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Abstract—Due to the explosive proliferation of mobile cloud computing applications, much data needs to be transmitted between

mobile users and clouds, incurring a huge traffic demand on cellular networks. Mobile offloading is a promising approach to address

this challenge. In this paper, we focus on the problem of offloading many deadline-sensitive data items to some WiFi networks with

capacity constraints; that is, how to schedule each data item to the WiFi networks, so that we can offload as many data items before

their deadlines as possible, while taking the constraints of transmission capacity into consideration. This problem involves a

probabilistic combination of multiple 0-1 knapsack constraints, which differs from existing problems. To solve this problem, we propose

a greedy oFfline Data Offloading (FDO) algorithm, achieving an approximation ratio of 2. Also, we propose an oNline Data Offloading

(NDO) algorithm, which has a competitive ratio of 2. Additionally, we extend our problem to a more general scenario where WiFi

transmission costs are heterogeneous. We design a Heterogeneous Data Offloading (HDO) algorithm to solve the extended problem,

and give its performance analysis. Finally, we demonstrate the significant performances of our algorithms through extensive

simulations based on some real-world and synthetic WiFi datasets.

Index Terms—Deadline-sensitive data offloading, mobile data offloading, opportunistic WiFi offloading

Ç

1 INTRODUCTION

WITH the explosive growth of user population and their
demands for bandwidth-eager multimedia content in

recent years, a big challenge is raised regarding the cellular
network. The Cisco VNI [2] report predicts that mobile data
traffic will grow at a compound annual growth rate (CAGR)
of 53 percent from 2015 to 2020, reaching 30.6 exabytes per
month by 2020. Furthermore, the aggregate smartphone
traffic will be 8.8 times greater than it is today, with a
CAGR of 54 percent by 2020. To cope with the unprece-
dented traffic load, mobile network operators need to
increase their cellular network capacities significantly.
However, this is expensive and inefficient. One promising
solution to this problem is to offload part of traffic to other
coexisting networks, while leaving the capacities of cellular
networks unchanged. Some recent research efforts have
been focused on offloading cellular traffic to other forms of
networks, such as WiFi networks [3], [4], [5], [6], [7], [8] and
Delay Tolerant Networks (DTNs) [9], [10], [11], [12], [13].

In this paper, we focus on the mobile data offloading
based on WiFi networks in mobile cloud computing [14].
Consider the scenario in which a mobile user is performing
some mobile cloud computing applications and needs to
upload some data items to the cloud side. In order to ensure
the quality of the mobile cloud computing applications,
each data item needs to be uploaded before a deadline. On
the other hand, when the user conducts the mobile cloud
computing applications, it can access cellular networks at
any time, anywhere. Meanwhile, the user also might pass
by some WiFi APs. Hence, the user can transmit the data
items through cellular networks directly, or offload some
data to WiFi networks, when it visits a WiFi AP, as shown
in Fig. 1. In general, the data transmission via cellular net-
works has the advantage of instantaneity, but it will lead to
a large monetary cost. In contrast, data being offloaded to
WiFi networks can save a significant monetary cost, but the
instantaneity cannot be ensured. There is a trade-off
between the two transmission modes, especially when the
transmission capacity of WiFi APs is taken into consider-
ation. Our concern is how to schedule data items between
the two transmission modes, so that we can minimize the
total monetary cost, while ensuring that each data item be
uploaded before its deadline.

The proposed data offloading is different from existing
offloading problems [3], [4], [9], [10], [11], [12], [13], [15],
[16], [17], [18]. These works in [10], [11], [12], [13] mainly
focus on offloading data from cellular networks to DTNs,
which is formulated as a target-set selection problem. Zhuo
et al. [9] provides an incentive framework based on the
reverse auction to leverage the delay tolerance for data off-
loading based on DTNs. In addition, the works in [3], [4]
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study the economic benefits and load balance problem of
traffic offloading between cellular networks and WiFi net-
works from the perspective of Network Services Providers
(NSPs). In contrast, we consider the data offloading prob-
lem from the user’s side. Moreover, our problem can be
deduced as an optimization problem with multiple 0-1
knapsack constraints, in which each knapsack is related to a
WiFi AP. Adding a data item into a knapsack means off-
loading this data item via the corresponding WiFi AP. Since
the accessibility of each WiFi AP is uncertain, it is a probabi-
listic event to add a data item into a knapsack. Furthermore,
each data item is allowed to be added into multiple knap-
sacks. Hence, these data items share a combinatorially prob-
abilistic optimization objective. Meanwhile, each data item
also needs to be subject to a different deadline constraint. It
is because of these features that our problem differs from
the existing trivial Multiple Knapsack Problems (MKP) [19],
[20], and the existing algorithms (e.g., Shortest Remaining
Time First scheduling algorithm) are not applicable in our
problem.

To this end, we design an offloading utility function
according to the combinatorially probabilistic optimization
objective. Based on this utility function, we propose a
greedy offline data offloading algorithm to solve the afore-
mentioned problem. Furthermore, we also propose an
online data offloading algorithm. The offline algorithm indi-
cates that the mobile user makes the data offloading deci-
sions before it visits any WiFi AP, while the online
algorithm means that the mobile user dynamically makes
the immediate data offloading decisions at each time when
it visits a WiFi AP. Also, we extend our problem and solu-
tion to a more general scenario where the transmission costs
per unit data traffic via different WiFi APs are heteroge-
neous. More specifically, our major contributions are sum-
marized as follows:

� We introduce a problem of offloading many dead-
line-sensitive data items to some WiFi APs with
capacity constraints. We formalize it as an optimiza-
tion problem with multiple 0-1 knapsack constraints,
sharing a combinatorially probabilistic optimization
objective. Moreover, we prove the NP-hardness of
this problem.

� We propose an offline data offloading algorithm, i.e.,
FDO, to solve the above problem. A greedy strategy

is adopted in this algorithm. We prove that this
greedy strategy can achieve the approximation ratio
of 2.

� We also propose an online data offloading algorithm,
i.e., NDO. It is composed of a series of greedy off-
loading decisions, each of which is made when the
mobile user visits a WiFi AP. Furthermore, we derive
that this algorithm has the competitive ratio of 2.

� We further extend our problem to a more general
scenario where the transmission costs per unit data
traffic via WiFi networks are different. Accordingly,
we propose a heterogeneous data offloading algo-
rithm, i.e., HDO, to solve it. We also analyze the per-
formance of HDO.

� We conduct extensive simulations to evaluate the
performances of the proposed algorithms, based on
a real WiFi dataset and some synthetic datasets. The
results show that our algorithms can achieve better
performances, compared with other algorithms.

The remainder of the paper is organized as follows. We
describe the network model, and formulate the optimization
problem in Section 2. The offline and online algorithms are
proposed in Sections 3 and 4, respectively. In Section 5, we
introduce the extended problem and new algorithm. In
Section 6, we evaluate the performances of our algorithms
through extensive simulations. After reviewing related
work in Section 7, we conclude the paper in Section 8.

2 MODEL AND PROBLEM FORMULATION

2.1 Offloading Model

We consider that a mobile user is conducting some mobile
cloud computing applications, in which the user needs to
upload some data to the cloud side. The data can be denoted
by a set DD ¼ fd1; . . . ; di; . . . ; dng, where di ¼ hsi; tii
(1 � i � n), in which si and ti denote the size and Time-To-
Live (TTL) of the ith data item, respectively. Without loss of
generality, we assume that these data items are organized
in the ascending order of their TTLs, that is,
t1 � t2 � � � � � tn. At the same time, each data item is
assumed to be indivisible. Moreover, the data item needs to
be uploaded successfully before the time when its TTL
expires, called the transmission deadline of this data item.
Here, the deadline of each data item has taken the transmis-
sion time into consideration. Concretely, the deadline of a
data item in our model is the latest time from which the
data item can be successfully uploaded via cellular network.
Its value is actually the completion time of the offloading
minus the transmission time.

On the other hand, the mobile user is assumed to move
around in an urban area, so that it can upload these data
items to the cloud side, by using cellular networks at any
time, anywhere. However, if the mobile user transmits all of
these data items through cellular networks, it generally
needs to pay many fees for these data transmissions. In this
paper, we assume that there are many WiFi APs distributed
in the urban area, and the NSP is willing to provide the
WiFi-based offloading service, so as to alleviate the load of
cellular networks. Hence, in order to reduce the monetary
costs, the mobile user can offload some data items via WiFi
networks. Since most WiFi APs cannot be accessed for free,

Fig. 1. Data offloading scenario: The mobile user uploads data items
onto the cloud side through WiFi networks when it visits WiFi APs during
Time-To-Lives (TTLs) of data items, or via cellular networks when the
TTLs of data items expire, respectively.
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the traffic offloading will also produce some costs, but they
will be much lower than the cost via cellular networks. We
use C and c to denote the transmission costs per unit data
traffic via cellular networks and WiFi networks,
respectively.

