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Abstract— Mobile crowdsensing is a new paradigm in which
a requester can recruit a group of mobile users via a plat-
form and coordinate them to perform some sensing tasks by
using their smartphones. In mobile crowdsensing, each user
might perform multiple tasks with different sensing qualities.
Meanwhile, the users participating in the crowdsensing will
ask for sufficient rewards to compensate for their expenditures.
Hence, an important problem is how to recruit the users with
minimum cost while achieving a satisfactory sensing quality for
each task. Furthermore, in order to ease users’ worries about
privacy disclosures, the user recruitment process needs to protect
each user’s sensing quality and recruitment cost information
from being revealed to other users or to the platform. In this
paper, we propose two secure user recruitment problems for the
cases where the recruitment costs of users are homogeneous and
heterogeneous. After proving the NP-hardness of the problems,
we design two secure user recruitment protocols by using secret
sharing scheme. Both of the proposed protocols adopt greedy
strategies, which can recruit nearly optimal users while ensuring
that the total sensing quality of each task is no less than
a given threshold. The difference lies in that the two greedy
strategies are based on two unique utility functions. We analyze
the approximation ratios of the two protocols and prove the
security under the semi-honest model. Finally, we demonstrate
the significant performance of the proposed protocols through
extensive simulations and executions on real smartphones.

Index Terms— Mobile crowdsensing, privacy, sensing quality,
secret sharing, user recruitment.

I. INTRODUCTION

NOWADAYS, smartphones have become extremely preva-
lent in day-to-day life. Most smartphones have powerful
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sensing, storage, and computation abilities, which can be
seen as powerful mobile sensors with different functionalities.
In order to make full use of these sensing resources, a new
sensing paradigm called mobile crowdsensing is proposed [2].
Roughly speaking, mobile crowdsensing refers to a group
of mobile users being coordinated to perform large-scale
sensing tasks over urban environments through their smart-
phones. Since mobile crowdsensing can perform sensing tasks
that individual users cannot cope with, it has stimulated
many applications such as urban WiFi characterization, traffic
information mapping, noise pollution monitoring, and so on,
attracting much attention [2].

A typical mobile crowdsensing system consists of a collec-
tion of mobile users and a platform residing on the cloud. The
platform accepts sensing tasks from requesters and recruits
mobile users to perform these sensing tasks by using their
smartphones. After accomplishing the sensing tasks, mobile
users will return the corresponding results to requesters. In a
mobile crowdsensing system, user recruitment or task alloca-
tion is one of the most important components. So far, many
user recruitment or task allocation algorithms have been pro-
posed [3]–[5]. Also, many incentive mechanisms such as [6]–
[10] have been designed for the user recruitment component.

In this paper, we focus on the privacy-preserving user
recruitment problem in sensing-quality-aware mobile crowd-
sensing systems. Consider that a requester wants to recruit
a group of mobile users to perform some sensing tasks via
a crowdsensing platform, while ensuring that each task can
be accomplished with a satisfactory quality. For example,
the sensing tasks might be taking some time-relative photos at
many locations for air quality analysis. In general, the sens-
ing quality depends on the heterogeneous smart devices and
mobile behaviors, which can be measured mainly by the time
of taking photos, the camera configurations of smart devices,
and the number of photos taken by users. As a result, each user
can determine the values of his sensing quality according to a
predetermined criterion. During the user recruitment process,
each mobile user needs to tell the platform which tasks he/she
can deal with and how many sensing qualities he/she can
contribute for each task. Accordingly, the mobile users will
ask for variable rewards to compensate for their expenditures.
This might reveal some private sensitive information. The
reward requested by a mobile user will reveal the tasks that
he/she can perform and the relevant sensing quality. Here,
the tasks that a user can perform will reveal which locations
the user might visit, while the sensing quality will reveal the
frequency, time, distance of the visit, and so on. In order to
avoid privacy disclosures and to make users willing participate
in the crowdsensing, it is necessary to protect each user’s
private sensitive information from being revealed during the
user recruitment process.
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Existing crowdsensing works rarely discuss privacy issues.
Only a few works, such as [11]–[14], studied the problem
of protecting the privacy of sensing results collected by
mobile users. Nevertheless, none of them investigates the
privacy-preserving issues in the user recruitment process.
To fill this gap, we study the problem of protecting users’
input privacy during the process of recruiting users. In the
problem, the platform and mobile users need to jointly make
the user recruitment decision by conducting computations
over their inputs. Meanwhile, each user needs to protect
his/her inputs from being revealed to the platform or to other
users. Moreover, the recruited users should make all sensing
tasks be performed with satisfactory sensing qualities. Here,
the differential privacy schemes [11], [12], which only can
output the probabilistic results by introducing randomness
into the queries, are not competent for this problem, since
many precise and complex computations need to be con-
ducted over users’ private inputs in our problem. Although
the homomorphic encryption and garbled circuit protocols can
solve this problem, they will result in a huge computation or
communication overhead that is unacceptable to mobile users.

To solve the privacy-preserving user recruitment problem,
we design two secure user recruitment protocols for two
different scenarios. To ensure the security, we apply secret
sharing techniques during the user recruitment procedures.
More specifically, the major contributions include:

1) We propose and formalize the homogeneous and het-
erogeneous secure user recruitment problems for sensing-
quality-aware mobile crowdsensing systems. Here, “homoge-
neous” and “heterogeneous” mean that the recruitment costs
of mobile users are uniform and different, respectively. Unlike
the existing user recruitment problem, our problems take into
consideration the privacy-preserving issues.

2) We first prove the NP-hardness of the problem, and then
propose a greedy strategy for the homogeneous user recruit-
ment problem. According to this, we design a hOmogeneous
Secure User Recruitment protocol (O-SUR) by using the secret
sharing scheme. We not only analyze the performance of the
O-SUR protocol, but also prove that O-SUR is secure against
any semi-honest adversaries. Furthermore, we demonstrate that
as long as the computation function of the total sensing quality
is an increasing submodular function, the O-SUR protocol can
still produce a solution with a logarithmic approximation ratio.

3) We also propose another greedy strategy based on a
new utility function for the heterogeneous user recruitment
problem. Based on this, we design a hEterogeneous secret-
sharing-based Secure User Recruitment protocol (E-SUR).
After analyzing the correctness and approximation ratio of
E-SUR, we prove that E-SUR can protect the inputs of each
user from being revealed to the platform or to other users,
even if they might collude.

4) In addition, we prove that O-SUR and E-SUR are
two lightweight secure protocols, which do not depend on
encryption/decryption operations and any trusted third-party.
To the best of our knowledge, these are the first secure user
recruitment protocols designed for mobile crowdsensing.

5) We conduct extensive simulations to verify the sig-
nificant performance of the proposed protocols. We also
implement and run the O-SUR and E-SUR protocols on real
smartphones which demonstrates that O-SUR and E-SUR can
work well in real applications.

The remainder of the paper is organized as follows:
We introduce the models, problem, and preliminary in
Section II. The O-SUR and E-SUR protocols are proposed

Fig. 1. The crowdsensing model.

in III and IV, respectively. In Section V, we evaluate the
performances of the two protocols. After reviewing the related
work in Section VI, we conclude the paper in Section VII.

II. MODELS, PROBLEM, AND PRELIMINARY

A. Crowdsensing Model

Consider a mobile crowdsensing system, in which a
requester has many sensing tasks to deal with, denoted by
S = {s1, s2,· · · , sm}. Some mobile users, denoted by
U = {u1,· · · , un}, are willing to participate in the crowd-
sensing. Each user ui∈U would determine a series of sensing
tasks that he can perform (i.e., a subset of all sensing tasks).
Since the sensing tasks that each user intends to perform
are different, the consumed resources including local storage,
battery, memory of the smart device, etc, are heterogeneous.
Moreover, the users participating in the crowdsensing also
suffer threats to their privacy [15]–[17]. Hence, all mobile
users will ask for sufficient rewards to compensate for the
expenditures and the risks. Let ci∈Zp denote the recruited cost
for the user ui (∈U), in which Zp is a prime field. Actually,
ci is private and known to nobody except for ui itself. In this
paper, we consider that ci is the true consumed cost, since
the truthfulness of mobile users can be ensured by using an
incentive mechanism [6]–[9], [18].

When users perform sensing tasks, the data collected by
them might be of different qualities due to their heterogeneous
smart devices and mobile behaviors. In general, multiple users
need to be recruited to perform a common task so as to achieve
a satisfactory sensing quality. We use qi,j∈Zp to indicate the
sensing quality of user ui (1 ≤ i ≤ n) performing task sj

(1≤j≤m). Specially, qi,j =0 means that user ui cannot deal
with task sj . In fact, the worse case for a user is that he cannot
perform a sensing task, so the values of users’ sensing qualities
are non-negative in our crowdsensing system. Here, each user
ui knows his sensing qualities qi,1, · · · , qi,m, since he can
determine the value of each sensing quality qi,j by evaluating
the corresponding sensing data according to a predetermined
criterion. For example, each user can map a sensed image to a
sensing quality value in Zp according to the clarity and size.

