
1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3107187, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , FEBRUARY 2021 1

Secure Crowdsensed Data Trading
Based on Blockchain

Baoyi An, Mingjun Xiao, Member, IEEE, An Liu, Member, IEEE, Yun Xu, Member, IEEE,
Xiangliang Zhang, Senior Member, IEEE, and Qing Li, Senior Member, IEEE

Abstract—Crowdsensed Data Trading (CDT) is a novel data trading paradigm, in which each data consumer can publicize its data
demand as some crowdsensing tasks, and some mobile users (i.e., data sellers) can compete for these tasks, collect the
corresponding data, and sell the results to the consumers. Existing CDT systems generally depend on a data trading broker, which will
inevitably cause data consumers’ concerns on the trustworthiness of the systems and truthfulness of the data. To address this
problem, we propose a Blockchain-based Crowdsensed Data Trading (BCDT) system, mainly containing a smart contract, called
BCDToken. First, we replace the data trading broker with blockchain to guarantee the trustworthiness of the data trading. Meanwhile,
BCDToken adopts Blockchain-based Reverse Auction (BRA) to assign sensing tasks to data sellers. The BRA mechansim holds
truthfulness and individual rationality, which can ensure the data sellers to report data collection costs honestly and prevent sellers to
manipulate the auction. Moreover, we implement a Secure Truth Discovery and reliability Rating (STDR) mechanism in BCDToken
based on homomorphic cryptography, which can incentivize sellers to upload the truthful data and consumers to rate truthfully the
reliabilities of sellers based on the collected data without revealing any privacy of data. Additionally, we also deploy BCDToken on an
Ethereum test network to demonstrate its practicability and significant performances.

Index Terms—Blockchain, Crowdsourcing, Data trading, Mobile crowdsensing, Privacy, Reverse auction, Truth discovery.

F

1 INTRODUCTION

MAny online data trading systems [2] have emerged
in recent years due to the huge potential economic

value of data resources, such as CitizenMe, DataExchange,
Datacoup, Factual, and Terbine, etc., whereby data con-
sumers can search and purchase data they are interested in.
However, most data in the real world are preserved by few
research institutions or companies only for their own analy-
sis purposes rather than sharing them with others who have
data needs but cannot afford to collect data by themselves,
leading to limited volumes of data in trading systems. It is
hard to acquire appropriate data from these trading systems,
which has significantly suppressed the users’ willingness
to use these systems. To tackle this problem, a novel data
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Fig. 1: An Example of the CDT System

trading paradigm, called Crowdsensed Data Trading (CDT),
is proposed, in which the mobile crowdsensing technology
is adopted to provide data resources for trading, i.e., a large
crowd of mobile users are leveraged to collect data with
their smart phones [3]–[5].

Basically, a typical CDT system (e.g., Thingful [6],
Thingspeak [7]) consists of a data trading broker, some data
consumers, and data sellers (a.k.a., crowdsensing workers).
As shown in Fig. 1, the consumer publishes data collection
job via broker to employ a large amount of sellers to collect
data with their mobile phones according to some require-
ments (e.g., collecting scopes). Then, sellers sell the sensed
data to the consumer via broker. So far, there have been a
few works focusing on the CDT system design. For example,
[8] introduces a framework HORAE to trade private data
with temporal correlations from the perspective of a data
broker, which can guarantee balance and avoid arbitrage.
A profit-driven data collection framework is proposed in [9]
for crowdsensed data markets, in which a data procurement
auction is adopted to determine the minimum payment for
each data collection. The sellers and consumers propose
their selling and buying quantities, respectively, to match
the market supply and demand in the brokerage-based data
market [10]. However, these CDT systems have to rely on a
third-party as the data broker, which causes data consumers’
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concerns on the security of the whole data trading, and may
prevent them from using the systems.

On the other hand, blockchain [11], a newly-emerging
decentralized transaction recording technology, shows a
glimpse of solutions to fairness and transparency issues.
Data exchanges or transactions among mutually distrusted
users can be securely conducted on blockchains with no
need of a centralized trusted intermediary, which can avoid
high legal and transactional costs [12]. There exist some
special complex programs deployed on blockchains, called
smart contracts [13], which can automatically execute oper-
ations according to trading treaty conditions and enforce
the participants to fulfill their obligations. Hence, smart
contract can be introduced into CDT systems as a trusted
broker to conduct the data trading between sellers and
consumers. For example, the CDT framework in [14] sells
the aggregated results to consumers and pays for sellers
by their weight shares of results on the blockchain, which
protects data privacy by storing data separately in two semi-
honest cloud severs. Even though the blockchain technology
used in CDT systems can eliminate the influence of the
third-party data broker to some extent, there still are some
challenges for implementing a secure CDT system.

First, untrusted participant. From the system perspec-
tive, malicious participants (i.e, consumers or sellers) may
arbitrarily drop out or break the contracts halfway, causing
losses to others. Therefore, we devise some modifiers, a
kind of smart contract specific technology, and set life span
limitations for each procedure of the data trading to ensure
all participants to comply with the prescribed trading rules.

Second, untruthful cost. Untruthful sellers might report
fake data collection costs to achieve more rewards. As we
know, many auction mechanisms can ensure sellers to re-
port their costs honestly in crowdsensing systems [15]–[18].
So we design a Blockchain-based Reverse Auction (BRA)
mechanism to guarantee the truthfulness of costs.

Third, untruthful data. The consumers can use truth
discovery technique to derive the truth of data from noisy
data collected by different sellers [19], where the data truth
is a true data value that should be sensed to each collection
task, regarded as an unknown stochastic variable. But the
sellers might be untruthful to report inaccurate or low
quality data. We define a reliability metric for each seller
to indicate its collected data quality and rate each seller to
prompt him to report high quality data.

Fourth, untruthful rating. The rating scores from con-
sumers imply the overall data quality of sellers and are
used to iteratively update sellers’ reliabilities. However, the
consumers may not rate truthfully the sellers, such that
we design a Secure Truth Discovery and reliability Rating
(STDR) mechanism to force consumers to give truthful
rating scores based on the data. Additionally, the privacy-
preserving of the sensed data is also critical in STDR.

Based on the above ideas, we propose a Blockchain-
based Crowdsensed Data Trading (BCDT) system in this
paper, which mainly contains a smart contract, called BCD-
Token. BCDToken as the broker will execute the BRA mech-
anism for seller selection and the STDR mechanism over any
numerical data for truth discovery and privacy-preserving
truthful rating. As shown in Fig. 1, any consumer can start a
CDT by issuing the data demand via BCDToken (e.g., report

traffic conditions of multiple locations), and the sellers who
have registered in BCDToken can bid for their interested
tasks. BCDToken runs automatically to determine the win-
ners and payments. After the sellers collect and upload data,
the consumer can find the truth of data, rate the sellers via
STDR, and pay rewards to the sellers via BCDToken.

Overall, the major contributions are as follows:
1) We design a BCDT system, which mainly contains a

smart contract embedded with the BRA and STDR
mechanisms, i.e., BCDToken. By employing BCDToken
as the data trading broker, BCDT can ensure the trust-
worthiness of trading process, the privacy-preserving
of sensed data and the derived truth, as well as the
truthfulness of sensed data, the sensing costs, and the
rating scores on sellers’ reliability. To the best of our
knowledge, BCDT is the first system that can obtain
these security properties simultaneously.

2) We propose a BRA mechanism to select sellers and de-
termine payments for data trading by letting blockchain
serve as the reverse auctioneer and adopting a two-
step bidding strategy. BRA can ensure that all sellers
follow the workflow of auction and report their costs
truthfully. Moreover, no one can manipulate and benefit
from the reverse auction by eavesdropping others’ bids
during the trading.

3) We propose a STDR mechanism to provide the func-
tionalities of privacy-preserving truth discovery and
reliability rating for data trading based on the homo-
morphic encryption and data hiding techniques. STDR
can incentivize sellers to report the truthful sensed data
and force the consumer to rate the reliability truthfully
based on the data, during which the data privacy can
be protected from leakage.

4) We implement a prototype of BCDT and deploy BCD-
Token to an official Ethereum test network. Extensive
simulations are conducted to demonstrate the signifi-
cant performances and the practicability of BCDToken.

The paper is organized as follows. We introduce some
preliminaries and design goals in Sec. 2, and present a
system model of BCDT in Sec. 3. The BRA and STDR
mechanisms are elaborated in Sec. 4 and Sec. 5, respectively.
System analyses are carried on in Sec. 6. We present simula-
tions and evaluations in Sec. 7. Finally, we review the related
works in Sec. 8 and conclude in Sec. 9.

