
IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 1, JANUARY 2020 751

DPDT: A Differentially Private Crowd-Sensed
Data Trading Mechanism

Guoju Gao , Mingjun Xiao , Member, IEEE, Jie Wu , Fellow, IEEE,

Sheng Zhang , Member, IEEE, Liusheng Huang, Member, IEEE, and Guiliang Xiao

Abstract—Along with the generation of Internet of Things
(IoT), the values of tremendous volumes of sensing data will
be slowly unlocked. Thus, crowd-sensed data trading as a new
business paradigm has recently attracted increasing attention. A
typical data trading system contains a platform, data consumers,
and crowd workers. The platform recruits crowd workers to
collect data and then sells the data to consumers. In this arti-
cle, we design a differentially private crowd-sensed data trading
mechanism, called DPDT, to preserve the identity privacy of con-
sumers and the task privacy against crowd workers during the
data collection process, simultaneously. DPDT consists of a dif-
ferentially private auction-based data pricing algorithm and a
differentially private data collection algorithm. The data pric-
ing algorithm achieves a good approximation to the maximum
revenue. Meanwhile, it guarantees (e2 − 1)ε-truthfulness and 2ε-
differential privacy, where ε > 0 is a small constant. The data
collection algorithm is able to effectively protect the data col-
lection task privacy against crowd workers. We prove that this
data collection algorithm achieves δ-approximate ε-differential
privacy, where δ < 1/e is a small constant, and meanwhile guar-
antees a tight bound of the expected approximation ratio. At
last, extensive simulations are conducted to verify the significant
performance of DPDT.

Index Terms—Approximate truthfulness, auction, data trading,
differential privacy, mobile crowdsensing.

I. INTRODUCTION

RECENTLY, with the proliferation of mobile devices
equipped with more and more components, a new

sensing paradigm called mobile crowdsensing has been
proposed [6], [33]. Since, mobile crowdsensing can coordi-
nate a group of mobile users to collect tremendous volumes
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of sensed data (such as traffic condition monitoring, noise pol-
lution monitoring, wireless indoor location, etc.) over an urban
environment that individual users cannot cope with, it has
attracted much attention. Essentially speaking, mobile crowd-
sensing is a special form of data trading [7], [15], [23], [39]
where mobile users get some monetary reward by sharing
their collected data. Generally, in the data trading market,
data consumers can access sufficient data to conduct some
research, while data providers will obtain some monetary
reward. Therefore, data trading has huge commercial value
and bright application prospects. To fully deliver the potential
of the data trading market, more and more data trading plat-
forms (such as DataExchange, Datacoup, Terbine, CitizenMe,
Thingspeak, etc.) have emerged to enable crowd-sensed data
to be exchanged on the Web.

A typical data trading system mainly consists of three
parts: 1) a platform; 2) data consumers; and 3) crowd work-
ers (also known as providers), as shown in Fig. 1. The
platform recruits crowd workers to collect sensed data and
then sells the data to consumers. The ultimate goal of the
data trading system is to maximize its profit, i.e., the dif-
ference between the revenue of selling data to consumers
and the cost of recruiting crowd workers. So far, there
has been some research on the crowd-sensed data trad-
ing problem [10], [15], [39]. For example, He et al. [10]
studied an exchange market approach to mobile crowdsens-
ing; Jung et al. [15] proposed some accountable protocols for
big data trading against dishonest consumers; Zheng et al. [39]
designed the profit-driven data acquisition scheme for crowd-
sensed data market. Nevertheless, these existing works rarely
involve the significant privacy-preserving issues.

In this article, we focus on designing a privacy-preserving
crowd-sensed data trading mechanism to maximize the prof-
its of the platform, where the identity privacy of the data
consumers (i.e., buyers) and the task privacy against crowd
workers during the data collection process can be protected
effectively. In fact, only a few literatures [7], [23], [37] show
concern for privacy issues in the crowd-sensed data trading
market. Among them, [37] protects image privacy based on the
concept of feature-indistinguishability (i.e., MinHash mech-
anism), while [7] and [23] adopt homomorphic encryption
(and partial electronic signature technique) to protect either
the bid privacy or the identity privacy of data contributors
(i.e., sellers). Here, the homomorphic encryption requires high
computation complexity, and the MinHash mechanism is actu-
ally used to generate an electronic signature. Thus, both of
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Fig. 1. Illustration of the data trading scenario.

them do not apply to our crowd-sensed data trading scenario.
Moreover, our data trading needs to consider both the iden-
tity privacy (data pricing) and task privacy (data collection).
Furthermore, data pricing also involves competition among
data consumers. In this article, we study how to design an
efficient privacy-preserving crowd-sensed data trading mecha-
nism. In fact, designing such a mechanism has the following
challenges.

First, due to the competition among data consumers, as
well as the selfishness and individual rationality of consumers,
a truthful (also known as strategy-proof) auction mechanism
which motivates bidders to report their true valuation as
bids [5], [31], [34] is indispensable here. However, the absolute
truthfulness may lower the revenues of the platform [22], [42],
so we need to properly relax the notion of absolute truthful-
ness. Finding the tradeoff between revenue maximization and
truthfulness is challenging.

Second, reporting the true valuations (i.e., the submit-
ted bids) on the data will reveal consumers’ identity-related
information, which might result in the disclosure of the criti-
cal commercial secrets [7], [8], [26], [39]. One (other than the
platform) may infer the private valuation of a bidder according
to the outcomes of auction. In particular, the data (e.g., traf-
fic monitoring data in a certain location) is constantly updated
over time. Therefore, the data consumers would soon compete
again for the updated data of the same kind. This makes the
derivation of the bidders’ identities easier [4], [42].

Third, the crowd-sensed data to be sold may reveal the
ongoing work of consumers, which will also incur a privacy
leakage problem [21], [24], [35]. Since the crowd-sensed data
in the platform is transparent to consumers, data privacy is
not a concern among consumers. However, data privacy may
be leaked to crowd workers during the collection process.
Unfortunately, it is fairly difficult to minimize the recruitment
cost while guaranteeing the privacy of the collected data.

In this article, to address the above challenges, we propose
a differentially private crowd-sensed data trading mecha-
nism, called DPDT. DPDT consists of a differentially private
auction-based data pricing algorithm and a differentially pri-
vate data collection algorithm. First, in order to balance the
revenue maximization and truthfulness [22], [42] and at the
same time protect the identity privacy of data consumers, we
combine the concept of approximate truthfulness with the dif-
ferential privacy (an exponential mechanism). Then, we design
a differentially private auction-based data pricing algorithm for
DPDT, which achieves a good approximation to the maximum

revenue, preserves the identity privacy of consumers, and also
guarantees that data consumers have limited incentives to lie.
Second, in order to minimize the cost of collecting data while
protecting the data collection task privacy against crowd work-
ers, we model the data collection problem as a special set cover
problem with differential privacy. Based on this, we devise a
differentially private data collection algorithm for DPDT. To
the best of our knowledge, we are the first to study the con-
sumers’ identity privacy, truthfulness, and the data collection
task privacy in the data trading field. Our major contributions
are summarized as follows.