Fig. 1 shows the execution process of the mobile crowd-
sensing. First, the requester publishes all sensing tasks in S to
the users in U via a platform. Then, each user ui determines
the values of qi,1, · · · , qi,m, ci and sends them to the platform.
Next, the platform recruits some users from U to perform
the tasks in S while ensuring that the total sensing quality
of each task is no less than a given threshold. Finally, each
recruited user will go to perform the tasks in S and return the
results to the requester. During this process, some incentive
mechanisms such as [6]–[9], [18] can be adopted to stimulate
users to participate in the crowdsensing. In this paper, we will
not discuss the detailed incentive mechanism and will only
focus on the privacy-preserving user recruitment problem.
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B. Security Model

When a user ui participates in the crowdsensing, his/her
sensing quality and recruitment cost values might reveal
his/her private sensitive information. In order to avoid privacy
disclosures, we need to protect each user’s sensing qualities
and cost from being revealed to the platform or to other
users. For this privacy-preserving issue, we consider a typical
security model, i.e., the semi-honest model [19]. In this
model, each user will follow the whole user recruitment
protocol, showing the honest aspect. On the other hand,
the user will also try to derive the extra information from the
received data, showing the dishonest aspect. The semi-honest
model is reasonable, since the user is generally willing to
follow and accomplish the secure protocol so as to benefit
from participating. Because of this, the semi-honest model
is widely-used [19]–[22]. The privacy under the semi-honest
model can formally be defined as follows:

Definition 1 (Privacy Under the Semi-Honest Model [19]):
Let F(x1, · · · , xn)=(F1, · · · ,Fn) be an n-ary functionality,
where xi (∈Zp) and Fi are the i-th user’s input and output
(1≤ i≤n). Consider a protocol for computing F . The view
of the i-th party during an execution of this protocol is
denoted as V IEWi = (xi, r, Mi), in which r represents
the outcome of the i-th user’s internal coin tosses and Mi

represents the messages that this party has received. In other
words, V IEWi is all the data that the i-th party can observe
during the execution of the protocol. Now, we suppose that κ
(< n) parties might collude, denoted as I = {ui1 , · · · , uiκ}.
Moreover, we let V IEWI denote the view of the κ collusion
parties, in which V IEWI � (I, V IEWi1 , · · · , V IEWiκ).
We say that the protocol privately computes F if there exists
a polynomial-time algorithm, denoted as A, such that for
every I above

A(I, (xi1 , · · · , xiκ ,FI)) ≡ V IEWI . (1)

where ≡ denotes the computational indistinguishability.
Remarks: Eq. 1 asserts that the view of the users in I can be

efficiently simulated based solely on their inputs and outputs.
In other words, they cannot derive extra information during
the execution of the protocol.

C. Problem

We focus on the secure user recruitment problem in the
above mobile crowdsensing under the semi-honest model.
We use set Φ to denote a user recruitment solution where
ui∈Φ indicates that user ui is recruited. The platform needs
to recruit some mobile users from U to perform the sensing
tasks while ensuring that the total sensing quality of each task
is no less than a given threshold. We use θj ∈Zp for ∀sj∈S to
denote the threshold. At the same time, we give the definition
of the total sensing quality as follows:

Definition 2: The total obtained sensing quality of task sj

(∈ S) based on a user recruitment solution Φ, denoted as
Qj(Φ), is computed in the following formula:

Qj(Φ)�Q(qi,j |ui ∈ Φ), (2)

where Q(·) is a general function about qi,j .
In many existing applications, the total sensing quality of

a task is directly defined as the sum of the sensing quality
of each recruited user performing this task, i.e., Qj(Φ) =∑

ui∈Φ qij . This is a special form of our definition of the
total sensing quality. Actually, in addition to the sum of
sensing quality, our definition can also be calculated in other

ways. For example, if the sensing quality qi,j represents the
probability of successful sensing, Qj(·) may be defined as
their joint probability, i.e., Qj(Φ)=1−∏

ui∈Φ(1−qi,j). In fact,
so long as Qj(Φ) is an increasing submodular function with
Qj(Φ = φ) = 0, our proposed user recruitment protocol can
achieve a provably logarithmic approximation. We will present
the analysis in Section III-E in detail. For better understanding,
we directly use Qj(Φ)=

∑
ui∈Φ qij to denote the total sensing

quality in our user recruitment problem.
To solve the secure user recruitment problem, where the

sensing qualities and recruitment costs of mobile users need
to be protected from being revealed simultaneously, we define
two optimization problems which are gradually progressive
and in-depth. First, we propose the homogeneous secure
user recruitment problem in which the recruitment costs of
all users are uniform. Since the recruitment costs of users
are homogeneous, minimizing the total cost is equivalent to
minimize the number of recruited users. Second, we define
the heterogeneous secure user recruitment problem, where
the recruitment costs of users are heterogeneous, involving
the privacy protection of sensing quality and recruitment
cost simultaneously. More specifically, we have the following
definitions.

Definition 3: The hOmogeneous Secure User Recruitment
(O-SUR) problem, in which the recruitment costs of all users
are homogeneous, is to privately find a minimum number of
recruited users to perform the sensing tasks (i.e., determine
a user recruitment solution Φ ⊆ U) while ensuring that the
total sensing quality of each task is no less than a given
threshold, i.e.,

Minimize : |Φ| (3)

Subject to : Φ⊆U (4)

Qj(Φ)≥θj , 1≤j≤m (5)

Security : Eq. 1 holds. (6)

Definition 4: The hEterogeneous Secure User Recruitment
(E-SUR) problem is to select a set of users Φ from the
alternative user set U with minimum cost under the sensing
quality constraints, while protecting the recruitment cost and
sensing qualities of each user from being revealed to other
users or to the platform. That is,

Minimize : C(Φ) =
∑
ui∈Φ

ci (7)

Subject to : Φ⊆U (8)

Qj(Φ)≥θj , 1≤j≤m (9)

Security : Eq. 1 holds. (10)

Here, we assume that there always exists at least one
feasible solution for these two optimization problems. This
is reasonable because we can expand the alternative user set
(i.e., U) by inviting more mobile users to participate in the
crowdsensing, until the solutions to the optimization problems
appear.

For ease of presentation, we also use an n-bit vector
(b1,· · · , bi,· · · , bn) to indicate the user recruitment solution
where bi =1 for ui∈Φ; otherwise, if ui �∈Φ, we set bi =0.

D. Preliminary

In this paper, we address privacy-preserving issues by using
secret sharing schemes. A widely-used secret sharing scheme
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TABLE I

DESCRIPTION OF MAJOR NOTATIONS

is Shamir’s scheme [23]. Denote the shares of a secret s among
n users as

[s]�(s[1], · · · , s[i], · · · , s[n]), (11)

where s[i] is the i-th user’s share. Then, Shamir’s secret
sharing scheme can be defined as follows:

Definition 5: Let p be an odd prime, and Zp is a prime
field. To share a secret s (s ∈ Zp) among n users (n < p),
Shamir’s scheme determines a random polynomial gs(x) =
s+α1x+α2x

2 + · · ·+ακxκ mod p with randomly chosen
αi ∈Zp for 1≤ i≤κ, κ<n. Then, the share of the i-th user
is s[i]=gs(i).

It has been proved that in Shamir’s scheme, any h shares
with h≤κ give no information on s (called κ-privacy), while
any h shares with h > κ can uniquely disclose s (called
(κ+1)-reconstruction).

In the following, we will propose the corresponding
solutions to the O-SUR and E-SUR problems under the
semi-honest model in Sections III and IV, respectively. Addi-
tionally, we list the main notations in Table I.

III. THE O-SUR PROTOCOL

In this section, we propose a hOmogeneous Secure
User Recruitment (O-SUR) protocol by using secret sharing
scheme. We first introduce some secure operations in the
secret sharing scheme. Then, we analyze the NP-hardness of
the O-SUR problem and propose the greedy user selection
strategy as the building blocks of the O-SUR protocol. Next,
we design the O-SUR protocol and present an example to
illustrate the user recruitment procedure. Finally, we analyze
the performance and security of the O-SUR protocol.

A. Secure Operations

In the O-SUR protocol, each sensing quality is turned to
be a secret shared among all users. When the users make
the user recruitment decision, they need to jointly conduct
some mathematical operations on the shared secrets, which
are defined as follows:

Definition 6: Let x, y∈Zp be two secrets shared by n users
and [x], [y] be the corresponding polynomial shares. Then,
the secure mathematical operations are defined as follows:

[z1]← SecAdd([x], [y]), [z2]← SecSub([x], [y]),
[z3]← SecMulti([x], [y]), [z4]← SecCmp([x], [y]),
[z5]← SecMax([x], [y]), [z6]← SecMin([x], [y]), (12)

where z1 = x+y mod p; z2 = x−y mod p; z3 = xy mod p;
z4 = 1 if x≤ y, or z4 = 0 when x > y; z5 = max{x, y}, and
z6 =min{x, y}.