In real scenarios, not all WiFi APs can provide the off-
loading service. It is subject to many factors, such as when
the mobile user enters the communication range of a WiFi
AP, whether the WiFi AP is accessible, and so on. Moreover,
since the transmission rate and the time that the user stays
in the communication range of a WiFi AP are restricted, the
data items that the user can transmit via this WiFi AP are
generally limited. That is to say, the transmission capacity is
also limited. To this end, we use a triple w ¼ ht; p; qi to
describe the offloading opportunity from a WiFi AP, where t

(> 0) is the time of the user visiting the WiFi AP, p (2 ð0; 1�)
is the probability of the WiFi AP providing the offloading
service, and q (> 0) is the transmission capacity of this WiFi
AP. In this paper, we assume that NSP has recorded the his-
torical offloading transactions, including the offloading
time, transmission rate, and so on. This is reasonable since
all offloading operations are conducted via NSP. Based on
these historical offloading records and the mobile behavior,
each mobile user can derive the offloading opportunity
w ¼ ht; p; qi (from NSP) for each given WiFi AP. More spe-
cifically, the probability p can be estimated by the corre-
sponding frequency of historical offloading transactions.
The transmission capacity q can be calculated by using the
transmission rate and the time that the user stays in the
communication range of each WiFi AP. Moreover, we use
WW ¼ fw1; w2; . . . ; wmg to denote all offloading opportuni-
ties, where wj ¼ htj; pj; qji (1 � j � m), and
t1 < t2 < � � � < tm. Here, if the user visits a WiFi AP more
than one time, it can offload data items multiple times, each
of which is seen as an offloading opportunity inWW .

In addition, since the mobile user can connect cellular
network at any time, anywhere, the time that the user stays
in the communication range of cellular network is long
enough. As a result, the total amount of data items which
can be uploaded via cellular network is large enough. More-
over, compared to the data items that the user needs to
upload, the processing capacity of cloud side is generally
powerful enough. Thus, we did not take the capacity con-
straint of cellular network and the processing capacity of
cloud side into account in our data offloading model.

2.2 Problem Formulation

Then, we focus on the data items scheduling problem in the
above offloading model, that is, how to schedule the data
items in DD to the offloading opportunities in WW , so as to

minimize the total transmission cost, while ensuring that
each data item is uploaded before its deadline.

Before the problem formulation, we define two terms for
the simplicity of the following descriptions:

Definition 1 (Data Offloading Operation). A data offload-
ing operation, denoted by ðdi; wjÞ, indicates that di will be off-
loaded to the jth offloading opportunity wj.

Definition 2 (Data Offloading Solution). A data offloading
solution, denoted by FF, is defined as a set of data offloading
operations, i.e.,

FF ¼ fðdi; wjÞjðdi; wjÞ 2 DD�WWg: (1)

In light of the uncertainty of each offloading opportunity,
it is important to note that we allow each data item to be
scheduled to multiple offloading opportunities, as shown in
Fig. 2, so as to improve the probabilities of being offloaded.
If the data item still fails to be uploaded after these offload-
ing opportunities, it will have to be transmitted by using
cellular networks, to ensure it be uploaded to the cloud side
before its deadline.

In our model, an offloading opportunity is not equivalent
to a WiFi AP. The mobile user encountering an offloading
opportunity means that it visits the related WiFi AP and at
the same time the AP can provide the offloading service.
Moreover, if a data item has been offloaded via an offload-
ing opportunity successfully, it will not be uploaded via the
remaining offloading opportunities. Thus, for a given data
offloading solution FF, we can derive the successful proba-
bility of a data item di being offloaded to WiFi networks. It
is the probability of the data item di being offloaded via any
one offloading opportunity in FF, defined as follows:

Definition 3 (Successful Offloading Probability). For a
given data offloading solutionFF, the successful offloading prob-
ability of data item di, denoted by riðFFÞ, satisfies:

riðFFÞ ¼ 1�
Y

j:ðdi;wjÞ2FF
ð1� pjÞ: (2)

Then, according to the probabilities, we can derive the
total expected transmission cost of all data items being
uploaded, defined as follows:

Definition 4 (Total Transmission Cost). The total expected
transmission cost is the sum of the expected costs of all data
items inDD being uploaded for a given data scheduling solution,
denoted by fcostðFFÞ, which satisfies

fcostðFFÞ ¼
Xn
i¼1

si
�
criðFFÞ þ Cð1� riðFFÞÞ�: (3)

Now, we can formalize our problem as follows:

Minimize : fcostðFFÞ
Subject to :

X
i:ðdi;wjÞ2FF

si � qj; 1 � j � m;

ti � tj; for 8ðdi; wjÞ 2 FF 	 DD�WW:

(P1)

Here,
P

i:ðdi;wjÞ2FF si � qj, called the capacity constraint,
means that the total size of data items that are offloaded to

Fig. 2. Data items might be offloaded to multiple WiFi APs.
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the jth WiFi AP should be no larger than the capacity of the
WiFi AP; and, ti � tj, called the deadline constraint, indicates
that each data item di can be offloaded via the offloading
opportunity wj, only when the TTL of this data item is no
less than the time of the offloading opportunity wj.

By analyzing Eq. (3), we obtain

fcostðFFÞ ¼ C
Xn
i¼1

si � ðC � cÞ
Xn
i¼1

siriðFFÞ; (4)

where C
Pn

i¼1 si and ðC � cÞ are known fixed values. Based
on this, we define an offloading utility function as follows:

Definition 5 (Offloading Utility Function). The offloading
utility function of a data offloading solution FF, denoted by
UðFFÞ, is the expected total size of data items that will be off-
loaded to WiFi networks under this data offloading solution.
Then, UðFFÞ satisfies

UðFFÞ ¼
Xn
i¼1

siriðFFÞ: (5)

Since fcostðFFÞ ¼ C
Pn

i¼1 si � ðC � cÞUðFFÞ, Problem (P1)
can be equivalently re-formalized as follows:

Maximize : UðFFÞ
Subject to :

X
i:ðdi;wjÞ2FF

si � qj; 1 � j � m;

ti � tj; for 8ðdi; wjÞ 2 FF 	 DD�WW:

(P2)

Unlike existing MKP [19], (P2) is an optimization prob-
lem with multiple 0-1 knapsack constraints, where each
data item might be added into multiple knapsacks, and
these data items in all knapsacks must share a combinatori-
ally probabilistic optimization objective. In the subsequent
section, we consider the following cases in order to solve
this problem: the offline data offloading and the online data
offloading. For the ease of reference, we summarize the
commonly used notations throughout the paper in Table 1.

3 OFFLINE DATA OFFLOADING

In this section, we analyze the hardness of our problem, and
then, propose an offline data offloading algorithm, followed
by the performance analysis.

3.1 Problem Hardness Analysis

First, we prove that Problem (P2) cannot be solved in poly-
nomial time unless P ¼ NP . More specifically, we have the
following theorem:

Theorem 1. Problem (P2) is NP-hard.

Proof. To prove the NP-hardness of Problem (P2), we first
consider the following special 0-1 knapsack problem

Maximize : s1x1 þ s2x2 þ � � � þ snxn

Subject to : s1x1 þ s2x2 þ � � � þ snxn � S;

x1; x2; � � � ; xn 2 f0; 1g:
(P3)

Here, si is the size of the ith item, S is the size of the
knapsack, and xi is a variable which indicates whether
the ith item is added into the knapsack. The special 0-1
knapsack problem (P3) is NP-hard [21].

Second, we consider a special case of Problem (P2), in
which there is only one WiFi AP, i.e., WW ¼ fht1; p1; q1ig,
and t1 � t1. Such a data offloading problem can be
expressed as

Maximize :
X

i:ðdi;w1Þ2FF
si

Subject to :
X

i:ðdi;w1Þ2FF
si � q1:

(P4)

Mapping S in Problem (P3) to q1 in Problem (P4), we
can get the two problems to be equivalent. That is to say,
Problem (P4), i.e., the special case of Problem (P2), is a
special 0-1 knapsack problem, which is NP-hard. Thus,
Problem (P2) is also NP-hard. tu

3.2 The Basic Solution

Since Problem (P2) has both deadline constraints and capac-
ity constraints, we divide our solution into two phases. We
take the deadline and capacity constraints into consider-
ation in the two phases, respectively.

In the first phase, we focus on the deadline constraints of
data items. That is, we first determine the priority of data
offloading operations according to the TTLs of data items,
and then remove the deadline constraints. More specifically,
the data items with smallest TTLs will be offloaded first,
since they have fewest offloading opportunities. Thus, the
data items are handled (i.e., determining the corresponding
offloading operations) in the ascending order of their TTLs,

TABLE 1
Description of Major Notations

Variable Description

n,m the numbers of data items and offloading opportunities, respectively.
DD;WW the sets of data items and offloading opportunities, respectively.
i, j the indexes for data items and offloading opportunities, respectively .
di¼hsi; tii the size and TTL of ith data item di, respectively.
wj¼htj; pj; qji the time, probability and capacity of jth offloading opportunity wj, respectively.
C, c transmission costs per unit data traffic via cellular networks and WiFi networks, respectively.
ðdi; wjÞ, FF a data offloading operation (Definition 1) and a data offloading solution (Definition 2).
riðFFÞ the successful offloading probability of di for a given solution FF (Definition 3).
DrijðFFÞ the contribution of ðdi; wjÞ2FF to the successful offloading probability of the data item di.
%ijðFFÞ; %i0ðFFÞ the expected probability of di being transmitted via wj and cellular networks, respectively.
VVdi the set of deadline-satisfying offloading operations for the data item di.
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i.e., d1; d2; . . . ; dn. To remove the deadline constraints, we
determine a set of deadline-satisfying data offloading opera-
tions for each data item di, denoted as VVdi

VVdi ¼ fðdi; wjÞ j 8ðdi; wjÞ 2 DD�WW : ti � tjg: (6)

When we let all data offloading operations in FF be selected
only from VVdi (di 2 DD), the data offloading solution FF will
be deadline-satisfying, and will not miss any feasible data
offloading operations.