1) We propose a differentially private crowd-sensed data
trading mechanism, consisting of a differentially private
auction-based data pricing algorithm and a differentially
private data collection algorithm. Both the consumers’
identity privacy and the data collection task privacy can
be protected effectively by DPDT.

2) The data pricing algorithm not only achieves 2ε-
differential privacy, but also guarantees (e2 − 1)ε-
truthfulness, where ε > 0 is a small constant.
Additionally, this data pricing algorithm can achieve an
expected revenue of at least opt − 3 ln(e + ε|P|opt)/ε,
where opt is the optimal revenue and P is the set of
possible prices.

3) The data collection algorithm can obtain δ-approximate
ε-differential privacy where δ < 1/e is a small constant,
and at the same time can achieve an expected approxi-
mation ratio of O(ln |U|+(ln(|W| ln(e/δ)))/ε), in which
U and W are the sets of total data collection tasks and
crowd workers, respectively.

4) We conduct extensive simulations to evaluate the
performance of DPDT. The simulation results show that
DPDT can obtain good revenues, and can also effec-
tively protect the identity privacy of consumers and the
task privacy during the data collection process.

The remainder of this article is organized as follows. We
first describe the crowd-sensed data trading model and intro-
duce some related solution concepts in Section II. Then, we
design the differentially private auction-based data pricing
algorithm and the differentially private data collection algo-
rithm in Sections III and IV, respectively. In Section V, we
evaluate the performance of the proposed algorithms. After
reviewing the related work in Section VI, we conclude this
article in Section VII.

II. SYSTEM MODEL

In this section, we first describe the overview of the crowd-
sensed data trading system. Then, we present detailed data
pricing and data collection modules, respectively. Finally, we
introduce some relevant solution concepts about differential
privacy and the auction theory.

A. Crowd-Sensed Data Trading System

We consider a typical crowd-sensed data trading system,
as shown in Fig. 1, which is mainly composed of a platform
in a cloud, multiple registered data consumers (e.g., govern-
ment departments, companies, individuals, etc.) and lots of
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registered crowd workers. The platform mainly consists of a
control center and a data pool, and actually acts as a bridge
between data consumers and crowd workers. The platform
recruits crowd workers to collect some sensed data which will
be sold to data consumers in the future. It aims to maximize
the profit, which is defined as the difference between the rev-
enue of selling data to consumers and the cost of recruiting
crowd workers. Thus, the platform concentrates on simultane-
ously maximizing the revenue and minimizing the recruitment
cost, while protecting the identity privacy of consumers and
task privacy against crowd workers during the data collec-
tion process. Based on this, the data trading system can be
divided into two separate modules: 1) data pricing and 2) data
collection.

B. Data Pricing in DPDT

In the data pricing module, the platform focuses on set-
ting an appropriate price for the owned data so that it can
maximize its revenue, where the revenue is the total pay-
ment received from consumers. At the same time, the identity
privacy preservation for data consumers and the competi-
tion among consumers should be taken into consideration.
Consequently, we combine differential privacy with auction
in the data pricing module. We consider a collusion-free auc-
tion where the platform also acts as the auctioneer. Note
that the platform might hold multiple datasets to be sold,
and each dataset will be set an independent price. For
simplicity of the following descriptions, we only consider
one dataset in the platform, and we let the platform con-
duct the same operations for other datasets in the practical
scenario.

Consider that a set of data consumers registered in the plat-
form, denoted by N = {1, 2, . . . , n}, will compete for the
dataset. Each consumer (also known as buyer or bidder) i ∈ N

has a valuation on the dataset, denoted by vi. He also deter-
mines a bid bi (the claimed valuation), and sends bi to the
platform. The platform only knows the claimed valuation bi

instead of the true valuation vi. In fact, vi is known to nobody
except bidder i itself. Bidder i may strategically manipulate
vi to get a higher utility. Such strategic manipulation might
reduce the revenues of the platform. Thus, the data pricing
algorithm must ensure that each bidder will not manipulate
its bids, i.e., truthfulness. However, absolute truthfulness may
also lower the revenues of the platform [22], [42]. Accordingly,
to maximize the revenues while ensuring that bidders have
limited incentives to lie, a concept of approximate truthful-
ness [22], [42] is adopted here. The detailed definition will be
described in Section II-D.

For simplicity of the following computation, all values
of vi and bi for i ∈ N are normalized into (0, 1]. Let
V = {v1, v2, . . . , vn} and B = {b1, b2, . . . , bn} denote the valu-
ation and bid sets, respectively. Note that the claimed valuation
bi is closely related to the sensitive identity information, which
needs to be kept private [7], [39]. On the other hand, the auc-
tioneer (i.e., platform) initializes a finite set of candidate prices
P = {p1, p2, . . . , pκ }, including all the possible valuation/bid
values in (0, 1].

After receiving the bid set B, the platform selects a feasible
price p ∈ P, determines the winning bid set, and further com-
putes the payment for winning bidders. Each bidder i ∈ N, as
a selfish and rational person, will always maximize its utility.
In fact, a bidder’s (e.g., i) utility depends on several factors:
his bid bi and valuation vi, other bidders’ bids B−i (here, B−i

means the bid set except i, i.e., B = B−i + {bi}), and the
selected price p. Note that the winning bid set depends on bi

and B−i, while the payment for winning bids relies on the
value p. Here, we let ui(·) denote the utility of bidder i, which
is calculated as follows:

ui(bi, B−i, vi, p) =
{

0; bi ≤ p
vi − p; bi > p.

(1)

Problem Formulation: The platform concentrates on maxi-
mizing its revenues, i.e., the total payment from buyers, under
the privacy restrictions. Concretely speaking, the platform
aims at selecting one of the prices according to the received
bids B, so that it can maximize its revenues, while protecting
the identity (i.e., bid) privacy of bidders and guaranteeing the
approximate truthfulness, simultaneously.

C. Data Collection in DPDT

In the data collection module, the platform concentrates
on selecting a minimum number of crowd workers to col-
lect sensed data. The fewer the number of workers, the less
the recruitment cost. Since the collected data will be sold to
consumers in the future, the sensed data should be kept pri-
vate from crowd workers during the collection process. To this
end, we need to protect the data collection tasks from being
directly revealed to crowd workers. We first adopt the perturba-
tion method in the data collection task publishing process and
then apply the differential privacy (an exponential mechanism)
in the worker recruitment process.

