
Joint Configuration Adaptation and Bandwidth
Allocation for Edge-based Real-time Video Analytics

Can Wang†, Sheng Zhang∗†, Yu Chen†, Zhuzhong Qian†, Jie Wu‡, and Mingjun Xiao§
†State Key Lab. for Novel Software Technology, Nanjing University, P.R. China

‡Center for Networked Computing, Temple University
§School of Computer Science and Technology / Suzhou Institute for Advanced Study,

University of Science and Technology of China, P.R. China

Abstract—Real-time analytics on video data demands intensive
computation resources and high energy consumption. Traditional
cloud-based video analytics relies on large centralized clusters
to ingest video streams. With edge computing, we can offload
compute-intensive analysis tasks to the nearby server, thus
mitigating long latency incurred by data transmission via wide
area networks. When offloading frames from the front-end device
to the edge server, the application configuration (frame sampling
rate and frame resolution) will impact several metrics, such as en-
ergy consumption, analytics accuracy and user-perceived latency.
In this paper, we study the configuration adaption and bandwidth
allocation for multiple video streams, which are connected to
the same edge node sharing an upload link. We propose an
efficient online algorithm, called JCAB, which jointly optimizes
configuration adaption and bandwidth allocation to address a
number of key challenges in edge-based video analytics systems,
including edge capacity limitation, unknown network variation,
intrusive dynamics of video contents. Our algorithm is developed
based on Lyapunov optimization and Markov approximation,
works online without requiring future information, and achieves
a provable performance bound. Simulation results show that
JCAB can effectively balance the analytics accuracy and energy
consumption while keeping low system latency.

I. INTRODUCTION

Major cities worldwide have millions of cameras deployed
at traffic intersections, enterprise offices, and retail stores [1],
for the purpose of surveillance, business intelligence, traffic
control, crime prevention, etc. In many use cases, quick
analysis on these live video streams is required. In addition,
many other emerging applications such as cognitive assistance,
mobile gaming, virtual reality and augmented reality [2], [3]
also rely on effective analysis of videos in real time.

In general, video analytics applications demand intensive
computation resources and high energy consumption. Thus the
front-end devices are often resource-limited to support these
applications with acceptable latency. One way to overcome
this limitation is to transfer videos to cloud data centers [4]
and execute the deep learning algorithms there. However,
cloud-based solutions may incur excessive transmission delay
in wide area networks [5]. Edge computing is an emerging

∗The Corresponding Author is Sheng Zhang (sheng@nju.edu.cn). This
work was supported in part by National Key R&D Program of China
(2017YFB1001801), NSFC (61872175), Natural Science Foundation of
Jiangsu Province (BK20181252), NSF (CNS 1824440, CNS 1828363, CNS
1757533, CNS 1629746, CNS 1651947, CNS 1564128), and Collaborative
Innovation Center of Novel Software Technology and Industrialization.

1080p

480p

360p

240p

Configuration

 Adaption

Video Streams

Controller

Bandwidth

 Allocation

Configurations

Fig. 1: An illustration of the edge-assisted video analytics system.

computing paradigm which advocates processing data at the
logical edge of a network [6]–[8], thereby enabling video
analytics to occur closer to the data source.

In video analytics, frames are extracted from the video at
different sampling rates, compressed into various resolutions,
and then processed by different CNN (convolutional neural
network [9]) models. We refer to a particular combination of
resolution and frame rate as a configuration [10]. Apparently,
different configurations lead to different accuracies and energy
consumptions. Since edge nodes serve as the backend for video
processing [11], transmitting videos from their sources to the
edge server via time-varying network links is inevitable. Thus,
efficient offloading of video analytics involves configuration
adaption and bandwidth allocation.

Researchers from both industry and academia have invested
heavily in these two problems. Most of the previous works [3],
[5], [10], [12]–[16] considered only one of them in offloading
video analytics, which leads to sub-optimal performance.
However, the scheduling of computing resources (via con-
figuration adaption) and networking resources (via bandwidth
allocation) are both of importance to the overall performance
of edge-assisted video analytics.

In this work, we consider a practical scenario in which
multiple video streams connect to the same edge server sharing
a narrow uplink channel, as shown in Fig. 1. Different CNN
models are deployed on the edge server to match various
resolutions. A small CNN with fewer convolutional layers [1]
is cheaper, faster but less accurate. The objective is to decide
the frame rate, resolution, and the share of bandwidth for each
video stream to maximize the overall accuracy and minimize
the energy consumption, subject to a service latency budget.
This problem faces many challenges for the following reasons:

The best offloading configuration varies over time. As

257
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

we mention above, different configurations lead to different
accuracies and energy consumptions. We can keep choosing
the most expensive configuration to ensure a high accuracy, but
this demands more resources and energy. In many cases, the
policy that reduces the frame rate and lowers the resolution can
save energy significantly without impacting the accuracy. For
example, we can choose a lower frame sampling rate when the
target moves slowly. Meanwhile, the policy that lowers frame
resolution will not hurt accuracy when the target is large in the
scenes [5]. The best configuration can optimize the trade-off
between accuracy and energy consumption, which varies over
time depending on the video content.

Network bandwidth is often unpredictable. As many have
observed, the wide area network bandwidth has come to
a standstill [17] while traffic demands are growing at a
staggering rate [18]. Not only is WAN bandwidth scarce, it
is also relatively expensive, and highly variable [5]. Similar
scarcity and variations exist in wireless networks [19], [20],
broadband access networks and cellular networks [21]. When
the available bandwidth becomes insufficient, an offloading
configuration which adopts high frame resolution may incur
long transmission latency, and this problem becomes more
noticeable when multiple video streams have to share the same
uplink channel, hence bandwidth resource management be-
comes crucial and the main challenge is to deal with the trade-
off between analytics accuracy and bandwidth consumption.

These reasons motivate us to propose adaptive video ana-
lytics which is capable of optimizing the trade-off among the
analytics accuracy, service latency, and energy consumption.
Our solution aims to find the most suitable video analytics
offloading configuration and bandwidth allocation scheme for
a multi-user edge-assisted video analytics system.