2 PRELIMINARIES AND DESIGN GOAL

2.1 Smart Contacts

In this paper, we deploy a smart contact on the blockchain to
act as the broker of data trading. Essentially, smart contact
is a kind of special program, which can be automatically
executed on the blockchain, so as to enforce all participants
to fulfill their obligations. Moreover, the consensus proto-
cols of blockchains can guarantee the execution correctness.
Each blockchain user, identified by its account (blockchain
address), can send transactions to interact with smart con-
tracts. Each transaction refers to a signed data package,
called msg in smart contracts, and has a recipient. It also
has a VALUE field which is the amount of wei to be trans-
ferred from sender to recipient. ether is a digital currency
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in blockchain: 1 ether =1018 wei. When a smart contract
receives a transaction (msg), it can obtain two parameters: 1)
msg.sender: the sender’s account. 2) msg.value: the amount
of wei. We also specify three features of smart contracts:

• Timing. A smart contract has a time clock which is
modeled as a continuously increasing variable now.
now is an alias of the timestamp on the blockchain.

• Function Modifier. Modifiers are inheritable properties
of smart contracts which are used to automatically
check a prior condition to executing the function.
- ”payable” is a reserved keyword in smart contracts

and a kind of modifier. Functions with ”payable” are
able to receive ether while being called.

- ”require” can check for conditions and throw an
exception if the condition is not met, such as user
inputs, the responses from contracts, and the state
conditions prior to state changing operations.

• Event. Events facilitate communication between smart
contracts and their user interfaces. In traditional we-
b development, a server response is provided in a
callback to the frontend. In blockchains, events can
be generally considered as asynchronous triggers with
data. When a contract wants to trigger the frontend, the
contract emits an event. As the frontend is watching for
events, it can take actions, display messages, etc.

2.2 Homomorphic Encryption

The homomorphic encryption technique is used in this
paper to realize the trustworthy evaluation on each seller’s
reliability and protect the data privacy, defined as follows.

Definition 1 (Homomorphic Encryption [20]). A homomor-
phic encryption scheme is a public-key cryptosystem with such
a homomorphic property that the “addition” operation can be
applied to the encrypted data without decrypting them. Let Zq be a
prime field, ⊗ and ⊕ be the multiplication and addition operations
in this field, i.e., x⊗y

def
=xy mod q and x ⊕ y

def
=x+y mod q for

∀x, y∈Zq . Then, the homomorphic encryption scheme satisfies:

E[m1]⊗E[m2]=E[m1⊕m2], (1)

where m1,m2∈Zq are two plaintexts, and E[·] is the homomor-
phic encryption operation.

Here, we adopt the well-known Paillier cryptosystem [21] for
this encryption scheme. For a set of values M , we let E[M ] =
{E[m]|m ∈ M}.

2.3 The Security Model

In this paper, we consider such a security model that both
of the consumer and sellers are rational participants. That is
to say, each participant will follow the whole data trading
process if it can benefit from this process; no one is willing
to bear a penalty, so as to maliciously destroy the entire
data trading. Here, the security is an extended concept in
the system level, mainly including three aspects. The first
one is individual rationality, defined as follows.

Definition 2. (Individual Rationality). If each participant can
obtain a non-negative profit after completing the data trading, we
say the whole system is individually rational.

Under our security model, if a data trading system meets
the above individual rationality property, all sellers and
the consumer will follow the whole data trading rule so
as to obtain their profits. Despite this, it does not mean
that these participants are trustworthy since they still might
submit untruthful data, report untruthful data collection
cost, or evaluate the data with untruthful scores during
data trading. Therefore, our security model also includes
the truthfulness.

Definition 3. (Truthfulness). Let Xi be an input of the i-th
participant in the data trading, where 0≤i≤n, i=0 represents
the consumer, and 1≤ i≤n represents n sellers. Assume that xi

is the truthful value of Xi, but the participant can manipulate its
input by submitting another value x′

i for Xi. The corresponding
profits are denoted by Profiti(Xi=xi) and Profiti(Xi=x′

i),
respectively. Then, if for any Xi,

Profiti(Xi=xi) ≥ Profiti(Xi=x′
i), (2)

we say that the data trading system is truthful. Here, Xi might
be the data for trading, the cost of collecting data, or the score
on evaluating the seller’s reliability. Accordingly, the profit is also
not limited to economic reward.

Additionally, the security model also takes the data
privacy into consideration. We extend the concept of privacy
in [22] and define it as follows.

Definition 4 (Privacy-Preserving). Denote the data trading as
a functionality computed by a consumer and n sellers jointly, i.e.,
F(X0, X1, · · · , Xn)= (F0,F1, · · · ,Fn), where Xi and Fi are
the input and output of the i-th party (0≤ i≤n, where i=0
represents the consumer and 1≤i≤n represents n sellers), both
belonging to a prime field Zq . For I={i1, · · · , iκ}⊂{0, · · · , n},
we let FI denote the subsequence Fi1 , · · · ,Fiκ . Consider a
data trading protocol for computing F . Define all messages that
the i-th party can observe during the execution of the proto-
col as the view of this party and denote it as V IEWi. Let
V IEWI

def
=(I, V IEWi1 , · · · , V IEWiκ). Then, we say that the

protocol privately computes F if there exists a polynomial-time
algorithm, denoted as A, such that for every I above

A(I, (Xi1 , · · · , Xiκ ,FI))
C
=V IEWI , (3)

where C
= denotes computational indistinguishability.

Eq. (3) asserts that the view of each party in I can be efficiently
simulated based solely on its inputs and outputs. This implies that
no extra information can be derived by others during the execution
of the protocol, and thus the privacy can be preserved.

Now, we define the security model as follows:

Definition 5. (The Security Model). If a data trading system
meets the individual rationality, the collected data, the data
collection cost, and the rating score satisfy the truthfulness, and
meanwhile the data for trading and the truth derived from data
also meet the privacy-preserving property, we say that the system
is secure.

2.4 Design Goal

Consider a data trading scenario where a consumer wants
to collect sensed data from some Points of Interest (PoIs)
during a particular time. Moreover, the consumer has some
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Fig. 2: The Framework of BCDT

quality requirements for the data collected from each PoI. It
is not a cost-effective way to deploy data collection sensors
to all PoIs, and the consumer also cannot finish this work by
himself manually and individually. So it intends to recruit a
crowd of mobile users to collect sensed data and purchase
the data from them. Then, our goal is to design a data
trading system for them based on blockchain under the
above security model. In such a system, the consumer and
sellers are constrained to follow the whole data trading
process, submit truthful data collection cost, make truthful
evaluation, upload truthful data and protect the privacy of
trading data and derived truth.

3 THE BCDT SYSTEM

In this section, we propose a secure Blockchain-based CDT
system, i.e., the BCDT system. This system mainly includes
a consumer, some sellers, a smart contract deployed on the
blockchain, i.e., BCDToken, and an IPFS-based Distribut-
ed Data Storage under the blockchain (IDDS), in which
BCDToken acts as a broker to negotiate the data trading
between a consumer and some sellers. These components
are illustrated in Fig. 2 and also can be defined as follows.

Definition 6 (Consumer, Job, Tasks and Requirement). The
consumer is a data service requester who has a data requirement
and wants to buy the desired data through the BCDT system. The
data requirement can be represented as a data collection job, com-
posed of a series of sensing tasks, i.e., Job

def
= ⟨T , ϵ, τstart, τend⟩.

Here, T includes l location-related sensing tasks, each of which
corresponds to a PoI, denoted as T ={t1, t2, · · · , tl}. The sensed
data need to be collected from the l PoIs between τstart and τend,
where τstart and τend are the earliest start-time and the latest
finish-time of the data collection respectively. ϵ={ϵj |tj∈T } are
the minimum quality requirements of the sensed data. That is, the
quality of task tj ’s sensed data is no less than ϵj .

Definition 7 (Seller, Cost, and Reliability). Sellers are a
crowd of mobile workers who participate in the job, denoted by
W={w1, w2, · · · , wn}, where n is the number of sellers. Each
seller wi has an interested tasks subset Ti (⊆T ). Performing the
sensing tasks in Ti will produce a cost, denoted by ci. Moreover,
the seller wi has a reliability value ri which can be seen as the
quality of its sensed data. Here, we also denote the sellers who
execute tj by Wj (⊆W).