In the task publishing process, consider that the platform
has a total of R types of crowd-sensed data collection tasks.
These tasks are distributed at different locations. We use R to
denote the task set. In order to protect the data privacy against
crowd workers, the platform cannot publish R directly. For
this reason, we first generate a set of noisy tasks (denoted
by T), and then add T into R. Instead of R, the platform will
publish R∪T to the crowd workers to hide its true task set R

(called perturbation). Generally, the distributions of R and T

are similar, and the cardinalities of R and T are on the same
order of magnitude. For simplicity, we use U = R ∪ T to
denote the total task set, and let W denote the set of crowd
workers. Then, each worker k ∈ W replies to the platform
with the set of tasks that it can complete, denoted by Gk ⊆ U.
We use � = {Gk|k ∈W} to denote the returned results of all
workers. It is inevitable that the total task set U after adding
noisy tasks will burden crowd workers more. We assume that
the data consumers will bear these additional expenses, since
the fundamental reason for the platform generating noisy tasks
is to protect the data privacy of consumers. Actually, the size
of the noisy task set T will have an effect on the achieved
differential privacy level and the expected approximation ratio,
simultaneously. We will analyze the impact of T in detail in
Section IV.
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Problem Formulation: In the worker recruitment process,
based on the true task set R, the total task set U, and the
collection � = {Gk|k ∈W}, the platform focuses on selecting
a minimum number of workers (denoted by � ⊆ W) so that
R can be covered, while R is kept private against all crowd
workers. “Covered” here means that the data collection tasks
in R can be performed by crowd workers in � successfully.

D. Solution Concepts

In this section, we introduce some related solution concepts
from differential privacy and auction theory. First, we present
the definition of differential privacy.

Definition 1 (Differential Privacy) [4], [9], [25]: A ran-
domized mechanism M has ε-differential privacy if for two
input profiles D1 and D2 where the two input profiles differ
in a single element, and for all outcomes M ⊆ Range(M)

Pr[M(D1) ∈ M] ≤ exp(ε)× Pr[M(D2) ∈ M] (2)

where ε > 0 is the privacy budge/level (a small constant).
Moreover, we also introduce a laxation of differential

privacy, which allows a small additive term in the bound.
Definition 2 (Approximate Differential Privacy) [4], [9]:

We say a randomized mechanism M has δ-approximate ε-
differential privacy if for two input profiles D1 and D2 differing
in one element, and for all outcomes M ⊆ Range(M)

Pr[M(D1) ∈ M] ≤ exp(ε)× Pr[M(D2) ∈ M]+ δ (3)

where δ > 0 is a small constant.
Second, we present a powerful technique used in differen-

tial privacy, called exponential mechanism [11], [22], which
can construct differentially private algorithms over an arbi-
trary range P of outcomes and any object function Q(B, p)

that maps a pair consisting of a bid set B and a feasible
outcome p ∈ P to a real-valued score. Note that here B

is the claimed valuation set of bidders, and p is the pay-
ment for each winning bidder. Thus, we have the following
definition.

Definition 3 (Exponential Mechanism) [11], [22]: Given
a range P, a bid set B, a revenue function Q, and a pri-
vacy parameter ε, the exponential mechanism Exp(P, B, Q, ε)

selects an outcome p from P with the probability

Pr
[
Exp(P, B, Q, ε) = p

] ∝ exp
( ε

2�
Q(B, p)

)
(4)

where � is the Lipschitz constant of the revenue function Q,
i.e., for any two adjacent input data profiles B1 and B2, and
for any outcome p in the range P, the scores Q(B1, p) and
Q(B2, p) differ by at most �.

Third, we introduce the concept of approximate truth-
fulness in auction theory. Before defining the approximate
truthfulness, we first review the dominant strategy (i.e., truth-
fulness) in an auction mechanism [34], [42]. That is, the
strategy si of bidder i is a dominant strategy, if for any
strategy s′i 	=i and other bidders’ strategy profile s−i, then
ui(si, s−i) ≥i (s′i, s−i). Based on this, we have the following
definition.

Definition 4 (γ -Truthful) [42]: The expected utility of bid-
der i based on the dominant strategy si is denoted by

TABLE I
DESCRIPTION OF MAJOR NOTATIONS

E[ui(si, s−i)]. Then, for any strategy s′i 	=i and other bidders’
strategy profile s−i, we say that a mechanism is γ -truthful, if
we have

E
[
ui(si, s−i)

] ≥ E
[
ui

(
s′i, s−i

)]− γ (5)

in which γ > 0 is a small constant. The approximate truth-
fulness of the auction mechanism can ensure that each data
consumer has limited incentives to lie, which may increase the
total revenues of the platform.

Additionally, we summarize the commonly used notations
throughout this article in Table I.

III. DPDT: DATA PRICING ALGORITHM

In this section, we design a differentially private auction-
based data pricing algorithm, in which we combine the
exponential mechanism with the auction mechanism to achieve
both approximate revenue maximization and differential pri-
vacy. The algorithm is actually based on a posted pricing
auction mode, where we select a price from the set of prices
according to a designed probability distribution. The probabil-
ity of selecting a price is proportional to the achieved revenues.
In the following, we will present the calculation of probability
distribution and price selection in detail. After that, we will
describe the detailed algorithm and give performance analysis.

A. Probability Calculation and Price Selection

For each price pj ∈ P and the bid set B, we first remove the
bidders whose claimed bids are less than pj. Then, the original
bid set B is changed to B̃(pj), that is,

B̃(pj) =
{
bi|bi ∈ B ∧ bi ≥ pj

}
. (6)

Since the tentative price for the candidate bidders in B̃(pj)

is pj, the platform’s total revenues are calculated by

Q
(
B, pj

) = pj ×
∣∣B̃(

pj
)∣∣ (7)

where |·| denotes the cardinality of a set.
After calculating the revenues of the platform by setting all

possible prices in P, the algorithm computes the probability
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Algorithm 1 Differentially Private Data Pricing Algorithm
Require: N, P, B, ε

Ensure: a probability vector, selected price, and winner set.
Phase 1: platform publishes the dataset to N;
Phase 2: data consumers submit their bid set B;
Phase 3: platform calculates the probability distribution;
1: for p ∈ P do
2: update bidder set B̃(p) = {bi|bi ∈ B ∧ bi ≥ p};
3: calculate the revenue Q(B, p) = p× |B̃(p)|;
4: end for
5: for p ∈ P do
6: calculate probability Pr[p] = exp(εQ(B,p))∑

pj∈P exp(εQ(B,pj))
;

7: end for
Phase 4: platform determines the price and winner set;
8: select a price p∈P according to the vector Pr;
9: determine the winner set B̃(p)={bi|bi ∈ B ∧ bi ≥ p};

distribution for each single price. More specifically, the prob-
ability of selecting p ∈ P is proportional to the corresponding
revenues, i.e.,

Pr[p ∈ P] = exp(εQ(B, p))∑
pj∈P exp

(
εQ

(
B, pj

)) . (8)

After obtaining the probability vector Pr = (Pr[p1], Pr[p2],
. . . , Pr[p|P|]), we choose a price p ∈ P as the auction payment
for the single dataset with the corresponding probability. That
is, we set the price for the data for sale successfully. Moreover,
the candidate bidders in B̃(p) whose bids are not less than p
are the final winners. Each winner will be allocated to the
dataset and be charged with the payment p.

