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Abstract—Mobile CrowdSensing (MCS), through which a requester can coordinate a crowd of workers to accomplish some data
collection tasks, has been recognized as a promising paradigm for large-scale data acquisition in recent years. Many researches focus
on the worker recruitment problem in MCS, but most of them either have the assumption that workers’ qualities are known ahead of
time or cannot ensure that workers report costs honestly. In this paper, we propose an incentive mechanism based on Combinatorial
Multi-Armed Bandit and reverse Auction, called CMABA, to solve the multiple unknown workers recruitment problem in MCS. Our
objective is to determine a recruiting strategy to maximize the total sensing quality under a limited budget, while ensuring truthfulness
and individual rationality of sensing workers. We theoretically prove that our CMABA mechanism achieves truthfulness and individual
rationality, and then analyze the regret of the mechanism. Based on CMABA, we ulteriorly propose an adaptive incentive mechanism,
called ACMABA, to recruit workers via the alternative worker recruitment and quality update, which can achieve a higher total sensing
quality and lower regret. Additionally, we also demonstrate significant performances of the CMABA and ACMABA mechanisms through
extensive simulations on real-world data traces.

Index Terms—mobile crowdsensing, multi-armed bandit, reverse auction, worker recruitment.
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1 INTRODUCTION

MOBILE CrowdSensing (MCS) is a newly-emerging
sensing paradigm for large-scale data collection, in

which a crowd of mobile users are recruited to collect
location-sensitive data with their smart devices when they
visit some pre-designated places [2]. MCS systems have
greater advantages than traditional systems for collecting
economic value data distributed in a broad-scale area by
leveraging users’ mobility and diverse sensors embedded
in smart devices. Many MCS mechanisms and systems have
been designed recently to realize vast data collection in
various scenarios such as environmental monitoring [3],
smart transportation [4], spectrum sensing [5], etc.

A typical MCS system consists of a platform residing
on the cloud, some data requesters, and a crowd of mobile
users (a.k.a., workers). The platform can recruit workers
to collect data according to the published data collection
tasks from the requesters. However, the sensing qualities
(qualities for short) vary for workers, even to execute the
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same task, because of the diverse performances of smart
devices and the behaviors of mobile users. Thus, how to
recruit workers with higher qualities is critical in the MCS
systems. Most of the existing works focus on designing
worker recruitment algorithms in the MCS systems [3], [6]–
[8] under the circumstance that the quality information of
workers is assumed to be known, which is unrealistic in
practice. Moreover, it is unfeasible for a worker to evaluate
its quality by itself in most cases. Since the workers’ qualities
are unknown a priori, some researches are working to in-
vestigate the quality unknown (unknown for short) worker
recruitment problems in recent years [9]–[12].

Basically, a certain cost will be inevitably incurred by
the smart devices usage and privacy leakage, etc. when
collecting data, so the requesters need to provide adequate
monetary rewards to incentivize workers to participate in
the MCS systems. Moreover, rational workers might strate-
gically report manipulated data collection costs to earn more
rewards, because the cost information is generally private
and sensitive. Hence, it is also vital to design suitable in-
centive mechanisms that can ensure workers to report costs
honestly during the recruitment process. As we know, there
are many incentive mechanisms that have been proposed
to tackle the truthful cost report problem in MCS systems
[13]–[15]. However, all of these incentive mechanisms are
designed based on an assumption that the sensing qualities
of workers are known a priori, while the qualities are
actually unknown in practical worker recruitment scenarios.

In this paper, we consider the scenario that some quality
unknown workers in MCS are recruited to execute the long-
term data collection tasks (e.g., collect traffic flow, noise,
air quality data, etc.) assigned by the requester under the
budget constraint, where the costs of workers may be s-
trategically reported. As the workers’ qualities are unknown
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initially, the MCS platform will let workers execute some
tasks for a few rounds and evaluate their collected data to
learn their qualities, which is generally called exploration. On
the other hand, the requester can obtain a higher valuation
of data from the recruited workers with higher qualities.
Because of this, the platform will recruit the best group of
workers according to the learned knowledge of qualities so
as to improve the total quality, which is known as exploita-
tion. Therefore, we aim to design an incentive mechanism
which can obtain the maximum total sensing quality within
the limited budget, and ensure that workers report truthful
costs to participate in MCS with high willingness.

Hence, there are three major challenges in the above
incentive mechanism design for worker recruitment. The
first challenge is how to determine an optimal trade-off
between the exploration and exploitation phases under the
shared budget to maximize the total sensing quality. Second,
there are multiple periodical data collection tasks to be
executed simultaneously, so the MCS platform needs to
take account of the cost and quality factors in each round
of worker recruitment. While considering the trade-off be-
tween exploration and exploitation, we also need to tackle
the worker recruitment problem, especially for the exploita-
tion phase. Third, to incentivize workers to participate in the
data collection tasks and report their costs truthfully, some
reasonable payment schemes needs to be designed for both
of the exploration and exploitation phases.

To address the above challenges, we propose an in-
centive mechanism based on Combinatorial Multi-Armed
Bandit and reverse Auction, called CMABA. In CMABA,
the unknown worker recruitment problem is modeled as
a Combinatorial Multi-Armed Bandit (CMAB) problem to
tackle the trade-off between exploration and exploitation.
Each worker is seen as an arm of CMAB, whose sensing
quality is regarded as the corresponding reward, and the
whole worker recruitment process is formulated as a com-
binatorial arm pulling process. To deal with the arm-pulling
problem, we use the carefully defined Upper Confidence
Bound (UCB) index to greedily select arms and compute
the corresponding payments for winning arms. Based on
CMABA, we also propose an adaptive incentive mechanism,
called Adaptive CMABA (i.e., ACMABA), which conducts
exploration and exploitation simultaneously in each arm-
pulling round other than the necessary initial exploration.
Overall, the major contributions are summarized as follows:

1) We propose two incentive mechanisms based on Com-
binatorial Multi-armed bandit and reverse Auction,
namely CMABA and ACMABA. To the best of our
knowledge, this is the first work that combines CMAB
and reverse auction to solve the budget-feasible un-
known worker recruitment problem in MCS systems.

2) We design a UCB-based greedy algorithm to recruit
workers and compute payments for CMABA and
ACMABA. Besides, we theoretically prove that they can
achieve truthfulness, individual rationality and compu-
tational efficiency in each round of worker recruitment.

3) We analyze the regret bounds for CMABA and ACMA-
BA respectively, and derive a near optimal budget
allocation for exploration and exploitation in CMABA.

4) We conduct extensive simulations on real-world data
traces to demonstrate the significant performances of

the proposed two mechanisms.
The remainder of the paper is organized as follows. In

Sec. 2, we introduce the system modeling and the problem
formulation. The detailed design and theoretical analysis of
CMABA is elaborated in Sec. 3 and Sec. 5. The ACMABA
mechanism is introduced in Sec. 4. The simulations and
evaluations are presented in Sec. 6. We review the related
works in Sec. 7, and conclude the paper in Sec. 8.

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Overview

We consider a MCS system, composed of a platform, some
requesters, and a crowd of unknown workers. A requester
wants to recruit some workers to execute data collection
tasks (e.g., collect traffic flow, noise, air quality data, etc.) in
an urban area periodically within a limited budget B. The
tasks and unknown workers are defined as follows:

Definition 1 (Task, Weight, Round). The requester pub-
lishes M location-sensitive long-term data collection tasks
via the platform, denoted by M={1, 2, ...,M}. Each task j
(∈ M) is attached with a weight wj to indicate its impor-
tance, where

∑
j∈M wj=1. Moreover, the data collection is

divided into multiple rounds, denoted by t∈{1, 2, · · · }.

Definition 2 (Unknown Worker, Sensing Quality, Cost).
There are N unknown workers, denoted by N={1, 2, ..., N}.
We let qti,j ∈ [0, 1] denote the sensing quality of worker
i (∈N ) completing task j (∈ M) in the t-th round. Each
qti,j follows an unknown distribution with an unknown
expectation qi. Each worker i can perform a set of preferred
tasks, denoted by Mi, with a certain cost ci for the whole
tasks set. We assume that the cost for a worker to complete
each task will not exceed a range [cmin, cmax].

In Def. 2, the expected quality qi is assumed to be fixed.
But the sensing quality qti,j is determined by some worker-
side factors, such as working ability, personal willingness,
sensing context, and so on, which bring about the variance
of actual sensing quality for different tasks [6], [16], [17].
Hence, for ∀ task j′ ̸=j, qti,j′ may not be equal to qti,j . For
example, there are some workers taking photos in different
places, where qi depends on the lens, pixel, software, etc. of
the camera embedded in its device, which is a fixed value.
But the distance and angle of taking photo will make qti,j
vary in different places even with the same device.

In addition, if the expected quality of each worker i
varies in different tasks, we can use |Mi| virtual workers
to replace this worker, where each virtual worker has an
identical expected quality for each task. This can be equiva-
lently regarded as the special case of |Mi|=1. For example,
if worker i executes the tasks in Mi={1, 2, 3} with different
expected qualities, the worker will be seen as three virtual
workers i1, i2, i3 to execute tasks 1, 2, 3 with the expected
qualities qi1 , qi2 , qi3 , respectively. Each virtual worker can
only execute one task.