Definition 8 (IPFS-based Distributed Data Storage, IDDS).
IDDS is a distributed data storage system based on the Inter-
Planetary File System (IPFS) protocol, which can use content-
addressing to uniquely identify each data file in a peer-to-peer
distributed data sharing network. In BCDT, sellers will encrypt

TABLE 1: Description of major notations
Variable Description
wi, tj the i-th seller, the j-th task.
l, n the number of tasks and the number of sellers.
T , Ti the set of all tasks and the set of tasks that wi deals with.
W , Wj the set of all sellers and the set of sellers who execute tj .
τstart, τend the start-time and the finish-time of data collection.
ϵ the minimum reliability requirements of all tasks.
βi, enβi the bid value of wi and the encrypted bid value of wi.
Bi, enBi the bid profile of wi and the encrypted bid profile of wi.
ri, R the reliability of wi and the reliabilities of all sellers.
S the set of all winners (i.e., selected sellers).
pi, P the payment of wi and the payments of all winners.
Datai, Data the sensed data of Ti and the set of all sensed data.
EnDatai,
EnData

the encrypted data of Ti and the set of all encrypted data.

oi, O the rating score of wi and the rating scores of all winners.
pk, sk public key and secret key.
Epk[·], Dsk[·] homomorphic encryption and decryption functions.
dataij the observed data of tj from wi.
µj , µ̂j the truth value of tj and the estimate truth value of tj .
qij , Qi the quality of tj from wi and the overall quality of wi.
λ, η two matrices to verify the truthfulness of rating scores.

their collected data and store the encrypted data on IDDS, denoted
as EnData={EnDatai|wi ∈W}. IDDS provides a persistent
and reliable storage for these encrypted data. The consumer can
download these data according to the returned addresses.

Definition 9 (BCDToken). BCDToken is a smart contract
deployed on the blockchain, acting as a broker of the data trading
between the consumer and sellers. It maintains a registry R,
a dictionary data type, to record sellers’ reliability values, i.e.,
R(wi)=ri, which is also a similar metric as in [23]. Besides, it
includes two major functionality modules: trading and rating. The
first module selects some sellers for the data trading according to
the requirements from the consumer and determines the payments
for the sellers who complete the sensing tasks. The second module
helps the consumer discover the truth values of the data collected
by sellers and make the truthful rating for each seller’s reliability.
⟨τbid, τreveal, τtransfer⟩ are three time constraints in BCDToken,
where τbid and τreveal are the given time durations that allow
sellers to participate in the trading process, and τtransfer is
the given time duration for sellers to transfer data in the rating
process.

The workflow of BCDT can be roughly divided into four
phases: initialization, trading, rating, and harvest, as shown
in Fig. 2.

Phase 1: Initialization. All participants register in BCD-
Token, each of whom first offers some ethers no less than
$deposit to BCDToken, where $deposit is the minimum
margin requirement to enter the data trading. When a con-
sumer wants to start a CDT, it will send a transaction (msg)
which contains the data collection job description (i.e., Job)
to invoke a function of Initiate() in BCDToken. The detailed
function is given in Fig. 3. First, it checks whether the
deposit offered by the consumer (msg.value) is no less than
the deposit threshold $deposit, i.e., msg.value ≥ $deposit.
Then, the function records the account of the sender as
the consumer (msg.sender), the sensing tasks T , the data
quality requirements ϵ, and the consumer’s public key pk.
Next, it sets some parameters of time constraints for the
subsequent phases. Finally, the function emits Notify event
to inform all registered sellers of the data collection job.

Phase 2: Trading. After receiving the notification, sellers
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Initiate(T , ϵ, τstart, τend, pk) payable:
1. Require msg.value≥$deposit.
2. Set consumer=msg.sender and store T , ϵ, pk.
3. Set tbid=now+τbid, treveal=tbid+τreveal, ttrasfer=τend+τtrasfer .
4. Trigger Notify event to inform the registered sellers.

Fig. 3: The Initiate Function in BCDToken

Refund():
1. Require msg.sender=consumer.
2. Update R with O.
3. Compute the remaining rewards:

$rewards=$rewards−
∑

wi∈S P(wi).
4. Transfer $rewards to msg.sender.

Payment():
1. Require Bids(msg.sender).βi ̸= NULL.

◃ If it is NULL, it is untruthful according to step 4 in Fig. 5.
2. If msg.sender ∈ S, transfer P(msg.sender) to msg.sender.

Fig. 4: The Refund and Payment Functions in BCDToken

first submit the bids for their desired sensing tasks according
to the corresponding costs. Then, BCDToken selects some
sellers to conduct the tasks and determines payments. Next,
the selected sellers are informed to collect data only after
the consumer transfers some ethers as the rewards to BCD-
Token, which are no less than the total payments. Finally,
sellers will encrypt their collected data using the consumer’s
public key, upload them onto IDDS, and return the cor-
responding addresses to BCDToken. Here, we propose a
Blockchain-based Reverse Auction (BRA) mechanism with
two-step bidding to select the sellers and compute the corre-
sponding payments for the data trading, which can ensure
sellers to report their data collection costs truthfully. The
selected sellers are called the winners of auction, denoted by
S(⊆W), and their payments are denoted as P={pi|wi∈S}.
The detailed BRA mechanism is presented in Sec. 4.

Phase 3: Rating. The consumer first receives the address-
es of the data stored on IDDS from BCDToken. Then, ac-
cording to the addresses, the consumer downloads the data
from IDDS, decrypts them to get the plaintext data using
its private key, and further derives the corresponding truth
values. Next, based on these truth values and the plaintext
data, the consumer gives some rating scores to evaluate
sellers’ data collection qualities, which are used to update
their reliability values. In this phase, we propose a Secure
Truth Discovery and reliability Rating (STDR) mechanism
on the blockchain, by which the consumer can determine the
truth value of each task and give the truthful rating scores,
while protecting the privacy of collected data from being
revealed. The rating scores are denoted by O={oi|wi ∈S}.
The detailed STDR mechanism is presented in Sec. 5.

Phase 4: Harvest. Finally, the consumer retrieves the re-
maining rewards and sellers acquire their payments through
BCDToken to complete the whole data trading. This is con-
ducted through two functions Refund() and Payment(),
as shown in Fig. 4. As for the consumer, 1) Refund()
requires that the invoker (msg.sender) is the consumer and
2) updates reliabilities R with O. 3) Refund() computes the
remaining rewards, i.e., $rewards=$rewards−

∑
wi∈S P(wi)

and 4) transfers the remaining rewards to the consumer. As
for each seller wi, 1) Payment() checks whether the bid βi

of invoker wi (msg.sender) is 0, because an untruthful sell-
er’s bid is 0 due to the checks in RevealBid(). 2) Payment()

TABLE 2: Description of major notations for BCDToken
Variable Description
ether, wei the virtual currency units on blockchain.
msg the alias of transaction in smart contracts.
msg.sender the sender of msg.
msg.value equals to the amount of ethers attached in msg.
now the timestamp of blockchain.
payable the specific keyword for mandatory payment.
require the specific keyword for the implementation of modifiers.
$deposit the refundable deposit for participating in a CDT.
$rewards the minimum total rewards for sellers.
tbid, treveal,
ttransfer

the latest-finish time points of bid commitment, bid reveal
and data transfer.

Bids,EnBids the bid profiles and the encrypted bid profiles in BCDToken.

transfers the payment to wi if it is verified to be a winner.
Additionally, for ease of reference, we list the major

notations in Table 2.

4 THE BRA MECHANISM

In this section, we propose the BRA mechanism for BCDT
to realize secure data trading. First, BRA adopts the truthful
reverse auction mechanism to select sellers and determine
the corresponding payments, whereby sellers will report
their sensing costs honestly during the data trading. Second,
BRA employs the BCDToken smart contract as the reverse
auctioneer, which enforces all sellers to follow the workflow
of auction, making the trading process trustworthy. Third,
BRA utilizes a two-step bidding strategy to prevent sellers
from manipulating the reverse auction by eavesdropping
others’ bids. Here, the BRA mechanism only takes account
of the single-minded auction [24], but it can be extended to
support other truthful auction mechanisms: multi-minded
auction [25], double auction [26], online auction [27], etc.
The problem formulation and detailed design of the BRA
mechanism are presented as follows.

4.1 Problem Formulation

In the trading phase, each seller wi ∈ W will submit a
bid profile Bi = (βi, Ti) to compete for the sensing tasks,
where the bid βi actually is the reward claimed by wi to
compensate for the cost ci of completing sensing tasks in
Ti. In general, the bid βi is not necessarily equal to the
cost ci, since the seller wi might manipulate the claimed
cost to obtain more rewards. However, when the auction
mechanism is truthful, claiming false costs will not bring
any extra reward, and thus the seller will report its cost
honestly, i.e., βi = ci. After receiving the bids from sellers,
BCDToken will select some sellers to conduct the sensing
tasks and determine the corresponding payments through
the BRA mechanism. The goal is to minimize the total cost,
while ensuring the data quality contributed by the selected
sellers no less than the threshold ϵ. More specifically, the
seller selection problem can be formulated as follows:

Minimize : C(S)=
∑

wi∈S βi (4)
Subject to : S⊆W (5)

σS
j =

∑
wi∈S∩Wj

ri≥ϵj , 1≤j≤ l (6)

Here, Eq. (4) is the optimization objective. In the following
subsections, we will show that the BRA mechanism is
truthful. Thus, we can directly set ci = βi in Eq. (4). In
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CommitBid(Ti, enβi) payable:
1. Require now ≤ tbid and msg.value ≥ $deposit.
2. Set EnBids(msg.sender)=(Ti, enβi,msg.value).