B. Detailed Algorithm

The differentially private data pricing algorithm is shown
in Algorithm 1. In the first two phases, after receiving the
description about the data to be sold, each consumer submits
her/his bid to the platform. In the third phase, for each price
p ∈ P, the platform first updates the bid set and then computes
the corresponding revenue in steps 1–4. Next, the probability
distribution is calculated in steps 5–7. In the fourth phase, the
price for the data is determined according to the probability
distribution in step 8. Based on the selected price, the win-
ning bidder set is also determined in step 9. The computation
overhead of Algorithm 1 is dominated by step 2, which can
be denoted by O(|N| · |P|). Since both N and P are finite sets,
Algorithm 1 has a polynomial-time computational complexity.

C. Performance Analysis

We first analyze the achieved differential privacy level in
the following theorem.

Theorem 1: The proposed data pricing algorithm can guar-
antee 2ε-differential privacy.

Proof: Consider two bid sets, denoted by B1 and B2,
which differ in only one bid (change, remove, or add). Then,
the probability of selecting p ∈ P based on the two bid profiles
B1 and B2 are denoted by Pr[M(B1) = p] and Pr[M(B2) = p],

respectively. Thus, we have

Pr
[
M(B1) = p

]
/Pr

[
M(B2) = p

]

= exp(εQ(B1, p))

exp(εQ(B2, p))
×

∑
pj∈P exp

(
εQ

(
B2, pj

))
∑

pj∈P exp
(
εQ

(
B1, pj

))

≤ exp(εQ(B2, p)+ ε�)

exp(εQ(B2, p))
×

∑
pj∈P exp

(
εQ

(
B1, pj

)+ ε�
)

∑
pj∈P exp

(
εQ

(
B1, pj

))
≤ exp(2ε�). (9)

Here, � means the Lipschitz constant introduced in
Definition 3. In our designed algorithm, the largest differ-
ence between the revenue values Q(B1, p) and Q(B2, p) for
∀p ∈ P and any two adjacent bid sets B1 and B2, i.e., �, is
� = p × (|B̃1(p)| − |B̃2(p)|). Since B1 and B2 differ in one
bid, and the price values in P are mapped into (0, 1], we have

� = p× (∣∣B̃1(p)
∣∣− ∣∣B̃2(p)

∣∣) ≤ p ≤ 1. (10)

Based on (9) and (10), we get

Pr
[
M(B1) = p

] ≤ exp(2ε)× Pr
[
M(B2) = p

]
. (11)

Thus, our algorithm guarantees 2ε-differential privacy.
Here, 2ε-differential privacy can lead to a relaxation of

truthfulness, in other words, the incentive to lie for each bid-
der is nonzero but tightly constrained. Next, we prove the
approximate truthfulness as follows.

Theorem 2: The proposed algorithm is (e2 − 1)ε-truthful.
Proof: For simplicity of the following descriptions, we

first let E[ui(bi, B−i, vi, P)] denote the expected utility of
bidder i when it bids bi. If bi 	=i, we have two following
cases.

1) When bi ≤i, we have

E
[
ui(bi, B−i, vi, P)

]
=

∑
p∈P Pr

[
M(bi, B−i) = p

]× ui(bi, B−i, vi, p)

≤
∑

p∈P exp(2ε)Pr
[
M(vi, B−i) = p

]× ui(vi, B−i, vi, p)

= exp(2ε)× E
[
ui(vi, B−i, vi, P)

]
(12)

where Pr[M(bi, B−i) = p] means the probability of
selecting the price p based on the bid bi and the set of
others’ bids B−i, and ui(bi, B−i, vi, p) denotes the utility
defined in (1).
Since ε is a small constant (less than 1), we have
exp(2ε) ≤ 1+(e2−1)ε, where e (≈ 2.72) is the base of
the natural logarithm. Moreover, due to p, vi, bi ∈ (0, 1],
we have 0 ≤ [ui(vi, B−i, vi, P)] ≤ 1. Then, we continue
(12)

exp(2ε)× E
[
ui(vi, B−i, vi, P)

]
≤

(
1+

(
e2 − 1

)
ε
)
× E

[
ui(vi, B−i, vi, P)

]
≤ E

[
ui(vi, B−i, vi, P)

]+ (
e2 − 1

)
ε. (13)

By combining (12) and (13), the theorem holds.
2) When bi > vi, if the bidder i loses, its utility is 0.

However, if the bidder wins, i.e., bi ≥ p, we have two
following subcases: 1) if vi < p ≤i, we get the utility
(i.e., the value of vi−p) is negative and 2) if p ≤ vi ≤ bi,
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the utility equals to vi − p. More specifically,

E
[
ui(bi, B−i, vi, P)

]
≤

∑
p∈P∧(p≤vi)

Pr
[
M(bi, B−i) = p

]× ui(bi, B−i, vi, p)

=
∑

p∈P∧(p≤vi)
Pr

[
M(vi, B−i) = p

]× ui(vi, B−i, vi, p)

≤ E
[
ui(vi, B−i, vi, P)

]
. (14)

According to the above cases, we have that the false bid
reported by a bidder will lead his utility to nonpositive.
This indicates that the data pricing algorithm can achieve
(e2 − 1)ε-truthfulness.

Next, by letting opt denote maxp∈P Q(B, p) = maxp∈P p ·
|B̃(p)|, we give the approximation ratio of achieved revenues
in the following theorem.

Theorem 3: The proposed data pricing algorithm has an
expected revenue of at least opt− 3 ln(e+ εopt|P|)/ε.