The MCS system adopts the reverse auction to recruit
unknown workers. The platform, the unknown workers and
the requester are seen as the auctioneer, the workers and
the buyer, respectively. The commodities for sale are the
services of performing data collection tasks. First, workers
submit the bids for their preferred tasks. Then, the platform
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Fig. 1: The worker recruitment workflow of MCS.

determines the auction winners (i.e., makes the worker
recruitment decision) and computes the corresponding pay-
ments, which are defined as follows:

Definition 3 (Bid). In each round t, each worker i ∈ N
submits a task-bid pair βi=⟨Mi, bi⟩ to the platform, where
bi is the claimed cost for completing the tasks in Mi. Since
the true sensing cost ci is private information, worker i will
be a strategic worker who might misreport its cost to obtain
higher utility. That is, the claimed cost bi is not necessarily
equal to the true cost ci. Additionally, we denote all workers’
bidding profiles as β={β1, β2, · · · , βN}.

Definition 4 (Payment). In each round t, the platform will
determine a payment for the worker i who wins the auction,
denoted as pi,t. All workers’ payment profiles are represent-
ed by P={P1,P2, · · · ,Pt, · · · }, in which Pt={pi,t|i∈N}.

Based on the reverse auction model, the detailed work-
flow of worker recruitment is illustrated in Fig.1. First,
the requester publishes all sensing tasks and total budget
on the platform. Second, all workers submit their task-bid
pairs to the platform. Next, the worker recruitment process
will be conducted round by round until the given budget
is exhausted. In each round, the platform first conducts
exploitation to determine the auction winners (i.e., selects
the workers to be recruited) and calculates the correspond-
ing payments. Then, the platform will inform the recruited
workers to execute their preferred tasks. After completing
the tasks, workers will return their sensing data to the
requester via the platform. Since workers’ sensing qualities
are unknown, the platform needs to conduct exploration to
learn these qualities according to the data. The qualities are
recorded in the worker profiles and will be updated at the
end of each round after receiving the sensed data.

2.2 CMAB Modeling and Problem Formulation

To determine auction winners and calculate the correspond-
ing payments under the circumstance that all workers’
qualities are unknown initially is the most critical issue for
the platform over the whole worker recruitment process.
On one hand, the platform needs to learn workers’ quality
values knowledge (i.e., so-called exploration) to obtain the
better recruitment performance; on the other hand, the
learned knowledge will be in turn utilized to make the
best winners decision (i.e., so-called exploitation). This is
actually an online learning and decision-making process.
Multi-Armed Bandit (MAB) is a widely-used reinforcement
learning model for online decision-making in uncertain
environments [18]. A MAB model basically includes a slot
machine with multiple arms, each of which is associated
with a reward drawn from an unknown distribution. A
player will pull some arms round by round according to
a bandit policy, so as to maximize the cumulative reward. In

TABLE 1: Description of major notations
Variable Description
N ,M the sets of workers and sensing tasks, respectively
N,M the numbers of workers and sensing tasks, respectively
B the total budget given by the requester
B′ the budget used for exploration
K the numbers of workers recruited in each round
wj the weight of the j-th task
Mi the task set that worker i is willing to perform
ci the true cost of worker i completing Mi

qti,j the quality of worker i completing task j in round t

qi the expected quality value of worker i
q̂+i the UCB index of worker i
q̂i,t the sample mean of worker i’s quality until round t
ϕi,t indicates whether worker i is recruited in round t
pi,t the payment to worker i in round t
M+,M− the maximum and minimum values of |Mi|, ∀i ∈ N
RCRi the Revenue-Cost-Ratio of worker i

this paper, we model the unknown worker recruitment as a
novel K-armed CMAB decision process, defined as follows:

Definition 5 (CMAB Modeling). The auction winner selec-
tion, which is unknown worker recruitment, is modeled as
a K-armed CMAB. The platform is the player, each worker
in N is an arm, and the quality of each recruited worker
is seen as the reward of pulling the corresponding arm. In
each round, the platform will pull K arms. Pulling the i-th
arm indicates that worker i is a winner to be recruited.

Under the CMAB model, the worker recruitment prob-
lem is turned into a budget-feasible bandit policy determi-
nation problem so as to maximize the total expected revenue
of the requester. The bandit policy and revenue are defined:

Definition 6 (Budget-feasible Bandit Policy). A bandit pol-
icy ϕ is a sequence of maps: {ϕ1,ϕ2, · · · ,ϕt, · · · }, where
ϕt = {ϕ1,t, ϕ2,t, · · · , ϕN,t}. ϕi,t ∈ {0, 1} indicates whether
worker i is selected in the t-th round. Moreover, the total
cost of worker recruitment is no larger than the budget B.

Definition 7 (Revenue). Under the CMAB model, the total
revenue refers to the total weighted sensing qualities of
recruited workers, i.e., R (ϕ) =

∑
t

∑N
i=1

∑
j∈Mi

wjq
t
i,jϕi,t.

Hence, the total expected revenue is:
E [R (ϕ)] =

∑
t

∑N
i=1

∑
j∈Mi

wjqiϕi,t (1)

Our objective is to maximize the total expected revenue
under the budget constraint. Thus, the winner selection
problem can be formulated as follows:

Maximize : E [R (ϕ)] (2)
Subject to :

∑
t

∑N
i=1pi,t ≤ B (3)∑N

i=1 ϕi,t = K, ∀t (4)
ϕi,t ∈ {0, 1} ,∀i ∈ N , ∀t (5)

Here, Eq. (3) ensures that the total payment does not
exceed the given budget. Eq. (4) indicates that K workers
are recruited in each round. Eq. (5) implies that all worker
recruitment decisions to be made are binary.

Furthermore, the platform needs to determine the auc-
tion winners’ payments. To ensure that workers are willing
to perform tasks and report their costs truthfully, the pay-
ment computation should meet truthfulness and individual
rationality. Before this, we first define the concept of utility:

Definition 8 (Worker’s Utility). The utility of worker i ∈ N
in the t-th round is the payment minus cost:

ui,t = (pi,t − ci)ϕi,t (6)
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Here, ui,t and pi,t actually are the functions of bid bi, i.e.,
ui,t=ui,t(bi), and pi,t=pi,t(bi).

Then, our mechanism satisfies the properties of truthful-
ness, individual rationality and computational efficiency.

Definition 9 (Truthfulness). Let bi be an arbitrary bid of
worker i ∈ N to complete tasks in Mi, and ui,t (bi) is the
utility obtained by worker i in the t-th round. Then, if

ui,t (bi) ≤ ui,t (ci) , ∀i ∈ N , ∀t (7)
we say that the mechanism is truthful.

Definition 10 (Individual Rationality). For ∀i ∈ N , if
worker i’s utility is non-negative,

ui,t ≥ 0, ∀i ∈ N ,∀t (8)
we say the mechanism is individual rationality.

Definition 11 (Computational Efficiency). A mechanism
is computationally efficient if it generates the results and
terminates in polynomial time.

For ease of reference, we list major notations in Table 1.

3 THE CMABA MECHANISM

In this section, we propose the incentive mechanism CMA-
BA. We first introduce the basic idea of CMABA and then
present the detailed algorithm, followed by an illustrative
example to show how our CMABA mechanism works.
3.1 Basic Idea
Since the whole worker recruitment is an online learning
and decision-making process, we separate it into the ex-
ploration and exploitation phases under the CMAB model.
Accordingly, the budget is also divided into two parts. The
first part of the budget is used solely to learn workers’
qualities in the exploration phase, where we uniformly
select the workers to execute tasks and pay each recruited
worker the maximum cost he might incur. In the exploita-
tion phase, all of the remaining budget is used to maximize
the total expected revenue based on the acquired empirical
knowledge, where we adopt a UCB-based greedy strategy to
select workers and compute payments based on the second-
price scheme to guarantee truthfulness. In what follows, the
methods adopted in each phase are discussed separately.
3.1.1 Exploration Phase
In this phase, the platform tentatively recruits workers to
perform sensing tasks, so as to learn their expected sensing
qualities. Since the quality of each worker is unknown a pri-
ori, we need to treat each worker equally. We let the workers
be explored in a round robin fashion. That is, workers
{1, · · · ,K} will be recruited in the first round and workers
{K+1, · · · , 2K} will be recruited in the second round, and
so on. We maintain two vectors nt={n1,t, · · · , nN,t} and
q̂t = {q̂1,t, · · · , q̂N,t} as the empirical knowledge learned
from the history. More specifically, ni,t is the number of
times that i’s quality is learned at the end of the t-th round
and q̂i,t is the sample mean of worker i’s sensing quality by
then. At the end of each round t, the platform observes the
qualities of the recruited workers (i.e., qti,j) and then updates
the empirical knowledge. In our setting, once a worker i is
recruited in a round, the corresponding quality would be
learned |Mi| times. Thus, ni,t will be updated as follows:

ni,t =

{
ni,t−1 + |Mi| , ϕi,t = 1
ni,t−1, ϕi,t = 0

(9)

The sample mean of worker i’s quality is updated as

q̂i,t =

{
q̂i,t−1ni,t−1+

∑
j∈Mi

qti,j
ni,t−1+|Mi| , ϕi,t = 1

q̂i,t−1, ϕi,t = 0
(10)

The qualities learned in exploration will be used for
worker recruitment in the exploitation phase. Here, we de-
fine UCB indexes for workers rather than using the sample
means directly, denoted by q̂+={q̂+1 ,· · ·, q̂

+
N}, where we take

the uncertainty of estimation into consideration. That is, the
estimated sample mean may have a certain error, and the
additive factor εi,t makes the less selected worker have more
chances to be selected. The UCB index q̂+i of worker i is

q̂+i = q̂i,t + εi,t, εi,t =

√
δ·ln(

∑
i′∈N ni′,t)

ni,t
(11)

where δ is a positive hyper parameter that brings flexibility
to our policy. This trick has also been used in [19], [20].