In the second phase, we focus on the optimization prob-
lem with the capacity constraints. Since the problem is NP-
hard due to the capacity constraints, we adopt a greedy
strategy to approximately solve the problem. Each iteration
of the second phase consists of two main steps: (1) we select
the data offloading operation in VVdi for each data item di,
which can increase the offloading utility function value
most quickly; (2) if the selected offloading operation incurs
the failure of capacity constraint, we use it to replace some
offloading operations in FF for ensuring the capacity con-
straint of the related offloading opportunity.

More specifically, in the first step, we find the data off-
loading operation, which can increase the offloading utility
most quickly. This step can be formulated as follows:

ðdi; wj
 Þ ¼ argmax
ðdi;wjÞ2VVdi

UðFF [ fðdi; wjÞgÞ � UðFFÞ: (7)

In the second step, if the offloading operation ðdi; wj
Þ
can satisfy the capacity constraint of wj
 , it will be added
into the offloading solution FF directly. Otherwise, we will
conduct the replacement procedure. To better describe the
procedure, we denote the contribution of the offloading
operation ðdi; wjÞ 2 FF to the successful offloading probabil-
ity of the data item di as DrijðFFÞ, that is,

DrijðFFÞ ¼ riðFFÞ � riðFF n fðdi; wjÞgÞ: (8)

In the replacement procedure, we first find a set GG 	 FF,

satisfying si � qj
 þ
P

ðdx;wj
 Þ2GG sx. This means that when we

use ðdi; wj
 Þ to replace GG, the capacity constraint of wj
 can
be ensured. Here, each data offloading operation in GG is
selected as follows. First, we let the offloading operations in
FF corresponding to wj
 , i.e., fðdx; wj
Þjðdx; wj
Þ 2 FFg, be
organized in the ascending order of the sxDrxj
 ðFFÞ value,
where sxDrxj
 ðFFÞ is the incremental offloading utility of
ðdx; wj
 Þ. According to this order, we add the corresponding
offloading operations into GG one by one, until
si � qj
 þ

P
ðdx;wj
 Þ2GG sx is satisfied. After determining the

set GG, we compare the incremental offloading utility values
of ðdi; wj
 Þ and GG, i.e., siDrij
ðFF [ fðdi; wj
 ÞgÞ andP

ðdx;wj
 Þ2GG sxDrxj
 ðFFÞ. If the former is larger than the later,

we will use ðdi; wj
 Þ to replace GG. Otherwise, we will not
conduct the replacement.

3.3 The Detailed Algorithm

Based on the above strategy, we design the greedy algo-
rithm to approximately solve the optimization problem
(P2), as shown in Algorithm 1. In Step 1, the data offloading
solution FF and the sets of deadline-satisfying offloading
operations for each data item di 2 DD (i.e., VVdi ) are initialized
to be empty. In Steps 2-5, we add all deadline-satisfying

data offloading operations corresponding to di into the set
VVdi (di 2 DD). Then, the data offloading operation in VVdi ,
which can increase the offloading utility function most
quickly (e.g., ðdi; wj
 Þ), will be considered first, as shown in
Steps 6-7. If the capacity constraint of wj
 is satisfied,
ðdi; wj
Þ will be added into FF directly, and at the same time
the remaining transmission capacity of wj
 is updated in
Steps 8-10.

Otherwise, we first find a set GG ¼ fðdx; wj
 Þjðdx; wj
 Þ
2 FFg, in which each offloading operation is selected in the
ascending order of sxDrxj
 ðFFÞ, to ensure the capacity con-
straint of wj
 while replacing GG by ðdi; wj
 Þ, i.e.,
si � qj
 þ

P
ðdx;wj
 Þ2GG sx, in Steps 11-12. Then, we compute

the incremental offloading utility values of ðdi; wj
 Þ and GG,
i.e., siDrij
ðFF [ fðdi; wj
 ÞgÞ and

P
ðdx;wj
 Þ2GG sxDrxj
ðFFÞ,

respectively. If the former is larger than the later, we will
replace GG by ðdi; wj
Þ, and update the remaining capacity of
wj
 in Steps 13-15. Else, we will not conduct the replace-
ment. Then, we update the set VVdi by deleting ðdi; wj
 Þ from
it, in Step 16. After conducting the offloading procedure for
the last data item dn, the algorithm terminates and outputs
the data offloading solution FF, in Step 17.

By analyzing Algorithm 1, we show that the algorithmic
procedures are polynomial-time, and the computational
overhead of Algorithm 1 is Oðm2n2Þ. Moreover, we can
straightforwardly demonstrate correctness of the algorithm
in the following theorem:

Theorem 2. Algorithm 1 is correct. It will terminate for sure,
and will produce a feasible data offloading solution.

Proof. Since each data offloading operation is selected from
the sets of deadline-satisfying data offloading operations,
some limited sets, the algorithm will terminate for sure,
and the results will satisfy the deadline constraints. On
the other hand, at each round of selection in Algorithm 1,
the capacity constraints are ensured. Thus, the produced
data offloading solution must be feasible. tu

3.4 Examples

To better understand Algorithm 1, we present an example
to show the data offloading procedure, in which the mobile
user has four data items DD ¼ fdi ¼ hsi; tiij1 � i � 4g, where
s1 ¼ 8; t1 ¼ 11; s2 ¼ 6; t2 ¼ 13; s3 ¼ 5; t3 ¼ 17; s4 ¼ 10; t4 ¼ 18,
and it wishes to offload the data items to two offloading
opportunities w1 ¼ ht1; p1; q1i and w2 ¼ ht2; p2; q2i, where
t1 ¼ 10; p1 ¼ 0:6; q1 ¼ 15; t2 ¼ 15; p2 ¼ 0:9; q2 ¼ 10. Since the
deadline constraints t1 < t1 < t2 < t2 < t3 < t4 are satis-
fied, VVdi (di 2 DD) is first determined in Fig. 3a. Then, Algo-
rithm 1 greedily selects data offloading operations as
follows:

In the first round, FF ¼ f. For the first data item d1, we
have VVd1 ¼ fðd1; w1Þg. Since UðFF [ fðd1; w1ÞgÞ � UðFFÞ ¼ 4:8
and s1 � q1, we add ðd1; w1Þ into FF and delete ðd1; w1Þ from
VVd1 , as shown in Fig. 3a. Moreover, we update q1 ¼ 7. Now,
since VVd1 is empty, we consider the next data item d2.

In the second round, FF ¼ fðd1; w1Þg. We consider the
data item d2 and get the corresponding set of deadline-
satisfying offloading operations VVd2 ¼ fðd2; w1Þg. Similarly,
since UðFF [ fðd2; w1ÞgÞ � UðFFÞ ¼ 3:6 and s2 � q1 ¼ 7, we
add ðd2; w1Þ into FF and delete ðd2; w1Þ from VVd2 , as shown in
Fig. 3b. We also update q1 ¼ 1.
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Algorithm 1. The FDO Algorithm

Require:DD;WW .
Ensure: FF.
1: Initialize FF ¼ f and VVdi ¼ f (di 2 DD);
2: for di from d1 to dn do
3: for wj from w1 to wm do
4: if tj � ti then
5: VVdi ¼ VVdi [ fðdi; wjÞg;
6: while ð9 ðdi; wjÞ 2 VVdiÞ do
7: ðdi; wj
 Þ ¼ argmaxðdi;wjÞ2VVdi

UðFF [ fðdi; wjÞg � UðFFÞ;
8: if si � qj
 then
9: FF ¼ FF [ fðdi; wj
 Þg;
10: qj
 ¼ qj
 � si, where si is the size of di;
11: else
12: Find a set GG 	 FF, s.t., si � qj
 þ

P
ðdx;wj
 Þ2GG sx;

13: if siDrij
 ðFF [ fðdi; wj
 ÞgÞ >
P

ðdx;wj
 Þ2GG sxDrxj
 ðFFÞ
then

14: FF ¼ FF [ fðdi; wj
 Þg n GG;
15: qj
 ¼ qj
 � si þ

P
ðdx;wj
 Þ2GG sx;

16: VVdi ¼ VVdi n fðdi; wj
 Þg;
17: return FF;

In the third round, we focus on the data item d3. Now, we
have FF ¼ fðd1; w1Þ; ðd2; w1Þg and VVd3 ¼ fðd3; w1Þ; ðd3; w2Þg.
Algorithm 1 computes the increased offloading utility func-
tion values for each offloading operation ðd3; wjÞ 2 VVd3 . The
results are listed as follows:

UðFF [ fðd3; w1ÞgÞ � UðFFÞ ¼ 3:0;UðFF [ fðd3; w2ÞgÞ � UðFFÞ ¼ 4:5:

According to the results, we select ðd3; w2Þ. Due to s3 � q2,
we add ðd3; w2Þ into the set FF and delete it from VVd3 . We
update q2 ¼ 5. Next, we compute UðFF [ fðd3; w1ÞgÞ�
UðFFÞ ¼ 0:3. At the moment, we have s3 ¼ 5 > q1 ¼ 1.
Therefore, according to the ascending order of siDrijðFFÞ,
we have GG ¼ fðd2; w1Þg so that q1 þ s2 ¼ 7 > s3. Then, we
get s2Dr21ðFFÞ ¼ 3:6 > s3Dr31ðFF [ fðd3; w1ÞgÞ ¼ 0:3. This
means that we will not conduct the replacement, as shown
in Fig. 3c. After deleting ðd3; w1Þ from VVd3 , we get VVd3 ¼ f.
Thus, we will consider the next data item.