To the best of our knowledge, this is the first work to jointly
optimize configuration adaption and bandwidth allocation for
multi-video streams in the edge environment, explicitly taking
into account the trade-off among the analytics accuracy, ser-
vice latency, and energy consumption. The main contributions
of this paper are summarized as follows.
• We study a more practical model. We explicitly consider

limited and varying bandwidths between video sources
and the edge server. The edge server has limited com-
puting resource. The accuracy function with respect to
resolution or frame rate varies depending on the video
contents. Both transmission energy consumption and pro-
cessing energy consumption are taken into account.

• We formalize the joint configuration adaption and band-
width allocation problem, for optimizing the trade-off
between accuracy and energy consumption, under a long-
term latency constraint. The insight behind our problem
is adapting video streams to bandwidth variation and
intrinsic dynamics of their contents.

• We develop a novel online algorithm, i.e., JCAB, which
can efficiently adapt configurations and allocate band-
width resources for video streams on the fly without
foreseeing the future. JCAB utilizes the Lyapunov frame-
work to transform the original problem into a series

of one slot optimization problems, each of which is
solved by leveraging the Markov approximation and the
KKT condition. We prove that JCAB achieves a close-
to-optimal performance, while bounding the potential
violation of the latency constraint.

• We evaluate the performance of the design through ex-
tensive and practical simulations with accuracy profiles
obtained from our experiments. Results confirm the su-
periority of our approach compared to several baselines.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III describes our
system model. Section IV develops the JCAB algorithm. We
evaluate our proposed design using extensive simulations in
Section V. Finally Section VI concludes the paper.

II. RELATED WORK

There are many offloading frameworks focused on video
stream processing [5], [12], [13]. VideoStorm [12] takes the
resource-quality trade-off and the variety in quality and la-
tency goals into account. GigaSight [13] continuously collects
crowd-sourced videos from mobile devices. However, they all
rely on remote clouds to ingest video streams, and assume that
sufficient bandwidth is provisioned between cameras and the
cloud. Different from them, we promote pushing computation
to the network edge in proximity to data sources. In addition,
we allow performing video analytics locally leveraging the
computing power of smart cameras and mobile devices [22].

Various works have studied the computation offloading of
video analytics in mobile edge computing, where videos are
treated as sequences of images. In [14], the authors proposed
to parallelize frame offload and local detection to optimize the
processing time. The authors in [3] designed and implemented
an edge network orchestrator which enables fast and accurate
object analytics. In these frameworks, images are extracted
from the video with a fixed sampling rate, the analytics of
different frames is treated as tasks with the same complexity
and accuracy. The assumption, however, is improper since the
frame rate and frame resolution will impact both the accuracy
and query processing time for video analytics applications.

Several previous papers have considered optimizing video
processing by adjusting the configuration. Chameleon [10]
periodically searches an exponentially large configuration
space to find the optimal configuration for a video query. It
only focuses on the trade-off between analytics accuracy and
computation resource, while ignoring the fact that bandwidth is
a scarce resource in video analytics. JetStream [15] is the first
to use configuration degradation to address bandwidth limits,
but it requires developers to write manual policies which are
generally sub-optimal. Our work aims to find the optimal
tradeoff between accuracy and energy consumption, with a
long-term latency constraint, and thus none of these previous
works can be directly and effectively applied to our problem.

The most related work is probably [23], in which the authors
considered the complex interaction among model accuracy,
video quality, battery constraints, network data usage, and net-
work conditions to determine an optimal offloading strategy.

258
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

JCAB

AC

controller

BR manager
Local

CNN

Camera

Accuracy

profiler

Client Server

Offloading

controller

Socket

Profile

Frames

Control

message

Feedback

Results

Queue

 data

Socket

Parallel

CNNS

Fig. 2: The architecture of the edge-based live video analytics system.

However, there are no analytical models for resource demand
and quality for a query configuration in [23], and they focused
on client-side scheduling whereas we focus on server-side
decisions for multiple video streams, with constraints on the
network bandwidth and the capacity of edge servers.

III. SYSTEM MODEL

Suppose that a set of K users or video streams, denoted by
U = {u1, u2, ..., uK}, connect to the same edge server nearby.
They keep offloading video frames to the server, sharing a
narrow uplink channel. As illustrated in Fig. 1, there are N
parallel CNN models M = {m1,m2, ...,mN} deployed on
the edge server, with different input sizes of images. Let m0

be the lightweight CNN model in each local device. Let ri be
the input resolution for the ith CNN.

We use si and ci to denote the processing time and cost,
respectively, per frame for mi. It has been well studied in [24]
that CNN can be compressed to a smaller size at the expense of
accuracy. Such techniques include removing some expensive
convolutional layers and reducing input image resolution. Thus
in our design, CNN with lower input image resolution has
a faster processing speed (i.e., smaller si) and needs less
resources (i.e., smaller ci).

We divide time into discrete time slots, each of which has
a duration that matches the timescale at which offloading
configurations can be updated. The system architecture is
depicted in Fig. 2. We mainly focus on video queries such
as detecting certain objects (like cars or pedestrians). On the
client side, videos are continuously recorded from cameras and
object recognition can be performed locally using lightweight
CNNs. On the client side, the proposed algorithm runs in the
Adaptive Configuration (AC) controller and the Bandwidth
Resource (BR) manager, which take accuracy profiles, network
conditions and latency goals as the input, and send configu-
rations along with bandwidth allocation back to the clients.
The underlying characteristics (e.g., the velocity and sizes of
objects) of video streams are extracted from analytics results
and then utilized to update the accuracy profiles.

In the remainder of this section, we first provide analytical
models on the accuracy (Section III-A), the energy consump-
tion (Section III-B), and the latency (Section III-C). Then, we
present the problem formulation (Section III-D).

A. Analytics Accuracy Model

The accuracy models are derived based on the performance
measurements obtained from our real experiments.