Since the exploration-separated algorithm relies signifi-
cantly on the efficiency of the exploration phase, we need
to carefully allocate the total budget among exploration
and exploitation. We use B′ to denote the budget dedi-
cated to exploration. Let M+ = max{|Mi||i ∈ N}, and
M−=min{|Mi||i∈N}. Then, B′ is calculated by

B′ = ( 1
M− )

1
3 (δ ·NM+cmax ln(

M+B
M−cmax

))
1
3B

2
3 (12)

Here, B′ is calculated to minimize the regret of the algorith-
m, which is detailedly presented in Sec. 5. For each recruited
worker i in the exploration phase, we set the maximum
cost that he might incur as the payment, i.e. |Mi|cmax,
to guarantee truthfulness and individual rationality. The
exploration process terminates until B′ is exhausted.

3.1.2 Exploitation Phase

In the exploitation phase, we determine the winning work-
ers and the corresponding payments based on the UCB
indexes learned in the exploration phase. We assume that all
workers report their costs truthfully, i.e., bi=ci, which is to
be proved reasonable in Sec. 5. Since the worker recruitment
problem in our paper can be regarded as a series of special
0-1 knapsack problems, we adopt a UCB-based greedy
strategy to select workers. For each worker i, we define the
Revenue-Cost-Ratio (RCR henceforth) as (

∑
j∈Mi

wj q̂
+
i )/bi.

The idea for recruiting workers is to select the workers with
the highest RCRs in each round. Thus, we first calculate the
RCR for each worker and then sort the workers in N into
S=(s1, s2, · · · , sN ) such that RCRs1 ≥· · ·≥RCRsN . Then,
we greedily select the best K workers into the winning
workers set S′ and compute the payments for them.

To guarantee truthfulness, each winning worker should
be paid the critical payment according to [21]. The critical
payment is equal to the highest bid that still makes the bid
win. More specifically, the critical payment of a winning
worker i should be calculated based on the bid of the (K+

1)-th worker in S, i.e.,
∑

j∈Mi
wj q̂

+
i∑

j∈MsK+1
wjq̂

+
sK+1

bsK+1
. When the

critical payment for worker i is larger than |Mi|cmax, we
set the payment as |Mi|cmax. Hence, ∀i ∈N , the payment
of worker i in the exploitation phase is calculated as:

pi = min{
∑

j∈Mi
wj q̂

+
i∑

j∈MsK+1
wjq̂

+
sK+1

bsK+1
, |Mi|cmax} (13)

The exploitation terminates until the budget exhausts.
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Algorithm 1: The CMABA Mechanism

Input: N ,M, B,K,β, cmax, {wj |j ∈ M}, δ
Output: ϕ,P

1 Initialize t = 0; ϕi,t = 0, pi,t = 0, ∀i ∈ N , ∀t;
2 B′ = ( 1

M− )
1
3 (δ ·NM+cmax ln(

M+B
M−cmax

))
1
3B

2
3 ;

Bt = B′; // Exploration phase
3 while true do
4 t = t+ 1;K = ∅;
5 for j = 1 : K do
6 i = ([(t− 1)K + j − 1]modN) + 1; K = K ∪ {i};
7 if

∑
i∈K |Mi|cmax ≤ Bt−1 then

8 foreach i∈K do ϕi,t = 1; pi,t = |Mi|cmax;
9 foreach i∈N do Update ni,t, q̂i,t, q̂+i ;

10 Update Bt;

11 else break;

12 Bt = B −B′ +Bt−1; // Exploitation phase

13 foreach i∈N do Calculate the RCR:
∑

j∈Mi
wj q̂

+
i

bi
;

14 Sort the workers N into S: RCRs1 ≥· · ·≥RCRsN ;
15 Select the best K workers: S′={s1, s2, · · · , sK};
16 foreach si∈S′ do

17 psi = min{
∑

j∈Msi
wj q̂

+
si∑

j∈MsK+1
wj q̂

+
sK+1

bsK+1 , |Msi |cmax};

18 while
∑

si∈S′ psi ≤ Bt do
19 foreach si∈S′ do ϕsi,t = 1; psi,t = psi ;
20 t = t+ 1; Bt = Bt−1 −

∑
si∈S′ psi,t−1;

21 return (ϕ,P );

3.2 The Detailed Algorithm

As shown in Algorithm 1, we first initialize all ϕi,t=0, pi,t=0
(Step 1). Then in the exploration phase, we calculate the
exploration budget B′ according to Eq. (12) (Step 2), and
tentatively recruit workers to complete tasks (Steps 3-8). At
the end of each round t, we observe each recruited worker
i’s quality values {qti,j |j ∈ Mi}, and update nt, q̂t, q̂

+

according to Eqs. (9)-(11), respectively (Step 9). The explo-
ration terminates until B′ cannot afford the next round.

In the exploitation phase, we leverage the quality infor-
mation learned in the exploration phase to select workers.
Except for the dedicated exploitation budget, we recycle
the remaining budget in the exploration phase (Step 12). In
Steps 13-15, we first calculate the RCR for each worker and
sort the workers in a non-increasing order of their RCRs.
Then, we greedily select the best K workers into a winning
set S′ and compute the corresponding payments according
to Eq. (13) (Steps 16-18). Next, the algorithm continuously
checks if the total payment for the winning workers is
smaller than the current leftover budget (Steps 19-22). If so,
it employs the workers in the winning set to perform tasks
for the current round and subtracts their payments from the
current budget. Otherwise, the algorithm stops and returns
the worker recruitment result as well as the payment profile.

3.3 An illustrative Example

For a better understanding, we provide a simple example
to illustrate the worker recruitment process of the CMABA
mechanism. We consider the scenario where there are three
sensing workers N ={1, 2, 3} and four sensing tasks M=

(a) Locations of tasks and workers (b) Workers’ information

Fig. 2: Information about workers and tasks

Fig. 3: The actual qualities in different rounds

Fig. 4: The whole worker recruitment process

{1, 2, 3, 4}, as depicted in Fig.2(a). Each worker is associated
with a service coverage, indicating that the worker can only
conduct tasks within this coverage, which is shown as a
circle in Fig.2(a). In this example, we assume that a worker
is willing to perform all tasks within his coverage. Thus, we
have M1={1, 2},M2={2, 3},M3={3, 4}. Here, we set the
weight of each task as w1=0.1, w2=0.2, w3=0.3 and w4=0.4.
In addition, we set the monetary budget as 50$ and let K=2,
δ= 1

8 . The claimed costs and the expected qualities (which
are unknown a priori) are shown in Fig.2(b). We assume that
the quality of each worker follows the uniform distribution
in [0,1], and the cost for a worker completing each task
would not exceed [0.1, 1], i.e., cmin=0.1 and cmax=1.

At the beginning, we do not have any information about
workers’ qualities. Thus, we first calculate the exploration
budget as ( 12 )

1
3 · ( 18 ·3 ·2 ·1 · ln(50))

1
3 · (50) 2

3 =15$ according
to Eq. (12) and then learn the quality information. Accord-
ing to Algorithm 1, the workers will be recruited in the
order of ⟨1, 2⟩, ⟨3, 1⟩, ⟨2, 3⟩ in the exploration phase. Since
there are 2 tasks in each task set, every time a worker is
recruited, he will be paid 2$ and the corresponding quality
will be learned twice. The actual qualities of each recruited
worker in different rounds are presented in Fig.3. After
the first three rounds, the remaining exploration budget
is 3$ and is not sufficient to support the next exploration
round. The sample quality means for three workers af-
ter the third round are: q̂1,3 = (0.7+ 0.4+ 0.8+ 0.5)/4 =
0.6, q̂2,3 = (0.48 + 0.7 + 0.62 + 0.8)/4 = 0.65, q̂3,3 = (0.9 +
0.64+0.8+0.58)/4=0.73. Accordingly, the UCB index for
each worker is calculated as: q̂+1 =0.87, q̂+2 =0.92, q̂+3 =1.
Next, the exploitation phase begins and the residual bud-
get is 35 + 3 = 38$. We first calculate the RCR for each
worker: RCR1 = (0.1 + 0.2) · 0.87/0.5 = 0.522, RCR2 =
(0.2+0.3) ·0.92/1=0.46, RCR3=(0.3+0.4) ·1/1.2=0.583.
Since RCR3>RCR1>RCR2, worker 3 and worker 1 are the
winners and will always be recruited until the remaining
budget runs out. Their payments are calculated according
to Eq. (13): p3,4 = min{ (0.3+0.4)·1

(0.2+0.3)·0.92 · 1, 2} = 1.521, p1,4 =

min{ (0.1+0.2)·0.87
(0.2+0.3)·0.92 · 1, 2}= 0.567. Since worker 2 is not re-
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Algorithm 2: The ACMABA Mechanism