Proof: Assume St = {p | Q(B, p) > opt − t} and
S2t = {p | Q(B, p) ≤ opt − 2t}. Then, after taking the def-
inition of the exponential mechanism into consideration, the
relationship between the probability Pr[p ∈ S2t] and Pr[p ∈ St]
satisfies

Pr
[
p ∈ S2t

]
/Pr

[
p ∈ St

]

=
∑

p∈S2t
exp(εQ(B, p))/

∑
p∈P exp(εQ(B, p))∑

p∈St
exp(εQ(B, p))/

∑
p∈P exp(εQ(B, p))

=
∑

p∈S2t
exp(εQ(B, p))∑

p∈St
exp(εQ(B, p))

<
exp(ε(opt− 2t))|S2t|
exp(ε(opt− t))|St|

≤ exp(−εt)|P|/|St|. (15)

Then, we can easily prove that Pr[p ∈ S2t] ≤
(|P| exp(−εt))/|St| based on the above results. This is because
Pr[p ∈ St] ≤ 1. This means that, we select price p ∈ P which
can generate at least opt−2t revenue with the probability of at
least 1− (|P| exp(−εt))/|St|. Next, we focus on how to select
the suitable value of t (≥ 1/ε), so that the probability is at
least 1− t/opt. When we let t satisfy t ≥ ln(|P|opt/(t|St|))/ε,
we have the following inequalities:

1− (|P| exp(−εt))/|St|
≤ 1− (|P| exp(−ε(ln(|P|opt/(t|St|))/ε)))/|St|
= 1− t/opt. (16)

This indicates that our algorithm can generate at least opt−
2t revenue with the probability 1− t/opt. Next, the expected
revenues, denoted as Pr[rev(M)], satisfy

Pr[rev(M)] ≥ (opt− 2t)× (1− t/opt) > opt− 3t. (17)

For t ≥ ln(|P|opt/(t|St|))/ε and t ≥ 1/ε, we have

ln(|P|opt/(t|St|))/ε < ln(|P|opt/(t))/ε

< ln(e+ |P|opt/t)/ε < ln(e+ ε|P|opt)/ε. (18)

By letting t = ln(e+ ε|P|opt)/ε where t ≥ 1/ε, we get

Pr[rev(M)] ≥ −3t ≥ −3 ln(e+ ε|P|opt)/ε. (19)

The theorem holds.
In fact, the work [2] based on machine learning for an

absolute-truthfulness incentive mechanism is proved to achieve

opt − O(
√

opt) revenue in expectation. This means that the
proposed differentially private auction-based data pricing algo-
rithm can balance the maximum revenues and the approximate
truthfulness efficiently.

IV. DPDT: DATA COLLECTION ALGORITHM

In this section, we design a differentially private data col-
lection algorithm. We first introduce the basic idea and then
present the detailed algorithm. Finally, we analyze the privacy
and performance of the proposed algorithm.

A. Basic Idea

To ensure that the data to be collected is kept private against
crowd workers, we first adopt the perturbation method to hide
the true data collection tasks and then use the exponential
mechanism to select a minimum number of workers (accord-
ing to the calculated probability distribution). Concretely, the
platform first generates some noisy tasks and then adds them
into true tasks. Next, the platform publishes all tasks, including
true and noisy tasks, to crowd workers. Each worker selects
some tasks which she/he is willing to perform, and then sends
the results to the platform. At last, the platform aims to select a
minimum number of workers to cover the private true task set.
Although the crowd workers receive all (true and noisy) data
collection tasks, they cannot specifically indicate these true
tasks. At the same time, by adopting the exponential mecha-
nism in the worker recruitment process, the true data collection
tasks can be protected efficiently.

More specifically, given the total data collection tasks U

consisting of true tasks R and noisy tasks T, i.e., U =
R ∪ T, the set Gk of tasks which each worker k ∈
W is willing to perform, and the collection of Gk, i.e.,
� = {Gk|k ∈W ∧Gk ⊆ U}, we select a minimum number of
workers so that we can cover a private subset R ⊆ U. The
whole worker recruitment process contains multiple rounds of
iterations. Since only one element (without loss of general-
ity, denoted by Gk) in � can be selected in each round, the
uncovered tasks in R are updated by R − Gk. Moreover, the
collection � is also updated by � − {Gk}. The probability
of selecting a subset of U (e.g., Gk) in � is proportional to
the number of the intersecting elements between Gk and R,
that is,

Pr[Gk ∈ �] = exp
(
ε′|Gk ∩ R|)∑

G∈� exp(ε′|G ∩ R|) (20)

where ε′ = ε/(2 ln(e/δ)) is a small constant.

B. Detailed Algorithm

The differentially private data collection algorithm is shown
in Algorithm 2, which mainly consists of five phases. In the
first three phases, the platform first generates a noisy task set
T and then adds T into R. Here, the geographical distributions
of T and R are similar and the cardinalities of T and R are
on the same order of magnitude. Then, the platform publishes
all tasks U = R ∪ T to crowd workers. Next, each worker
responds to the platform with the tasks that she/he is willing
to perform. In the fourth phase, the platform focuses on how

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on March 17,2020 at 01:51:36 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: DPDT: DIFFERENTIALLY PRIVATE CROWD-SENSED DATA TRADING MECHANISM 757

Algorithm 2 Differentially Private Data Collection Algorithm
Require: R, W, ε, δ

Ensure: � and 	

Phase 1: platform generates noisy data collection tasks T;
// The distributions of T and R are similar and the cardinalities

of T and R are on the same order of magnitude;
Phase 2: platform publishes U = R ∪ T to workers W;
Phase 3: each worker k ∈ W submits Gk to the platform,

where � = {Gk|k ∈W ∧Gk ⊆ U};
Phase 4: platform privately selects suitable workers;
1: Initialize � ← φ, i ← 1, Ri ← R, �i ← �, ε′ ←

ε
2 ln(e/δ) ;

2: for i = 1, 2, · · · , |W| do
3: pick a set Gk from �i with the following probability

Pr[Gk ∈ �i] = exp(ε′|Gk∩Ri|)∑
G∈�i

exp(ε′|G∩Ri|) ;

4: � = � ∪ {k} and 	 = 	 ∪ {Gk};
5: Ri+1 ← Ri −Gk, �i+1 ← �i − {Gk};
6: if Ri+1 = φ then
7: break;
8: end if
9: end for

10: output the selected worker set � and 	;
Phase 5: the workers in � collect data and send it to platform;

to select a minimum number of workers to collect data while
protecting data privacy. More specifically, the platform first
initializes several parameters, such as the selected worker set
�, the new differential privacy budget ε′, etc., in step 1. Then,
the platform selects a set Gk from �i with the probability
exp(ε′|Gk ∩ Ri|)/∑

G∈�i
exp(ε′|G ∩ Ri|), and further adds k

and Gk into � and 	, respectively, in steps 2–4. In step 5, the
remaining elements in R are updated as Ri+1 ← Ri−Gk, and
� is updated as �i+1 ← �i−{Gk}. When no task exists in R,
i.e., R = φ, the algorithm terminates and outputs the selected
worker set � as well as 	, in steps 6–8. In the fifth phase,
the selected workers are required to collect the corresponding
crowd-sensed data and then send the results to the platform.