In the fourth round, we have VVd4 ¼ fðd4; w1Þ; ðd4; w2Þg
and FF ¼ fðd1; w1Þ; ðd2; w1Þ; ðd3; w2Þg. Similar to the computa-
tion in the third round, we have the following results:

UðFF [ fðd4; w1ÞgÞ � UðFFÞ ¼ 6;UðFF [ fðd4; w2ÞgÞ � UðFFÞ ¼ 9:

We first consider the offloading operation ðd4; w2Þ. Since
s4 ¼ 10 > q2 ¼ 5, we have GG ¼ fðd3; w2Þg according to the

siDrijðFFÞ value. Due to s3Dr32ðFFÞ ¼ 4:5 < s4Dr42ðFF[

fðd4; w2ÞgÞ ¼ 9, we replace ðd3; w2Þ by ðd4; w2Þ in FF, and get

FF ¼ fðd1; w1Þ; ðd2; w1Þ; ðd4; w2Þg. After deleting ðd4; w2Þ from
VVd4 , we have VVd4 ¼ fðd4; w1Þg and UðFF [ fðd4; w1ÞgÞ�
UðFFÞ ¼ 0:6. Similarly, we obtain GG ¼ fðd1; w1Þ; ðd2; w1Þg, and
further get s1Dr11ðFFÞ þ s2Dr21ðFFÞ ¼ 8:4 > s4Dr41ðFF [ fðd4;
w1ÞgÞ ¼ 0:6. This means that we will not conduct the

replacement. Now, since VVd4 is empty, Algorithm 1 termi-

nates and outputs the final offloading solution FF ¼
fðd1; w1Þ; ðd2; w1Þ; ðd4; w2Þg, as shown in Fig. 3d.

3.5 Performance Analysis

In this section, we analyze the approximation ratio of Algo-
rithm 1. First, we use optoptF to denote the optimal offline off-
loading solution of optimization problem (P2). Then, we
have the following theorem:

Theorem 3. FDO has an approximation ratio of 2. That is,

UðoptoptF Þ
UðFFÞ < 2: (9)

Proof. First, we consider a special solution. For this solu-
tion, we assume that all data items can be divided, and let
each data item di ¼ hsi; tii be divided as di1 ¼ h1; tii, . . . ,
disi ¼ h1; tii. Then, we conduct our Algorithm 1 to get a
solution, denoted by optopt
F . When all data items are divisi-
ble, the greedy strategy in Algorithm 1 can achieve the
optimal result. This is because the problem has the prop-
erty of optimal substructure, the best offloading operation
is selected in each round, and the transmission capacity of
each offloading opportunity is fully utilized. Since optoptF is
the optimal solution where data items are indivisible, it
cannot fully utilize the transmission capacity of each off-
loading opportunity in most cases. Hence, we have:

Uðoptopt
F Þ � UðoptoptF Þ: (10)

Second, we consider another special solution for the
case where data items are indivisible, but the capacity
constraint of each offloading opportunity can be broken
once. Denote this solution as optoptþF . Since optoptþF and optopt
F
are produced by using the same greedy criterion, while
optoptþF can offload data items beyond each capacity con-
straint once, we have

UðoptoptþF Þ � Uðoptopt
F Þ: (11)

Now, we compare optoptþF and FF. Without loss of general-
ity, we assume that there are g data offloading operations
corresponding to wj, which have been selected into FF,

Fig. 3. Example: Greedily schedule the data items d1; d2; d3; d4 to offloading opportunities w1; w2, and the obtained data offloading solution is
FF ¼ fðd1; w1Þ; ðd2; w1Þ; ðd4; w2Þg. The selected offloading operations are according to the greedy criterion max DU ¼ UðFF [ fðdi; wjÞgÞ � UðFFÞ and
max DrijðFFÞsi, respectively.
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denoted as fðdi1 ; wjÞ; . . . ; ðdix ; wjÞ ; . . . ; ðdig ; wjÞg, in which
dix ¼ hsix ; tixi. Now, we consider that the current offload-
ing operation ðdi; wjÞ, and assume that si > qj where si
and qj denote the data size of di and the remaining capacity
of wj, respectively. According to the replacement strategy
in Algorithm 1, we find a set GG 	 FF so that

si � qj þ
P

ðdix ;wjÞ2GG six . In optoptþF , ðdi; wjÞ will be added

directly since each offloading opportunity can be broken

once. In contrast, we replace GG by ðdi; wjÞ if siDrijðFF[
fðdi; wjÞgÞ >

P
ðdix ;wjÞ2GG sixDrixjðFFÞ. For convenience, we

use DUjðFFÞ to denote the incremental offloading utility

corresponding towj based onFF. Therefore, we have

DUjðFFÞ ¼
X

ðdix ;wjÞ2ðFFnGGÞ
sixDrixjðFFÞ

þmax
X

ðdix ;wjÞ2GG
sixDrixjðFFÞ; siDrijðFF [ fðdi; wjÞgÞ

8<
:

9=
;;

(12)

DUjðoptoptþF Þ ¼
X

ðdix ;wjÞ2FF
sixDrixjðFFÞ þ siDrijðFF [ fðdi; wjÞgÞ:

(13)

Then, for 8j 2 ½1;m�, we have

2DUjðFFÞ � DUjðoptoptþF Þ þ
X

ðdix ;wjÞ2ðFFnGGÞ
sixDrixjðFFÞ: (14)

Furthermore, based on Eqs. (5), (8), and (14), we get

2UðFFÞ > UðoptoptþF Þ � UðoptoptF Þ: (15)

Thus, the theorem is correct. tu

4 ONLINE DATA OFFLOADING

In this section, we propose the online data offloading algo-
rithm, in which the data offloading decision is made only
when the user encounters the offloading opportunities.

4.1 The Basic Idea

The basic idea is that the mobile user makes the online data
offloading decisions only when it encounters an offloading
opportunity. Here, the “encounter” means that the user
enters the communication range of the related WiFi AP and
at the same time this AP can provide offloading service.
When the user encounters the offloading opportunity wj,
the estimated probability pj for this encounter is replaced
by 1. For convenience, we directly let pj ¼ 1. Otherwise, if
the WiFi AP cannot provide offloading service when the
user visits it, we say that the user does not encounter the off-
loading opportunity and let pj be replaced by 0.

Different from the offline case,we just focus on the data off-
loading based on the encountered offloading opportunity wj

in the online case. That is, we will offload some data items via
wj in real time, while ignoring other offloading opportunities.
Moreover, once the offloading operation ðdi; wjÞ is deter-
mined, the data item di is offloaded via wj for sure, and it will
not be considered for the later offloading opportunities. This
means that each data item is scheduled only once in the online

case. By extending the offline strategy, we divide the online
solution into two phases: (1) we first determine the priority of
data offloading operations and remove the deadline con-
straints; (2) we select the data offloading operations, which
can increase the offloading utility most quickly and at the
same time satisfy the capacity constraints.

In the first phase, we determine the priority of offloading
operations and remove the deadline constraints. Similar to
the offline case, the data items with smallest TTLs will be
offloaded first in the online case, since they have fewest off-
loading opportunities. Also, we use VVdi to denote the set of
deadline-satisfying offloading operations for the data item
di (2 DD). Here, since we just focus on the encountered off-
loading opportunity wj, VVdi only contains one offloading
operation, i.e., VVdi ¼ fðdi; wjÞg, for the data item di.

In the second phase, we consider the capacity constraint of
the encountered offloading opportunity. For convenience, we
useFFj to denote the offloading solution corresponding to the
encountered offloading opportunity wj. For the data item di,
if the offloading operation ðdi; wjÞ inVVdi satisfies the capacity
constraint of wj, it will be added into the offloading solution
FFj directly. Otherwise, we will conduct the replacement pro-
cedure. Concretely, we first find a set GG ¼ fðdx;wjÞj
ðdx;wjÞ 2 FFjg, which satisfies the capacity constraint of wj

when replacing GG by ðdi; wjÞ, i.e., si � qj þ
P

ðdx;wjÞ2GG sx. Due

to pj ¼ 1, the incremental offloading utility of a data offload-

ing operation ðdx; wjÞ 2 FFj is actually the data size, i.e., sx.
Based on this, we add the offloading operations into GG in the
ascending order of data sizes. By comparing the incremental
offloading utility values of ðdi; wjÞ and GG, i.e., si andP

ðdx;wjÞ2GG sx, we replaceGG by ðdi; wjÞ if si >
P

ðdx;wjÞ2GG sx.

4.2 The Detailed Algorithm

The detailed algorithm is presented in Algorithm 2. First, the
offloading solutionFF
 andFFj (1 � j � m) are initialized to be
empty in Step 1. Then, for each offloading opportunity inWW ,
if the mobile user encounters the jth offloading opportunity
wj, the corresponding probability pj is replaced by 1 and
Algorithm 2 makes the online offloading decisions in Steps 3-
15, otherwise the algorithm skips wj and continues in Steps
16-17.