Input: N ,M, B,K,β, cmax, {wj |j ∈ M, δ}
Output: ϕ,P

1 Initialize t = 0; ϕi,t = 0, pi,t = 0, ∀i ∈ N , ∀t;
2 Bt = B; // Initial exploration phase
3 while t≤ N

K do
4 t = t+ 1;K = ∅;
5 for j = 1 : K do
6 i = ([(t− 1)K + j − 1]modN) + 1; K = K ∪ {i};
7 if

∑
i∈K |Mi|cmax ≤ Bt−1 then

8 foreach i∈K do ϕi,t = 1; pi,t = |Mi|cmax;
9 foreach i∈N do Update ni,t, q̂i,t, q̂+i ;

10 Update Bt=Bt−1−
∑

i∈K pi,t;

11 else ⊥ ;

12 while t++ do

13 foreach i∈N do Calculate the RCR:
∑

j∈Mi
wj q̂

+
i

bi
;

14 Sort the workers N into S: RCRs1≥· · ·≥RCRsN ;
15 Select the best K workers: S′={s1, s2, · · · , sK};
16 foreach si∈S′ do

17 psi=min{
∑

j∈Msi
wj q̂

+
si∑

j∈MsK+1
wj q̂

+
sK+1

bsK+1
, |Msi |cmax};

18 if
∑

si∈S′ psi ≤ Bt−1 then
19 foreach si∈S′ do ϕsi,t = 1; psi,t = psi ;
20 Update Bt = Bt−1 −

∑
si∈S′ psi,t;

21 foreach i∈N do Update nsi,t, q̂si,t, q̂
+
si ;

22 else break;

23 return (ϕ,P );

cruited, the corresponding payment is p2 = 0. Hence, the
recruitment order is {⟨1, 2⟩, ⟨3, 1⟩, ⟨2, 3⟩, ⟨3, 1⟩, · · · , ⟨3, 1⟩}
and the whole recruitment process is shown in Fig.4.

Suppose the quality information is known in advance.
We can see that workers 1 and 3 are actually the best two
workers. Moreover, we can observe that the payment to
each recruited worker in each round is no less than its true
sensing cost, which satisfies individual rationality.

4 EXTENSION

The CMABA mechanism fits better in the scenario that the
workers’ qualities are stable, implying that the variance
of workers’ qualities is small. To tackle another possible
scenario that the variance of workers’ qualities is relatively
high, we extend the CMABA mechanism to obtain better
performances in total revenue and regret with a little loss of
truthfulness, where adaptive quality is taken into account in
the exploitation phase. Based on the issue, we propose the
Adaptive Combinatorial Multi-Armed Bandit and reverse
Auction (ACMABA) mechanism for the extended problem.

4.1 Basic Idea

Under the circumstance that variance of different workers’
qualities is relatively high, the workers’ qualities need to
be learned more times so as to make the estimated quality
more precise. We consider adding the quality learning across
the auction rounds described in Sec. 2, which means that
we need to design an adaptive and incentive mechanism to
iteratively conduct the online learning and decision-making

in the whole worker recruitment. Then, we propose the
ACMABA mechanism based on CMABA, which alternates
exploration and exploitation simultaneously in each round.

In the initial exploration phase, given the budget B, the
platform needs to execute an initial quality learning for all
workers N until all workers have been learned at least once
due to the unknown workers’ qualities. Compared with
the exploration phase in Sec. 3.1.1, we similarly recruit K
workers in each round and update each worker i’s quality
based on the learned ni,t and q̂i,t according to Eqs. (9) and
(10) at the end of the t-th round. Until each worker has been
recruited and the corresponding quality has been learned at
least once, the platform will exploit the learned UCB indexes
computed by Eq. (11) to execute a reverse auction in the
next round to determine K winning workers based on each

worker i’s RCR (i.e.,
∑

j∈Mi
wj q̂

+
i

bi
), and compute the corre-

sponding payment for each winning worker i based on the
bid of the (K+1)-th worker and Eq. (13). After the auction
in the exploitation phase, the platform observes the qualities
of the recruited workers and updates the workers’ qualities
and UCB indexes based on the observed qualities and Eqs.
(9), (10) and (11) in the exploration phase. In the following
rounds, the platform will similarly in turn conduct the
reverse auction (i.e., exploitation) and the quality learning
(i.e., exploration) until the total budget is exhausted.
4.2 The Detailed Algorithm
According to the above solution, the proposed ACMABA
mechanism is depicted in Algorithm 2. At the beginning,
we initialize all ϕi,t =0, pi,t =0 (Step 1). Then, the initial
exploration phase begins. We first tentatively recruit each
worker to complete tasks in order to learn and estimate their
quality values (Steps 3-8). At the end of each round t, we
observe {qti,j |j ∈Mi} for each recruited worker i, and then
update nt, q̂t, q̂

+ according to Eqs. (9)-(11), respectively
(Step 10). The initial exploration phase terminates until each
worker has been selected at least once.

We have preliminarily learned the quality information
of each worker in the initial exploration phase. Then in
the next round, we can use the quality information to
select workers and compute payments (i.e., exploitation).
In Steps 13-14, we first calculate the RCR for each worker
and then sort the workers in a non-increasing order of their
RCRs. Then, we greedily select the best K workers into a
winning set S′ and determine the corresponding payments
according to (13) (Steps 15-17). Next, the algorithm checks
if the total payment for the winning workers is smaller
than the current leftover budget (Steps 18). If so, it employs
the workers in the winning set to perform sensing tasks
for the current round and subtracts their payments from
the current budget (Steps 19-20). Besides, the algorithm
will also update nt, q̂t, q̂

+ simultaneously based on the
observed qualities in the same current round (Step 21, i.e.,
exploration). The algorithm alternates between the auction
(i.e., exploitation) and the quality update (i.e., exploration)
in each of the subsequent rounds until the remaining budget
cannot afford the payments. So far, the algorithm returns the
worker recruitment result and the payment profile.
4.3 An illustrative Example
For better comparison, the basic parameters setting in the
walkthrough example, which illustrates the worker recruit-
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Fig. 5: The actual qualities in different rounds

Fig. 6: The whole worker recruitment process

ment process of the ACMABA mechanism, is the same as
the setting in the CMABA mechanism, as shown in Figs.
2(a) and 2(b). The actual qualities of each recruited worker
in different rounds change a little as presented in Fig. 5.

At the beginning, we do not have any information
about workers’ qualities. Thus, we first conduct an initial
exploration to learn the quality information. According to
Algorithm 2, the workers will be recruited in the order of
⟨1, 2⟩, ⟨3, 1⟩ in the initial exploration phase. Since there are
2 tasks in each task set, every time a worker is recruited,
he will be paid 2$ and the corresponding quality will be
learned twice. Until the quality information of each work-
er has been learned at least once, the initial exploration
stops at the end of the second round. The sample qual-
ity means for three workers after the second round are:
q̂1,2 = (0.7+0.4+0.8+0.5)/4= 0.6, q̂2,2 = (0.48+0.7)/2=
0.59, q̂3,2=(0.9+0.64)/2=0.77. Accordingly, the UCB index
for each worker is calculated as: q̂+1 =0.85, q̂

+
2 =0.95, q̂

+
3 =1.

The ACMABA mechanism can enter the adaptive work-
er recruitment which is dominated by the auction (i.e.,
exploitation) alternated with quality learning (i.e., explo-
ration). In round 3, the exploitation phase begins and the
residual budget is 50−8=42$. We first calculate the RCR
for each worker: RCR1=(0.1+0.2)·0.85/0.5=0.51, RCR2=
(0.2+0.3) ·0.95/1=0.475, RCR3=(0.3+0.4) ·1/1.2=0.58.
Since RCR3>RCR1>RCR2, worker 3 and worker 1 are
the winners at the end of round 3. Their payments are
calculated according to (13): p3,3=min{ (0.3+0.4)·1

(0.2+0.3)·0.95 ·1, 2}=
1.473, p1,3=min{ (0.1+0.2)·0.85

(0.2+0.3)·0.95 ·1, 2}=0.536. Since worker 2
is not recruited, the corresponding payment is p2,3=0. Next,
the ACMABA conducts exploration to update qualities, so
that q̂1,3=(0.6·4+0.58+0.6)/6=0.59, q̂2,3=q̂2,2=0.59, q̂3,3=
(0.77 ·2+0.7+0.58)/4=0.7. Then, the UCB index for each
worker is: q̂+1 =0.8175, q̂

+
2 =0.9841, q̂

+
3 =0.9787.