By analyzing Algorithm 2, we show that the algorithmic
procedures are polynomial-time. Specifically, the computa-
tional overhead of Algorithm 2 is dominated by step 3, denoted
by O(|W|2 · |R| · |G|), where |G| = maxk∈W |Gk|.

C. Performance Analysis

Now, we analyze the differential privacy level and the
approximation ratio. We first let |U| = x and |�| = |W| = y
for simplicity. Then, we get the following theorem.

Theorem 4: For any δ < 1/e and ε ∈ (0, 1), the proposed
algorithm can preserve δ-approximate ε-differential privacy.

Proof: For simplicity of the following descriptions, we
use R and R

+ to denote two private task set instances, in
which R and R

+ differ in one element o. Also, we let �o

denote the collection of task sets containing o. Consider that
an output permutation is denoted by π . After the first i−1 sets
in π have been added into the cover, we use si,k(R) to denote
the number of valid elements in the set Gk. “Valid elements”

here mean those in the set Ri−1 ∩Gk. Based on this, we have

Pr[M(R) = π ]/Pr
[
M

(
R
+) = π

]

=
x∏

i=1

(
exp

(
ε′si,πi(R)

)
/
∑

k∈W exp
(
ε′si,k(R)

)
exp

(
ε′si,πi

(
R+

)
/
∑

k∈W exp
(
ε′si,k

(
R+

))
)

= exp
(
ε′st,πt(R)

)
exp

(
ε′st,πt

(
R+

)) ×
t∏

i=1

(∑
k∈W exp

(
ε′si,k

(
R
+))

∑
k∈W exp

(
ε′si,k(R)

)
)

(21)

where t indicates that Gπt is the first set containing the element
o to be added into the permutation π . That is to say, after
the t-th iteration, the remaining elements in R and R

+ are
identical. In (21), except for t-th term, all other terms in the
numerators and denominators cancel each other out. This is
because that all the corresponding set sizes are equal. For the
relationship of R and R

+, we have two cases.
Case 1: R−R

+ = {o}. We have that the first term of (21)
is exp(ε′) and the other term in the product is at most 1. So,
(21) is less than exp(ε′).

Case 2: R
+ − R = {o}. Here, we get that the first term of

(21) is exp(−ε′) < 1. In this case, each set in �o for instance
R
+ is larger by 1 than that for R, while other sets are identical.

Based on this, we have

Pr[M(R) = π]/Pr
[
M

(
R
+) = π

]

≤
t∏

i=1

∑
k∈W exp

(
ε′si,k(R)

)+ (
exp(ε′)− 1

) ∑
Gk∈�o exp

(
ε′si,k(R)

)
∑

k∈W exp
(
ε′si,k(R)

)

=
t∏

i=1

(
1+ (exp(ε′)− 1)pri(R)

)
(22)

where pri(R) represents the probability that a set contain-
ing the element o is chosen at ith step based on the private
instance R. Now, the previous steps have selected the sets
Gπ1, Gπ2 , . . . , Gπi−1 .

For a private task set instance R, we say that an output is
α − good if

∑
i pri(R) ≤ α. Otherwise, we call the output

α−bad when
∑

i pri(R) > α. Thus, we first consider the case
where the permutation π is (ln δ−1)− good. Considering the
definition of t, we have

t−1∑
i=1

pri(R) ≤ ln δ−1. (23)

Based on this, we continue (22) and have

Pr[M(R) = π ]/Pr
[
M

(
R
+) = π

]

≤
t∏

i=1

(
exp

(
exp(ε′)− 1

)
pri(R)

) ≤ exp

(
2ε′

t∑
i=1

pri(R)

)

≤ exp
(

2ε′
(

ln δ−1 + prt(R)
))
≤ exp

(
2ε′(ln δ−1 + 1)

)

= exp
(

2(ε/(2 ln(e/δ)))(ln δ−1 + 1)
)
= exp(ε). (24)

Next, for any set 	 of outcomes, we get

Pr[M(R) ∈ 	] =
∑
π∈	

Pr[M(R) = π ]

=
∑

π∈	∧π∈good

Pr[M(R) = π ]
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+
∑

π∈	∧π∈bad

Pr[M(R) = π ]

≤
∑

π∈	∧π∈good

exp(ε)Pr
[
M

(
R
+) = π

]+ δ

≤ exp(ε)Pr
[
M

(
R
+) = π

]+ δ (25)

where π ∈ good and π ∈ bad denote the sets in which π is
(ln δ−1)− good and (ln δ−1)− bad, respectively.

As a result, the proposed algorithm preserves δ-approximate
ε-differential privacy for ε ∈ (0, 1) and δ < 1/e. The theorem
holds.

Intuitively, when we increase the size of the noisy task set
T, we will improve the differential privacy level. In fact, the
intuition is accurate here. In the above proof, we use pri(R)

to denote the probability that a set containing the element o
is chosen at ith step based on R. Here, pri(R) will decrease
with the increase of the noisy task set T. This is because that
the true tasks in Gk (k ∈ W) decrease when |Gk| remains
almost unchanged. Then, we have

∑t−1
i=1 pri(R) ≤ − ln δ∗

where δ∗ is a small constant and δ∗ ≤ δ. Based on this,
we have Pr[M(R) ∈ 	] = ∑

π∈	 Pr[M(R) = π ] ≤
exp(ε)Pr[M(R+) = π ]+ δ∗ here. Thus, we conclude that we
can achieve the higher differential privacy level when given
the larger noisy task set T.

Next, we analyze the approximation ratio of the proposed
algorithm. Before the ith iteration, according to |U| = x and
|�| = |W| = y, we let yi = y − i + 1 and xi = |Ri| denote
the numbers of the remaining sets and the remaining elements.
Moreover, let Li = maxG∈� |G∩Ri| denote the largest number
of intersecting elements covered by any set in �. By a standard
argument [9], any algorithm that always picks the set of size
Li/2 is an O(ln n)-approximation algorithm. Thus, we have the
following theorem.

Theorem 5: The proposed differentially private data collec-
tion algorithm can achieve an expected approximation ratio of
O(ln |U| + [ln(|W| ln(e/δ))]/ε).

Proof: At least one set in � contains Li elements.
According to the exponential mechanism used in differential
privacy [9], [11], we get that the probability of selecting a set
covering fewer than Li − 3 ln(y/ε) elements is at most 1/y2.
In particular, for Li > 6 ln(y/ε), we always select sets that
cover at least Li/2 elements with probability at least 1− 1/y.
Therefore, we use no more than O(OPT ln |U|) sets where OPT
means the optimal solution. While Li ≤ 6 ln(y/ε), the number
of remaining elements Ri is at most OPT×i. Thus, any per-
mutation consumes at most an additional O(OPT ln y/ε′). By
combining these two cases, we get that the maximum num-
ber of selected task sets is denoted as O(OPT(ln x+ ln y/ε′)).
That is, we have (|�|/OPT) ≤ O(ln x + ln [y/ε′]). Based on
this, we conclude that the expected approximation ratio is
O(ln x+ (ln y)/ε′), i.e., O(ln |U| + ln(|W| ln(e/δ))/ε).