In Definition 6, the SecAdd and SecSub operations can be
conducted efficiently without any communications among n
users. For SecAdd, each user ui can locally compute his/her
share by letting z1[i]=x[i]+y[i]. For example, assume x[i]=
x+α1i+α2i

2 + · · ·+ακiκ mod p and y[i]=y+β1i+β2i
2 +

· · ·+βκiκ mod p, where α1, · · · , ακ, β1, · · · , βκ are randomly
chosen from Zp. Then, z[i]=x+y+(α1+β1)i+· · ·+(ακ+βκ)iκ
mod p. Likewise, the SecSub operation can also be locally
conducted by letting each user compute z2[i]=x[i]−y[i].

In contrast, the SecMulti and SecCmp operations are a
bit more complex, and they require users to communicate
with one another. In this paper, we realize the two opera-
tions by using the secure multi-party multiplication protocol
in [21] and the secure multi-party comparison protocol in
[22], respectively. The multiplication protocol in [21] is a
well-known and efficient protocol built on a verifiable secret
sharing scheme. It requires O(n2l) bit-operations per user (l=

log2 p�) and one round of communication. The comparison
protocol in [22] is one of the most efficient secure com-
parison protocols. The computation complexity is dominated
by 15 rounds of invocations of the multiplication protocol,
and the communication complexity is 279l+5 times of the
multiplication protocol.

The SecMin and SecMax operations can be realized by
using SecMulti and SecCmp. More specifically, we can let

SecMax([x], [y])
� SecAdd([x], SecMulti(SecCmp([x], [y]),

SecSub([y], [x]))) (13)

SecMin([x], [y])
� SecAdd([x], SecMulti(SecSub

(1− SecCmp([x], [y])), SecSub([y], [x]))). (14)

Eq. 13 is correct, since the right part will beSecAdd([x], [0])
if x>y; otherwise, it will be SecAdd([x], SecSub([y], [x])).
Likewise, Eq. 14 is also correct. Here, the SecMax and
SecMin operations can directly obtain the maximum and
minimum values of x and y, respectively, without revealing
which is the larger or smaller one. Moreover, the SecMin
and SecMax operations can be extended to support more
than two operands. For example, SecMin([x1], [x2], [x3])←
SecMin([x1], SecMin([x2], [x3])). Additionally, all of these
secure operations can support the computation between secret
and public values. For example, when the secret x in
Definition 6 is replaced by a public value r∈Zp, the SecAdd
operation can be conducted by letting z1[i]=r+y[i]. Moreover,
SecMulti can be computed directly by letting z3[i]=r·y[i] for
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each user ui without any communications. The computation
complexity of SecCmp becomes 7 rounds of invocations of
the multiplication protocol, and the communication complexity
becomes 17l times of the multiplication protocol [22].

B. The Building Blocks

Before the solution, we first prove the NP-hardness of the
user recruitment problem in the following theorem.

Theorem 1: The user recruitment problem is NP-hard.
Proof: We consider a special case of the user recruitment

problem: given a mobile crowdsensing, where the user set is U ,
the task set is S, the recruitment costs of users {ci|ui∈U} are
uniform, each sensing quality qi,j ∈{0, 1}, and the threshold
of total sensing quality is θj = 1 for ∀sj ∈ S; determine
a user recruitment solution Φ, such that the platform can
minimize |Φ|, while the total sensing quality of each task sj

is no less than θj . Here, if a user ui can perform a task sj ,
i.e., qi,j = 1, we say that ui can cover sj . Moreover, once
a task is covered by a user, the total sensing quality of this
task must be no less than θj . Then, when we replace each
ui in U by using the set of tasks that ui can cover, denoted
by Si (⊆ S), this problem can be equivalently seen as a set
cover problem, a well known NP-hard problem: given a task
set S, a collection of subset {Si|1≤ i≤n}, find a minimum
size of subcollection of {Si|1 ≤ i ≤ n} that covers all tasks
in S. Thus, the special user recruitment problem is NP-hard.
Consequently, the general user recruitment problem is also at
least NP-hard. �

Since the user recruitment problem is NP-hard, we adopt a
greedy strategy to recruit users. The greedy criterion is that the
user who can improve the total sensing qualities of all tasks
the most well will be recruited first. More precisely, the greedy
strategy is based on the following utility function:

Definition 7: Utility function f(Φ) indicates the total sens-
ing qualities of all tasks in S contributed by the users in set Φ,
until each task sj reaches the corresponding threshold θj ,
defined as follows:

f(Φ)=
m∑

j=1

min{Qj(Φ), θj}=
m∑

j=1

min{
∑
ui∈Φ

qi,j , θj}. (15)

Moreover, for a given user set Φ, we denote the incremental
utility of recruiting a new user ui into Φ as

Δif(Φ)=f(Φ∪ {ui})−f(Φ). (16)

The procedure of recruiting users in the O-SUR protocol
is based on the above defined utility, which not only contains
the optimization objective, but also takes the non-linear con-
straints (i.e., the sensing quality constraints) into consideration.
Further, the greedy user recruitment strategy is shown in
Procedure 1. The whole user recruitment procedure contains
multiple rounds of iterations. At the beginning, the set of
recruited users is an empty set, i.e., Φ = ∅. Then, in each
round of iteration, the user who can improve the utility f(Φ)
the most, i.e., the user ui who can maximize the value of
Δif(Φ), is recruited and added into Φ. The user recruitment
process terminates when f(Φ)=

∑m
j=1 θj . After this process,

the user recruitment result Φ is produced.

C. The Detailed O-SUR Protocol

Then, we introduce the O-SUR protocol which adopts the
same utility function and greedy strategy as Procedure 1 to
recruit users. The difference lies in that all inputs and compu-
tations are conducted by using the secret sharing techniques.

Procedure 1 The User Recruitment Strategy of O-SUR

Input: U , S, {qi,j |ui∈U , sj ∈S}, {θj|sj ∈S}
Output: Φ
1: Φ=∅; f(Φ)=0;
2: while f(Φ)<

∑m
j=1 θj do

3: Select a user ui∈U\Φ to maximize Δif(Φ);
4: Φ=Φ ∪ {ui};
5: return Φ

First, each input qi,j is seen as a secret, and it is replaced
by its polynomial shares [qi,j ] in O-SUR. Second, when
users jointly make recruitment decisions, all computations are
conducted by using the secure operations in Definition 6, and
all intermediate results are produced in the manner of shared
secrets. To ensure this, we replace ui ∈ Φ and Δif(Φ) by
using [bi]=[1] and

∑m
j=1 min{qi,j , θj−Qj(Φ)}. Here, all users

can communicate with each other via the platform. Moreover,
in order to prevent the selected user from being revealed in
each round of iteration, we hide the maximum incremental
utility and the selected user in a SecMax operation and a
SecCmp operation. Only in the final phase, each user ui can
collect the corresponding shares to reconstruct the value of
bi so as to know whether he/she is recruited. Additionally,
the whole process is conducted in a distributed way.

The detailed O-SUR protocol is shown in Protocol 1, which
mainly contains four phases. First, the requester generates
tasks and publishes them to users via the platform. Second,
mobile users determine their sensing qualities. Moreover, all
users construct the polynomial secret shares of their sensing
quality values as the inputs in Steps 3-5. Third, all mobile
users jointly make recruitment decisions by using the secure
operations in Definition 6. More specifically, Steps 6-9 initial-
ize for the user recruitment decision process. In Steps 11-17,
users jointly find the maximum incremental utility value,
i.e., Δif . In Steps 18-23, users determine the recruited user
and update the corresponding Qj . Note that we will omit Φ
in Δif(Φ) and Qj(Φ) in Protocol 1 for simplicity. Fourth
(Steps 24-26), all users collect their corresponding shares to
reconstruct the recruitment results. After the recruited users
perform the sensing tasks and upload the sensing results to the
requester, the requester would pay them accordingly. During
the process, the platform does not know the recruitment and
sensing results.

The computation and communication complexity of the
whole protocol is dominated by the SecMin operations in
Steps 14 and 22, which are O(mn2) invocations of secure
multiplication operations. Therefore, the protocol will result
in O(mn4l) bit-operations per user and O(mn2l) rounds of
communication, where a round of communication means that
users communicate with one another once.

D. Example

To better understand Protocol 1, we use an example to
illustrate the user recruitment procedure. In the example, there
are two tasks and three users with six sensing qualities,
as shown in Fig. 2. The protocol is conducted as follows:

• First round: The three users jointly compute their incre-
mental utility values, of which [Δ1f ]=[10] is the largest.
Thus, user u1 is recruited, i.e., [b1] = [1]. Accordingly,
we have [Q1]=[Q2]=5.