In round 4, we can similarly calculate the RCR for each
worker: RCR1 = 0.4905, RCR2 = 0.4920, RCR3 = 0.5709.
Since RCR3>RCR2>RCR1, worker 3 and worker 2 are
the winners at the end of round 4. Their payments are
calculated according to (13): p3,4 = 1.396, p2,4 = 1, where
p1,4=0. Then, the qualities and UCB indexs can be updated
in the same way, which are q̂1,4=0.59, q̂2,4=0.62, q̂3,4=0.68
and q̂+1 =0.83, q̂+2 =0.91, q̂+3 =0.92. In round 5, we can easily
obtain: RCR1 = 0.498, RCR2 = 0.455, RCR3 = 0.536. So,
worker 3 and worker 1 are the winners at the end of round
5, where their payments are: p1,5=0.547, p2,5=0, p3,5=1.415.
So far, the recruitment order at the end of the 4-th round is

{⟨1, 2⟩, ⟨3, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩, ⟨3, 1⟩, · · · } and the whole recruit-
ment process is shown in Fig.6. Compared with the CMABA
mechanism, we can notice that the recruited workers are
continuously changing as the qualities update.
5 PERFORMANCE ANALYSIS

In this section, we present the theoretical analysis for CMA-
BA and ACMABA. We first analyze the worst regret bounds
of these two algorithms respectively, and then prove that
they satisfy the properties of truthfulness, individual ratio-
nality and computational efficiency.
5.1 Regret Analysis
Regret is the difference between the revenue obtained by the
proposed algorithms and the optimal solution. Assume that
workers’ qualities are known in advance. The optimal total
revenue cannot be feasibly achieved. However, the platform
can achieve an approximately optimal solution by recruiting
the workers with the highest RCRs in each round, which
is denoted by ϕ∗. Here, R(ϕ∗)≥α ·R(ϕopt), where ϕopt is
the optimal recruiting policy that can obtain the maximum
revenue and 0<α≤1. In this case, it is no longer fair to com-
pare the performance of the proposed algorithms against
the optimal solution. Therefore, we introduce the concept of
α-approximation regret [22], [23] for our algorithms:

Rα=α·R(ϕopt)−E[R(ϕ)]≤R(ϕ∗)−E[R(ϕ)] (14)

According to [24], [25], we have α≥ 1
2 in our case.

When the qualities are known, we denote the worker set
as V={v1, · · · , vN} such that RCR′

v1
≥· · ·≥RCR′

vN . Here,
the RCR′ of worker i∈V is calculated as (

∑
j∈Mi

wjqi)/bi.
The payment of i is p′i = (

∑
j∈Mi

wjqi)/RCR′
vK+1

. The
α-optimal algorithm will recruit the best K workers
{v1, · · · , vK} in each round until the budget exhausts. Thus,
the total revenue obtained by the α-optimal algorithm is:

R(ϕ∗) = B∑vK
i=v1

p′
i

·(
∑vK

i=v1

∑
j∈Mi

wjqi)=B ·RCR′
vK+1

(15)

Recall that M+=max{|Mi|}, M−=min{|Mi|}. Let w+=
max{wj}, w−=min{wj}. Before the detailed regret analysis,
we introduce some auxiliary lemmas.

Lemma 12 (Chernoff-Hoeffding bound). Suppose that
{X1, X2, · · · , Xn} are n random variables with common range
[0, 1], satisfying E [Xt|X1, · · · , Xt−1]=µ for ∀t ∈ [1, n]. Let
Sn=X1+· · ·+Xn. Then ∀a≥0

P [Sn≥nµ+a] ≤ e−2a2/n, P [Sn≤nµ−a] ≤ e−2a2/n. (16)
5.2 Regret of CMABA
Let ni be the number of learned times, and q̂i be the sample
mean of worker i’s quality after exploration, respectively.
We denote the maximum and minimum exploration rounds
as r+ and r−, respectively. Actually, r−=⌊ B′

KM+cmax
⌋, r+=

⌊ B′

KM−cmax
⌋. Then, we have ⌊ r−K

N
⌋|Mi|≤ni≤⌈ r+K

N
⌉|Mi|.

Lemma 13. After exploration, qi<q̂+i holds for each i∈N with
the probability of at least 1−N(NM−( r

−K
N − 1))−2δ .

Proof. According to Lemma 12, we can derive

P (q̂+i ≤qi)=P (q̂i+
√

δ·ln(
∑

i′∈N ni′ )

ni
≤qi)

≤e−2ni(

√
δ·ln(

∑
i′∈N n

i′ )
ni

)2≤e−2δ·ln(N⌊ r−K
N ⌋M−)

≤(NM−( r
−K
N − 1))−2δ (17)
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Therefore, ∀i ∈ N , qi < q̂+i with the probability of at least
1−(NM−( r

−K
N −1))−2δ . So we can obtain that

P (∩i∈N (qi<q̂
+
i ))=1−P (∪i∈N (qi≥q̂+i ))

≥1−
∑

i∈NP (qi≥q̂+i ) ≥1−N(NM−( r
−K
N −1))−2δ, (18)

which proves the lemma.

Lemma 14. With the probability of at least 1−N(NM−( r
−K
N

−
1))−2δ, ∀l∈[1, N ], RCR′

vl
≤RCRsl .

Proof. According to Lemma 13, we can derive that for each

worker i ∈ N ,
∑

j∈Mi
wjqi

bi
<

∑
j∈Mi

wj q̂
+
i

bi
holds with the

probability of at least 1−N(NM−( r
−K
N

−1))−2δ. Then we prove
Lemma 14 as follows. There are two cases:

Case 1: sl and vl are the same worker. The lemma holds.
Case 2: sl and vl are different workers. Assume for

purpose of contradiction that the lemma does not hold, i.e.,∑
j∈Mvl

wjqvl
bvl

>

∑
j∈Msl

wj q̂
+
sl

bsl
. Then we have

∑
j∈Mv1

wjq̂
+
v1

bv1
>∑

j∈Mv1
wjqv1

bv1
≥ · · · ≥

∑
j∈Mvl

wjqvl

bvl
>

∑
j∈Msl

wj q̂
+
sl

bsl
.We can see

that
∑

j∈Mv1
wj q̂

+
v1

bv1
>

∑
j∈Msl

wj q̂
+
sl

bsl
. For the same reason, we

can also derive
∑

j∈Mv2
wjq̂

+
v2

bv2
>

∑
j∈Msl

wj q̂
+
sl

bsl
, · · · ,

∑
j∈Mvl

wj q̂
+
vl

bvl
>∑

j∈Msl
wj q̂

+
sl

bsl
.Therefore, there are already l workers whose

RCRs are larger than sl’s RCR, and sl will be ranked behind
the l-th worker, which contradicts with the definition that sl
is the l-th worker in S. Thus, the lemma holds.

Theorem 15. The worst α-approximation regret of the proposed
CMABA algorithm is bounded as O(B

2
3 (NM4 ln(BM))

1
3 )

with the probability of at least 1−N(NM−( r
−K
N − 1))−2δ .

Proof. The expected regret of CMABA can be bounded as

R(ϕ∗)−E[R(ϕ)]≤B ·RCR′
vK+1

−
(
⌊ r−K

N ⌋(
∑

i∈N
∑

j∈Mi
wjqi)

+⌊ B−B′∑
i∈S′ pi

⌋ · (
∑

i∈S′
∑

j∈Mi
wjqi)

)
<B′·RCR′

vK+1
+(B−B′)·

(
RCR′

vK+1
−

∑
i∈S′

∑
j∈Mi

wjqi∑
i∈S′ pi

)
=B′ ·RCR′

vK+1
+ B−B′∑

i∈S′pi

·
(RCR′

vK+1

RCRsK+1
(
∑

i∈S′
∑

j∈Mi
wj q̂

+
i )−

∑
i∈S′

∑
j∈Mi

wjqi
)

≤B′ ·RCR′
vK+1

+ B−B′∑
i∈S′pi

(
∑

i∈S′
∑

j∈Mi
wj(q̂

+
i −qi))

The last inequality above is based on Lemma 14. Then,
according to the individual rationality proved in Theo-
rem 20, we have pi ≥ ci,∀i ∈ N . Hence,

Rα<B
′·RCR′

vK+1
+ B−B′∑

i∈S′ ci
(
∑

i∈S′
∑

j∈Mi
wj(q̂

+
i −qi))

<B′·RCR′
vK+1

+ B−B′∑
i∈S′ ci

·(
∑

i∈S′
∑

j∈Mi
2wj

√
δ ln(

∑
i′∈N ni′ )

ni
)

(according to the Chernoff-Hoeffding bound in Lemma 12)

≤B′M+w+

M−cmin
+ B−B′

KM−cmin
·2KM+w+

√
δ ln(N⌈ r+K

N ⌉M+)

⌊r−K/N⌋M−

Substituting r− with ⌊ B′

KM+cmax
⌋, r+ with ⌊ B′

KM−cmax
⌋,

and let w+ = 1, we have

Rα<
B′M+

M−cmin
+ 2M+B

M−cmin
·

√
δNM+cmax ln( M+B

M−cmax
)

B′M− (19)

When B′=( 1
M− )

1
3 (δ ·NM+cmax ln(

M+B
M−cmax

))
1
3B

2
3 , the

above upper bound can achieve a minimum value:

3M+

M−cmin
( 1
M− )

1
3 (δ ·NM+cmax ln(

M+B
M−cmax

))
1
3B

2
3 (20)

Therefore, the theorem holds.