◃ wi=msg.sender, the deposit of wi=msg.value.

RevealBid(Ti, βi, noncei):
1. Require tbid ≤ now ≤ treveal.
2. Require EnBids(msg.sender).enβi=sha3(Ti, βi, noncei).
3. Require EnBids(msg.sender).Ti=Ti.
4. Set Bids(msg.sender) = (Ti, βi).

Fig. 5: The Two-Step Bidding Strategy of BRA

Eq. (6), σS
j is the total reliability of selected sellers (a.k.a.,

auction winners), which indicates the total data quality
contributed by these sellers. Additionally, the above seller
selection problem is NP-hard because it can be seen as a
complex weighted set coverage problem [28].

4.2 The Detailed BRA Mechanism
The design goal of BRA is to make the whole reverse auction
process secure. However, traditional auction mechanisms
cannot ensure the auctioneer to be trustworthy. Moreover,
sellers might not follow the trading rules, e.g., the seller
maliciously exits the auction early at will, or the seller
manipulates the auction by postponing its own bid and
eavesdropping others’ bids. Thus, BRA lets BCDToken act
as the auctioneer and adopts a two-step bidding strategy to
ensure that the whole auction is conducted securely. More
specifically, BRA consists of the following three parts:

4.2.1 Two-step Bidding
At the beginning of BRA, each seller submits its bid to BCD-
Token. Due to the transparent characteristic of blockchain,
the bid value is publicly visible. To prevent potential ad-
versaries to eavesdrop the bid value and manipulate the
auction, we divide the bid commitment into two steps and
use two functions to implement this process in Fig. 5.

Step 1: Commit Encrypted Bid. The first step bid-
ding is to submit encrypted bid profiles. First, each seller
wi computes an encrypted bid enβi using Secure Hash
Algorithm-3 (SHA-3) [29]. SHA-3 takes as input its ac-
count wi, its bid βi, and a randomly selected noncei,
i.e., enβi = sha3(wi, βi, noncei). Then, the seller sends it-
s encrypted bid profile enBi = (Ti, enβi) to BCDToken.
BCDToken uses a function CommitBid() to check whether
the current time (now) upon receiving bid commitment is
no larger than the specified latest bid finish time (tbid),
i.e., now ≤ tbid. Meanwhile, it also checks whether the
seller offers adequate deposit to take part in the auction,
i.e., msg.value ≥ $deposit. Finally, CommitBid() uses the
dictionary-type storage EnBids, indexed by the seller’s
account, to record enBi and its deposit.

Step 2: Reveal Real Bid. The second step bidding is to
submit unencrypted bid profiles and verify them using the
encrypted versions. First, BCDToken is invoked by the seller
wi to send Ti, βi, and noncei. Then, a function RevealBid() is
used to check whether the invocation time meets time limits,
i.e., tbid≤now≤treveal. Also, RevealBid() checks the legality of
the bid profile, which requires that the revealed bid value βi

and tasks subset Ti are same with the original recorded ones.
If wi passes the time and bid checks, RevealBid() will use
the dictionary-type storage Bids to record the revealed bid.
Otherwise, wi is untruthful and its deposit will be forfeited.

SellerSelection():
1. Require now ≥ treveal and msg.sender = consumer.
2. Repeat until G(S) =

∑l
j=1 ϵj :

1) for ∀Bi, compute ρi =
vi(S)

βi
;

2) Record the index of the maximum ρi as i∗;
3) Add wi∗ to S, set C = C + βi∗ .

3. Store (S, C).

Pricing(wi):
1. Require msg.sender = consumer and now > ttransfer .
2. Create a empty winner set S′.
3. Record (Ti, βi) = Bids(wi) and set Bids(wi) = NULL.
4. Repeat until G(S′) =

∑l
j=1 ϵj :

1) Compute ρk =
vk(S′)

βk
, for ∀wk /∈S′ and Bids(wk) ̸=NULL;

2) Record the index of the maximum ρk as k∗;
3) if P(wi)<

βk∗vi(S
′)

vk∗ (S′) , Set P(wi)=
βk∗vi(S

′)
vk∗ (S′) ;

4) Add wk∗ to S′.
5. Set Bids(wi) = (Ti, βi), delete S′.
6. Trigger AuctionEnd event to inform all winners (S).

Fig. 6: The reverse auction of BRA

4.2.2 Seller Selection

Since the seller selection problem is NP-hard, there is no op-
timal solution in polynomial time. Thus, we adopt a greedy
strategy to select sellers, which can achieve an approximate
optimal solution [28]. The criterion is that the seller who has
the largest reliability to execute the most tasks with the least
cost will be selected first as an auction winner.

First, we define a reliability truncation function G(S),
which indicates the total reliability contributed by the win-
ners in S until it reaches the threshold ϵ.

G(S) =
∑

l
j=1 min{σS

j , ϵj} (7)

The corresponding marginal function is denoted as vi(S):

vi(S) = G(S ∪ {wi})−G(S), where wi∈W−S. (8)

Based on Eq. (8), BCDToken uses a functionality
SellerSelection() to determine the auction winners, as
shown in Fig. 6. When the consumer invokes the func-
tionality SellerSelection(), BCDToken will check whether
the invocation time and invoker are legal. Then, it starts
to select sellers by initializing an empty set S . The process
will be conducted iteratively. In each iteration, BCDToken
computes the weight ρi=

vi(S)
βi

for each seller and records the
seller wi∗ who has the maximum weight as the winner in the
current iteration. Meanwhile, BCDToken updates the total
cost and the winner set S . The algorithm terminates when
G(S)=

∑l
j=1 ϵj , which means that the winners can meet the

quality requirements of all sensing tasks. The computation
overhead is O(n2l), where n is the number of sellers and l
is the number of tasks.

4.2.3 Payment Computation

After selecting the sellers, BCDToken uses a functionality
Pricing() to determine the payment for each winner wi ∈S .
To compute the payment pi for each auction winner wi∈S ,
we define four notations. Let B−i denote all bids except Bi,
and S ′ be the winner set which is iteratively produced by
our greedy selection strategy after we remove wi from W .
Moreover, the corresponding reliability truncation function
is G(S ′) and the marginal function is vi(S ′). Then, the
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payment pi can be computed as follows:

pi = max
{βk vi(S ′)

vk(S ′)
|k = 1, 2, · · ·

}
, (9)

where k is the number of iteration and βk is the correspond-
ing winning bid value.

The detailed payment computation process is shown in
Fig. 6. First, the functionality Pricing() checks the legality of
the invoker and invocation time in Step 1. Then, it initializes
the set S ′ and creates a new storage to record the bid profile
Bids(wi) of the current winner wi in Steps 2-3. Next, the
payment pi is calculated according to Eq. (9) in Step 4.
Finally, BCDToken deletes the temporary set S ′ to free the
space owing to the expensive storage cost on the blockchain.
The computation overhead of the whole process is O(n3l),
where n is the number of sellers and l is the number of tasks.

5 THE STDR MECHANISM

In the BCDT system, sellers are untrustworthy so that
they might submit forged data for trading to evade the
corresponding sensing costs. To stimulate sellers to submit
truthful sensed data, we let the BCDToken smart contract
record sellers’ reliabilities, based on which the truth values
of sensed data are derived by applying truth discovery tech-
niques. Moreover, we let the consumer evaluate sellers after
each data trading by giving a certain rating scores according
to their sensed data. BCDToken will maintain and update
sellers’ reliabilities using these rating scores. Owing to the
intrinsic characteristic of blockchain, the reliability becomes
a public, persistent, and tamper-resistant reputation metric
of each seller. Sellers will try their best to improve reliability
values for obtaining the better reputation and rewards. Such
motivation will incentivize them to submit truthful sensed
data. Additionally, we also need to protect sellers’ sensed
data from being revealed to any others (except the data
owner and the consumer) during the truth discovery and
rating process. Based on these considerations, we propose
the STDR mechanism for BCDT to ensure the truthfulness
of trading data in this section.