• Second round: The users jointly compute their incremen-
tal utility values again, based on [Q1] = [Q2] = 5. Since
[b1] = [1], [Δ1f ] is set as [0]. This time, [Δ2f ] = [6]
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Protocol 1 The O-SUR Protocol
Input: U , S, {qi,j|ui∈U , sj ∈S}, {θj |sj ∈ S}
Output: b1, · · · , bn

Phase 1: the requester publishes S to U via the platform;
Phase 2: users input their sensing quality vectors;

1: for i=1 to n do
2: user ui determines the sensing qualities qi,1, · · · , qi,m;
3: for j =1 to m do
4: user ui generates the polynomial sharing [qi,j ];
5: user ui sends the share qi,j [i′] to user ui′ ;

Phase 3: users jointly make the decision of user recruitment;
6: for i=1 to n do
7: [bi]← [0];
8: for j =1 to m do
9: [Qj]← [0];

10: for round=1 to n do
11: for i=1 to n do
12: [Δif ]← [0];
13: for j =1 to m do
14: [δ]←SecMin([qi,j ], SecSub(θj, [Qj ]));
15: [Δif ]←SecAdd([Δif ], [δ]);
16: [Δif ]←SecMulti([Δif ], SecSub([1], [bi]));
17: [Δmaxf ]←SecMax([Δ1f ], · · · , [Δnf ]);
18: for i=1 to n do
19: [z]←SecCmp([Δmaxf ], [Δif ]);
20: [bi]←SecAdd([bi], SecMulti(SecSub([1], [bi]), [z]));
21: for j =1 to m do
22: [δ]←SecMin([qi,j ], SecSub(θj, [Qj ]));
23: [Qj ]←SecAdd([Qj ], SecMulti([z], [δ]));
Phase 4: the users reconstruct the results;
24: for i=1 to n do
25: user ui collects all shares of [bi];
26: user ui derives bi =

∑m
j=1 bi[j];

Fig. 2. Illustration of the O-SUR protocol (θ1 = θ2 = 8).

becomes the largest value. Thus, user u2 is recruited,
i.e., [b2] = [1]. Accordingly, [Q1] = [Q2] = θ1 = θ2 = 8.
No more users will be recruited.

E. The Performance and Security Analysis
In this section, we first prove the correctness and analyze the

approximation ratio of the greedy strategy (i.e., Procedure 1).
Based on this, we analyze the performance of the O-SUR
protocol (i.e., Protocol 1). Afterwards, we prove the security
of O-SUR under the semi-honest model.

First, we prove three important properties of the defined
utility function f(Φ) in the following theorems.

Theorem 2: f(Φ) is an increasing function with f(∅)=0.
Proof: First, if Φ = ∅, then min{∑ui∈Φ qi,j , θj} = 0

for ∀j ∈ [1, m]. According to Definition 7, f(Φ = ∅) = 0.

Second, without loss of generality, we consider two
user sets Φ1 and Φ2, where Φ1 ⊆ Φ2. Then, we have
min{∑ui∈Φ1

qi,j , θj}≤min{∑ui∈Φ2
qi,j , θj}. Consequently,

we have f(Φ1) =
∑m

j=1 min{∑ui∈Φ1
qi,j , θj} ≤∑m

j=1 min{∑ui∈Φ2
qi,j , θj} = f(Φ2). Therefore, f(Φ)

is an increasing function with f(∅) = 0. The theorem
holds. �

Theorem 3: f(Φ)=
∑m

j=1 θj iff Φ is a feasible solution to
the user recruitment problem.

Proof: According to Eq. 15, f(Φ) =
∑m

j=1 θj iff
min{∑ui∈Φqi,j , θj}= θj holds for each j ∈ [1, m]. In fact,
min{∑ui∈Φ qi,j , θj}=θj and

∑
ui∈Φ qi,j≥θj are equivalent.

Therefore, we have that f(Φ)=
∑m

j=1 θj iff
∑

ui∈Φ qi,j ≥ θj

holds for each j∈ [1, m]. This means that the users in Φ can
perform each task sj in S with a total sensing quality no less
than θj . Thus, the theorem is correct. �

Theorem 4: f(Φ) is a submodular function. More specif-
ically, for two arbitrary user sets Φ1 and Φ2, Φ1 ⊆ Φ2, and
∀uh∈U\Φ2, the submodular property holds, i.e.,

f(Φ1 ∪ {uh})− f(Φ1)≥f(Φ2 ∪ {uh})− f(Φ2). (17)

Proof: To prove the submodular property of f(Φ), we con-
sider two cases:

Case 1: user uh cannot deal with task sj , i.e., qh,j=0. For
this case, we have

min{
∑

ui∈Φ1∪{uh}
qi,j , θj} −min{

∑
ui∈Φ1

qi,j , θj}
= min{

∑
ui∈Φ2∪{uh}

qi,j , θj}
−min{

∑
ui∈Φ2

qi,j , θj} = 0. (18)

Case 2: user uh can perform task sj , i.e., qh,j>0. We divide
this case into two sub-cases:

∑
ui∈Φ1∪{uh} qi,j≤

∑
ui∈Φ2

qi,j

and
∑

ui∈Φ1∪{uh} qi,j >
∑

ui∈Φ2
qi,j .

For the first sub-case, since Φ1⊆Φ2, we have
∑

ui∈Φ1
qi,j≤∑

ui∈Φ1∪{uh} qi,j ≤
∑

ui∈Φ2
qi,j ≤

∑
ui∈Φ2∪{uh} qi,j . Then,

we can get:

min{
∑

ui∈Φ1∪{uh}
qi,j , θj} −min{

∑
ui∈Φ1

qi,j , θj}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qh,j , θj ≥
∑

ui∈Φ2∪{uh} qi,j ;
qh,j ,

∑
ui∈Φ2∪{uh} qi,j > θj ≥

∑
ui∈Φ2

qi,j ;
qh,j ,

∑
ui∈Φ2

qi,j > θj ≥
∑

ui∈Φ1∪{uh} qi,j ;
θj −

∑
ui∈Φ1

qi,j ,∑
ui∈Φ1∪{uh} qi,j > θj ≥

∑
ui∈Φ1

qi,j ;
0, θj <

∑
ui∈Φ1

qi,j .

(19)

min{
∑

ui∈Φ2∪{uh}
qi,j , θj} −min{

∑
ui∈Φ2

qi,j , θj}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qh,j , θj ≥
∑

ui∈Φ2∪{uh} qi,j ;
θj −

∑
ui∈Φ2

qi,j ,∑
ui∈Φ2∪{uh} qi,j > θj ≥

∑
ui∈Φ2

qi,j ;
0,

∑
ui∈Φ2

qi,j > θj ≥
∑

ui∈Φ1∪{uh} qi,j ;
0,

∑
ui∈Φ1∪{uh} qi,j > θj ≥

∑
ui∈Φ1

qi,j ;
0, θj <

∑
ui∈Φ1

qi,j .

(20)

Comparing Eqs. 19 and 20, we have:

min{
∑

ui∈Φ1∪{uh}
qi,j , θj} −min{

∑
ui∈Φ1

qi,j , θj}
≥ min{

∑
ui∈Φ2∪{uh}

qi,j , θj} −min{
∑

ui∈Φ2
qi,j , θj}

(21)
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Similarly, for the second sub-case, we can still derive Eq. 21.
In summary, we can conclude that Eq. 21 holds for all cases.
Now, according to Eq. 15, we have:

f(Φ1 ∪ {uh})− f(Φ1)≥f(Φ2 ∪ {uh})− f(Φ2). (22)

Therefore, f(Φ) is a submodular function. �
Second, based on the above properties of the utility function,

we can prove the correctness of Procedure 1.
Theorem 5: Procedure 1 is correct. That is, it will produce

a feasible solution for the user recruitment problem, as long
as the problem is solvable.

Proof: In each round of iteration in Procedure 1, a user
will be added into the user set Φ. Moreover, according to
Theorem 2, the utility f(Φ) will increase along with the
expansion of the user set Φ. Hence, the iteration processes
will certainly terminate. According to Procedure 1, when the
iteration processes terminate, there must be f(Φ)=

∑m
j=1 θj .

So, we can conclude that Φ is a feasible solution for the user
recruitment problem according to Theorem 3. �

Furthermore, we derive the approximation ratio of Proce-
dure 1. Before this, we first prove that our user recruitment can
be re-formalized as a Minimum Integral Submodular Cover
with Submodular Cost (MISC/SC) problem.

Lemma 1: The O-SUR problem can be re-formalized as an
MISC/SC problem. Specifically, we have:

1) if the problem is solvable, it can be re-formalized as

Minimize{|Φ||f(Φ)=f(U), Φ⊆U}; (23)

2) both f(Φ) and |Φ| are polymatroid functions on 2U ,
i.e., both of them are increasing submodular functions, and
f(Φ)=0, |Φ|=0 when Φ=∅.

Proof: 1) If the user recruitment problem is solvable,
the user set U must be a feasible solution, since this set
contains all users. According to Theorem 3, f(Φ)=

∑m
j=1 θj

iff Φ is a feasible solution. Therefore, if Φ is another feasible
solution, we must have f(Φ) = f(U) =

∑m
j=1 θj . That is

to say, the constraint Eq. 5 can be equivalently replaced by
f(Φ)=f(U). Therefore, the user recruitment problem can be
re-formalized as Eq. 23.

2) According to Theorems 2 and 4, f(Φ) is an increasing
submodular function with f(∅) = 0. Thus, f(Φ) is a poly-
matroid function on 2U . On the other hand, for two arbitrary
user sets Φ1 and Φ2, |Φ| satisfies the equation: |Φ1|+|Φ2|=
|Φ1∩Φ2|+|Φ1∪Φ2|. This means that |Φ| is a modular function,
which also implies the submodular property. Moreover, it is
easy to verify that |Φ| is an increasing function with |Φ =
∅|= 0. Thus, |Φ| is also a polymatroid function. The lemma
holds. �

Next, we introduce a lemma about the approximation ratio
of MISC/SC problems, which is derived from [24].