5.3 Regret of ACMABA
Based on the above analysis, we denote the winner sets
produced by the α-optimal and ACMABA algorithms in
each round as V ′={v1, · · · , vK} and S′

t={s1, · · · , sK}, re-
spectively. Then, we define the smallest and largest possible
differences of RCR value and the largest possible difference
of revenue among all non-optimal winner sets S′

t ̸=V ′:

∆max=
∑

i∈V ′

∑
j∈Mi

wjqi

bi
− min
S′

t ̸=V ′

∑
i∈S′

t

∑
j∈Mi

wjqi

bi
, (21)

∆min=
∑

i∈V ′

∑
j∈Mi

wjqi

bi
−max
S′

t ̸=V ′

∑
i∈S′

t

∑
j∈Mi

wjqi

bi
, (22)

ϱqmax=
∑

i∈V ′
∑

j∈Mi
wjqi− min

S′
t ̸=V ′

∑
i∈S′

t

∑
j∈Mi

wjqi. (23)

Let γi,t be the counter of worker i after the initial ex-
ploration. In each round t after the initial exploration, when
S′

t̸=V
′, the counter γi,t is updated as follows:
i = argmini′∈S′

t
γi′,t−1, γi,t = γi,t−1 + 1. (24)

That is, we find the smallest counter of all recruited
workers at the end of (t−1)-th round. If multiple workers
satisfy the condition, we randomly select any one. So the
worker with the smallest counter γi,t will be incremented
by 1. This means that for ∀i ∈ N , the sum of the counter
γi,t equals to the total times that the sub-optimal winner
set to be recruited. When any non-optimal workers set is
determined in a round, there is exactly one worker’s counter
to be incremented. Moreover, we let µi,t denote the exact
times that worker i has been recruited until t-th round,
where γi,t≤µi,t. Next, we will focus on the upper bound of
the counter γi,T , where T is the total rounds of the ACMABA
algorithm under the budget constraint B.

Lemma 16. The expected counter γT
i has an upper bound for any

worker i ∈ N under the budget constraint B, that is

E[γT
i ] ≤ η1 ln(T ) + η2, (25)

where η1=

{
4K2δ

(cmin∆min)2
+2K, δ=K+1/2

4K2δ
(cmin∆min)2

, δ>K+1/2
,

η2=

{
4K2δ ln(KM+)

(cmin∆min)2
+ 1+2K, δ=K+1/2

4K2δ ln(KM+)

(cmin∆min)2
+ 1+2K·O(1), δ>K+1/2

.

Proof. In each round t, one of the following cases must
happen: 1) the optimal set of workers, i.e., V ′, might be
selected; 2) a non-optimal set of workers will be selected,
i.e., S′

t ̸=V ′. In the first case, the counter γi,t will not change,
while in the second case, the counter γi,t will be updated
according to Eq. (24). Recall that we use ϕi,t ∈ {0, 1} to
denote the selection policy for worker i in the t-th round.
That is, ϕi,t represents the change of the counter γi,t, where
ϕi,t=1 means that γi,t is incremented, and ϕi,t=0 otherwise.
Assume that T ′ = ⌈N

K ⌉+1 is the first round after initial
exploration. Based on this, we have the following results:

γT
i =

∑T
t=T ′ ϕ{ϕi,t=1}≤ℓ+

∑T
t=1 ϕ{ϕi,t=1, γi,t≥ℓ}

≤ℓ+
∑T

t=1 ϕ
{∑

i∈S′
t
RCRi,t+1≥

∑
i∈V ′ RCRi,t+1, γi,t≥ℓ

}
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≤ℓ+
∑T

t=1 ϕ
{
maxℓ≤µs1,t≤···≤µsK,t≤t RCRsl,t

≥ min1≤µ∗
s1

≤···≤µ∗
sK

≤t RCRvl,t

}
≤ℓ+

∑T
t=1

∑t
µs1,t=ℓ · · ·

∑t
µsK,t=ℓ

∑t
µv1,t=1 · · ·

∑t
µvK,t=1

ϕ
{∑K

l=1 RCRsl,t≥
∑K

l=1 RCRvl,t

}
, (26)

Then, we focus on the bound of
∑K

l=1 RCRsl,t ≥∑K
l=1 RCRvl,t. According to Eq. (11):∑K

l=1

∑
j∈Msl

wj(q̂sl,t+εsl,t)

bsl
≥
∑K

l=1

∑
j∈Mvl

wj(q̂vl,t+εvl,t)

bvl
.(27)

We can obtain that at least one of the following cases
must be true (which is based on the proof by contradiction):∑K

l=1

∑
j∈Mvl

wj q̂vl,t/bvl≤
∑K

l=1

∑
j∈Mvl

wj(qvl
−εtvl)/bvl

,(28)∑K
l=1

∑
j∈Msl

wj q̂sl,t/bsl≥
∑K

l=1

∑
j∈Msl

wj(qsl+ε
t
sl
)/bsl , (29)∑K

l=1

∑
j∈Mvl

wjqvl
/bvl<

∑K
l=1

∑
j∈Msl

wj(qsl+2ε
t
sl
)bsl . (30)

Next, we need to prove the upper bound of the probabil-
ity of Eqs. (28) and (29). By applying the Chernoff-Hoeffding
bound in Lemma 12, we can get

P{
∑K

l=1

∑
j∈Mvl

wj q̂vl,t
bvl

≤
∑K

l=1

∑
j∈Mvl

wj(qvl−ε
t
vl

)

bvl
}

≤
∑K

l=1 P{q̂vl,t≤(qvl
−εtvl)}≤

∑K
l=1 e

−2nt
vl

εtvl
2

=
∑K

l=1(
∑

i∈N ni,t)
−2δ ≤ K(tKM−)−2δ ≤ Kt−2δ. (31)

We can also similarly prove that

P{
∑K

l=1

∑
j∈Msl

wj q̂sl,t
bsl

≥
∑K

l=1

∑
j∈Msl

wj(qsl+ε
t
sl
)

bsl
}

≤ K(tKM−)−2δ ≤ Kt−2δ. (32)

Then, we choose a certain value ℓ to make the Eq. (30)
impossible. Based on the fact that µt

i≥γi,t≥ℓ, we have

K∑
l=1

∑
j∈Mvl

wjqvl
bvl

−
K∑
l=1

∑
j∈Msl

wjqsl
bsl

−2
K∑
l=1

∑
j∈Msl

wjεsl,t

bsl

≥ ∆min − 2
∑K

l=1 |Msl |w+

√
δ ln(

∑
i∈N ni,t)

nsl,t
/bsl

≥ ∆min − 2w+
∑K

l=1

√
δ ln(

∑
i∈N ni,t)

|Msl
|ℓ /cmin ≥ 0. (33)

After analyzing Eq. (33), we can yield that Eq. (33)
always holds if ℓ satisfies the following condition:

ℓ ≥ 4K2δ ln(TKM+)
(cmin∆min)2

. (34)

Now we continue Eq. (26), and get

E[γT
i ] ≤

⌈
4K2δ ln(TKM+)
(cmin∆min)2

⌉
+

T∑
t=1

(t−ℓ+1)KtK2Kt−2δ

≤ 4K2δ ln(TKM+)
(cmin∆min)2

+1+2K
∑T

t=1 t
−2(δ−K) (35)

In ACMABA, we set δ≥(K + 1/2). Then we can get

E[γT
i ]≤

4K2δ ln(TKM+)
(cmin∆min)2

+1+

{
2K(ln(T )+1), δ=K+1/2

2K·O(1), δ>K+1/2

≤4K2δ
(
ln(T )+ln(KM+)

)
(cmin∆min)2

+ 1+

{
2K(ln(T )+1), δ=K+1/2

2K·O(1), δ>K+1/2

= η1 ln(T ) + η2, (36)

where η1=

{
4K2δ

(cmin∆min)2
+2K, δ=K+1/2

4K2δ
(cmin∆min)2

, δ>K+1/2
,

η2=

{
4K2δ ln(KM+)

(cmin∆min)2
+ 1+2K, δ=K+1/2

4K2δ ln(KM+)

(cmin∆min)2
+ 1+2K·O(1), δ>K+1/2

.

Hence, the lemma holds.

Since the bound of γi,T is determined by expected total
rounds T in the ACMABA algorithm, we then analyze the
bounds of T under the limited budget B. Based on the above
analysis, the payment for each winning worker i in the α-
optimal algorithm is pi=

RCRi

RCRK+1
bK+1≥bi. We denote the

total payment in each round as follows:

PV ′ =
∑

i∈V ′
RCRi

RCRK+1
bK+1 ≥

∑
i∈V ′ bi (37)

We can derive the bounds of expected total rounds T .

Lemma 17. The the expected total rounds T of the ACMABA
algorithm is bounded as follows:

B
PV ′

− η1η4 ln(
2B
PV ′

+ η3)− η2η4 − 1 ≤ T ≤ 2B
PV ′

+η3, (38)

where η3=
2NM+cmax

KM−cmin

(
η1 ln(

2NM+cmaxη1

KM−cmin
)−η1+η2

)
and η4=

NM+cmax

PV ′
.

Proof. Here, we let T (B) denote the total rounds under
the budget B in the proof, which equals to T . Let T ′(B)
denote the total rounds of the α-optimal algorithm under
the budget B. Since the workers’ qualities are known in the
α-optimal algorithm and the bids submitted by workers are
fixed, the optimal set of winning workers in each round is
determined, i.e., V ′. Then, the payment for each winning
worker can be determined and the total payment in one
round can be calculated according to Eq. (37). Thus, the
value of total rounds T ′(B) is fixed, i.e., T ′(B)=⌊B/PV ′⌋.