The crucial design of STDR is to make the consumer
give truthful rating scores for sellers. However, this is
challenging because the consumer is also untrustworthy
and it might maliciously evaluate some sellers by giving
decreased rating scores. To tackle this problem, we let the
BCDToken smart contract act as a trustworthy supervisor to
verify the truthfulness of rating scores. More specifically, the
consumer first derives the truth of sensed data and calcu-
lates the rating scores according to the differences between
seller’s data and the truth. Likewise, BCDToken computes
the encrypted rating scores by applying the homomorphic
encryption techniques. Note that BCDToken can only get to
know the encrypted sensed data. Thus, it has to conduct the
verification on encrypted rating scores, in which it needs
to infer whether two encrypted scores are equivalent. Since
two same rating scores might produce different homomor-
phically encrypted data, we cannot verify the equivalence
by directly comparing two encrypted rating scores. By using
data hiding techniques, we propose a novel light-weight
comparison protocol to determine the equivalence of two

encrypted data. Based on this idea, STDR can efficiently ver-
ify the truthfulness of rating scores while protecting the pri-
vacy of sensed data from leakage. Untruthful rating scores
will incur a certain monetary punishment to the consumer.
To the best of our knowledge, STDR is the first privacy-
preserving truth discovery mechanism with truthful rating.
The detailed STDR mechanism mainly includes the privacy-
preserving truth discovery and truthful reliability rating,
described as follows.

5.1 Privacy-preserving Truth Discovery
To protect the data privacy, sellers are required to upload the
data ciphertext EnData to IDDS rather than the data plain-
text Data, where EnData is encrypted with the consumer’s
homomorphic public key pk, i.e., EnData = Epk[Data].
Then, the consumer can download EnData from IDDS and
decrypt them with its private key sk to obtain Data. To
prompt the sellers to report truthful data, the consumer
needs to conduct the truth discovery and reliability rating
on Data. Hence, the consumer will first execute truth dis-
covery to find the truth of data out of the data plaintext
Data (i.e. a variety of reports from winners) which is unknown
a priori, denoted as µ={µ1, µ2, · · · , µl}. Note that STDR can
be applied to any numerical data, and we use binary data
here to illustrate the truth discovery and rating processes
for a better understanding. That is, we consider ‘true’ or
‘false’ task, such as whether there exists traffic jams, so the
observed data of each task tj from the seller wi is denoted
by a binary value dataij={−1, 1}(∈Data). dataij=1 means
that wi reports traffic jam happens in PoI j (i.e., tj) and
dataij=−1 otherwise. However, a seller wi may not process
tj , so we set dataij as 0 for convenience of calculations.

Data =


1 −1 · · · 0
0 1 · · · 0
...

...
. . .

...
−1 0 · · · 1

 (10)

where Datai={dataij |tj ∈Ti} indicates the data from wi.
As mentioned before, the larger the reliability of the

seller wi, the higher quality of its sensed data. The reliability
ri of the seller wi will be regarded as the weight of its sensed
data to compute the truth. According to the observed data
matrix Data and the sellers’ reliabilities. We can calculate
the weighted average of a task tj ’s sensed data as the
estimate truth value µ̂j :

µ̂j =

∑
wi∈Wj∩S dataij ·ri∑

wi∈Wj∩S ri
(11)

Then, we derive that if µ̂j≥0, µj=1; Otherwise, µj=−1.
Here, since no one knows the truth value, for ∀µj ∈ µ, we
use the data of tj from multiple sellers to estimate the truth
µj . The accuracy of the estimated truth value µ̂j depends
on each participated seller’s reliability. Hence, we leverage
the reliability as the weight to estimate the truth value. To
truthfully evaluate the reliability of sellers, we then in turn
use truthful rating to calculate the reliability of sellers.

5.2 Truthful Rating
In this subsection, we first calculate the rating scores on
evaluating the sellers’ reliabilities, and then give the truth-
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Protocol 1 The STDR Mechanism
Input: BCDToken:S, T ,R; Sellers:Data; Consumer:(pk, sk)
Output: BCDToken: R∗; Consumer: Q

1: The consumer creates a pair of public and private keys
of homomorphic encryption, i.e., pk, sk, and sends pk via
Initiate() to BCDToken at the beginning of data trading.

2: After receiving pk from BCDToken, each winner wiinS en-
crypts its data with pk, i.e., EnDatai = Epk[Datai], and
sends EnDatai to IDDS and the data address to BCDToken.

3: After receiving the data address from BCDToken, the
consumer downloads each piece EnDatai ∈ EnData
from IDDS and decrypts EnDatai with sk, i.e., Datai =
Dsk[EnDatai]. Then the consumer computes qualities Q of
data according to Eq. (12) and sends Q to BCDToken.

4: After receiving Q from consumer, BCDToken computes
Epk[q

′
ij ]∈Epk[Q

′] according to Eq. (18) and obtains Epk[qij ]∈
Epk[Q] by encrypting qij . Then BCDToken creates two ma-
trices λ, η and stores the SHA-3 encrypted η, i.e., sha3(η).
BCDToken calculates Epk[λij(qij−q′ij)+ηij ]∈Epk[λ(Q−Q′)+η]
for each qij , and sends Epk[λ(Q−Q′)+η] to the consumer.

5: After receiving Epk[λ(Q−Q′)+η] from BCDToken, the con-
sumer decrypts them to get η′, and sends η′ to BCDToken.

6: After receiving η′ from consumer, BCDToken encrypts η′

with SHA-3, and compares sha3(η′) with sha3(η) to verify
the truthfulness of the consumer.

7: After the truthfulness verification, BCDToken rates each
seller according to Eq. (14) to obtain the scores O, and
updates the sellers’ reliabilities R according to Eq. (15).

fulness verification for rating scores.

5.2.1 Reliability Rating
In order to rate these sellers, we first need to measure the
qualities Q={qij |wi∈S, tj ∈Ti} of their sensed data. The
quality qij of task tj ’s data collected by the seller wi (∈ S) is
the difference between the estimate truth value µ̂j and the
observed value dataij . So we determine the overall quality
Qi of the seller wi as follows:

qij = dataij − µ̂j (12)

Qi =
(∑

tj∈Ti

|qij |
)
/|Ti| (13)

where the lower value of Qi, the better quality of the data.
BCDToken can compute the average sensing quality of

sellers and get the rating scores O={oi|wi∈S} as follows:

oi =
(∑

wi∈S
Qi

)
/|S| −Qi (14)

If Qi is less than the average quality, oi<0, whereas oi>0.
After that, BCDToken updates the reliability of each

seller according to the rating scores O as follows:

ri = ri + α · oi (15)

where α is the impact factor that rating scores influence ri.
Then BCDToken will normalize all reliabilities of data

sellers so as to select sellers in the trading phase of next
CDT. The normalization process is as follow:

r∗i = (ri − rmin)/(rmax − rmin) (16)

where rmin=min{ri|wi∈W} and rmax=max{ri|wi∈W}.

5.2.2 Truthfulness Verification
The qualities Q can be merely calculated by the data con-
sumer, because the real sensed data required for calculation

Fig. 7: The workflow of STDR

only can be obtained by the data consumer. However, the
consumer might be reluctant to spend time rating these
sellers and fabricate the quality values, since it just needs
the truth values. In order to prevent the quality values
manipulation from happening, BCDToken needs to check
that whether the consumer indeed accomplishes to measure
the sensed data and returns the truthful qualities Q.

First, BCDToken asks for all qualities Q from consumer
and encrypts Q again to get Epk[Q] = {Epk[qij ]|qij ∈Q}.
Then BCDToken computes Epk[Q

′] = {Epk[q
′
ij ]|q′ij ∈ Q′}

directly according to the encrypted data Epk[Data] =
{Epk[dataij ]|dataij ∈Data}. We can deduce Epk[q

′
ij ] from

Epk[Data] as follows:

qij
def
=dataij − µ̂j (17)

Epk[q
′
ij ]=Epk[dataij ]⊗Epk[µ̂j ]

−1

=Epk[dataij ]⊗Epk[

∑
wi∈Sj

dataij ·ri
RSj

]−1 (18)

=Epk[dataij ]⊗E[data1j ]
−r1
RSj ⊗· · ·⊗E[dataKj ]

−rK
RSj

where Sj=Wj∩S , RSj =
∑

wi∈Sj
ri, and K= |Sj |.

Second, to verify whether each qij ∈Q is truthful (i.e.,
qij=q′ij) in case of only having Epk[Q

′], BCDToken needs
to compare Epk[qij ] and Epk[q

′
ij ]. But we may get two

unequal encrypted results when using the same homomor-
phic encryption for two equal numbers, e.g., if e=1 and
e′ = 1, Epk[e] ̸=Epk[e

′]. BCDToken cannot determine that
whether qij = q′ij by comparing Epk[qij ] and Epk[q

′
ij ] for

equality directly. So we design a light-weight truthfulness
verification trick of qualities as below.