According to Theorem 5, we get that the expected approx-
imation ratio of the data collection algorithm is denoted as
O(ln |R ∪ T| + ln(|W| ln(e/δ))/ε). When we add more noisy
tasks into the task publishing process (i.e., increasing |T|), the
expected approximation ratio increases accordingly. In order to
balance the achieved differential privacy level and the expected

TABLE II
SIMULATION SETTINGS

approximation ratio, we generally set the size of the noisy task
set T to that of the true task set R.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DPDT with
extensive simulations. We evaluate the data pricing algorithm
and the data collection algorithm in two parts.

A. Evaluation on Data Pricing Algorithm

We first introduce the methodology, and then present the
evaluation results, including privacy and revenues.

1) Methodology: Since the data pricing algorithm only
involves data consumers and platform, we omitted crowd work-
ers here. More specifically, we varied the number of data
consumers (i.e., bidders) from 100 to 1000. For each bidder,
we generated its true valuation, which was uniformly distributed
over (0, 1]. Here, we first assumed that the true valuations V

are the same as the submitted bids B. Then, we let one indi-
vidual’s bid be different from its true valuation to evaluate the
expected utility of the bidder. We also created the price set P

which contains all generated valuations and bids in (0, 1]. The
cardinality of the price set P is the number of different true
valuations and bids values in (0, 1], i.e., |V ∪ B|. In addition,
we set the differential privacy constant ε from 0.1 to 0.5. The
default and range for some parameters are displayed in Table II.

Since our data pricing model involves the auction (approx-
imate truthfulness) and privacy (non-numeric outputs) simul-
taneously, there are no existing data trading algorithms that
can be applied to our model. We implemented the optimal
algorithm without privacy preservation for comparison. In the
optimal algorithm, the price in P which can maximize the
revenue of the platform is selected as the single payment. In
addition, in order to evaluate the impact of differential privacy
constant ε on the performance of the proposed algorithm, we
ran the algorithm with different ε values. All the evaluation
results under the same settings are averaged over 1000 times.

To evaluate the performance of the differentially private
auction-based data pricing algorithm, we used four evalua-
tion metrics: 1) revenues; 2) expected utility of one bidder;
3) probability distribution; and 4) privacy leakage. The rev-
enues mean the total payment received from winning bidders.
The expected utility of one bidder indicates the achieved utility
when the bidder changes its bid, while other bidders remain
unchanged. As introduced earlier, when the outcome of the
probability distribution over prices only changes slightly if
anyone bidder changes its submitted bid in a mechanism, we
say that this mechanism can guarantee good privacy. Thus, we
also used the probability distribution as an evaluation metric.
Finally, we define privacy leakage.
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Fig. 2. Revenues versus |N|.

Fig. 3. Approximate truthfulness.

Definition 5 (Privacy Leakage): For two input profiles D
and D′ which differ in only one bid in a mechanism, we
use S and S′ to denote the corresponding probability distri-
butions over a price set P. We let the average of the absolute
differences between the logarithmic probabilities of the two
distributions denote the privacy leakage [42], that is,

1/|P|
∑
pj∈P

∣∣∣ln Pr
[
Sj

]− ln Pr
[
S′j

]∣∣∣. (26)

2) Evaluation Results: We display the evaluation results.
Evaluation of Revenues: We first evaluate the effects of the

number of consumers |N| and the differential privacy constant
ε on the expected revenues. The results are shown in Fig. 2. We
find that our algorithm achieves high revenues which are very
close to the optimal results. Moreover, the smaller the constant
ε is, the smaller the expected revenue is. Also, a smaller ε

value results in a wider distribution of the expected revenue.
The revenues rise continuously along with the increase of the
number of consumers.

Evaluation of Utility: We verify the approximate truthful-
ness of the data pricing algorithm by randomly picking a
bidder and allowing it to submit a bid that is different from
its true valuation. We observe that a bid higher than the true
valuation may make the expected utility of this bidder nega-
tive, while a bid lower than the true valuation will yield the
expected utility close to 0, as shown in Fig. 3. Especially, the
larger ε is, the smaller the expected utility is.

Evaluation of Probability Distribution: We evaluate the
probability distribution for two bid profiles which differ in
only one bid. For a finer observation, we use the logarithmic
function ln(·) to amplify the probability values. The results
are presented in Fig. 4. We discover that the probability dis-
tributions for the two profiles over the price set are almost
identical. This means a good differential privacy.

Evaluation of Privacy Leakage: Finally, we verify the
privacy leakage of the differentially private data pricing algo-
rithm. The results show that the maximum privacy leakage
value is less than 0.15 where ε = 0.5, as displayed in Fig. 5.
We observe that the privacy leakage values rise along with the

Fig. 4. Probability distribution.

Fig. 5. Privacy leakage.

increase of ε. These results are consistent with our theoretical
analysis.

B. Evaluation on Data Collection Algorithm

1) Methodology: First, we vary the cardinality of the set R

from 100 to 600 with the step as 100. Then, we set the number
of crowd workers (i.e., |W|) as 200. When generating noisy
data collection tasks T, we set the cardinality of T to be λ · |R|
where λ is selected from {0.5, 1, 1.5, 2, 2.5, 3}. For each crowd
worker k ∈ W, the cardinality of the subset of U = R ∪ T

that it claims to perform (i.e., Gk) is set as |Gk| ≤ η|U|, in
which η is selected in {0.1, 0.2, 0.3, 0.4, 0.5}. Note that we
will slightly control the generation of Gk, to ensure that at
least the total workers can cover the private set R. This is
reasonable because we can add more crowd workers until R

can be covered.
We design and implement a greedy algorithm without

privacy preservation for comparison. The greedy algorithm
always selects the set Gk, which covers the maximum num-
ber of the remaining tasks in R, i.e., maxGk∈� |Gk ∩ R|. �

and R are updated in time after Gk is selected. Moreover, we
execute our differentially private data collection algorithm 200
times under different privacy levels (i.e., ε ∈ {0.1, 0.3, 0.5}).
To evaluate the performance of the proposed algorithm, we
use the following metrics: the cardinality of the solution set,
i.e., |�|, and the probability distribution. The small |�| value
means the small recruitment cost. The probability distribution
for the private set R indicates the possibility of each worker
being selected in the beginning.