More specifically, when the user encounters the offload-
ing opportunity wj, the set of data items, which have not
been offloaded and the corresponding TTLs have not
expired, is determined in Step 4. Then, the offloading opera-
tion corresponding to wj for each data item di is determined
in Steps 5-6. If the offloading operation ðdi; wjÞ in VVdi satis-
fies the capacity constraint of wj, it will be added into FFj

directly, and at the same time the remaining capacity of wj

is updated, in Steps 8-9. Otherwise, we determine a set
GG 	 FFj satisfying si � qj þ

P
ðdx;wjÞ2GG sx, in Step 11. If the

incremental offloading utility of ðdi; wjÞ is larger than that of
GG, the offloading operations in GG are replaced with ðdi; wjÞ,
and the remaining transmission capacity of wj is updated in
Steps 12-14. Then, ðdi; wjÞ will be deleted from VVdi in Step
15. When the user does not encounter wj, Algorithm 2 will
skip wj and continue, in Steps 16-17. At last, by combining
the offloading solution for each encountered offloading
opportunity (i.e., FFj), Algorithm 2 terminates and outputs
the final offloading solution FF
 in Steps 18-19.
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Algorithm 2. The NDO Algorithm

Require:DD,WW .
Ensure: FF
.
1: FF
 ¼ FFj ¼ f (1 � j � m);
2: for wj inWW do
3: if the user encounters wj then
4: DD ¼ fdijdi 2 DD; ti � tjg n fdijðdi; wjÞ 2 [m

j¼1FFjg;
5: for di inDD do
6: VVdi ¼ fðdi; wjÞg;
7: while ð9 ðdi; wjÞ 2 VVdiÞ do
8: if si � qj then
9: FFj ¼ FFj [ fðdi; wjÞg, qj ¼ qj � si;
10: else
11: Find a set GG 	 FFj, s.t., si � qj þ

P
ðdx;wjÞ2GG sx;

12: if si >
P

ðdx;wjÞ2GG sx then
13: FFj ¼ FFj [ fðdi; wjÞg n GG;
14: qj ¼ qj � si þ

P
ðdx;wjÞ2GG sx;

15: VVdi ¼ VVdi n fðdi; wjÞg;
16: else
17: Continue; // the user does not meet wj, i.e., pj ¼ 0;
18: FF
 ¼ [m

j¼1FFj;

19: return FF
;

In addition, the computational overhead of Algorithm 2
is OðmnÞ.

4.3 Performance Analysis

We use competitive ratio to evaluate the online approxima-
tion performance of NDO. Assume that there is a god, who
can foresee whether the mobile user will encounter each off-
loading opportunity. Based on this knowledge, the god can
give an optimal online offloading solution, denoted by optoptN .

The competitive ratio is defined as the ratio of optoptN and our

online solution FF
, i.e., UðoptoptN Þ
UðFF
Þ . This metric is different from

the approximation ratio adopted in the offline case. Note

that the approximation ratio is the ratio of the optimal off-

line solution optoptF and our offline solution FF, i.e., UðoptoptF Þ
UðFFÞ .

Since optoptF is not optimal in the online case, optoptN is better
than optoptF . As a result, the competitive ratio is more accurate
than the approximation ratio. Then, we have:

Theorem 4. The competitive ratio of NDO satisfies

UðoptoptNÞ
UðFF
Þ < 2: (16)

Proof. We use mathematical induction to prove the correct-
ness. Like the offline case, we consider a special solution,
where each item can be divisible. Then, the algorithm can
produce an online offloading solution for this case,
denoted by optopt
N . Also, we consider another special solu-
tion in which each offloading opportunity can be broken
once, and use optoptþN to denote the online solution. Similar
to the analysis in the offline case, we straightforwardly
have

UðoptoptþNÞ � Uðoptopt
NÞ � UðoptoptNÞ: (17)

Then, we focus on optoptþN and FF
 hereinafter.

(1) Without loss of generality, we assume that the first
encountered offloading opportunity is wj1 , and the
total g data offloading operations have been
selected for wj1 , i.e.,FFj1 ¼ fðdix ; wj1Þj1 � x � gg, in
which dix ¼ hsix ; tixi. When considering the next
offloading operation ðdi; wj1Þ, we find that si > qj1
where qj1 is the remaining transmission capacity of
wj1 . Then, we determine a set GG 	 FFj1 so that si �
qj1 þ

P
ðdix ;wj1 Þ2GG six . Based on this, we have UðFF
Þ ¼

UðFFj1Þ ¼
P

ðdix ;wj1 Þ2ðFFj1 nGGÞ six þmaxfsi;
P

ðdix ;wj1 Þ2GG
sixg and UðoptoptþNÞ ¼ UðoptoptþNj1

Þ ¼ P
ðdix ;wj1 Þ2FFj1

six þ si,

where UðoptoptþNj
Þ denote the offloading utility corre-

sponding to wj based on the online solution optoptþN .
Thus, forwj1 , we get

2UðFF
Þ � UðoptoptþNÞ: (18)

(2) Then, we consider that Eq. (18) holds for the hth

encountered offloading opportunity wjh , i.e.,

2Uð[h
k¼1FFjkÞ � Uð[h

k¼1optoptþNjk
Þ, and now we take

wjhþ1
into account. When the user encounters

wjhþ1
, we divide the situation into two cases. In

the first case, we consider that
P

di2DD si � 1
2 qjhþ1

.
Hence, similar to the analysis in (1), we can
directly get

2Uð[hþ1
k¼1FFjkÞ � Uð[hþ1

k¼1optoptþNjk
Þ: (19)

In the second case, we considerP
di2DD si < 1

2 qjhþ1
. This may be caused by the

abandonment of offloading operations for the
encountered offloading opportunities. Without
loss of generality, we assume that only some
data offloading operations, whose correspond-
ing TTLs of the data items are between tjh and
tjhþ1

, are abandoned. This is because the off-
loading operation (e.g., ðdi
 ; wjhÞ) with larger
data size where ti
 � tjhþ1

is added into FFjh .
For convenience, we use DDj to denote the set
of data items whose TTLs are between tj and
tjþ1. Then, in the worst case where
DDjhþ1

¼ fdi
g and si
 < 1
2 qjhþ1

, we have

UðFFjhÞ þ UðFFjhþ1
Þ ¼ si
 ; (20)

UðoptoptþNjh
Þ þ UðoptoptþNjhþ1

Þ ¼ si
 þ
X

di2DDjh

si: (21)

According to
P

di2DDjh
si < 1

2 qjh and si
 � 1
2 qjh in the

second case, we can also get

2Uð[hþ1
k¼1FFjkÞ � Uð[hþ1

k¼1optoptþNjk
Þ: (22)

Based on the nature of mathematical induction, we
have

2UðFF
Þ � UðoptoptþNÞ � UðoptoptNÞ: (23)

As a result, the theorem holds. tu
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5 EXTENSION

In this section, we extend our problem to a more practical
scenario, where the transmission costs per unit data traffic
via WiFi networks are heterogeneous. We first introduce the
extended problem, and then propose a Heterogeneous Data
Offloading algorithm, called HDO, to solve this problem,
followed by the performance analysis.

5.1 The Extended Problem

In our initial problem, we consider that all WiFi AP owners
have come to an agreement with NSP, and made the trans-
mission costs per unit data traffic via all WiFi networks be
uniform. In a more general case, the WiFi APs are distrib-
uted in different locations in the city. Different locations
mean different difficulty degrees of accessing WiFi net-
works, resulting in different transmission costs per unit
data traffic. Hence, the initial triple w ¼ ht; p; qi to describe
the offloading opportunity from a WiFi AP, is replaced by
w ¼ ht; p; q; ci, where c denotes the transmission cost per
unit data traffic via this WiFi AP. Moreover, we consider
that 8cjð1 � j � mÞ is much smaller than the cost via cellu-
lar networks C. We also use FF to denote the data offloading
solution in the extended problem. According to the defined
offloading utility function UðFFÞ ¼ Pn

i¼1 siriðFFÞ in the original
problem, minimizing the total transmission cost fcostðFFÞ is
equivalent to maximizing the utility function UðFFÞ. How-
ever, in the extended case, the transmission costs per unit
data traffic via WiFi networks are different. That is to say,
here, minimizing the total transmission cost fcostðFFÞ is not
equivalent to maximizing the utility function UðFFÞ. There-
fore, the greedy strategy used in the FDO and NDO algo-
rithms is not applicable. To solve the extended problem, we
propose another concept of offloading cost function, based on
which we design another greedy algorithm, called Hetero-
geneous Data Offloading (HDO) algorithm.

For the simplicity of following descriptions, we use
%ijðFFÞ to denote the expected probability that di is sched-
uled via WiFi AP wj with a given data scheduling solution
FF. %ijðFFÞ is calculated in the following form:

%ijðFFÞ ¼
Y

k:k< j^ðdi;wkÞ2FF
ð1� pkÞ � pj: (24)

Also, we use %i0ðFFÞ to denote the expected probability of
transmitting data item di via cellular networks, and we have
the following definition.