Third, BCDToken randomly creates two matrices λ=
{λij |dataij ∈ Data} and η = {ηij |dataij ∈ Data}, and
computes each Epk[λij(qij−q′ij)+ηij ] ∈ Epk[λ(Q−Q′)+η]
as follows:

Epk[λij(qij−q′ij)+ηij ]

= Epk[qij−q′ij ]
λij⊗Epk[ηij ]

= Epk[qij ]
λij⊗Epk[q

′
ij ]

−λij⊗Epk[ηij ] (19)

Fourth, BCDToken sends Epk[λ(Q−Q′)+η] to the con-
sumer. The consumer is required to decrypt Epk[λ(Q−Q′)+
η] and send the decrypted values Dsk[Epk[λ(Q−Q′)+η]]=
η′={η′ij |dataij ∈Data} to BCDToken.

For ∀i, j, if η′ij=ηij , we say η′=η. So the rating is proved
to be truthful in Theorem 4. It should be noticed that data
on the blockchain are public visible, so we record the SHA-
3 value of ηij , i.e., sha3(ηij), in BCDToken rather than the
original ηij . Then we encrypt η′ij with SHA-3 algorithm,
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and compare sha3(ηij) with sha3(η′ij) instead.

5.3 The Detailed STDR mechanism

The interactions among the consumer, the sellers, BCDTo-
ken, and IDDS in STDR are presented in Protocol 1 and
are also illustrated in Fig. 7. We design STDR based on
the privacy-preserving truth discovery and truthful rating,
which correspond to Steps 2-3 and Steps 4-6 in Protocol 1,
respectively. In STDR, we introduce IDDS to provide data
storage and use BCDToken to provide quality verification
service. Steps 4 and 5-6 are completed via two subfunctions
CreateV er() and V erify() in Rating() of BCDToken.

6 THE SECURITY ANALYSIS OF BCDT
In this section, we will analyze the security of the BCDT
system in the following three parts.

6.1 Analysis of the BRA mechanism

In this subsection, we prove that the BRA mechanism can
achieve truthfulness and individual rationality.

Lemma 1 (Bid monotonicity). Each seller wi who wins by
bidding (Ti, βi) will still win by biding any β′

i < βi and any
T ′
i ⊃Ti when other bids are fixed.

Proof. Let vi(S) denote the marginal reliability of seller wi

who bids (Ti, βi), and ρi=
vi(S)
βi

. Consider the first case that
the seller wi bids for sensing tasks Ti with a lower price
β′
i, i.e., (Ti, β′

i). We have ρi=
vi(S)
βi

≤ vi(S)
β′
i

=ρ′i. Next, we
consider the second case, where wi bids for more sensing
tasks, i.e., (T ′

i , βi). We can get ρi=
vi(S)
βi

≤ vi(S)′

βi
=ρ′i. That

is to say, ρi ≤ ρ′i holds in the two cases. According to the
greedy seller selection strategy, β′

i will always be selected
before βi. Thus, wi can still win the auction by biding any
β′
i<βi and any T ′

i ⊃Ti. Above all, the lemma holds.

Lemma 2 (Critical payment). Each seller wi is paid a critical
value pi.

Proof. Let S and S ′ denote the winner sets produced by the
seller selection algorithm and the pricing algorithm in Fig.
6, respectively. Moreover, Sk is the winner set until the k-th
iteration. If wi is the winner selected in the k-th iteration,
Sk=Sk−1 ∪ {wi}. We assume wi reports a bid β′

i instead of
βi. We need to prove that wi will lose the auction if β′

i>pi,
otherwise it will win when β′

i≤pi. Then, we consider these
two cases in the k-th iteration:

Case 1: β′
i > pi. According to Fig. 6, we can derive that

vi(Sk−1)
β′
i

=
vi(S′

k−1)

β′
i

<
vi(S′

k−1)

pi
≤vk(S′

k−1)

βk
, where wk is a winner,

so that S ′
k=S ′

k−1∪{wk}. The first equation holds because
Sk−1=S ′

k−1, and the last inequation makes sense for pi≥
βkvi(S′

k−1)

vk(S′
k−1)

according to Eq. (9). Hence, wk is selected as a
winner instead of wi in the k-th iteration. So, Sk=Sk−1∪
{wk}=S ′

k. Based on the above analysis, we can conclude
that wi will fail in all iterations of the seller selection.

Case 2: β′
i≤pi. Assume that the seller selection runs over

B−i, which is the process for pricing wi. According to Eq.
(9), we assume that pi=

βkvi(Sk′−1)

vk(Sk′−1)
, where wk is the winner

in the k′-th iteration. Now, we run the seller selection again
with the input set B. We discuss two subcases:

1) wi wins before the k′-th iteration;
2) wi does not win before the k′-th iteration. In the k′-th

iteration: vi(Sk′−1)

β′
i

≥vi(Sk′−1)

pi
≥vk(Sk′−1)

βk
. Therefore, wi wins

in this iteration.
Synthesizing both subcases, wi wins when β′

i ≤ pi.
In summary, all payments for winners are critical.

Theorem 1. The BRA mechanism is truthful. Both of the auc-
tioneer and sellers will follow the whole reverse auction rules to
complete the data trading, during which sellers will report their
costs honestly.

Proof. In the BRA mechanism, the BCDToken smart contract
works as the auctioneer. The smart contract will be automat-
ically executed on the blockchain to enforce all participants
to follow the auction rules. Moreover, according to the two-
step bidding strategy, each seller will submit the encrypted
bid in the first step and the unencrypted bid in the second
step. No sellers can eavesdrop others’ bid values. Also, the
sellers cannot lie about their bids since they can be verified
by the encrypted bid submitted in the first step. Thus, the
whole auction is trustworthy. Additionally, Lemmas 1 and 2
prove that the seller selection is monotonic and all payments
are critical, respectively. According to [30], sellers will report
their costs honestly. Therefore, the whole BRA mechanism
is truthful. The theorem holds.

Theorem 2. The BRA mechanism is individually rational.

Proof. We consider that a seller wi probably encounters
these two situations, wi∈S and wi /∈S . If wi /∈S , its payment
will be zero. Otherwise, it wins the auction and its payment
is pi. According to Lemma 2, wi will always be paid with
the critical value pi when it bids any βi ≤ pi. Each seller
bids its truthful cost due to the truthfulness in Theorem 1.
Apparently, pi−ci≥0 holds.

Theorem 3. According to our previous work [31], we can derive

that the seller selection algorithm achieves the (1+ln
θ
∑l

j=1 ϵj
opt )-

approximation, where opt is the cost of the optimal solution to
the minimum weight set cover problem. θ=max{ 1

θ1
, θ2}, where

θ1=min{ vi(Sk−1)
βi

|i=1, · · · , k}, Sk is the winner set after the

k-th iteration of the seller selection, and θ2=
C(S)∑l
j=1 ϵj

.

6.2 Analysis of the STDR Mechanism

In this subsection, we prove that the STDR mechanism can
ensure the truthfulness and privacy-preserving.

Theorem 4. The rating scores are truthful in STDR.

Proof. For ∀qij ∈Q, if qij=q′ij , then λij(qij−q′ij)+ηij=ηij .
The consumer can decrypt Epk[λij(qij−q′ij)+ηij ] and get
the decrypted value η′ij =λij(qij − q′ij)+ηij . Even though
the consumer knows the values of qij and q′ij and the
construction of the internal expression, it cannot deduce ηij
from λij(qij − q′ij)+ ηij because of the randomly created
λij . If the consumer gives a untruthful qij ̸= q′ij , it yields
η′ij = λij(qij − q′ij) + ηij ̸= ηij , which demonstrates the
untruthfulness of consumer. Hence, this check can force the
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Modifiers:
1) modifier onlyBefore(uint time) require(now < time);
2) modifier onlyAfter (uint time) require(now > time);
3) modifier onlyTrue (uint flag) require(flag == true);
4) modifier onlyFalse (uint flag) require(flag == false);

Fig. 8: Some Modifiers

consumer to provide truthful qij which equals q′ij . So, we
say the rating scores are truthful in STDR.

Theorem 5. STDR can protect the data privacy from being
revealed to any other data sellers and BCDToken (i.e., blockchain)
except the data consumer.

Proof. According to Def. 4, we construct the three simulators
BT , DC , and DS for BCDToken, the data consumer, and
an arbitrary seller wi, so that their views can be efficiently
simulated by the outputs of the simulators BT , DC, and
DS. That is to say, the outputs of the simulators and the
views are computational indistinguishable.