2) Evaluation Results: We exhibit the results as follows.
Evaluation of |�|: We first evaluate the performance of |�|

when we change the number of true data collection tasks (i.e.,
|R|), as shown in Fig. 6. We find that the greedy algorithm
without privacy-preservation outputs the best and error-free
results under the same settings. This is because no perturbation
exists in the greedy algorithm. In our algorithm, the smaller
the privacy level ε is, the worse the result of |�| is. This is
because we cannot achieve good performance and satisfactory
privacy simultaneously. Next, we evaluate the effects of the
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Fig. 6. |�| versus |R|.

Fig. 7. |�| versus parameter λ.

Fig. 8. |�| versus parameter η.

Fig. 9. Probability distribution.

parameters λ and η. The number of selected workers (i.e.,
|�|) remains almost unchanged along with the increase of λ,
as shown in Fig. 7, while |�| decreases by increasing the value
of η, as shown in Fig. 8. In both Figs. 7 and 8, our algorithm
with larger privacy level ε obtains better performance. These
observations are consistent with our theoretical analysis.

Evaluation of Probability Distribution: At the beginning of
this algorithm, we compare the probability distributions for
two private sets R and R

′ which differ in one element, as
shown in Fig. 9. The probabilities here are amplified by the
logarithmic function ln(·). In order to distinguish the amplified
probability distributions, we make the probabilities based on
R
′ plus a constant 0.6. We observe that the two probability

distributions have a similar trend, and the average logarith-
mic function values for R and R

′ are −5.3141 and −5.3119,
respectively, which are almost identical. These simulations
validate our theoretical analysis results.

VI. RELATED WORK

In this article, we focus on the problem of designing a
privacy-preserving crowd-sensed data trading mechanism. So
far, there has been much research on the crowd-sensed data

trading problem, such as [3], [7], [10], [12], [15], [23], [36],
[37], [39], and [41], and the mobile crowdsensing problem,
such as [1], [13], [14], [17]–[20], [27]–[30], [32], [38],
and [40].

More specifically, Zheng et al. [39] proposed a data acqui-
sition scheme for crowd-sensed data markets. Yu et al. [36]
introduced a prospect theory model from behavioral eco-
nomics to understand the users’ realistic trading behaviors,
and then design an algorithm to help estimate the users’ risk
preference and dynamically provide trading recommendations.
Cao et al. [3] proposed an iterative auction mechanism for the
data trading problem, which can guide multiple selfish data
agents (including data owners, collectors, and users) to trade
data efficiently in terms of social welfare. Jung et al. [15]
studied the responsibilities of the consumers in the dataset
trading, and then design the accountable protocols such that
the book-keeping ability and accountability against dishonest
consumers are achieved throughout the dataset transactions.
After considering the multiple task initiators and participants
in the mobile crowdsensing, He et al. [10] proposed the con-
cept of “Walrasian Equilibrium,” based on which they find the
Pareto optimal task allocation for initiators.

However, the above works rarely consider the privacy-
preserving issues in the data trading market. In particu-
lar, only a few works have involved the identity privacy
of consumers or data privacy in the data trading process.
Gao et al. [7] integrated homomorphic encryption technique
into the auction-based big data trading to protect the bid
privacy. Zhang et al. [37] designed a privacy-preserving
crowdsourcing-based image dataset purchasing framework, in
which buyers can purchase the image datasets that meet their
quality requirements. Niu et al. [23] adopted homomorphic
encryption and identity-based signature to design a truthful
and privacy-preserving data trading mechanism. Nevertheless,
the homomorphic encryption will result in a huge compu-
tation or communication overhead that is unacceptable to
data consumers. Li et al. [16] studied the location-sharing
privacy leakage problem in mobile social networks, while
To et al. [28] designed a differentially private geocast-based
framework to protect the location privacy of workers in mobile
crowdsensing. Also, Li and Cao [17], Lin et al. [19], and
Wang et al. [30] proposed some privacy-aware incentive mech-
anisms for mobile crowdsensing. Moreover, Jin et al. [13]
devised an incentive mechanism for privacy-aware data aggre-
gation, while Li et al. [18] designed an efficient mechanism
for privacy-preserving truth discovery in mobile crowdsensing
systems.

Different from the aforesaid works, we design a privacy-
preserving crowd-sensed data trading mechanism, including
data pricing and data collection. We consider the identity pri-
vacy of consumers and data collection task privacy in the
data pricing and data collection, respectively. To this end, we
design a differentially private auction-based data pricing algo-
rithm, which achieves a good approximation to the maximum
revenue, preserves the identity privacy of data consumers,
and at the same time guarantees an approximate-truthfulness
during the process of bidding. None of the existing privacy-
preserving data trading mechanisms can achieve these goals
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simultaneously. We also propose a differentially private data
collection algorithm, by modeling our problem as a special
set cover problem with differential privacy. Indeed, it is chal-
lenging to simultaneously achieve good performance and a
satisfying level of privacy. Our proposed data collection algo-
rithm can ensure a tight bound of the expected approximation
ratio and meanwhile obtain a good level of differential privacy.

Differential privacy [11], [22], as a method to limit the dis-
closure of private information records in a statistical dataset,
was first introduced by Dwork [4] in 2006, and it has attracted
lots of attention and researches recently. In general, the
Laplace mechanism and exponential mechanism are the two
most commonly used differential privacy methods. The for-
mer involves adding random noise into the numeric queries so
that the answers conform to the Laplace statistical distribution,
while the latter is designed for the non-numeric queries and it
makes high-quality outputs exponentially more likely at a rate
that depends on the sensitivity of the quality score and the pri-
vacy parameter. Since our crowd-sensed data trading scenario
involves a non-numeric output, we adopted the exponential
mechanism to preserve the privacy in this article. Furthermore,
our data pricing also deals with the tradeoff between the rev-
enue maximization and the approximate truthfulness in the
auction mechanism [22], [42]. Therefore, we combine the
exponential mechanism with the approximate-incentive mech-
anism to devise a data pricing algorithm, instead of the simple
application of differential privacy.

VII. CONCLUSION

In this article, we propose a differentially private crowd-
sensed data trading mechanism (i.e., DPDT), which consists
of a data pricing algorithm and a data collection algorithm.
We take the first step to integrate the differential privacy
(exponential mechanism) into the crowd-sensed data trading
market to preserve identity and task privacy. The data pric-
ing algorithm not only realizes 2ε-differential privacy and
(e2 − 1)ε-truthfulness, but also achieves an expected revenue
of at least opt− 3 ln(e+ ε|P|opt)/ε, where opt is the optimal
revenue and P is the set of possible prices. The data col-
lection algorithm obtains δ-approximate ε-differential privacy,
and meanwhile achieves an expected approximation ratio of
O(ln |U|+(ln(|W| ln(e/δ)))/ε), in which U and W are the sets
of total tasks and crowd workers, respectively. Extensive sim-
ulations were conducted to verify the significant performance
of DPDT.
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