Since a query configuration is multi-dimensional and dif-
ferent decision variables may affect the analytics accuracy

，

．

、

‘

‘

．

．

E司 ι．

•

，

E噩噩

．

』．

Fig. 3: We implement YOLO on NVIDIA Jetson TX2.

in different ways, profiling the accuracy of a configuration
is no easy task. We first have to figure out the relationship
between the analytics accuracy and the input image resolution.
To do so, we implement YOLO [25], an object detector
CNN on NVIDIA Jetson TX2 (shown in Fig. 3) to perform
pedestrian detection on a clip from a surveillance video. In this
experiment, video frames are resized to different resolutions,
and the accuracy of a compressed frame is computed by
comparing the detected objects with the objects detected in the
frame with the highest resolution, using the F1 score, which is
the harmonic mean of precision and recall. A detected object is
identified as true positive when its bounding box has the same
label and sufficient spatial overlap with the corresponding
ground truth [10]. The spatial overlap can be measured by
IOU (interaction of Union). In our experiment, an object is
correctly detected when IOU ≥ 0.7.

The results are plotted in Fig. 4(a). The red dashed line
shows the accuracy in slot x1, when the targets are small in the
scene, while the blue line shows the accuracy in slot x2, when
pedestrians walk nearby. There are two observations. The first
is that a higher image resolution produces a better analytics
accuracy and the performance gain decreases at a high video
resolution. Hence the relationship between accuracy and the
resolution can be formulated as concave functions, i.e. the red
line can be fitted as 0.988−4.469e−

r
200 with less than 0.02 root

mean square error. The second observation is that the accuracy
profile of a video stream varies over time, high resolution
is crucial when targets are small but the policy to lower
resolution will not hurt latency much when targets are big
enough. The accuracy models should be updated periodically
according to the size of targets. Based on these observations,
we use εtk(r) to represent the accuracy function with respect
to resolution for user uk in slot t. We also introduce a binary
variable xik,t to indicate whether mi is selected by user uk in
slot t, so

∑N
i=0 x

i
k,tri is the frame resolution of uk in slot t.

The relationship between accuracy and the sampling frame
rate f is illustrated in Fig. 4(b). We perform cars counting on
a clip form a traffic video with different sampling frame rates.
Since the video segment consists of many frames, we compute
accuracy as the fraction of frames with F1 score ≥ 0.67. To
compute the accuracy of a frame that was not sampled, we use
the location of objects from the previous sampled frame. In
time slot y1, the cars in the scene are moving fast, while in slot
y2, all cars slow down due to a traffic congestion. Similarly,
we model the accuracy function with respect to frame rate
as a concave function φtk(f), which should be updated at the
start of each time slot according to the velocities of targets.
Denote by fk,t the frame sampling rate of uk in time slot t.
Many prior studies also show that the relationship between
resolution/framerate and accuracy can often be formulated as

259
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

400 500 600 700 800 900 1000

Resolution

0.2

0.4

0.6

0.8

1
A

c
c
u
ra

c
y

Time slot x
1

Time slot x
2

Fitted curve

Fitted curve

720p

900p
1080p

360p

540p

(a) Resolution

5 10 15 20 25 30

Frame rate

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

Time slot y
1

Time slot y
2

Fitted curve

Fitted curve2fps

3fps

5fps

10fps

30fps

(b) Frame Rate

Fig. 4: Impact of configurations on the detection accuracy.

concave functions [10].
It has been experimentally observed in [10] that frame reso-

lution and frame sampling rate independently impact accuracy,
allowing us to model the accuracy of the configuration of uk in
time slot t as εtk(

∑N
i=0 x

i
k,tri)φ

t
k(fk,t). The average accuracy

over K users in time slot t is:

at =
1

K

∑K

k=1
εtk(

∑N

i=0
xik,tri)φ

t
k(fk,t). (1)

B. Energy Consumption Model

Battery life may become the primary concern since it is
usually inconvenient to recharge mobile devices. Therefore,
we take energy efficiency into consideration. The energy con-
sumption of a mobile device or smart camera mainly consists
of two parts: transmission energy due to data transmission and
processing energy caused by local video frame processing.

The transmission energy consumption is proportional to the
size of data which is uploaded to an edge server. The data size
of a video frame with resolution r is calculated as αr2 bits [3],
where α is a constant. Let γk represent the transmission energy
consumption per bit for uk. Then the average transmission
energy consumption of all users in slot t is:

etrant =
1

K

∑K

k=1

∑N

i=1
γkα(xik,tri)

2fk,t. (2)

We use µk to denote the energy cost of processing one
frame on the local device of uk [26]. Then the average data
processing energy consumption for all users in time slot t is:

eproct =
1

K

∑K

k=1
x0
k,tµkfk,t. (3)

If Eqs. (2) and (3) are combined, the average energy
consumption of all users in time slot t is et = etrant + eproct .

C. Service Latency Model

The latency per frame consists of two parts: data trans-
mission latency and CNN processing latency. The data trans-
mission latency is jointly determined by the data size of a
frame and the share of bandwidth; we use bk,t to denote
the bandwidth shared by uk. Then, the latency per frame
experienced by uk in time slot t is:

lk,t =

∑N
i=1(αxik,tri)

2

bk,t
+
∑N

i=0
xik,tsi. (4)

Thus, the average latency for K video streams in slot t is:

lt =
1

K

∑K

k=1
lk,t. (5)

D. Problem Formulation

Analytics on live video streams is energy-consuming and
latency-sensitive, generally requiring high quality. Hence on
designing the adaptive algorithm, we aim at achieving de-
sirable analytics accuracy under the long-term latency con-
straint, while keeping the energy cost as low as possible. For
simplicity of illustration, we define the utility function of a
configuration as the achieved accuracy minus energy cost. The
natural objective is the maximum of time-averaged utility for
all video streams, which can be formulated as:

P : max
{x,b,f}

lim
T→+∞

1

T

∑T

t=0
(at − ωet).

s.t. C1 :
∑N

i=0
xik,t = 1, uk ∈ U , t ∈ T = {1, ..., T}.

C2 : xik,t = {0, 1}, uk ∈ U , t ∈ T .

C3 : fk,t <
∑N

i=0
xik,t

1

si
, uk ∈ U , t ∈ T .

C4 :
∑K

k=1

∑N

i=1
xik,tci < C, uk ∈ U , t ∈ T .