Definition 6 (Expected Transmission Probability via
Cellular Networks). For a given data offloading solution FF,
the expected transmission probability via cellular networks for
the data item di, i.e., %i0ðFFÞ, satisfies

%i0ðFFÞ ¼ 1�
Xm
j¼1

%ijðFFÞ: (25)

Then, the total expected transmission cost for a given
data scheduling solution FF is expressed as follows:

fcostðFFÞ ¼
Xn
i¼1

si

�Xm
j¼1

%ijðFFÞcj þ %i0ðFFÞ � C

�
: (26)

Here,
Pm

j¼1 %ijðFFÞcj denotes the expected transmission cost
per unit data traffic via all WiFi networks, while %i0ðFFÞ � C
denotes the expected cost through cellular networks. The total
cost of all data items that are transmitted through cellular net-
works, is denoted as C �Pn

i¼1 si, which is fixed. Hence, for a
given data offloading solution FF, the total transmission cost
via all WiFi networks can be computed. Different from the
concept ofOffloading Utility Function UðFFÞ in Definition 5, we
define an offloading cost function as follows:

Definition 7 (Offloading Cost Function). The offloading
cost function of a data offloading solutionFF, denoted by CðFFÞ, is
the expected total cost of data items that will be offloaded to WiFi
networks under this data offloading solution, which satisfies

CðFFÞ ¼ C
Xn
i¼1

si � fcostðFFÞ ¼
Xn
i¼1

si

�Xm
j¼1

ðC � cjÞ%ijðFFÞ
�
:

(27)

Then, we formalize the extended problem as follows:

Maximize : CðFFÞ ðExtensionÞ
Subject to :

X
i:ðdi;wjÞ2FF

si � qj; 1 � j � m;

ti � tj; for 8ðdi; wjÞ 2 FF 	 DD�WW:

Note that when cj ¼ cð1 � j � mÞ, CðFFÞ ¼ ðC � cÞUðFFÞ,
indicating that UðFFÞ is actually a special form of Offloading
Cost Function CðFFÞ. Also, we use DCFFððdi; wjÞÞ to denote the
increment of CðFFÞ after adding a new offloading operation
ðdi; wjÞ, based on a given data offloading solution FF. Thus,
we have the following expression:

DCFFððdi; wjÞÞ ¼ CðFF [ fðdi; wjÞgÞ � CðFFÞ: (28)

Similarly, we use DCFFðGGÞ to denote the incremental offload-
ing cost function value by adding a set of offloading opera-
tions GG into the data offloading solution FF.

5.2 The HDO Algorithm

To solve the extended problem in which the transmission
costs via different WiFi APs are heterogeneous, we pro-
pose an extended algorithm, i.e., Heterogeneous Data Off-
loading (HDO) algorithm. Since the extended problem
also has capacity constraints and deadline constraints, we
adopt the similar strategy used in the offline algorithm to
remove them. That is, we determine the priority of data
offloading operations and further remove the deadline
constraints in the first phase. Then, we select the offload-
ing operations that satisfy the capacity constraints in the
second phase.

In the first phase, we determine the priority of offloading
operations and remove the deadline constraints. Concretely,
the data items with smallest TTLs will be considered first.
We also use VVdi to denote the set of deadline-satisfying off-
loading operations for the data item di. After we have
derived the set VVdi for di 2 DD, we always select the data off-
loading operations from VVdi (di 2 DD). Based on this, the
data offloading solution FF is deadline-satisfying.

In the second phase, we consider the capacity con-
straints. More specifically, we first select the data offloading
operation ðdi; wj
 Þ, which can increase the defined
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offloading cost function value most quickly. The greedy cri-
terion of selection in each round is formulated as follows:

ðdi; wj
 Þ ¼ argmax
ðdi;wjÞ2VVdi

DCFFððdi; wjÞÞ: (29)

Then, if the data offloading operation ðdi; wj
 Þ can satisfy
the capacity constraint of the offloading opportunity wj
 , it
will be added into FF directly. Else, we will conduct the
replacement procedure as follows. we first find a set GG 	 FF
to ensure the capacity constraint of wj
 when replacing GG by

ðdi; wj
 Þ (i.e., si � qj
 þ
P

ðdx;wj
 Þ2GG sx). Here, each data off-

loading operation ðdx; wj
 Þ 2 GG is selected based on the min-
imum increment of offloading cost function value.
Concretely, we organize the offloading operations in FF cor-
responding to wj
 , i.e., fðdx; wj
Þjðdx; wj
 Þ 2 FFg, in the
ascending order of the incremental offloading cost function
value, i.e., DCFFnfðdx;wj
 Þgððdx; wj
 ÞÞ. According to this order,
we add offloading operations into GG one by one until

si � qj
 þ
P

ðdx;wj
 Þ2GG sx is satisfied. After comparing the

incremental offloading cost function values of ðdi; w
Þ and GG,
i.e., DCFFððdi; wj
 ÞÞ and DCFFnGGðGGÞ, we will use ðdi; wj
 Þ to
replace GG if the former is larger than the later.

Based on this greedy strategy, we present the Heteroge-
neous Data Offloading (HDO) algorithm, as shown in Algo-
rithm 3. The HDO algorithm also starts by initializing the
offloading solution set FF and the sets of deadline-satisfying
offloading operations VVdi (di 2 DD), in Step 1. Then, the set
VVdi for each data item di 2 DD is determined in Steps 2-5. We
select the data offloading operation (e.g., ðdi; wj
 Þ) which
can increase the offloading cost function value most quickly
in Steps 6-7. If ðdi; wj
 Þ satisfies the capacity constraint of
wj
 , it will be added into FF directly in Steps 8-9. Else, we
will conduct the replacement procedure in detail. We first
determine a set GG 	 FF satisfying si � qj
 þ

P
ðdx;wj
 Þ2GG sx in

Step 11. After comparing the incremental offloading cost
function values of ðdi; wj
 Þ and GG, we choose the better one
for the data offloading, in Steps 12-14. Then, each consid-
ered offloading operation ðdi; wj
Þ will be deleted from VVdi

in Step 15. At last, Algorithm 3 terminates and outputs the
offloading solution in Step 16.

Algorithm 3. The HDO Algorithm

Require:DD;WW where wjð2 WWÞ ¼ htj; pj; qj; cji.
Ensure: FF.
1: Initialize FF ¼ f and VVdi ¼ f (di 2 DD);
2: for di from d1 to dn do
3: for wj from w1 to wm do
4: if tj � ti then
5: VVdi ¼ VVdi [ fðdi; wjÞg;
6: while ð9 ðdi; wjÞ 2 VVdiÞ do
7: ðdi; wj
 Þ ¼ argmaxðdi;wjÞ2VVdi

DCFFððdi; wjÞÞ;
8: if si � qj
 then
9: FF ¼ FF [ fðdi; wj
 Þg, qj
 ¼ qj
 � si;
10: else
11: Find a set GG 	 FF, s.t., si � qj
 þ

P
ðdx;wj
 Þ2GG sx;

12: if DCFFððdi; wj
 ÞÞ > DCFFnGGðGGÞ then
13: FF ¼ FF [ fðdi; wj
 Þg n GG;
14: qj
 ¼ qj
 � si þ

P
ðdx;wj
 Þ2GG sx;

15: VVdi ¼ VVdi n fðdi; wj
 Þg;
16: return FF;

Additionally, the computation overhead of Algorithm 3
is also Oðm2n2Þ.

5.3 Performance Analysis

In this section, we analyze the performance of Algorithm 3.
After denoting the optimal solution to the extended prob-
lem as optoptT , we have the following theorem:

Theorem 5. The offloading cost function for the data offloading
solution FF produced by HDO satisfies

CðoptoptT Þ
CðFFÞ < 2: (30)

Proof. Similar to the analysis of the FDO algorithm, we first
consider two special solutions optopt
T and optoptþT . More specif-
ically, optopt
T and optoptþT denotes the solutions obtained by
Algorithm 3, in which all data items are assumed to divis-
ible and the capacity constraints of offloading opportuni-
ties can be broken once, respectively. Since optoptT , optopt
T and
optoptþT are produced by the same strategy, we have

CðoptoptþT Þ � Cðoptopt
T Þ � CðoptoptT Þ: (31)

When comparing optoptþT and FF, we assume that there
are g data offloading operations corresponding to wj in
FF, denoted as fðdix ; wjÞj1 � x � gg. For the offloading
operation ðdi; wjÞ, we assume si > qj. According to the

replacement strategy in Algorithm 3, we determine a set

GG 	 FF so that si � qj þ
P

ðdix ;wjÞ2GG six . The offloading

operations in GG are selected based on the minimum incre-

mental offloading cost function value, i.e., DCFFnfðdix ;wjÞg
ððdix ; wjÞÞ. In optoptþT , ðdi; wjÞ will be added directly since

each offloading opportunity can be broken once. In con-

trast, we select ðdi; wjÞ if DCFFððdi; wjÞÞ > DCFFnGGðGGÞ. Also,

we use DCjðFFÞ to denote the incremental offloading cost

function value corresponding to wj based on the solution

FF. Since
Pm

j¼1ð%ijðFFÞ � %ijðFF n fðdi; wjÞgÞÞ is actually the

value of DrijðFFÞ defined in the offline case, we have

DCjðFFÞ
C � cj

¼
X

ðdix ;wjÞ2ðFFnGGÞ
sixDrixjðFFÞ

þmax

� X
ðdix ;wjÞ2GG

sixDrixj; siDrijðFF [ fðdi; wjÞgÞ
�
;

(32)

DCjðoptoptþT Þ
C � cj

¼
X

ðdix ;wjÞ2FF
sixDrixj þ siDrijðFF [ fðdi; wjÞgÞ: (33)

Then, we get

2DCjðFFÞ � DCjðoptoptþT Þ > DCjðoptoptT Þ; for 8j 2 ½1;m�: (34)

Furthermore, we have

2 CðFFÞ � CðoptoptþT Þ > CðoptoptT Þ: (35)

Thus, this theorem holds. tu

GAO ET AL.: OPPORTUNISTIC MOBILE DATA OFFLOADING WITH DEADLINE CONSTRAINTS 3593



6 PERFORMANCE EVALUATION

We conduct extensive simulations to evaluate the perform-
ances of our algorithms. Note that the FDO and NDO algo-
rithms are designed for the scenario where transmission
costs per unit data traffic via all WiFi networks are uniform,
while the HDO algorithm is designed for the case in which
transmission costs per unit data traffic via WiFi networks
are different. Hence, the simulations are divided into two
parts. The FDO, NDO algorithms and two compared algo-
rithms are conducted in the same simulation settings, and
the HDO algorithm is conducted with the compared algo-
rithms in other simulation settings. More specifically, we
first introduce the compared algorithms used in our simula-
tions. Then, we present the real trace that we used and the
corresponding settings. We also describe the synthetic
traces and the relevant simulation settings. Finally, we pres-
ent and analyze the obtained experimental results.