To derive the upper bound of T (B), we first analyze
the relationship between T (B) and T ′(B). According to Eq.
(13), the payment for each winner in ACMABA is greater
than its true cost. Thus, the total payment in each round is
greater than K·cmin, and we have T≤B/Kcmin. Then,

T (B) ≤ T ′(B) + T (
∑

i/∈V ′ µi,T (B) ·M+ · cmax)

≤ T ′(B) +M+cmaxT (
∑N

i=1 γi,T (B))

≤ B
PV ′

+ NM+cmax

KM−cmin

(
η1 ln(T (B)) + η2

)
. (39)

According to the inequality lnx≤ x−1, for ∀x>0, we have

ln( KM−cmin

2NM+cmaxη1
) ≤ KM−cmin

2NM+cmaxη1
− 1 (40)

⇒ ln(T (B)) ≤ KM−cmin

2NM+cmaxη1
− 1 + ln( 2NM+cmaxη1

KM−cmin
).(41)

By substituting the bound of ln(T (B)) in Eq. (39) with
Eq. (41), we can have

T (B)≤ B
PV ′

+T (B)
2 +NM+cmax

KM−cmin

(
η1 ln(

2NM+cmaxη1

KM−cmin
)−η1+η2

)
⇒ T (B)≤ 2B

PV ′
+2NM+cmax

KM−cmin

(
η1 ln(

2NM+cmaxη1

KM−cmin
)−η1+η2

)
.(42)

Let η3= 2NM+cmax

KM−cmin

(
η1 ln(

2NM+cmaxη1

KM−cmin
)−η1+η2

)
for sim-

plicity. Then, we have T (B)≤ 2B
PV ′

+η3.
Next, we focus on the lower bound of T (B). Here, we

divide the budget B into two parts: B′ and B−, in which
B′ is used to recruit the optimal set of workers and B−
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indicates the remaining budget spent in recruiting the non-
optimal sets of workers. Hence, we can get T (B′)≤T ′(B) and
B/PV ′−1≤T ′(B)≤B/PV ′ . Since T ′(B) and T (B) are based on
the same payment computation method, we have

T (B)=T (B′ +B−) ≥ T ′(B′)

≥T ′(B −
∑

i/∈V ′ µi,T (B) ·M+ · cmax)

≥T ′(B −M+cmax

∑N
i=1 γi,T (B))

≥T ′(B −NM+cmax(η1 ln(T (B))) + η2)

≥
(
B −NM+cmax(η1 ln(T (B))) + η2

)
/PV ′ − 1. (43)

Then, we substitute the logarithm of Eq. (42) into Eq. (43)
to derive the lower bound of T (B):

T (B)≥ B
PV ′

− NM+cmax(η1 ln(2B/PV ′+η3)+η2)
PV ′

− 1

≥ B
PV ′

− η1η4 ln(
2B
PV ′

+ η3)− η2η4 − 1, (44)

where η4=
NM+cmax

PV ′
. Therefore, the lemma holds.

Finally, we prove the upper bound of the expected regret
for ACMABA, and we have the following theorem.

Theorem 18. The expected regret of the ACMABA algorithm is
bounded by O

(
NMK3 ln(B+NMK2 ln(NMK2))

)
.

Proof. Let the total revenue obtained by the α-optimal algo-
rithm in each round be RV ′ . According to the definition of
regret in Eq. (14) and Lemmas 16 and 17, we have:

Rα=
B

PV ′
RV ′−T (B)RV ′+T (B)RV ′−E[

T∑
t=1

∑
i∈S′

t

∑
j∈Mi

wjqi]

≤ B
PV ′

RV ′ − T (B)RV ′ +
∑N

i=1 γi,T ϱ
q
max

≤ B
PV ′

RV ′−( B
PV ′

−η1η4 ln( 2B
PV ′

+η3)−η2η4−1)RV ′

+Nϱqmax(η1 ln(
2B
PV ′

+ η3) + η2)

≤ (Nϱqmax+ η4RV ′)η1 ln(
2B
PV ′

+ η3) + η2η4RV ′

+η2Nϱqmax +RV ′

= O
(
NM+K3 ln(B+NM+K2

M− ln(NM+K2

M− ))
)
. (45)

Therefore, the theorem holds.

5.4 Truthfulness, Individual Rationality and Efficiency

To prove the truthfulness, we reveal that workers can obtain
the maximum utility if they bid truthfully.

Theorem 19. The CMABA mechanism is truthful.

Proof. For ∀ worker i∈N submits an untruthful bid bi to
complete tasks in Mi, i.e., bi ̸=ci. In the exploration phase,
the task allocation is irrespective of the bid and the payment
is fixed (|Mi| cmax) when i is recruited. Thus, the property
is satisfied because the worker cannot increase its utility by
manipulating the real cost. In the exploitation phase, in each
round t, we denote the recruitment result for bidding bi and
ci as ϕ′

i,t and ϕi,t, respectively. There are two cases:
Case 1 (bi>ci): According to Algorithm 1, we can derive

that ϕ′
i,t≤ϕi,t. If ϕ′

i,t=ϕi,t, the property is trivially satisfied
as the payment does not depend on the bid of i; if ϕ′

i,t<ϕi,t,
then ϕ′

i,t=0 and ϕi,t=1, bidding truthfully is a better choice.
Case 2 (bi<ci): We have ϕ′

i,t ≥ ϕi,t. If ϕ′
i,t = ϕi,t, the

property is satisfied; if ϕ′
i,t>ϕi,t, then ϕ′

i,t=1 and ϕi,t=0.

This implies that bi≤
∑

j∈Mi
wj q̂

+
i

RCRsK+1
and ci≥

∑
j∈Mi

wj q̂
+
i

RCRsK+1
. So we

can derive
∑

j∈Mi
wj q̂

+
i

RCRsK+1
≤ci≤|Mi|cmax. The utility of worker i

is ui,t(bi)=pi,t(bi)−ci=min{
∑

j∈Mi
wj q̂

+
i

RCRsK+1
, |Mi|cmax}−ci≤0.

Therefore, it is a dominant strategy for each worker to
report its true sensing cost, which proves the theorem.

Note that the bids remain unchanged in any round of
CMABA and ACMABA. In CMABA, the reverse auction
will be executed once at the beginning of exploitation, using
the derived UCB values at the end of exploration. Since
the UCB indexes are fixed values for CMABA, truthfulness
holds in the exploitation phase according to Theorem 19.
Similarly, in ACMABA, truthfulness holds in the second
round (i.e., the first round after initial exploration). Howev-
er, due to the variance of each worker i’s quality, worker i’s
sensing quality varies continuously in each following round.
The varied qualities will bring about estimation error of the
sample mean value q̂ti , and even cause deviation on the
worker recruitment result and the critical payment, which
makes ACMABA achieve the approximate truthfulness.

Theorem 20. In each round t, the CMABA and ACMABA
mechanisms are individually rational.

Proof. In the t-th round, if a worker i ∈N is not recruited,
its utility is zero. Otherwise, if i is recruited , its utility is
ui,t=pi,t−ci. In the exploration phase, the payment of i is
always |Mi| cmax≥ci, so worker i’s utility is nonnegative. In
the exploitation phase, if worker i is recruited, we can derive

that bi≤
∑

j∈Mi
wj q̂

+
i

RCRsK+1
. Based on Theorem 19, each worker will

bid truthfully, i.e., bi=ci. Hence, ci≤
∑

j∈Mi
wj q̂

+
i

RCRsK+1
. Then, the

utility of worker i is min{
∑

j∈Mi
wj q̂

+
i

RCRsK+1
, |Mi|cmax}−ci≥0.

Theorem 21. The CMABA and ACMABA mechanisms are
computationally efficient.

Proof. The CMABA and ACMABA mechanisms consist of
the exploration and exploitation phases. In each iteration of
the while loop in the exploration phase, the computation-
al complexity is at most O(N) dominated by the quality
update. In the exploitation phase, there are two main oper-
ations of sorting and payment, whose total computational
complexity is O(N logN). The iteration of recording bandit
policy is an order of O(K). In CMABA, the while loops of
exploration and exploitation phases are executed at most

B
KM−cmax

and B
KM−cmax

times, respectively. In ACMABA,
the while loops equals to the total rounds T which is
bounded in Theorem 17. Hence, CMABA and ACMABA are
computationally efficient.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of CMABA and
ACMABA through simulations on real-world data traces.