C5 :
∑K

k=1
bk,t = Bt, uk ∈ U , t ∈ T .

C6 : lim
T→+∞

1

T

∑T

t=0
lt < Lmax.

(6)

The weighted parameter ω controls the trade-off between
accuracy and energy consumption. As a result, the optimal
solution of Problem P trades the average accuracy for low-
ering the energy consumption on mobile devices. Constraints
C1 and C2 ensure that, in each time slot, one and only one
CNN model can be selected by uk. Constraint C3 says that
the selected frame rate cannot exceed the processing frequency
of the CNN (remote or local), otherwise video frames would
accumulate and lead to queue delay. The fourth constraint
C4 is due to the capacity of edge server, denoted as C. Let
Bt represent the uplink bandwidth over the entire time slot
t, constraint C5 imposes per-slot constraint on the available
bandwidth. The last constraint C6 requires that the long-term
average latency not exceed the threshold Lmax.

The first major challenge that impedes the derivation of
the optimal solution to the above problem is the lack of
future information. To optimally solve problem P , near future
information about the network condition and the dynamics
of video contents is required, which is difficult to accurately
predict in advance. Moreover, P is a mixed integer nonlinear
programming and is very difficult to solve even if the future
information is known a priori. These challenges call for an
online approach that can efficiently adapt configurations and
allocate bandwidth resources for video streams on the fly
without foreseeing the future.

IV. ONLINE ALGORITHM

To decouple the long-term latency constraint, we transform
the original time-averaged problem into a series of real-
time minimization problems leveraging the Lyapunov frame-
work [27], and then we develop a lightweight online algorithm
which only relies on the current bandwidth information and

260
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

video content to derive the adaptation strategy, without global
information over the long run.

A. Problem Transformation Using Lyapunov Optimization

A major challenge of directly solving P is that the long-term
latency constraint couples the CNN model selection, frame
rate adaption and bandwidth allocation across different time
slots. To address this challenge, we define a virtual queue as
a historical measurement of the exceeded latency and assume
that the initial queue backlog is 0 (i.e., q(0) = 0). The queue
length evolves as follows:

q(t+ 1) = [q(t) +
∑K

k=1
lk,t − Lmax]+, (7)

where [x]+ denotes max{x, 0} for any x. If we aggressively
pursue high accuracy by adopting the most expensive configu-
ration, queue backlog q(t) will increase unboundedly, leading
to unacceptable delays and poor user experience, so it is crucial
to keep the latency queue stable. Actually, it can be proved
that the stability of the virtual queue can ensure that the time-
averaged latency does not exceed the threshold Lmax. We first
define a quadratic Lyapunov function: L(q(t)) = 1

2 (q(t))2,
which represents a scalar measure of latency queue congestion.
For instance, a small value of L(q(t)) implies that the queue
backlog is small. To keep queue stability by persistently
pushing the Lyapunov function towards a less congested state,
we introduce the one-slot Lyapunov drift:

∆(q(t)) = E[L(q(t+ 1))− L(q(t))|q(t)]. (8)

The drift ∆(q(t)) denotes the expected change in the
Lyapunov function over one time slot, given the current state
in time slot t. A smaller ∆(q(t)) implies that the virtual
queue has strong stability. Our goal is to find the optimal
adaption strategy for all video streams to coordinate the
network condition, taking the variation of video contents into
consideration as well. By incorporating latency queue stability
into the trade-off between accuracy and energy cost, we define
a Lyapunov drift-plus-penalty term as:

∆(q(t))− V · E[at − ωet|q(t)]. (9)

The positive parameter V is used to adjust the tradeoff
between latency minimization and utility maximization. Rather
than directly minimizing the drift-plus-penalty term in each
slot, the min-drift-plus-penalty algorithm [28] in Lyapunov
optimization seeks to minimize an upper bound of it. We
derived an upper bound on the drift-plus-penalty term in our
specific problem and it is stated in the following lemma:

Lemma 1: For all possible values of q(t) by using any
offloading configuration over all time slots, the following
statement holds:

∆(q(t))− V · E[at − ωet|q(t)] ≤
B + q(t)E[(lt − Lmax)|q(t)]− V · E[at − ωet|q(t)],

(10)

where B = 1
2 (lmax − Lmax)2 is a constant value for all time

slots, and lmax = maxt∈T {lt} represents the largest average
delay in all slots. The detailed proof is given in the Appendix.

Algorithm 1: The JCAB Algorithm
Input: q(0)← 0, µk, γk, Lmax, C;

1 for t = 0 to T do
2 Profile accuracy function εtk(r), ∀k;
3 Profile accuracy function φtk(f), ∀k;
4 Choose {xt, ft, bt} by solving P1 using Algorithm 2;
5 q(t+ 1) = [q(t) + lt − Lmax]+;

Then we attempt to minimize the supremum bound for the
drift-plus-penalty function, and the new real-time optimization
problem can be presented as follows:

P1 : min
{x,b,f}

q(t) · lt − V · (at − ωet).

s.t. C1, C2, C3, C4, C5.
(11)

Notice that solving P1 requires only currently available in-
formation as input. By considering the additional term q(t) · lt,
the system takes into account the average latency incurred
by data transmission and processing in the current slot. As
a consequence, when q(t) is large, minimizing the latency
is more critical. Thus, our algorithm works by following the
philosophy of “when bandwidth becomes insufficient, degrade
the configuration to avoid violating the latency constraint”.
The latency queue is maintained without future information,
guiding the configuration adaption and bandwidth allocation
to follow the long-term latency constraint, thereby enabling
online decision making. Now, to complete the algorithm, it
remains to solve the optimization problem P1, which will be
discussed in the next subsection.

B. Lyapunov-based Online Algorithm

Unfortunately, this real-time optimization problem P1 is
NP-hard in general [29], due to its combinatorial nature. We
develop the JCAB algorithm to solve the problem based on
the Markov approximation method [30].