Lemma 2: For an MISC/SC problem like Minimize{|Φ|
|f(Φ)=f(U), Φ⊆U}, if f(Φ) is a polymatroid integer-valued
function on 2U and |Φ| is a modular function, the greedy
strategy in Procedure 1 can achieve a (1+lnγ)-approximation
solution, where γ =maxui∈Uf({ui}).

Now, we derive the approximation ratio of the proposed
procedure in the following theorem.

Theorem 6: Procedure 1 can produce a (1 + ln γ)-
approximation solution, where γ =maxui∈U f({ui}).

Proof: According to Lemma 1, the O-SUR problem can
be re-formalized as an MISC/SC problem. Moreover, accord-
ing to Theorem 4, we have that f(Φ) is a polymatroid
integer-valued function on 2U . Additionally, in the proof of

Lemma 1, we have shown that |Φ| is a modular function.
Therefore, according to Lemma 2, the greedy strategy in
Procedure 1 can achieve a (1+ln γ)-approximation solution,
where γ =maxui∈Uf({ui}). �

Theorems 5 and 6 show that if the user recruitment problem
is solvable, Procedure 1 will produce a nearly optimal solution.
Accordingly, we analyze the performance of the O-SUR
protocol. Essentially, Protocol 1 is a distributed version of
Procedure 1, combined with secret sharing schemes. There-
fore, Protocol 1 can achieve the same user recruitment result
as Procedure 1. We can straightforwardly get the following
theorem:

Theorem 7: Protocol 1 is correct, and it can also produce a
(1+ln γ)-approximation solution, where γ =maxui∈Uf({ui}).

Next, we prove that Protocol 1 is secure against any
semi-honest adversaries in the following theorem.

Theorem 8: Protocol 1 can protect the sensing qualities of
each user from being revealed to any κ semi-honest adver-
saries and the platform, even if they might collude, where κ
(i.e., the degree of polynomial sharing) may be any integer
less than n.

Proof: First, SecMulti and SecCmp are secure accord-
ing to [21], [22]. Further, according to Eqs. 13 and 14
and the composition security theorem in [19], SecMax and
SecMin are also secure. Thus, we only need to prove
that O-SUR is secure by itself. According to Definition 1,
we first construct a simulator for an arbitrary user such that
its view can be efficiently simulated by the output of the
simulator. That is to say, the output of the simulator and
the view are computational indistinguishability. Without loss
of generality, we consider any κ users, denoted by I =
{ui1 , · · · , uiκ}⊂U , and construct the view of each user uit ∈I, i.e., V IEWit . Going through the whole protocol, we have
Mit = {qi,j [it], bi[it], Qj [it], δ[it], Δif [it], Δmaxf [it], z[it]}
and V IEWit =({qit,j, n, m, θj}, r, Mit). Then, the simulator
for the user uit randomly selects a number q′it,j from the prime
filed Zp. Consider the received messages Mit in V IEWit

where the number of shares of each secret is no larger than κ.
Also, since both qit,j and q′it,j are the numbers randomly
selected from Zp, the output of the simulator and the view
are computational indistinguishability. That is to say, each
received message can be simulated by a number randomly
chosen from Zp. Thus, Eq. 1 holds for O-SUR. According to
the composition security theorem in [19], the whole protocol
is secure. Thus, this theorem is correct. �

In Theorem 8, let κ = n− 1, then no one except the
secret holder is able to gather all shares to reconstruct the
message. In addition, we prove that when the total sensing
quality function Qj(Φ) is a trivial function instead of Qj(Φ)=∑

ui∈Φ qi,j , Protocol 1 can still work well. In such case,
Eq. 5 becomes a non-linear constraint, and computing the
utility function f(Φ) becomes a little complicated. We have
the following theorems.

Theorem 9: When Qj(Φ) in Protocol 1 is a trivial function
that can be securely computed by using the secure operations
in Definition 6, Protocol 1 will still be secure.

Proof: In Theorem 8, all parts, except the process of com-
puting Qj(Φ) in Protocol 1, have been proven to be secure.
Now, if Qj(Φ) can also be securely computed, the whole
protocol will be secure according to the composition security
theorem in [19]. �

Theorem 10: When Qj(Φ) is an increasing submodular
function with Qj(Φ=∅)=0, we have: 1) the utility function
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f(Φ) is still submodular; 2) Protocol 1 can still produce a
(1+lnγ)-approximation solution where γ=maxui∈Uf({ui}).

Proof: 1) Consider two arbitrary user sets Φ1 and Φ2,
Φ1 ⊆ Φ2, and ∀uh ∈ U\Φ2, we need to prove the sub-
modular property holds, i.e., f(Φ1∪{uh})−f(Φ1)≥ f(Φ2∪
{uh})−f(Φ2). To prove this, we adopt the same method
as that in Theorem 4: 1) for the case qh,j = 0, we have
min{Qj(Φ1∪{uh}), θj}−min{Qj(Φ1), θj}=min{Qj(Φ2∪
{uh}), θj}−min{Qj(Φ2), θj} = 0; 2) for the case qh,j >
0 and Qj(Φ1) ≤ Qj(Φ1 ∪ {uh}) ≤ Qj(Φ2) ≤ Qj(Φ2 ∪
{uh}), when θj > Qj(Φ2∪{uh}), we have (min{Qj(Φ1∪
{uh}), θj}−min{Qj(Φ1), θj})−(min{Qj(Φ2∪{uh}), θj}−
min{Qj(Φ2), θj}) = (Qj(Φ1∪{uh})−Qj(Φ1))− (Qj(Φ2∪
{uh})−Qj(Φ2)) > 0, due to the submodular property of
Qj(Φ); 3) for other cases, it is straightforward to get a
similar result as that in Theorem 4. Thus, we have that
(min{Qj(Φ1∪{uh}), θj}−min{Qj(Φ1), θj})−(min{Qj(Φ2∪
{uh}), θj}−min{Qj(Φ2), θj})≥0 holds for all cases, which
implies f(Φ1∪{uh})−f(Φ1)≥f(Φ2∪{uh})−f(Φ2). Therefore,
f(Φ) is submodular.

2) Since Qj(Φ) is an increasing submodular function with
Qj(Φ = ∅) = 0, f(Φ) is also an increasing function with
f(Φ=∅)=0 according to Eq. 15. We has proved that f(Φ) is
submodular. Therefore, when we replace Qj(Φ)=

∑
ui∈Φ qi,j

by using a trivial increasing submodular function, the problem
can still be re-formalized as an MISC/SC problem. Moreover,
f(Φ) is a polymatroid integer-valued function on 2U . Further,
according to Lemma 2, Protocol 1 can still achieve a (1+ln γ)-
approximation solution, where γ =maxui∈Uf({ui}). �

Theorems 9 and 10 show that as long as the quality function
is an increasing submodular function which can be secretly
computed by using the secure operations in Definition 6,
the proposed secure user recruitment protocol can be applied
to other existing works.

IV. THE E-SUR PROTOCOL

In this section, we propose a hEterogeneous Secure User
Recruitment (E-SUR) protocol based on the secret sharing
scheme, where users’ costs are heterogeneous. Here, users’
costs and sensing qualities as input privacy need to be
protected simultaneously. We first propose the basic user
recruitment strategy used in E-SUR protocol. Based on this,
we propose the E-SUR protocol, followed by performance and
security analysis.

A. The Building Blocks

Different from the defined utility function f(Φ) used in
O-SUR, we propose a new utility function g(Φ)=ϕ · f(Φ) in
E-SUR. That is,

g(Φ)=ϕ
m∑

j=1

min{Qj(Φ), θj}=ϕ
m∑

j=1

min{
∑
ui∈Φ

qi,j , θj}.

(24)

where ϕ = max{ϕ1, ϕ2} is a constant related to the
approximation ratio of the E-SUR protocol, in which
ϕ1 =max{ ci|1≤i≤n

θj−Qj(Φ)|1≤j≤m,Qj(Φ)<θj ,Φ⊂U } and ϕ2 =
�n

i=1 ci�m
j=1 θj

.
The derivation of ϕ1 and ϕ2 is shown in the proof of the
approximation ratio (i.e., Theorem 13). Also, we use Δig(Φ)
to denote the incremental utility g(Φ) of adding a new user
ui into Φ, i.e.,

Δig(Φ)=g(Φ ∪ {ui})− g(Φ). (25)

According to this, the procedure of recruiting users adopted
in the E-SUR protocol is shown in Procedure 2. Here,
the adopted greedy strategy in Procedure 2 is based on Δig(Φ)

ci
.

That is to say, the user who improves the utility g(Φ) per cost
the most, i.e., the user ui who can maximize the value of
Δig(Φ)

ci
, will be selected first. The user recruitment process

terminates when g(Φ)=ϕ
∑m

j=1 θj .