Denote the views of BCDToken, the consumer, and seller
wi, as V IEWB , V IEWC , and V IEWwi . Then, according to
STDR, these views can be represented as follows:

V IEWB=(Q,Epk[Q
′],λ,η, Epk[λ(Q−Q′)+η]) (20)

V IEWC=(sk,Epk[Data], Q,Epk[λ(Q−Q′)+η]) (21)
V IEWwi=(Datai, Epk[Datai]) (22)

where the encrypted data EnData stored on IDDS are
known for all users because of the data address published
in BCDToken, which cannot be used to derive Data without
sk. sk is the input of data consumer. λ,η are the internal
random matrices of BCDToken. Datai is the sensed data of
seller wi, and the others are the messages received by the
three parties during the execution of STDR. Here, we ignore
the public message such as T , S , pk for simplicity.

Simulator BT randomly selects numbers to construc-
t three matrices Data′,λ′,η′ for each element in Data,
and outputs Q′ based on Data′. By using the public ho-
momorphic encryption key pk, BT creates Epk[Data′] to
compute Epk(Q

′′), and outputs Epk[λ
′(Q′ −Q′′)+η′]. S-

ince both of λ,η and λ′,η′ are selected at random, and
Epk[Data], Epk[Data′] are the ciphertexts of the homomor-
phic encryption Epk[·], the outputs of simulator BT and
V IEWB are computational indistinguishable. Likewise,
simulator DC randomly selects the numbers to construct a
matrice Data′ for Data and a matrice Epk[λ(Q−Q′)+η]′ for
Epk[λ(Q−Q′)+η], and outputs (sk,Epk[Data′], Epk[λ(Q−
Q′) + η]′) by using the input sk and homomorphic en-
cryption operations. As a result, the outputs of simulator
DC and V IEWC are also computational indistinguish-
able. In addition, simulator DS randomly selects num-
bers of matrice Data′i for Datai, and directly outputs
(Data′i, Epk[Data′i]). Since Datai and Data′i are randomly
selected, the outputs of simulator DS and V IEWwi are
computational indistinguishable.

6.3 The Security Analysis

We use some modifiers in Fig. 8 which are introduced at
the beginning of Sec. 3 to ensure that BCDToken can run
steadily. The keyword require can roll back all states without

Fig. 9: The Sequence Diagram of BCDT System

deducting gas when encountering some invalid codes. The
security of BCDT is guaranteed by the following points:

1) Only one job in one round. Once a consumer in-
vokes BCDToken to launch a job like in Fig. 3, others
cannot invoke it until the job ends. If there exists an
active job, the flag jobEnded whose default value is
true will become to be false, which cannot pass the
check of onlyTrue(jobEnded) in Initiate(), so that other
consumers will be rejected.

2) Each participant should offer deposit. We set Initiate()
and CommitBid() payable, a keyword of smart contract.
Invoking the two functions requires the trading initiator
(i.e., data consumer) and data sellers to transfer ethers
to BCDToken. If an untruthful operation from any par-
ticipant is detected, its deposit will be fined as a com-
pensation for other truthful participants. The untrusted
participation might occur in both of the data consumers
and sellers. For example, the untrusted consumer might
transfer insufficient rewards, manipulate rating scores,
quit the system midway; an untrusted seller might also
drop out the data trading halfway, eavesdrop others’
bids, misreport its bid, etc.

3) Each procedure only be executed orderly. Every
function in our BCDToken has an independent entry
through separate calls. We also set some time modifiers
to ensure the safety. We illustrate the sequence diagram
of BCDT in Fig. 9. For example, RevealBid() should
be invoked after tbid and before treveal; the reverse
auction can only be executed after RevealBid(). Sufficient
rewards, no less than the total payments computed in
Pricing(), are required to be transferred to BCDToken
within a given time duration after Pricing(). In addi-
tion, we design a reward transfer function for BCDTo-
ken, in which some modifiers are used to verify the
time of invocation, the identity of invoker, the quantity
of rewards, etc. Consequently, only when the consumer
who initiates the data trading transfers enough rewards
to BCDToken within the given time limitation, the
selected sellers will be informed to execute the tasks.

The untrusted participation either will be prevented or
will be checked by some special modifiers in BCDToken, so
that all participants will follow the workflow of the whole
data trading. In addition, we also prove that the whole
BCDT system is secure.

Theorem 6. The BCDT system is secure when it employs BCD-
Token as the data trading broker and meets individual rationality,
truthfulness and privacy-preserving.
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Proof. By employing the BCDToken smart contract as the
data trading broker, BCDT can guarantee the trustwor-
thiness of data trading workflow according to the above
security analysis of BCDToken. Besides, the other three
properties also can be ensured: 1) Individual rationality.
According to Theorem 2, each seller’s payoff is non-negative
when it follows the whole reverse auction rules to complete
the data trading. 2) Truthfulness. According to Eq. (14)
of STDR, each seller can get a non-negative score when
it reports the truthful data. Moreover, the truthfulness of
data collection costs and rating scores on sellers’ reliabilities
also can be ensured by Theorems 1 and 4, respectively. 3)
Privacy-preserving. The privacy of the sensed data and the
derived truth is preserved during the data trading according
to Theorem 5. Before this, all sensed data are encrypted and
stored on IDDS, which can only be decrypted and accessed
by the consumer who pays for the data and owns the private
key. Moreover, due to the IPFS technique adopted in IDDS,
these sensed data also cannot be tampered by others, even
though their addresses are publicly available. Hence, the
BCDT system is secure.

7 IMPLEMENTATION AND EVALUATIONS

In this section, we evaluate the performance of BCDT
through extensive simulations on blockchain. Here, we only
need to verify the feasibility of BCDT since the security
property of BCDT has been proven through the theoreti-
cal analysis in Sec. 6. More specifically, we mainly eval-
uate the gas consumption and running time of BCDT by
changing different parameters. This is because BCDT is the
first blockchain-based CDT system which can provide the
privacy-preserving, truthful data, truthful cost, and truthful
rating simultaneously, so that there are no existing systems
that can be used to make a fair performance comparison.

7.1 Implementation and Settings
We implement a prototype of BCDT including the BCDTo-
ken smart contract, the consumers, and sellers. BCDToken
is the core component in the BCDT system, which acts as
the data broker and coordinates the consumer and sellers
to complete the data trading. Moreover, BCDToken, em-
bedded with the BRA and STDR mechanisms, is realized
in the programming language Solidity, and it is deployed
to a local simulated network TestRPC using Ethereum
development tool Ganache Cli. The simulated network is
much like the real Ethereum environment, irrespective of
the time-consuming mining process and the complex net-
work circumstances in Ethereum. The consumer’s client and
seller’s client are written in Java, in which the consumer

can complete truth discovery and rating, while each seller
can finish auction and data encryption. Here, we leverage
JavaScript (JS) as the intermediate interactive language for
the consumer and sellers to communicate with BCDToken.

Since the frequently used SHA-3 algorithm is different in
BCDToken (i.e., Solidity) and clients (i.e., JS), we implement
a custom SHA-3 algorithm in JS to make enβi have the
identical value with sha3(wi, βi, noncei) in Solidity. Before
the evaluation, we set some major parameters of BCDT.
The number of tasks l varies in [20, 30, 40, 50, 60] while the
number of sellers n is 20. The reliability of each seller is
randomly generated from 0.6 to 1, and the bid ranges from
10 to 20. The reliability requirements range from 1 to 2.

7.2 Evaluation of BCDToken on Simulated Network

The BCDToken smart contract coordinates the consumer
and sellers to realize the data initialization, trading, rat-
ing, and harvest phases based on the nine main functions:
Initiate, CommitBid, RevealBid, SellerSelection, Pricing,
CreatVer, Verify, Refund, and Payment. To evaluate the u-
nique performance of BCDToken on the simulated network,
we use two special metrics: gas consumption and time con-
sumption. Note that each function might be invoked multiple
times by multiple participants. We use Procedures 1-9 in
Fig. 10 and Fig. 11 to indicate the total gas consumption
and time consumption after all invocations of each function,
respectively. For example, in Fig. 10, the total gas consumed
by Procedure 2 is the accumulated gas consumed by n
sellers to invoke the function of CommitBid.