Let xt denote {xik,t|∀mi ∈ M,∀uk ∈ U}, which is the
collection of model selection variables. Similarly, we use ft =
{fk,t|∀uk ∈ U} to represent frame rate selection for all video
streams, and bt = {bk,t|∀uk ∈ U} is the bandwidth allocation
scheme in time slot t. Supposed that model selection xt is
fixed, there are two problems left to be solved:

The first problem is optimizing bandwidth allocation to re-
duce latency. Since the utility function is totally determined by
the configuration, while bandwidth allocation only influences
the service latency, the main objective of bandwidth allocation
is the minimization of average latency lt,

P2 : min
{bt}

q(t) · lt. (12)

The solution satisfies the Karush-Kuhn-Tucker (KKT) condi-
tion [31], so the optimal bandwidth allocation can be derived
as follows:

bk,t
∗ =

√∑N
i=0 αx

i
k,tri∑K

k=1

√∑N
i=0 αx

i
k,tri

. (13)

261
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

The second problem is adapting frame rates to maximize
configuration utility. Given the bandwidth allocation bt and
model selection xt, the frame resolutions are fixed and the
average latency can be seen as constant. The objective of frame
rate adaption is to find the optimal tradeoff between accuracy
and energy, which is equal to the maximum of utility function:

P3 : max
{ft}

at − ωet. (14)

As we mentioned before, the relationship between accuracy
and frame rate can be formulated as concave functions. Sup-
pose that the accuracy function with respect to frame rate for
uk in slot t is c1−c2e−fk,t/c3 , where c1, c2, and c3 are known
constant coefficients. It can be proved that Eq. (14) has global
maximum, and the optimal frame rate is:

fk,t
∗ =

−c3 log(ωµkc3
c2·ε(

∑N
i=0 αx

i
k,tri)

) if x0
k,t = 1,

−c3 log(
ωγkc3α

∑N
i=0(xik,tri)

2

c2·ε(
∑N
i=0 αx

i
k,tri)

) otherwise.
(15)

Based on the analysis above, we can come to the conclusion
that once optimal model selection xt is found, P2 and P3 are
both easy to solve. However, since model selection variables
are binary, the whole problem is a mix-integer nonlinear
problem, hence, it is impossible to find an optimal solution
in polynomial time. In this paper, we propose to leverage
Markov approximation to obtain a near-optimal solution for
model selection, as shown in Algorithm 2.

In our online control algorithm JCAB, we divide time into T
discrete time slots. At the beginning of each time slot, the ac-
curacy models are updated by the accuracy profiler according
to the current video content. Given the accuracy functions, we
can find the optimal configurations and bandwidth allocation
scheme for the current slot by solving problem P1. Finally,
the average latency is utilized to update the latency queue.

The one slot optimization algorithm for JCAB is described
in Alg. 2, in which xk,t = {x1

k,t, x
2
k,t, ..., x

N
k,t} denotes the

model selection vector for uk. JCAB has multiple optimization
objectives. On the one hand, it aims to find the optimal
configuration to maximize the utility in Eq. (6); on the other
hand, it should find the optimal bandwidth allocation since all
cameras connected to the edge server share the same network
channel and video streams vary in date size and bandwidth
requirement. Firstly, we randomly select a user uk to choose
a new CNN model m̂, while the model selection for other
users keeps unchanged, then the new model selection vector
x̂t is obtained, under which the optimal f̂t and b̂t can be
derived by solving P2 and P3. Afterwards, the new objective
value ĝ is calculated, and g is known as the objective function
value for the old solution {xt, bt, ft}. In the current iteration,
the model selected by uk is updated to m̂ with probability η
and keeps unchanged with probability 1− η depending on the
objective value difference (ĝ − g). Therefore, changing CNN
model selection is more likely to occur if the new configuration
{x̂t, b̂t, f̂t} results in a lower objective value. The above
iterative processes will continue until Tmax iterations have

Algorithm 2: One Slot Optimization for JCAB
Input: εtk(r), φtk(f), µk, γk, Lmax, C, initial model

selection vector xt;
Output: configuration (xt, ft), bandwidth allocation bt;

1 repeat
2 Randomly pick a user uk and change its model

selection vector xk,t into x̂k,t by selecting a new
model m̂;

3 if x̂k,t is feasible then
4 x̂t ← {x1,t, x2,t, ..., x̂k,t, ..., xK,t};
5 Obtain b̂∗t by solving problem P2 using Eq. (13);
6 Obtain f̂∗t by solving problem P3 using Eq. (15);
7 η ← 1

1+e(
ĝ−g
τ

)
;

8 With probability η, user uk accepts the new
model m̂, bt ← b̂∗t , ft ← f̂∗t ;

9 With probability (1− η), uk keeps xk,t
unchanged;

10 until Tmax iterations have been reached or there is no
significant improvement (i.e., |ĝ − g| < 0.01) in the
objective value for more than 10 iterations;

11 return xt, ft, bt;

been reached or there is no significant improvement (i.e.,
|ĝ − g| < 0.01) for more than 10 iterations.

The parameter τ ≥ 0 (Line 7), referred to as the smooth
parameter, is used to control exploration versus exploitation
(i.e. the degree of randomness). When τ is small, the algorithm
tends to keep a new decision with larger probability if it
is better than the current decision. However, in this case, it
takes more iterations to identify the global optimum since the
algorithm may be stuck in a local optimum for a long time
before exploring other alternatives that lead to more efficient
solutions. When τ → +∞, the algorithm tries to explore all
possible solutions from time to time without convergence. The
selection of τ will be discussed in Section V. As shown in [32],
by proper parameter tuning, the Markov approximation-based
Alg. 2 can converge in a super-linear rate.

C. Theoretic Analysis

Theorem 1: JCAB achieves the following performance
bounds on the time-averaged utility and queue backlog:

lim
T→+∞

1

T

∑T

t=0
E[at − ωet] >= νopt −B/V, (16)

lim
T→+∞

1

T

∑T

t=0
E[lt] ≤

B

ε
+
V

ε
(νopt−νmin)+Lmax, (17)

where νmin is the objective value of the worst solution for P ,
νopt is the optimal utility that can be achieved by ignoring the
delay constraint, and ε>0 is a constant which represents the
long-term latency surplus achieved by some stationary control
strategy. Please refer to the Appendix for the proof.

