remains identi-
cal to all machines. In contrast, the tasks being sent to
mobile users in our problem follow the mobility model.
More specifically, each task being sent to a mobile user is a
probabilistic event. The probability distribution might be
different for mobile users, but remains common for diverse
tasks. Moreover, mobile users need to return the result for
each task, which is also a probabilistic event. Such a unique
task assignment model makes our problem different from
existing parallel machine scheduling problems.

In addition, there is also much research in the MSN field,
which mainly focuses on routing problems [24], [25]. None
of them have studied task assignment problems, except
Water Filling, which is proposed to allocate tasks among the
mobile users in an MSN [26]. Although this work also takes
the delivery time of the tasks and their results into consider-
ation, it only focuses on the problem of offline task allocation
forminimizing the latest makespan of all tasks, unlike ours.

7 CONCLUSION

In this paper, we study the MAM and MLM task assign-
ment problems for mobile crowdsensing in MSNs, and pro-
pose two online task assignment algorithms: AOTA and
LOTA. The AOTA algorithm adopts the greedy STFA and
EURT strategy to assign tasks. It is applicable to the mobile
crowdsensing for a group of independent sensing tasks,
and can minimize the total or average makespan of all tasks.
In contrast, the LOTA algorithm assigns tasks based on the
greedy LTFA and EURT strategy. It is suitable to the crowd-
sensing for collaborative sensing tasks, and can minimize
the largest makespan of all tasks. Moreover, through the
theoretical analysis and a series of simulations on real traces
and synthetic traces, we prove that both AOTA and LOTA
can produce nearly optimal task assignment solutions.
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