Procedure 2 The User Recruitment Strategy of E-SUR

Input: U , S, {qi,j |ui∈U , sj ∈S}, {θj|sj ∈S}, {ci|ui∈U}
Output: Φ
1: Φ=∅; g(Φ)=0;
2: while g(Φ)<ϕ

∑m
j=1 θj do

3: Select a user ui∈U\Φ to maximize Δig(Φ)
ci

;
4: Φ=Φ ∪ {ui};
5: return Φ

B. The Detailed E-SUR Protocol

According to the building blocks, we propose the E-SUR
protocol adopting the same utility function (i.e., g(Φ)) and
greedy strategy as Procedure 2 to recruit users. In the
E-SUR protocol, the inputs including all sensing qualities (i.e.,
{qi,j |∀ui ∈ U , sj ∈ S}) and recruitment costs (i.e., {ci|∀ui ∈
U}), and the computation are conducted by using the secret
sharing techniques. That is, each input qi,j (also for ci) is
seen as a secret and it is replaced by its polynomial shares
[qi,j ] (accordingly [ci]). Similar to the O-SUR protocol, when
users jointly make recruitment decisions, all computations are
conducted by using the secure operations in Definition 6, and
all intermediate results are produced in the manner of shared
secrets. To this end, we replace ui ∈ Φ and Δig(Φ) with
[bi]= [1] and ϕ

∑m
j=1 min{qi,j , θj−Qj(Φ)}, and further hide

the maximum incremental utility and the selected user in a
SecMax operation and a SecCmp operation to prevent the
selected user from being revealed in each round of iteration.
Only in the final phase, each user ui can reconstruct the
result of bi by collecting the corresponding shares. Afterwards,
each user ui knows whether she/he is recruited or not. After
the recruited users conduct the sensing tasks and upload the
results to the requester, the requester will pay the recruited
users.

The detailed E-SUR protocol is shown in Protocol 2, which
has the similar structure as the O-SUR protocol. The difference
lies in that the recruited cost (i.e., ci) of each user ui is
also protected from being revealed, and the adopted greedy
strategy is to maximize [̂Δig] (i.e., [Δig][αi] where αi = 1

ci
)

in Protocol 2 instead of [Δif ] in Protocol 1. More specifically,
in Steps 3-4, each user constructs the polynomial secret shares
of their cost values as the input in addition to their sensing
quality values. In Steps 18-21, the users jointly determine
the maximum incremental utility value per cost, i.e., Δig(Φ)

ci
,

which is denoted by [Δ̂maxg] in Protocol 2. After n rounds of
iterations, the protocol terminates and each user reconstructs
the final recruited results.

Now, we analyze the computation and communication com-
plexity of Protocol 2. We get that the operations SecMin in
Steps 16 and 25, SecMulti in Steps 18-19, and SecMax
in Step 20 involve n2m, n2 and n invocations of secure
multiplication operations, respectively. The complexity of the
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Protocol 2 The E-SUR Protocol
Input: U , S, {qi,j|ui∈U , sj ∈S}, {θj |sj∈S}, {ci|ui∈U}
Output: b1, · · · , bn

Phase 1: the requester publishes S to U via the platform;
Phase 2: users input their sensing quality vectors;

1: for i=1 to n do
2: user ui determines the sensing qualities qi,1, · · · , qi,m;
3: user ui generates αi = 1

ci
and polynomial sharing [αi];

4: user ui sends the share αi[i′] to user ui′ ;
5: for j =1 to m do
6: user ui generates the polynomial sharing [qi,j ];
7: user ui sends the share qi,j [i′] to user ui′ ;

Phase 3: users jointly make the decision of user recruitment;
8: for i=1 to n do
9: [bi]← [0];

10: for j =1 to m do
11: [Qj ]← [0];
12: for round=1 to n do
13: for i=1 to n do
14: [Δig]← [0], [̂Δig]← [0];
15: for j =1 to m do
16: [δ]←SecMin([qi,j ], SecSub(θj, [Qj ]));
17: [Δig]←SecAdd([Δig], [δ]);
18: [Δig]←SecMulti([Δig], SecSub([1], [bi]));
19: [̂Δig]←SecMulti([Δig], [αi]);
20: [Δ̂maxg]←SecMax([̂Δ1g], · · · , [Δ̂ng]);
21: for i=1 to n do
22: [z]←SecCmp([Δ̂maxg], [̂Δig]);
23: [bi]←SecAdd([bi], SecMulti(SecSub([1], [bi]), [z]));
24: for j =1 to m do
25: [δ]←SecMin([qi,j ], SecSub(θj, [Qj ]));
26: [Qj ]←SecAdd([Qj ], SecMulti([z], [δ]));
Phase 4: the users reconstruct the results;
27: for i=1 to n do
28: user ui collects all shares of [bi];
29: user ui derives bi =

∑m
j=1 bi[j];

whole protocol is dominated by the three parts. According
to Eqs. 13 and 14, we grasp that the SecMin and SecMax
operations require n2l (l = 
log2 p�) bit-operations per user
and l rounds of communications, respectively. Thus, Protocol 2
will lead to O(mn4l) bit-operations per user and O(mn2l)
rounds of communications.

C. The Performance and Security Analysis

We first prove the correctness of Procedure 2, i.e.,
Theorem 11: Procedure 2 is correct. That is, 1) Procedure 2

will terminate; 2) g(Φ) = ϕ
∑m

j=1 θj iff Φ is a user set that
can execute the tasks in S so that the total sensing qualities
of all tasks are not less than their thresholds.

Proof: 1) In Procedure 2, only one user will be added into
the user set Φ in each round of iteration. In the worst case,
after all n users are added into Φ, we have g(Φ)=ϕ

∑m
j=1 θj

and the protocol will terminate.
2) On one hand, g(Φ) = ϕ

∑m
j=1 θj only when

min{Qj(Φ), θj}=θj for ∀j∈ [1, m], indicating θj≤Qj(Φ) for
∀j∈ [1, m]. Based on this, the total sensing qualities of tasks

are not less than their thresholds. On the other hand, if Φ is
a user set which can ensure that the total sensing qualities
of tasks are not less than the threshold, i.e., θj ≤ Qj(Φ)
for ∀j ∈ [1, m]. We directly have g(Φ) = ϕ

∑m
j=1 θj . Thus,

the theorem is correct. �
Next, we analyze the performance of Procedure 2. Before

this, we explore several features of g(Φ) and C(Φ).
Lemma 3: g(Φ) and C(Φ) are submodular functions.
Proof: 1) Since f(Φ) is a submodular function (Theorem 4)

and we let g(Φ)=ϕ · f(Φ) where ϕ is a constant, we get that
g(Φ) is also a submodular function.

2) C(Φ)=
∑

ui∈U ci is submodular iff, for two sets Φ1 and
Φ2, Φ1 ⊆ Φ2, and ∀uh ∈ U \Φ2, we have C(Φ1∪{uh})−
C(Φ1)≥C(Φ2∪{uh})−C(Φ2). It is straightforward to verify
that the equation holds. Actually, C(Φ1∪{uh})−C(Φ1) is
always equal to C(Φ2 ∪{uh})−C(Φ2). Hence, C(Φ) is a
submodular function. �

Theorem 12: g(Φ) and C(Φ) are two polymatroid functions
on 2U .

Proof: According to Theorems 2, 4 and Lemma 3, g(Φ) and
C(Φ) are two increasing, submodular functions with g(φ)=0
and C(φ)=0, we get that g(Φ) and C(Φ) are two polymatroid
functions on 2U . �

Now, we analyze the performance of Procedure 2.
First, the E-SUR problem can be re-formalized a Mini-

mum Fractional Submodular Cover with Submodular Cost
(MFSC/SC) problem by replacing the constraint (i.e., Eq.9)
with g(Φ)=g(U), i.e.,

Minimize {C(Φ)|g(Φ) = g(U), Φ ⊆ U}, (26)

where g(Φ) and C(Φ) are two increasing submodular and
further polymatroid functions with g(Φ = φ) = 0 and C(Φ =
φ) = 0 according to Theorems 2 and 12 and Lemma 3.
Note that “fractional” here means that g(Φ) is a polymatroid
fraction-valued function on 2U . This is because g(Φ)=ϕf(Φ),
while ϕ=max{ϕ1, ϕ2} is a fraction constant.

Second, we introduce a lemma about the approximation
ratio of MFSC/SC problems in [24].

Lemma 4: Consider an MFSC/SC problem: Minimize
{C(Φ)|g(Φ)= g(U), Φ ⊆ U}, in which g(·) is a polymatroid
function on 2U , and g(U) ≥ opt where opt is the optimal
recruited cost of satisfying the sensing quality threshold con-
straints. If the selected criterion of a greedy algorithm for this
problem always satisfies Δig(Φ)

ci
≥1, then the greedy algorithm

can achieve a (1+ρlng(U)
opt )-approximation solution. Moreover,

if C(Φ) is a modular function, then ρ=1.
Based on this, we have the following theorem:
Theorem 13: Procedure 2 can produce a (1+ln

ϕ
�m

j=1 θj

opt )-
approximation solution, in which opt is the cost of the optimal
solution for the E-SUR problem.