Note that Eqs. (16) and (17) characterize the utility delay
tradeoff within [O(1/V),O(V)]. Specifically, we can use an

262
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40
Time Slot

0

20

40

60

80

Sh
ar

e
of

 b
an

dw
id

th video3
video2
video1

(a) Bandwidth

0 10 20 30 40 50

Time Slot

400

600

800

1000

R
e

s
o
lu

ti
o

n

video1

video2

video3

(b) Resolution

0 10 20 30 40 50

Time Slot

0

10

20

F
ra

m
e
 r

a
te

video1

video2

video3

(c) Frame rate

Fig. 5: Runtime behavior of JCAB over time.

0 20 40 60 80 100

Iterations

0

2

4

6

8

10

12

14

16

18

O
b
je

ct
iv

e
 v

a
lu

e

τ=0.5

τ=0.2

τ=0.1

τ=0.05

convergence

Fig. 6: Convergence of Algorithm 2.

800 850 900 950 1000

Time Slot

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

L
max

=0.5

L
max

=0.3

L
max

=0.2

L
max

=0.1

Fig. 7: The impact of latency constraint Lmax.

0 50 100 150 200

Time Slot

0

1

2

3

4

5

A
ve

ra
g
e
 Q

u
e
u
e
 B

a
ck

lo
g

V=20

V=10

V=5

V=1

long term average queue backlog

Fig. 8: The impact of weight V .

arbitrarily large value of V to drive the time-averaged utility
arbitrarily close to the optimal vopt at a cost. As Eq. (17)
implies, the time-averaged queue backlog grows linearly with
V . Such a utility-delay tradeoff allows JCAB to make flexible
configuration adaption. We will explain how the value of V
impacts the performance in Section V.

V. SIMULATION

In this section, we evaluate the performance of JCAB
through simulations, and compare its performance against
several baselines. We simulate an edge server with five CNN
models, corresponding to each model, the input images are
360p, 540p, 720p, 900p and 1080p, respectively. The process-
ing time per frame of these remote CNN models increases
from 20ms to 250ms, according to their model sizes. Video
frames processed by the local CNN model are scaled to 360p,
but the processing speed can be much lower with the mean
value of 200ms per frame. The network bandwidth varies
from 20Mbps to 100Mbps, according to the experimental
measurements in [5]. Energy consumption of local processing
(µk) is 5 J/frame and γk for all front-end devices are uniformly
set to be 0.5× 10−5 (J) out of convenience.

We roughly divide targets into three categories according
to their relative sizes in the image, and we profile several
accuracy functions with respect to frame resolution under
these three different conditions. Similarly, different accuracy
functions with respect to frame rate are drawn when targets
move at different speed levels. At the beginning of each time
slot, the most appropriate model will be selected according to
the characteristics of targets. Note that this heuristic method
is not always accurate but it is flexible and quick, while the
profiling cost is relatively low. In the simulation, we compare
our algorithm with three other benchmarks:

• Non-adaptive: All video streams pick the most expensive
configurations all the time to maximize the accuracy,
while the energy and latency constraint are ignored.

• Delay-optimal: It aims to minimize the average service
delay in each slot, regardless of the analytics accuracy
and energy consumption.

• Delay-myopic: It imposes a hard latency constraint in
each slot. It can satisfy the long-term delay constraint
without requiring future information. However, it is less
adaptive and purely myopic.

A. A Running Example

Fig. 5 shows how the configurations adapt to bandwidth
variation and video content dynamics. There are three cameras
connected to the same edge server. The video content varies
over time; in the 20th slot, targets in video stream 1 move slow,
while targets in video stream 2 move fast, and thus the optimal
frame rate for these two video streams changes accordingly.
The intuition behind this adaption is that “more frames can be
skipped if the difference between adjacent frames is small”.
In the 15th slot, targets in video stream 3 move near, we can
degrade resolution for energy saving, while still maintaining
the desired accuracy. As illustrated in Fig. 5(a), there are
occasions when available bandwidth decreases dramatically,
and all video streams subsequently lower the resolution to
reduce the bandwidth requirement. Specifically, Camera 3
switches to local video processing, since it is less sensitive to
resolution degradation relative to the other two video streams.

B. The Impact of Different Parameters

1) Convergence: Fig. 6 shows the convergence process of
Alg. 2. In general, a smaller τ leads to a faster convergence
speed. When τ = 0.05, the algorithm converges within 50
iterations. However, blindly decreasing τ impedes the iden-
tification of global optimum and results in the convergence

263
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

2 3 4 5 6

ω ×10-3

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92
T

im
e
 a

v
e
ra

g
e
d
 a

c
c
u
ra

c
y

0

10

20

30

40

50

60

70

80

T
im

e
 a

v
e
ra

g
e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

Time averaged accuracy

Time averaged energy consumption

Fig. 9: Trade off between accuracy and energy.

0 50 100 150 200 250 300

Time slot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e
la

y

Non-adaptive

JCAB

Delay-optimal

Delay-myopic
long term latency constraint L

max

Fig. 10: Delay comparison of four algorithms.

0 50 100 150 200 250 300

Time slot

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy

Non-adaptive

JCAB

Delay-optimal

Delay-myopic

steady point for JCAB

Fig. 11: Accuracy comparison of four algorithms.

30 40 50 60 70 80 90 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

Non-adaptive

JCAB

Delay-optimal

Delay-myopic

Fig. 12: Variation of accuracy with bandwidth.

30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

D
e
la

y

Non-adaptive

JCAB

Delay-optimal

Delay-myopic

long term latency constraint

Fig. 13: Variation of latency with bandwidth.

2 4 6 8
Number of users

0.0

0.2

0.4

0.6

0.8

De
la

y

 .
 .
 .
 .

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Delay-optimal
Delay-myopic
JCAB
Non-adaptive

Fig. 14: The impact of user number.

to inferior solutions. In our experiment, the most appropriate
value for τ is 0.1, which can achieve a good trade-off between
the solution quality and the convergence rate.