Since each computational step will be charged some
gas, the more complicated the procedure is, the more gas
and time it will consume. The operations to create and
write storage data are relatively expensive [32]. As we can
see, Procedures 2, 4-6 use more gas and time. Procedure 4
needs to execute a nontrivial set of add, subtract, multiply,
divide, compare, and write operations, and there is a pos-
itive correlation between the number of winners and gas
consumption. Procedure 5 is roughly equivalent to execute
Procedure 4 |S| times. On the other hand, we may traverse
more iterations than the entire Procedure 4 to find the
critical payment for a winner, which uses more gas and time
accordingly. Procedures 2 and 6 use much gas because each
SHA-3 encrypted value is a 32-bytes hash value which will
take up more storage, and Procedure 6 also involves much
operations over homomorphic encrypted data. Procedure
8 including the reliability update process in STDR uses
less gas since the update operation involves most read
operations with smaller data length, as well as Procedures
1, 3, and 9. Notice that here we use gas in wei.
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7.3 Evaluations of BRA

Since the core auction mechanism of BCDToken includes
SellerSelection and Pricing, we explicitly evaluate the per-
formance of them respectively. Note that there is a gasLimit
in Ethereum, which restricts the total computational re-
sources that can be used every time to invoke a function. To
avoid exceeding gasLimit, we divide the seller selection and
pricing procedures into multiple iterations and repeatedly
send a transaction to BCDToken to select a winner and price
the winner.

SellerSelection. We give an example in Fig. 12 to com-
pare the gas consumption per iteration (GCPI) under different
number of tasks from 20 to 60. We notice a gradual decline
of GCPI, because of the constant cost of loading past mined
blocks from storage into memory before each selection [33].

Pricing. We use gas consumption per winner (GCPW) and
number of transactions per winner (NTPW) as two metrics in
Figs. 13 and 14 respectively. We figure out that determining
the payment for each winner will consume how much gas
and need how many transactions. Fig. 13 shows that the
total gas consumption increases as the increasing number of
tasks from an overall perspective. The GCPW has nothing
to do with the iteration sequence which is only related to
the number of tasks and traverse times to obtain its critical
payment as shown in Fig. 14. The NTPW represents traverse
times needed to price a winner and the corresponding GCP-
W shows that more gas will be used if more transactions are
needed when the number of tasks is 60.

Beyond evaluating the performance on the blockchain,
we use the three metrics: overpayment ratio, truthfulness,
and individual rationality, to illustrate the properties of our
auction mechanism. The overpayment ratio is defined as:

λ = (P − C(S))/C(S) (23)

where P is the total payment and C(S) is the total cost.
It measures the cost paid by the consumer to induce the
truthfulness overall. Ensuring truthfulness means that no
sellers can improve its payment by committing a different

bid from the real one. Individual rationality ensures that
each payoff is non-negative.

Overpayment ratio: Fig. 15 plots the overpayment ratio
λ when l changes from 20 to 60. The results show that λ is
always less than 0.6, which means that the consumer does
not have to pay much extra money to induce truthfulness. λ
increases monotonously with the increasing number of tasks
because more sellers will be selected and the increments of
the payments are greater than those of the costs.

Truthfulness: We randomly pick a winner and change
its claimed bid, then recalculate the payment as well as the
payoff. The results illustrated in Fig. 16 show that when the
truthful bid (real cost) is 13, the critical payment is 23, and
the payoff is 10. The payoff remains unchanged when the
bid is no more than 23. However, if the bid is larger than 23,
the payoff becomes zero which means that the winner loses
the auction. Hence, BRA can ensure truthfulness of cost.

Individual rationality: In Fig. 17, each winner’s pay-
ment is greater than its bid when the number of tasks varies
from 20 to 60, which demonstrates the individual rationality.

7.4 Evaluations of STDR
In order to verify the effectiveness of STDR, we evaluate the
protocol from the following two aspects:

Efficiency: STDR mainly includes data encryption and
decryption. Meanwhile, the rating process, which needs to
calculate Epk(Q), also involves some computation on the
encrypted data. Hence, we measure the overall running time
of data encryption, data decryption, and Epk(Q) calculation
when the number of tasks l and the number of sellers
n change from 20 to 60. The running time of the three
operations is exactly proportional to the amount of data, i.e.,
becoming longer with the increase of n and l. As shown in
Fig. 18, the top layer is the running time of data decryption,
and the middle layer is the time of Epk(Q) calculation, while
the bottom layer is the time of data encryption. Moreover,
the running time of STDR is also relative to the security
level, which depends on the key size of homomorphic cryp-
tosystem. As depicted in Fig. 19, the running time climbs
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TABLE 3: Comparisons between BCDT and the existing works
Systems Blockchain

as Broker
Incentive

Mechanism
Truth

Discovery
Trusted

Participation
Truthful

Cost
Truthful

Data
Truthful
Rating

Cost
Privacy

Data
Privacy

Truth
Privacy

[4], [17], [20], [31] X X X
[5], [10], [23] X

[8] X X
[9], [25]–[27], [31] X X

[12] X X X
[14], [40] X X X X X

[15] X X X
[16] X X X X
[18] X X X X

[19], [34], [35] X X
[33], [36] X X X X

[37] X X
[38], [39] X X X

[41] X X
Our system X X X X X X X X X X

up slowly first, and then increases dramatically with the
increase of security level (i.e., key size) when n=20, l=60. By
default, we set the key size as 512 in the simulations.

Rating scores: Fig. 20 plots the scores when l changes
from 20 to 60, which implies the sensing quality level of
each seller compared to the average sensing quality. The
scores fluctuations do not exceed the range of 0.2.

8 RELATED WORKS

Crowdsensed Data Trading (CDT) is a novel paradigm de-
rived from traditional data trading, which takes advantage
of the crowds to collect data and tackles the scarcity of data
sources for sale. For example, CDT markets in [9] and [37]
allow data broker to purchase raw data from sellers and
sell consumers the data statistics. In [38], the broker trades
private statistics with consumers, which are aggregated over
the collected IoT data. However, the raw data in [9], [37], [38]
are always same or collected from the fixed locations, which
cannot tackle the scarcity of data sources. For this, [42]
recruits data sellers to collect data from different locations
to enrich the data sources. All of these researches need a
trusted third-party data broker and aim to maximize the
revenue of broker, while our BCDT system intends to use
blockchain as a trusted broker and remove the commission
of broker. Moreover, in addition to the untruthful cost
in trading, our system also considers some other security
issues in data trading compared with these papers, such as
untruthful data, untruthful rating, and data privacy.

On the other hand, the newly emerging technology,
blockchain, is considered to be used in some data trading
systems to eliminate the expense of broker and realize
security in some extent. For instance, [36] and [40] allow the
consumer to purchase a statistical result calculated by some
blockchain nodes over the raw data, which protect data

privacy by SGX and additive secret sharing, respectively.
But they are not applicable for our scenario, where the truth
discovery and the truthfulness verification of rating need
to directly execute computation over the encrypted data.
[34], [35], [39] adopt the homomorphic encryption which
allows direct computation over encrypted data to design the
privacy-preserving truth discovery algorithms. However,
[39] does not consider the rating for data, and [34], [35]
do not involve the privacy of truth and the truthfulness of
rating scores. Even though [34], [35], [39] cannot be directly
applied to our scenario, they enlighten us to leverage ho-
momorphic cryptography to implement truthful rating with
privacy-preserving of data and truth.

Besides, [36] and [40] are traditional blockchain-based
data trading systems without incentive mechanisms, which
cannot stimulate the participation of sellers and consumers.
[34], [35], [39] focus on truth discovery algorithms in mo-
bile crowdsensing system without data trading. The CDT
system in [14] also protects data privacy based on addi-
tive secret sharing, but does not consider any incentive
mechanisms. [41] adopts the incentive Stackelberg game
to determine the unit data price and data volume for sale
without considering the security issues in blockchain-based
data trading. Moreover, the raw data provided by sellers in
[14], [36], [40], [41] are existing and fixed, which also cannot
relieve the scarcity of data sources. To tackle this problem,
[15] designs a reverse auction based CDT system on the
blockchain to incentivize sellers to collect various data and
report truthful costs, which protects identities’ privacy but
does not take account of data privacy. Furthermore, all of
the above blockchain-based data trading systems do not
consider the untruthful data and rating.

We summarize the differences between BCDT and the
related works in Table 3. Compared with the related work-
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s, BCDT can ensure the trustworthiness of data trading
workflow, truthfulness of cost, data, and rating, as well as
preserve the privacy of data and truth simultaneously.

9 CONCLUSION

In this paper, the proposed BCDT system is different from
existing CDT. We use a meticulous designed smart contract
with some blockchain tricks to replace the third-party data
broker, which can ensure the security of data trading in
system level. We adopt reverse auction in BRA, combined
with a two-step bidding strategy, to incentivize sellers to
claim truthful bids and prevent sellers to manipulate the
auction. Meanwhile, the STDR mechanism based on homo-
morphic cryptography is designed to realize truth discovery
on sensed data and rating of sellers with data privacy-
preserving, where the truthfulness verification of rating
scores is guaranteed by data hiding techniques. Finally, we
theoretically prove the system-level security of the BCDT
system and implement a prototype on an Ethereum test
network and the evaluations demonstrate its practicability.
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