6.1 Algorithms in Comparison

As we discussed in Section 1, our problem is different from
the existing works. Previous offloading algorithms cannot be
applied in our problem directly. Hence, we implement two
other scheduling algorithms for comparison: Random Selec-
tion (RS) and Shortest Remaining Time First (SRTF). In the RS
algorithm, all data offloading operations are randomly
selected from VVdi (di 2 DD), while satisfying capacity con-
straints of offloading opportunities and deadline constraints
of offloaded data items simultaneously. In the SRTF algo-
rithm, all data items are first sorted in the ascending order of
their Time-To-Live (TTLs). Then, SRTF selects the data items
which satisfy the deadline constraints to each offloading
opportunity one by one according to this order, until the total
size of selected data items exceeds the capacity of the corre-
sponding offloading opportunity. In other words, the data
itemswith smallest TTLswill be offloaded first.

6.2 Real-Trace Used and Simulation Settings

We adopt the newest real dataset [22] collected from two
smartphone testbeds deployed in University at Buffalo (UB)
and University of Notre Dame (ND): 5-month scans from
PhoneLab at UB, and 32-month scans from NetSense at ND.
Smartphones perform WiFi scans to adapt to the changing
wireless environments caused by mobility, and WiFi scan
results data, together with otherWiFi related logs, is collected
using the PhoneLab smartphone testbed over 5 months.
Throughout the paper we mainly use the dataset called
WifiRSSIChange, which contains 274 contents and one content
corresponds to a specific WiFi AP. Moreover, every content
includes multiple files, each of which means the logs of WiFi
Received Signal Strength Indicator (RSSI) change for a day.
For the simplicity of following description, these files are
called LogDate. Each LogDate contains lots of entries, and
each one for the log ofWiFi RSSI state for a specificmoment is
called LogMoment. One LogMoment includes (1) WiFi SSID
and BSSID, (2) a log timestamp, (3) WiFi linkspeed and (4)
RSSI values.

We first select an arbitrary content (i.e., a WiFi AP) in
WifiRSSIChange, and then choose a file (i.e., LogDate) in the
content randomly. Next, we filtrate the WifiRSSIChange and
find all WiFi APs which contain the LogDate with the same
name as the selected LogDate. We let m be the number of

selected WiFi APs, and use WW ¼ fw1; . . . ; wmg to denote
them. Since the WiFi linkspeed is changing over time in a
LogDate, we select an arbitrary moment in the LogDate to
denote the timestamp as the time that the user enters the
communication range of one WiFi AP, i.e., tj. Furthermore,
we use the time period, during which the linkspeed of WiFi
APs remains unchanged, to denote the time that the user
stays in the communication range of one WiFi AP. Then, we
calculate the capacity of each WiFi AP, i.e., qj, according to
the linkspeed and time period. In addition, we denote the
probability pj of accessing the WiFi AP wj by using some
random values which are generated from ð0; 1�. By that anal-
ogy, we can get the all parameters of satisfied WiFi APs
(tj; qj; pj; 1 � j � m). Note that t1 � t2 � � � � � tm. Addition-
ally, we use t and q to denote the average appearing time
and average capacity of all WiFi APs, respectively.

Note that the simulation settings in the initial and extended
problems are same, except for the transmission costs via all
WiFi networks. Therefore, we first introduce the same simula-
tion settings in both scenarios, and then present the different
settings. Since there is no information about mobile user in
the dataset WifiRSSIChange, we generate a fictitious mobile
user and randomly produce the deadline-sensitive data items
for it. More specifically, the number of data items is selected
from f50; 100; . . . ; 250g. The size and Time-To-Lives of all
data items are randomly produced in ½0; 2l� and ½0; 2t�, where l
and t denote the average size and TTL of data, respectively.
Moreover, l and t are selected from f0:05q; 0:1q; 0:15q;
0:2q; 0:25qg and f0:1t; 0:2t; 0:3t; 0:4t; 0:5tg, respectively.

For the simplicity of descriptions, the simulation settings
where the transmission cost via WiFi APs is uniform, based
on the real trace WifiRSSIChange, are called settings1-1. The
settings in which the transmission costs are different, are
called settings1-2. Hence, the different settings in initial and
extended problems are presented as follows.

(1) settings1-1: We let the transmission costs per unit
data traffic via cellular network and WiFi networks
be C ¼ 0:1 and c ¼ 0:01, respectively.

(2) settings1-2: We let the transmission costs via WiFi
networks be generated from ½0; 2d� randomly, where
d is selected from f0:005; 0:01; 0:015; 0:02; 0:025g.
Additionally, we still let the transmission cost via
cellular network be 0.1.

6.3 Synthetic Traces and Simulation Settings

In order to evaluate the performances of our algorithms with
different attributes of WiFi APs, we also conduct a series of
simulations on synthetic datasets. Similar to WifiRSSIChange,
the simulation settings in the synthetic datasets are also classi-
fied into two parts. The simulation settings inwhich the trans-
mission cost via WiFi networks is uniform based on synthetic
trace, are called settings2-1, while the settings which consider
the differences of transmission costs via WiFi networks, are
called settings2-2. We first introduce the common settings in
settings2-1 and settings2-2. To evaluate the performance of our
algorithms with different numbers of WiFi APs, we let the
numbers of WiFi APs be selected from f5; 10; . . . ; 25g. More
specifically, we take another two attributes of WiFi APs into
consideration as follows. The capacities of WiFi APs are ran-
domly generated in ½0; 2L�, where L is selected from the set
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f1000; 2000; . . . ; 5000g. The probabilities of contacting WiFi
networks are produced in ½0; 2p� randomly, and p is selected
from the set f0:1; 0:15; . . . ; 0:3g, which is used to generate con-
tact events. Note that the different settings in settings2-1 and
settings2-2 are the same as settings1-1 and settings1-2,
respectively.

6.4 Evaluation Metrics

In a generic WiFi-based offloading model, the most impor-
tant performance metrics include the amount of offloaded
data and the offloading delay. However, in our mobile data
offloading model, the offloading delay is used as the dead-
line constraints. Our primitive optimization problem is to
minimize the total data transmission cost. Hence, the total
transmission cost of all data items is used as a most leading
metric in our simulation. In addition to the Total Transmis-
sion Cost (TTC), we also evaluated the data offloading ratio
(OR) which is defined as Eq. (36), based on the initial prob-
lem and the extended problem

OR ¼

Pn

i¼1
siriðFFÞPn

i¼1
si

; ðP2ÞPn

i¼1
sið
Pm

j¼1
%ijðFFÞÞPn

i¼1
si

; ðExtensionÞ

8>><
>>:

(36)

6.5 Evaluation Results

6.5.1 Results of the Real Trace

1) settings1-1: We first present the results obtained by
the four algorithms, FDO, NDO and two compared
algorithms, according to the dataset WifiRSSIChange,
in settings1-1. The performance comparisons in terms
of the number of data items n, average size l and
average TTL t of data items, are presented in Figs. 4
and 5. In the simulations, when we conduct the four
algorithms by changing one of the parameters n, l,
and t, we keep others fixed. The results of the total
transmission cost and offloading ratio while chang-
ing the number of data items n are shown in Figs. 4a
and 4b. Similarly, the results of TTC and OR by
changing l or t are shown in Figs. 4c, 4d, 5a, and 5b,
respectively. By analyzing the results, we conclude
that NDO and FDO achieve about 26.6 and 10.9 per-
cent smaller total transmission costs than the two
compared algorithms as a whole, respectively. Addi-
tionally, we get that when the number of data items
or the average size of data items increases, the TTCs
of all algorithms increase, and the ORs decrease;
when the average TTL of data items increases, the
TTCs increase, while the ORs decrease. These simu-
lations validate our theoretical analysis results.

2) settings1-2: Then, we show the results obtained from
the HDO algorithm and two compared algorithms
on WifiRSSIChange, according to settings1-2. The per-
formance comparisons on TTCs of all data items and
ORs with different numbers of data items n, average
sizes of data items l, average TTLs of data items t or
average transmission cost via all WiFi networks c,
are shown in Figs. 6 and 7. Here, the default values
of n, l, t, and d are set to 100, 0:1q, 0:1t and 0.01,
respectively. We see that when we change n, l, or t,
HDO always achieves the best performance, and
gets about 67.7, 23.3, 35.1 percent smaller total trans-
mission costs than those of the compared algorithms,
respectively. Moreover, when we change the param-
eters of n or l, the TTCs and ORs almost have the
same change trend as the settings1-1. We see that the
ORs derived in HDO may be less than that obtained
in the compared algorithms. This is because that the
expected probability of offloading data to WiFi net-
works in HDO may be less than that of RS and SRTF,
resulting in the lower ORs. However, the expected
transmission cost through WiFi networks in HDO,
considering the various transmission costs per unit
data traffic via WiFi APs, may be much smaller than
that in RS and SRTF. In addition, the performance
comparisons on TTCs and ORs with the parameter d,
are shown in Figs. 6d and 7d. HDO gets about 22.5
percent smaller total transmission costs than those of
the compared algorithms. Along with the increase of
d, the TTCs obtained in all three algorithms increase
correspondingly. This is because the average trans-
mission cost per unit data size via all WiFi networks
increases, resulting in the higher total transmission
costs. These simulation results are still consistent
with our theoretical analysis.