2) Latency-accuracy tradeoff: Fig. 7 shows the accuracy
of JACB under different values of Lmax between the 800th
and 1,000th time slots in an experiment. We observe that
a higher accuracy can be achieved with a looser latency
requirement. The accuracy fluctuates because of the variability
of network bandwidth and video content. It is also obvious
that the distribution of accuracy is more centralized to the
median as Lmax increases. When Lmax is small, the latency
constraint can be easily violated and sometimes accuracy
should be greatly sacrificed to meet the latency constraint;
On the contrary, a large Lmax reduces the fluctuation range
of the accuracy. As we mentioned before, the parameter V
also controls the accuracy-latency tradeoff. Fig. 8 compares
the average queue backlog with different values of the control
parameter V . In Fig. 8, we know that all queue backlogs
gradually converge to certain values. Thus, if there are more
time slots, the long-term constraint can be satisfied. When
the control parameter V is large, it needs more time slots to
converge; On the contrary, when V decreases, latency becomes
the primary goal, which makes the service latency more stable.

3) Accuracy-energy tradeoff: Fig. 9 presents the converged
time-averaged accuracy and energy consumption of JCAB
under different values of the control parameter ω. We observe
that when increasing ω from 0.001 to 0.003, the algorithm
gains up to 44% energy consumption reduction with only 4%
loss of the analytics accuracy. It implies that when a proper
ω is set, our proposed algorithms will efficiently save energy
consumption while maintaining a desirable accuracy.

C. Algorithm Comparison
Figs. 10 and 11 show the average system delay and accuracy

over time of four different algorithms. Note that JCAB has
a convergence process, during which the algorithm gradually
finds the optimal trade-off between latency and accuracy.
Generally, JCAB achieves desirable average accuracy while
closely following the long-term energy constraint. The Non-
adaptive scheme achieves the highest system accuracy as
expected. However, it is achieved at a cost of long average
latency per frame. Compared to Non-adaptive, JCAB slightly
sacrifices the accuracy performance to meet the latency con-
straint. Contrast to Non-adaptive, the Delay-optimal method
achieves the lowest latency in every slot, but the short latency
comes with a big sacrifice in average accuracy. For the Delay-
myopic scheme, the long-term latency constraint Lmax = 0.23
is also satisfied. However, because a hard latency constraint
is imposed in every time slot, the algorithm is less flexible,
resulting an inferior accuracy performance compared to JCAB.

D. The Impact of Bandwidth
Figs. 12 and 13 show the impact of bandwidth on the

converged time-averaged system delay and accuracy. Band-
width traces are generated with the mean value increasing
from 25Mbps to 100Mbps, according to the experimental
measurements in [5]. As shown in Fig. 12, generally, all
algorithms except Non-adaptive achieve a higher accuracy
when bandwidth increases, since a higher bandwidth can
support more expensive configurations. The average service
latency of both JCAB and Delay-myopic are bounded. There
is an insignificant latency performance gap between them
when bandwidth is insufficient, but the gap decreases when
bandwidth increases. However, the other two algorithms are

264
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

more sensitive to bandwidth variation, under which the system
latency decreases dramatically when bandwidth increases.

E. The Impact of User Number

Fig. 14 shows the average perceived latency and analytics
accuracy versus the number of users. For the Non-adaptive
scheme, the latency increases significantly due to serious band-
width contention. Accordingly, the converged time-averaged
accuracy has a slight decrease when the user number exceeds
6, due to the resource limitation in the edge server. For the
Delay-optimal offloading, the achieved accuracy remains at a
relative low level with a steady growth in system latency. The
long-term average latency of JCAB and Delay-myopic closely
follows the latency constraint under various user numbers.
When serving more users, the latency constraint is achieved
at a slight sacrifice in the analytics accuracy. For the Delay-
myopic method, the time-averaged latency can be even slightly
below the latency constraint when the user number is small.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study joint configuration adaption and
bandwidth allocation for the edge-assisted real-time video
analytics system. We proposed an efficient online algorithm
which can select appropriate configurations for multiple video
streams according to the network condition and video contents,
taking energy consumption, system latency, analytics accuracy
into consideration. The proposed algorithm is easy to imple-
ment while providing provable performance guarantee.

Here are a few limitations in the current model that demand
future research effort. First, to decrease the amount of data
per frame, we can utilize the redundancy of video frames
by encoding frames based on intra-frame difference. Second,
the accuracy model may not generalize. We pre-trained some
accuracy models in the edge server, and the accuracy pro-
filer selects models for each video stream according to the
characteristics of targets. However, for two different video
streams, the accuracy function with respect to resolution may
not be exactly the same even if they have the same target size
currently. Although our model is not perfect, we believe that
it is a reasonable and valuable step towards studying content-
aware adaptive video analytics in the edge environment.

APPENDIX

Proof of Lemma 1: From Eq. (8), we have:

∆(q(t)) = E[L(q(t+ 1))− L(q(t))|q(t)]

=
1

2
E[q2(t+ 1)− q2(t)|q(t)]

≤ 1

2
E[(q(t) + lt − Lmax)2 − q(t)2|q(t)]

=
1

2
(lt − Lmax)2 + q(t)E[(lt − Lmax)|q(t)]

≤ B + q(t)E[(lt − Lmax)|q(t)].

(18)

where B = 1
2 (lmax − Lmax)2 is a constant value for all time

slots, and lmax = maxt∈T {lt} represents the largest average

delay in all slots. We now incorporate the expected utility over
one time slot to both sides of Eq. (18), then we have:

∆(q(t))− V · E[at − ωet|q(t)] ≤ B
+ q(t)E[(lt − Lmax)|q(t)]− V · E[at − ωet|q(t)].

(19)

Proof of Theorem 1: To prove the performance guarantee,
we first introduce the following lemma:

Lemma 2: For any δ > 0, there exists a stationary and
randomized policy Π for P , which decides bΠt , xΠ

t and fΠ
t

independent of the current queue backlogs q(t), such that the
following inequalities are satisfied:

E[lΠt − Lmax] ≤ δ, and E[aΠ
t − ωeΠ

t] ≤ vopt + δ. (20)

Proof: The proof can be obtained by Theorem 4.5 in [27],
which is omitted for brevity.