Proof: 1) Since the user set U must be a feasible solution,
we have g(U) = ϕ

∑m
j=1 θj . According to ϕ = max{ϕ1, ϕ2}

in which ϕ1 =max{ ci|1≤i≤n
θj−Qj(Φ)|1≤j≤m,Qj(Φ)<θj ,Φ⊂U } and ϕ2 =

�n
i=1 ci�m
j=1 θj

, we get that g(U)≥ϕ2

∑m
j=1 θj≥

∑n
i=1 ci≥opt.

2) Without loss of generality, we denote the recruited user in
the last round of iteration as uh, and denote the recruited user
set of this round as Φ′ (excluding uh). Moreover, we have
Φ ⊆ Φ′. At this moment, there must be at least a task
whose obtained total sensing quality is less than its threshold;
otherwise, the algorithm would have terminated before. For
simplicity, let sj be such a task. Based on this, we have
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Qj(Φ′)<θj while Qj(Φ′∪{uh})≥θj . Thus, we have

g(Φ ∪ {ui})− g(Φ)
ci

≥ g(Φ ∪ {uh})− g(Φ)
ch

(27)

≥ g(Φ′ ∪ {uh})− g(Φ′)
ch

(28)

≥ ϕ

(
min{Qj(Φ′ ∪ {uh}), θj} −min{Qj(Φ′), θj}

)
ch

(29)

≥ ϕ
θj −Qj(Φ′)

ch
≥ ϕ1

θj −Qj(Φ′)
ch

≥ 1, (30)

where Eq. 27 indicates that user ui is the optimal selection for
user set Φ, while Eq. 28 is based on the submodular property
of g(Φ). Now, we get that our greedy strategy satisfies the
property of Lemma 4. Based on this, we get that Procedure 2
is a (1+ln

ϕ
�m

j=1 θj

opt )-approximation solution. �
Since Protocol 2 is actually a distributed version of Pro-

cedure 2 combined with secret sharing schemes, Protocol 2
can achieve the same user recruitment result as Procedure 2.
So we have the following theorem:

Theorem 14: Protocol 2 is correct, and it can also pro-
duce a (1 + ln

ϕ
�m

j=1 θj

opt )-approximation solution, where
opt means the cost of the optimal solution for E-SUR
problem, and ϕ = max{ϕ1, ϕ2} in which ϕ1 =
max{ ci|1≤i≤n

θj−Qj(Φ)|1≤j≤m,Qj(Φ)<θj ,Φ⊂U } and ϕ2 =
�n

i=1 ci�
m
j=1 θj

.
Also, we can prove the security of Protocol 2 against any

semi-honest adversaries.
Theorem 15: Protocol 2 can protect the sensing qualities

and recruitment cost of each user from being revealed to any
κ semi-honest adversaries and the platform, even if they might
collude. Here, κ means the degree of polynomial sharing,
which may be any integer less than n.

Proof: Compared to Protocol 1, the E-SUR protocol
(i.e., Protocol 2) involves the privacy-preserving issue about
the recruitment costs of all users during the secure user
recruitment process. In the security proof of Protocol 1,
we have proved that all mathematical operations used in
Protocols 1 and 2 are secure according to [19], [21], [22].
Here, we prove the security of E-SUR from itself. Similar
to Protocol 1, we also consider any κ users, denoted
by I = {ui1 , · · · , uiκ} ⊂ U , and construct the view of
each user V IEWit (uit ∈ I). During the whole user
recruitment process of Protocol 2, we get that Mit =
{qi,j [it], αi[it], bi[it], Qj [it], δ[it], Δig[it], Δ̂ig[it], Δ̂maxg[it],
z[it]} and V IEWit = ({qit,j, αit , n, m, θj}, r, Mit). Then,
we also construct a simulator for an arbitrary user in I such
that its view can be efficiently simulated by the output of
the simulator. The simulator for the user uit ∈ I randomly
selects two numbers q′it,j and α′

it
from the prime filed Zp.

Since both qit,j , αit and q′it,j , α′
it

are the numbers randomly
selected from Zp, the output of the simulator and the view
are computational indistinguishability. Thus, we get that
Eq. 1 holds for E-SUR, and further conclude that the whole
protocol is secure [19]. �

V. PERFORMANCE EVALUATION

We evaluate the O-SUR and E-SUR protocols from two
aspects: the user recruitment and the privacy-preserving mech-
anism, i.e., the secret sharing technique. We first introduce the
compared protocols used in our simulations and experiments,
and then present the detailed simulation settings as well as
the evaluation metrics. At last, we present and analyze the
obtained simulation/experiment results.

A. Protocols in Comparison
First, to evaluate the user recruitment performance of the

O-SUR and E-SUR protocols, we design two other user
recruitment protocols adopting different selection strategies for
comparison. Existing user recruitment protocols or algorithms
involve various crowdsensing models (e.g., competition-based
model, probabilistic model, etc.), constraints (e.g., delay con-
straint, budget constraint, etc.), and optimization objectives
(e.g., maximizing spatial/temporal coverage, maximizing sens-
ing qualities, etc.). Most of them adopt the greedy strategy
to recruit users (e.g., [4], [5], [25]–[28]). In these works,
the users who can accomplish all sensing tasks with minimum
costs are recruited first. Meanwhile, these users are subject
to the constraints of some mobility models. For comparison,
we borrow the basic strategy by ignoring other constraints
in these works to design two compared user recruitment
protocols, which are applicable to our model. We call the first
protocol MCUR, in which the user who can perform the most
tasks (per cost in E-SUR scenario) is recruited first [5], [27],
i.e., ui∗ = argmaxui∈U/Φ

∑m
j=1[qi,j ]. Here, [qi,j ] = 0 when

qi,j = 0; otherwise, [qi,j ] = 1. Another protocol is denoted as
MQUR, in which the user who performs tasks with the most
sensing qualities (per cost in E-SUR scenario) is recruited
first [4], [25], [26], [28], i.e., ui∗=argmaxui∈U/Φ

∑m
j=1 qi,j .

Together, the two compared protocols and our proposed pro-
tocols constitute the most typical greedy user recruitment
strategies in crowdsensing.

Second, to prove that O-SUR and E-SUR can work well in
real applications, we realize and run them on real smartphones.
Here, to evaluate the time efficiency of the O-SUR and E-SUR
protocols which adopt the secret-sharing-based secure user
recruitment approach, we realize two other privacy-preserving
techniques during the user recruitment process for comparison.
Besides the secret sharing schemes, the homomorphic encryp-
tion and garbled circuit protocols can also be utilized to solve
the privacy-preserving user recruitment problem [19]. Based
on this, we implement two compared protocols as follows:
Homomorphic-Encryption-based User Recruitment (HEUR)
protocol [29] and Garbled-Circuit-based User Recruitment
(GCUR) protocol [30]. In HEUR and GCUR, we turn each
secure multi-party multiplication operation among n users
to n(n−1)

2 secure two-party multiplication operations, and
we use the homomorphic encryption and garbled circuit
protocols to conduct these secure two-party multiplication
operations.

B. Simulation Settings and Evaluation Metrics
We first introduce the simulation settings in the O-SUR,

E-SUR, MCUR and MQUR protocols. For the simulations,
synthetical traces are adopted, in which we can evaluate the
user recruitment performance with different parameters as
needed, while ignoring users’ mobility models. Here, since
O-SUR and E-SUR are designed for two different crowdsens-
ing settings, we divide the simulations into two parts. The
O-SUR protocol and two compared user recruitment protocols
are conducted in the same simulation settings, and E-SUR is
conducted with the compared recruitment protocols in other
settings. Note that the simulation settings in the O-SUR
and E-SUR problems are same, except for the recruitment
costs of all mobile users. Hence, we first present the same
simulation settings in both scenarios and then introduce the
unique settings.

More specifically, we consider seven shared parameters,
including the number of users n, the number of tasks m,
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TABLE II

EVALUATION SETTINGS

the average sensing quality (denoted by q), the variance of
sensing qualities (denoted by σ), the largest number of tasks
performed by each user (denoted by ρ), the average sensing
quality threshold θ, and the variance of thresholds (denoted
by μ). In each simulation, we change one parameter while
keeping the other parameters fixed. In all simulations, each
user ui randomly selects a value from (0, ρ] as the number
of tasks that he/she can perform. For each selected task sj ,
the sensing quality qi,j is set as a value randomly chosen from
a range [(1−σ)q, (1+σ)q]. Moreover, for each sensing task
sj (∈S), its total quality threshold θj is randomly generated
from a range [(1−μ)θ, (1+μ)θ].

Then, we present the unique setting in the O-SUR and
E-SUR simulations. In the O-SUR simulations, the recruited
costs of all mobile users are homogeneous and the O-SUR
protocol does not involve the values, so the values of cost
are not specifically given; while in the E-SUR simulations,
the values of recruited cost are heterogeneous. Here, we use
c and κ to denote the average recruited cost and the variance
of cost, respectively. Then, for user ui (∈U), its recruited cost
ci is randomly generated from [(1−κ)c, (1+κ)c]. The range
and default values of each parameter are illustrated in Table II.
Note that the default settings are used in all simulations unless
otherwise specified.