6.5.2 Results of Synthetic Traces

1) settings2-1:Next, we present the simulation results of
the four algorithms by using synthetic traces, based

Fig. 4. Performance comparisons: Total transmission cost and offloading ratio versus the numbers of data items and the average sizes of data items.

Fig. 5. Performance comparisons: The total transmission cost and off-
loading ratio versus the different TTLs of data items.
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on settings2-1. We evaluate the performances of the
four algorithms, taking the number of WiFi APs m,
the accessible probability p and capacity L of each
WiFi AP into consideration. Also, when we change
one of the parameters for evaluation, we keep the
other parameters fixed. The performances of TTCs
and ORs by changing m are presented in Figs. 8a
and 8b. As we expected, NDO achieves the best per-
formance, and FDO follows. The total transmission
costs of FDO and NDO are about 36.7 and 85.0 per-
cent smaller than those of the compared algorithms,
respectively. The offloading ratio of NDO achieves
the best result; the FDO and the two compared algo-
rithms decrease stepwise. Then, we evaluate the per-
formances of the four algorithms by changing the
parameter p or L. The results of TTCs and ORs are
shown in Fig. 9. FDO and NDO achieve about 12.3
and 57.2 percent smaller total transmission costs
than the two compared algorithms, respectively.
Additionally, NDO has the biggest offloading ratio,
and FDO follows. When p or L increases, the total
transmission costs decrease. The offloading ratios of
all algorithms increase simultaneously.

2) settings2-2: Lastly, we evaluate the performances of
three algorithms: HDO, RS, and SRTF, by considering
the number ofWiFiAPs, average probability of access-
ing WiFi APs, average capacity of all WiFi APs, and
average transmission cost via WiFi networks. Like-
wise, when we change one of the parameters for
evaluation, we keep the other parameters fixed. The
simulation results are shown in Figs. 10 and 11. The
results demonstrate that HDO achieves better per-
formances than RS and SRTF, about 10.8 percent
smaller total transmission costs than the two com-
pared algorithms. In addition, along with the
increase of the number ofWiFi APs, average capacity
of WiFi APs, and average probability of mobile user
visiting WiFi APs, the TTCs decrease. The ORs of all
algorithms increase simultaneously. In contrast,

alongwith the increase of the transmission costs via all
WiFi networks, the TTCs increase. These simulations
remain consistent with our theoretical analysis results.

7 RELATED WORK

In this paper, we focus on the data transmission problem in
mobile cloud computing applications, in which these off-
loading data items must share a combinatorially probabilis-
tic optimization objective. By far, the latest works [23], [24],
[25], [26], [27], [28], [29], [30] concentrate on offloading traf-
fic from cellular networks to other coexisting networks to
provide better service. In a broad sense, offloading cellular
traffic can be mainly classified into two categories: WiFi-
based offloading [3], [4], [27], [31], [32], [33], [34], [35] and
DTNs-based offloading [9], [10], [11], [12], [13], [36].

Generally, data offloading through third party WiFi APs
or femtocell APs requires the cooperation and agreement of
both the mobile cellular network operators (MNOs) and AP
owners (APOs). Gao et al. [3] developed a model to analyze
the interaction among one MNO and multiple APOs by
using Nash bargaining theory. Lee et al. [4] studied the eco-
nomic benefits generated due to delayed WiFi offloading,
by analyzing the traffic load balance between cellular net-
works and WiFi networks. In the work [6], the heteroge-
neous network is responsible for collecting the network
information, and decides the specific portion of traffic to be
transmitted via WiFi networks, to maximize the per-user

Fig. 6. Performance comparisons on the total transmission cost with the different numbers of data items, the average sizes of data items, the average
TTLs of data items, and the average transmission costs per unit data traffic via WiFi APs.

Fig. 7. Performance comparisons on the offloading ratio with the different numbers of data items, the average sizes of data items, the average TTLs
of data items, and the average transmission costs per unit data traffic via WiFi APs.

Fig. 8. Performance comparisons: The total transmission cost and off-
loading ratio versus the number of WiFi APs.
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throughput. Wang et al. [27] proposed an auction-based
algorithm to achieve both load balancing among base sta-
tions and fairness among mobile users, which optimally sol-
ves the global proportional fairness problem in polynomial
time by transforming it into an equivalent matching prob-
lem. Additionally, Mehmeti et al. [31] proposed a queueing
analytic model for delayed WiFi offloading, and derive the
mean delay, offloading efficiency, and other metrics of inter-
est, as a function of the user’s “patience”. The authors in the
work [24] proposed and evaluated an integrated architec-
ture exploiting the opportunistic networking paradigm to
migrate data traffic from cellular networks to metropolitan
WiFi APs. Different from the aforementioned works, our
purpose is to minimize the total transmission cost of all data
items, from the perspective of mobile users. Additionally,
we take the deadline constraints and the capacity con-
straints into consideration simultaneously.

Furthermore, ourwork is also different from the offloading
using DTNs. For example, Zhuo et al. [9] mainly investigated
the trade-off between the amount of traffic being offloaded
and the users’ satisfaction. Then, they proposed a novel incen-
tive offloading target where users with high delay tolerance
and large offloading potential will be prioritized for traffic off-
loading. Li et al. in [10] established amathematical framework
to study the problem of multiple-type mobile data offloading
under realistic assumptions, where (1) mobile data is hetero-
geneous in terms of size and lifetime; (2) mobile users have
different data subscribing interests; and (3) the storages of

offloading helpers are limited. Then they formulated the
objective of achieving maximum mobile data offloading as a
submodular function maximization problem with multiple
linear constraints of limited storage, and proposed three algo-
rithms to solve this challenging optimization problem. The
authors of work [13] proposed the framework of traffic off-
loading assisted by Social Network Services (SNS) via oppor-
tunistic sharing, to offload SNS-based cellular traffic by user-
to-user sharing, which is formulated as a special target-set
selection problem. Han et al. [11] exploited opportunistic
communications to facilitate information dissemination in the
emerging Mobile Social Networks (MSNs) and thus reduce
the amount of mobile data traffic. The work [11] investigated
the target-set selection problem for information delivery to
minimize the cellular data traffic. Different from the existing
problems, we formulate the objective of achieving the mini-
mum of data transmission cost from a mobile device to the
cloud side.

We deduce the problem as an optimization problem with
a probabilistic combination of multiple 0-1 knapsack con-
straints, which also differs from the existing MKP [19], [20].
The closest to our problem is the Multiple 0-1 Knapsack
problem with Assignment Restrictions and Capacity
Constraints (MK-AR-CC) [19], in which multiple knapsacks
is independent. By contrast, the multiple 0-1 knapsack
constraints in our optimization problem involves a probabi-
listic combination, and each item, which is allowed to be
assigned to multiple knapsacks, shares a combinatorially

Fig. 10. Performance comparisons on the total transmission cost with the number of WiFi APs, the average probability of accessing WiFi APs, the
average capacity of WiFi APs, and the average transmission cost via WiFi APs.

Fig. 11. Performance comparisons on the offloading ratio with the different numbers of WiFi APs, average probabilities of accessing WiFi APs, aver-
age capacities, and average transmission cost per unit data traffic of WiFi APs.

Fig. 9. Performance comparisons: The total transmission cost and offloading ratio versus the average accessing probability and capacity of WiFi
APs.
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probabilistic optimization objective in our model. Thus, our
problem is more complicated than MK-AR-CC. The method
used in MK-AR-CC [19] cannot solve our problem. Since
dynamic programming cannot solve MK-AR-CC [19] to get
an optimal result, it cannot solve our problem.

Besides, some recent research efforts have been focused
on other aspects while alleviating the traffic load over cellu-
lar networks. For example, Saad et al. [37] considered the
problem of uplink user association in small cell networks,
and then proposed a distributed algorithm to solve it.
Barbera et al. [26] designed and built a working implemen-
tation of CDroid, a system that tightly couples the device
OS to its cloud counterpart, where the cloud-side handles
data traffic through the device efficiently and caches code or
data optimally for possible future offloading. Higgins
et al. [38] designed a useful mobile prefetching system,
where they used a cost-benefit analysis to decide when to
prefetch data, and employed goal-directed adaptation to
minimize application response time while meeting budgets
for battery lifetime and cellular data usage.

8 CONCLUSION

We have studied the problem of how to offload multiple
mobile data items from cellular networks to WiFi networks
to minimize the total transmission cost from the perspec-
tive of mobile users. These data items are heterogeneous
in data sizes and TTLs, and the capacities of WiFi net-
works are limited. We first prove the NP-hardness of the
offloading problem. Then, we design the offline algorithm
(FDO) and the online algorithm (NDO) to solve the optimi-
zation problem. We prove that FDO achieves the approxi-
mation ratio of 2, and NDO achieves the competitive ratio
of 2. In addition, we extend our problem and solution to a
more general scenario where the transmission costs per
unit data traffic via WiFi networks are heterogeneous. We
further propose the heterogeneous data offloading algo-
rithm (HDO), and analyze the performance of HDO. At
last, extensive simulations based on real and synthetic
traces are conducted to verify the significant performances
of our algorithms.
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