6.1 Evaluation Methodology

6.1.1 Simulation Setup
We conduct extensive simulations based on Chicago Taxi
Trips [26] including 27465 taxi records. Each entry of the
trace records the taxiID, time stamp, trip miles and the
location of picking up/dropping off passengers, etc. In our
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TABLE 2: Simulation settings
Parameter name Values
Budget B 5, 6, 7, 8, 9, 10, 11, 12 (×103)
number of tasks M , |Mi| 200, [5, 15]
number of worker N 40, 60, 80, 100 120, 140
percentage of workers K/N 16%, 20%, 25%, 33%, 50%, 60%
range of cost [cmin, cmax] [0.1, 1]
range of expected quality qi [0, 1]

simulation, we regard taxis as sensing workers and assume
that a taxi can perform the sensing tasks at the locations
where it picks up or drops off passengers. We first choose
M locations and N taxis from the trace, where M = 200
and N is selected from [40, 140]. The number of tasks
|Mi| that a worker can perform is randomly selected from
[5, 15], which means that the number of candidate locations
that the corresponding taxi can cover ranges from 5 to 15.
In addition, the weight of tasks is uniform, and we set
K = ⌊N/3⌋ as default. We assume that the cost for each
task is proportional to the trip miles and let the cost for
each task not exceed [0.1, 1]. Since there is no record about
the qualities, we adopt truncated Gaussian distribution to
generate workers’ expected qualities from [0, 1].
6.1.2 Algorithms for Comparison
Since our two mechanisms consider both unknown qualities
and incentive issues in MCS, there is no existing algorithm
that can be directly applied to our problem. To the best of
our knowledge, the closest algorithm that can be adapted to
our setting is the MRCB algorithm [20], which is a budget-
limited K-armed bandit algorithm. However, since MRCB
assumes that both the rewards and costs are stochastic but
neglects the incentive issues, we need to incorporate reverse
auction into MRCB to deal with the strategic workers in

our model. More specifically, we split the total budget into
two equal parts to achieve truthfulness, which are used for
exploration and exploitation, respectively. Moreover, we im-
plement the α-Optimal algorithm and the Random algorith-
m for better comparison. The α-Optimal algorithm has full
knowledge about workers’ qualities and always recruits the
best K workers. The Random algorithm randomly selects
K workers in each round and pays the winning workers
the maximum cost they might incur, i.e., |Mi|cmax.

6.2 Evaluation Results
First, we investigate the impact of budget B from 5000 to
12000 with an increment of 1000 and exhibit the perfor-
mance of different algorithms in terms of total revenue and
regret, as shown in Figs. 7 and 8, respectively. In Fig. 7,
we can observe that ACMABA and CMABA both achieve
much higher total revenue than the MRCB and Random
algorithms. More specifically, the total revenue achieved by
CMABA is at least 45% higher than MRCB and is almost
three times of Random algorithm, while ACMABA achieves
a little higher total revenue than CMABA. Actually, the total
revenue of CMABA and ACMABA is even going to catch
up with the α-Optimal algorithm which knows the quality
information in advance. In Fig. 8, the results show that the
regrets of ACMABA and CMABA are much lower than the
MRCB and Random algorithms. Since more sensing workers
can be recruited under a larger budget, the total revenue and
regret of all algorithms generally increase with the increas-
ing budget. The small fluctuations of regret in ACMABA
and CMABA because the observed quality of each worker
in different rounds may be a little higher or lower than
the expected quality. Basically, the regrets of ACMABA and
CMABA are small due to the quality learning.
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(c) B=10000
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(d) B=12000

Fig. 10: Regret vs. the number of workers N
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Fig. 11: Auction of CMABA
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Fig. 12: Auction of ACMABA
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Fig. 13: Overpayment ratio in CMABA and ACMABA
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(a) Total revenue vs. K
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(b) Total rounds vs. K
Fig. 14: Evaluation on the parameter K

Second, we evaluate the performances of ACMABA and
CMABA with the other algorithms by changing the number
of workers, as depicted in Figs. 9-10, where K = 20. The
figures show that ACMABA and CMABA can achieve much
higher total revenue and much lower regret than the MRCB
and Random algorithms, where ACMABA performs better
than CMABA. The total revenue of all mechanisms exhibits
an uptrend with the increasing N . This is because when we
fix the budget B and K , and let more candidate workers
emerge, there are more workers with higher qualities and
lower costs, leading to a better selection than before. When
N is much larger than K , more budget is required either to
explore the workers in CMABA or to take more chances to
recruit workers in ACMABA. Hence, the regrets of CMABA
and ACMABA both increase with the increasing N .

To verify the properties of the CMABA and ACMABA
mechanisms, we consider the three metrices: truthfulness,
individual rationality and overpayment ratio.

Truthfulness. We randomly pick a winning bid, change its
claimed cost, and recalculate the related payment as well as
the utility. The results, as depicted in Figs. 11(a) and 12(a) to
present CMABA and ACMABA respectively, both show that
the utility remains unchanged if the claimed cost is no more
than the payment. However, when the claimed cost is larger
than the critical value, the utility becomes zero. Thus, the
CMABA and ACMABA mechanisms satisfy truthfulness.

Individual rationality. We set N = 140 and K = ⌊N
3 ⌋,

then calculate the payments for workers in the exploration
and exploitation phases, respectively. Figs. 11(b) and 12(b)
show that each payment is no less than the corresponding
real cost, which demonstrates that CMABA and ACMABA

achieve individual rationality. Additionally, we can see that
workers are paid cmax in the (initial) exploration phase in
CMABA and ACMABA, most of which are much higher
than the costs (i.e., the red symbols). But the payment for
each worker is critical and relatively close to the cost in
the exploitation phase of CMABA, as well as the alternative
exploitation and exploration phase in ACMABA.

Overpayment ratio. The evaluation results of overpayment
ratio are depicted in Fig. 13, which can be computed by

λ =

∑
t

∑
i∈N (pi,t − ci)ϕi,t∑
t

∑
i∈N ciϕi,t

. (46)

In Fig. 13(a), we show the overpayment ratio of CMABA
and ACMABA when varying the budget from 5000 to 10000
and varying the number of workers from 50 to 100. We
can find that λ is stable and is always less than 0.75,
which means that the requester does not have to pay much
extra money to induce truthfulness with the fix ratio of
K/N≈33%. In Fig. 13(b), the overpayment ratio increases
significantly when the ratio of K/N increases whatever in
CMABA or in ACMABA. So the selection of K value is
important in our two mechanisms, which inspires us to
explore the impact of the parameter K on our mechanisms.

In Fig. 14, we present the changes of total revenue and
execution rounds when K varies with the given B=14000
and N = 140. The results indicate that ACMABA and
CMABA still achieve much higher revenue than the MRCB
and Random algorithms within different K . The smaller K
means that the higher total sensing revenue can be achieved.
This can be explained by the reason that a smaller K allows
less suboptimal workers to be recruited in each round.
However, this will also result in more recruitment rounds.
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7 RELATED WORK

We review the related work from the following aspects:
Incentive Mechanism: Incentive mechanisms have been

widely investigated in many fields, especially for the worker
recruitment problem in MCS. There are various works on
online workers [7], [8], data quality management [13], [14],
privacy preservation [27], data publishing [28] and so on.
Different optimization objectives have also been considered,
such as quality maximization [29], cost minimization [30].
However, most of these works assume that workers’ quality
information is known in advance.

Learning-based Approach: [2] investigates many re-
searches that further optimize MCS by integrating learn-
ing techniques to infer the unknown knowledge, such as
workers’ qualities, workers behavioral patterns, sensing
data correlation, etc. For example, [31], [32] consider the
possibility of worker’s rejection for tasks, which is pre-
dicted by two methods, maximum likelihood estimation
and weighted utility sum in [31] and multiclassifier based
approach in [32], respectively. [33] extracts topology features
by supervised training and uses the Back-Propagation neu-
ral network learning algorithm to minimize computation
overhead. And [34] uses multi-population co-evolution to
enhance the robustness of scale-free topologies. [35], [36]
take account of the correlation among data to improve
performance of learning model. [37] calculates the proba-
bility of participants’ presence in each spatial-temporal cell
based on historical trajectories. [38] reviews many quality-
aware projects and establishes a categorization based on
the characteristics of data, tasks, and scopes of projects
to design quality learning strategies. However, all of the
above learning-based approaches are based on the histor-
ical records or some priori knowledge, while in our MCS
scenario, the system completely does not have any prior
information of the workers’ qualities.

MAB Mechanism: Multi-armed bandit is an efficient re-
inforcement learning model to make online decisions under
information unknown environments. Some recent works in
MCS [9], [9], [23] adopt the multi-armed bandit model to
consider the scenario where workers’ qualities or costs are
unknown a priori. Nevertheless, these works either consider
only one task or do not take the incentive issues into accoun-
t. There are also a few works with incentive mechanism.
For instance, [39] designs an MAB mechanism to incentivize
electricity reduction in smart grids for T rounds. [40] pro-
poses a budget-limited MAB mechanism and proves that the
regret bound for any truthful budgeted MAB mechanism
is Ω(N

1
3B

2
3 ). [41] develops a mechanism that achieves ap-

proximate truthfulness and individual rationality. However,
these researches only consider the problem of pulling a
single arm in each round and assume the task sets for all
workers are identical, which is not always supported in
MCS. [42] designs an incentive mechanism to recruit a group
of workers in each round based on Thompson Sampling,
without considering the budget constraint.

8 CONCLUSION

In this paper, we focus on the worker recruitment prob-
lem in MCS while considering the unknown qualities and
strategic workers simultaneously. We model the worker re-
cruitment problem as a novel K-armed combinatorial multi-

armed bandit problem. Moreover, we adopt reverse auction
to incentivize workers’ participation as well as discourage
their strategic behaviors. Then, we propose two incentive
mechanisms called CMABA and ACMABA, which tackle
the trade-off of exploration and exploitation with theoretical
analysis, and achieve truthfulness, individual rationality
and computational efficiency. Finally, we analyze the worst
regret bounds and conduct extensive simulations on a real
trace to demonstrate the effectiveness of our mechanisms.
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