Next, we present the experiment settings on real smart-
phones. To evaluate time efficiency, we realize and run O-SUR,
E-SUR, HEUR and GCUR on a real smart phone (Huawei P9:
EVA-AL00) with a 2.0GB memory and a processor of 4-core
2.2GHz plus 4-core 1.5GHz. We record the execution time
of O-SUR, E-SUR, HEUR, and GCUR in this smartphone,
while ignoring the communication time. During the execution,
we use another smart phone to simulate the remaining (n−1)
users.

At last, we introduce the evaluation metrics in our simula-
tions. We evaluate the performance of the proposed protocols
mainly from two aspects: the total recruitment cost and time
efficiency. Since the recruitment costs of all users are uniform
in the O-SUR scenarios, we evaluate the number of recruited
users in the O-SUR problem.

C. Simulation Results

First, we present the simulation results about the O-SUR
and two compared protocols. Fig. 3 depicts the number of
recruited users vs. different numbers of users and tasks. The
results show that the number of users recruited by O-SUR is
much smaller than MCUR and MQUR. Moreover, when the
number of tasks increases, more users are recruited. When we
increase the number of users, less users are recruited. This
is because when more candidate users emerge, there may be
better selections than before, so fewer users are required to

Fig. 3. The performance evaluation of O-SUR. (a) |Φ| vs. n. (b) |Φ| vs. m.

Fig. 4. Performance comparisons of O-SUR: Number of recruited workers
versus sensing quality and threshold. (a) |Φ| vs. q. (b) |Φ| vs. σ. (c) |Φ| vs. θ.
(d) |Φ| vs. μ.

Fig. 5. Performance comparisons of E-SUR: Total recruited cost versus
the numbers of tasks and workers and sensing quality. (a) C(Φ) vs. n.
(b) C(Φ) vs. m. (c) C(Φ) vs. q. (d) C(Φ) vs. σ.

accomplish the same tasks. We record the number of recruited
users while changing the other parameters (i.e., q, σ, θ and μ),
as shown in Fig. 4. Also, the performance results about the
largest number of tasks per user is shown in Fig. 7(a). These
results prove that O-SUR has a much better performance than
MCUR and MQUR. Moreover, when we increase either the
average sensing quality (i.e., q) or the largest number of tasks
performed by each user (i.e., ρ), the number of recruited users
decreases. When the average sensing quality threshold (i.e., θ)
increases, the number of recruited users increases accordingly.

Second, the simulation results about the E-SUR protocol are
presented as follows. The performance comparisons in terms
of the number of mobile users n, the number of tasks m,
the average sensing quality q and the variance of sensing qual-
ity σ, are shown in Fig. 5. It also demonstrates the significant
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Fig. 6. Performance comparisons of E-SUR: Total recruited cost versus
quality threshold and cost. (a) C(Φ) vs. θ. (b) C(Φ) vs. μ. (c) C(Φ) vs. c.
(d) C(Φ) vs. κ.

Fig. 7. Evaluation on the parameter ρ. (a) |Φ| vs. ρ. (b) C(Φ) vs. ρ.

performance of E-SUR compared to MCUR and MQUR.
Furthermore, we get that E-SUR achieves about 45.4% and
46.8% percent smaller total recruitment costs than MCUR and
MQUR, respectively. On the other hand, the simulation results
about the average sensing quality threshold θ, the variance
of quality threshold μ, the average recruited cost of users
c, the variance of cost κ and the largest number of tasks
performed by each user ρ are shown in Figs. 6 and 7(b).
By analyzing the results, we conclude that E-SUR achieves
about 42.4% and 42.7% percent smaller total recruitment costs
than the MCUR and MQUR protocols as a whole, respectively.
At the same time, we get that when the number of tasks m,
the average sensing quality θ or the average recruitment cost
of users c increases, the total costs of all protocols increase.
However, along with the increase of the number of users n,
the average sensing quality of tasks q or the largest number
of tasks performed by each user ρ, the total costs decrease.
These simulations validate our theoretical analysis results.

Third, we present the evaluation results of O-SUR,
E-SUR, HEUR and GCUR on smartphones. We run the
O-SUR, E-SUR, HEUR, and GCUR protocols in the smart-
phones by changing the number of users from 5 to 10, while
setting m = 6, q = 30, σ = 0.4, θ = 100, μ = 0.2, ρ = m,
c = 50 and κ = 0.1. The results are depicted in Fig. 8(a).
When the number of users is larger than 5, HEUR cannot work
well in the real smartphone since its run time has exceeded
105 ms. GCUR performs even worse than HEUR. Even
5 users can result in a run time of over 107 ms. In contrast,
the run time of O-SUR is far less than that of HEUR and
GCUR in magnitudes. This is because that the GCUR protocol
needs to conduct considerable precise and complex Boolean
circuit operations while the HEUR protocols requires massive
encryption and decryption operations. As shown in Fig. 8(b),
when the number of users is 50 and the number of tasks is 20,
the execution time of O-SUR is less than 150s. Compared to

Fig. 8. Performance evaluations: Run time of O-SUR and E-SUR. (a) Com-
parison for O-SUR. (b) Run time of O-SUR. (c) Comparison for E-SUR.
(d) Run time of E-SUR.

the execution time of HEUR and GCUR (dozens of minutes
or even hours), our protocol is quite efficient, which means
that it can work well in real smartphones. Similarly, the time
efficiency of E-SUR is also outstanding compared to HEUR
and GCUR, as shown in Fig. 8(c) and (d). More precisely,
the execution time of E-SUR is less than 200s, when the
numbers of users and tasks are set as 50 and 20, respectively.
The results indicate that both O-SUR and E-SUR can work
well in real applications. So, implementing and running the
proposed protocols on smartphones in reality is feasible.

VI. RELATED WORK

Most works about mobile crowdsensing focus on the user
recruitment problem [4], [5], [18], [25]–[28], [31] and the task
allocation problem [3], [32]–[36].

On one hand, Gao et al. [5] propose two greedy algorithms
to recruit some mobile users who can perform location-related
sensing tasks with a minimum cost; Zhang et al. [31] propose
a dynamic programming algorithm, and further design two
distributed algorithms to solve the competition-based partic-
ipant recruitment problem for delay-sensitive crowdsensing
scenarios; Ganti et al. [4] propose a greedy approximation
algorithm and a genetic algorithm for the user recruitment
problem in vehicle-based crowdsensing, which can achieve
nearly optimal spatial and temporal coverage with a limit
budget; But none of them has taken the privacy-preserving
issues into consideration when conducting user recruitment in
crowdsensing.

On the other hand, Zhao et al. [35] studied the task alloca-
tion problem, in which each task might include multiple steps,
and each step requires different skills; Zhang et al. [33] design
an asynchronous and distributed task selection algorithm for
the deadline-sensitive and location-dependent task allocation
problem in mobile crowdsensing; Christin et al. [3] considered
the maximum net reward task allocation problem with the
constraint of time budgets; None of these studies has taken into
consideration the secure user recruitment problem for mobile
crowdsensing.

Additionally, many incentive mechanisms such
as [6]–[10] have been designed for stimulating mobile
users to participate in mobile crowdsensing. For example,
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Peng et al. [6] design an incentive mechanism to motivate
the rational crowdsensing participants to perform data sensing
efficiently. In other words, the participants get payments
according to their effective contributions in the form of
qualities of sensing data. Goldreich et al. [7] firstly propose
the two-sided online interactions among service users and
service providers for dynamic mobile crowdsensing.

So far, only a few works have studied the pri-
vacy issues in mobile crowdsensing systems. For exam-
ple, Hu et al. [11] investigate the problem of continuous
real-time spatiotemporal crowd-sourced data publishing, and
design a privacy-preserving online data publishing scheme
based on differential privacy. Zhuo et al. [12] propose a
privacy-preserving verifiable data aggregation and analysis
scheme based on homomorphic encryption for cloud-assisted
mobile crowdsourcing. Jin and Zhang [13] present a frame-
work for a crowdsourced spectrum sensing service provider
to select spectrum-sensing participants, in which the differ-
ential privacy is adopted to protect the locations of mobile
participants. However, none of these studies investigates the
privacy-preserving problem in the user recruitment process.
To the best of our knowledge, our proposed protocols are the
first privacy-preserving user recruitment protocols designed for
mobile crowdsensing systems.

VII. CONCLUSION

We propose two secure user recruitment protocols,
i.e., O-SUR and E-SUR, for sensing-quality-aware mobile
crowdsensing systems. O-SUR applies to the scenario where
the recruitment costs of users are homogeneous, while E-SUR
is designed for the case in which the recruitment costs are
heterogeneous. Both of them adopt greedy strategies to recruit
users and use secret sharing schemes to protect users’ privacy.
The difference lies in that O-SUR and E-SUR adopt two
unique utility functions. We prove that both O-SUR and
E-SUR can produce a solution with a logarithmic approxima-
tion ratio, and they can protect the inputs of each user from
being revealed to the platform or to other users, even if they
might collude. The simulation results show that O-SUR and
E-SUR can work well in real smartphones.
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