Recall that the JCAB seeks to choose strategies that min-
imize P1 among the feasible decisions including the policy
in Lemma 2. By plugging Lemma 2 into the drift-plus-cost
inequality (Eq. (10)), we obtain

∆(q(t))− V · E[at − ωet|q(t)]
≤ B + q(t)E[(lΠt − Lmax)|q(t)]− E[aΠ

t − ωeΠ
t |q(t)]V

≤ B + δq(t)− V (vopt + δ).
(21)

By letting δ approach zero, summing the inequality over
t ∈ {0, 1, ..., T − 1} and then dividing the result by T , we
have:

1

T
E[L(q(t))− L(q(0))]− V

T

∑T−1

t=0
E[aΠ

t − ωeΠ
t]

≤ B − V · vopt.
(22)

Rearranging the terms and considering the fact that
L(q(t)) ≥ 0 and L(q(0)) = 0 yield the time-averaged service
delay bound:

lim
T→+∞

1

T

∑T

t=0
E[at − ωet] >= νopt −

B

V
. (23)

To obtain the energy consumption bound, we assume there
are ε ≤ 0, Φ(ε) and a policy aΓ

t , bΓt that satisfy:

E[lΓt − Lmax] ≤ −ε, and E[aΓ
t − ωeΓ

t] = Φ(ε). (24)

Plugging the above into Eq. (10), we have

∆(q(t))− V · E[at − ωet] ≤ B − εq(t)− V Φ(ε). (25)

Summing the above over t ∈ {0, 1, ..., T − 1} and rearranging
terms give:

1

T

∑T−1

t=0
E[q(t)] ≤

B − V (Φ(ε)− 1
T

∑T−1
t=0 E[aΓ

t − ωeΓ
t])

ε

≤ B

ε
− V

ε
(vopt − vmin).

(26)
Considering

∑T−1
t=0 E[q(t)] ≥

∑T−1
t=0 E[lt − Lmax], we have:

1

T

∑T−1

t=0
E[lt] ≤

B

ε
− V

ε
(vopt − vmin) + Lmax. (27)

Taking a lim sup of Eq. (27) as t → +∞ yields the energy
consumption bound.

265
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large
video datasets with low latency and low cost,” in Proc. of USENIX
NSDI, 2018, pp. 269–286.

[2] A. Henrysson and M. Ollila, “Umar: Ubiquitous mobile augmented
reality,” in Proc. of ACM Mobiquitous, 2004, pp. 41–45.

[3] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator
for mobile augmented reality,” in Proc. of IEEE INFOCOM, 2018, pp.
1–9.

[4] “Avigilon,” http://avigilon.com/products/.
[5] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,

“Awstream: Adaptive wide-area streaming analytics,” in Proc. of ACM
SIGCOMM, 2018, pp. 236–252.

[6] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5G,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[7] Y. Liang, J. GE, S. Zhang, J. Wu, Z. Tang, and B. Luo, “A utility-
based optimization framework for edge service entity caching,” IEEE
Transactions on Parallel and Distributed Systems, pp. 1–12, 2019.

[8] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online
task dispatching and scheduling with bandwidth constraint in edge
computing,” in Proc. of IEEE INFOCOM, 2019, pp. 2287–2295.

[9] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proc. IEEE CVPR, 2016, pp.
4820–4828.

[10] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proc. of ACM
SIGCOMM, 2018, pp. 253–266.

[11] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mo-
bile edge computing: Survey and research outlook,” arXiv preprint
arXiv:1701.01090, 2017.

[12] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance.” in Proc. of USENIX NSDI, 2017, pp. 1–14.

[13] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable crowd-sourcing of video from mobile devices,” in Proc. of
ACM MobiSys, 2013, pp. 139–152.

[14] Z. Lu, K. S. Chan, and T. La Porta, “A computing platform for video
crowdprocessing using deep learning,” in Proc. of IEEE INFOCOM,
2018, pp. 1430–1438.

[15] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation
and degradation in jetstream: Streaming analytics in the wide area,” in
Proc. of USENIX NSDI, 2014, pp. 275–288.

[16] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
edge: Orchestration of real-time vision applications on heterogeneous
edge clouds,” in Proc. of IEEE INFOCOM, 2019, pp. 1270–1278.

[17] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[18] “Cisco VNI: Global mobile data traffic forecast update,” https://www.
cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/mobile-white-paper-c11-520862.html, 2016.

[19] M. Xiao, J. Wu, L. Huang, R. Cheng, and Y. Wang, “Online task
assignment for crowdsensing in predictable mobile social networks,”
IEEE Transactions on Mobile Computing, vol. 16, no. 8, pp. 2306–2320,
Aug 2017.

[20] S. Biswas, J. Bicket, E. Wong, R. Musaloiu-e, A. Bhartia, and
D. Aguayo, “Large-scale measurements of wireless network behavior,”
in Proc. of ACM SIGCOMM, 2015, pp. 153–165.

[21] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and
M. Welsh, “Mobile network performance from user devices: A longitu-
dinal, multidimensional analysis,” in Proc. of Springer PAM, 2014, pp.
12–22.

[22] “Amazon AWS DeepLens,” https://aws.amazon.com/deeplens/.
[23] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile

deep learning framework for edge video analytics,” in Proc. of IEEE
INFOCOM, 2018, pp. 1421–1429.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. of ICLR, 2015.

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. of IEEE CVPR, 2016,
pp. 779–788.

[26] Z. Lu, S. Rallapalli, K. Chan, and T. La Porta, “Modeling the resource
requirements of convolutional neural networks on mobile devices,” in
Proc. of ACM MM, 2017, pp. 1663–1671.

[27] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[28] F. Liu, P. Shu, and J. C. Lui, “Appatp: An energy conserving adaptive
mobile-cloud transmission protocol,” IEEE Transactions on Computers,
vol. 64, no. 11, pp. 3051–3063, 2015.

[29] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in Proc. of IEEE
INFOCOM, 2018, pp. 207–215.

[30] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[31] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[32] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation for
combinatorial network optimization,” IEEE Transactions on Information
Theory, vol. 59, no. 10, pp. 6301–6327, 2013.

266
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 06,2021 at 05:37:56 UTC from IEEE Xplore. Restrictions apply.

