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Abstract— Major cities worldwide have millions of cameras
deployed for surveillance, business intelligence, traffic control,
crime prevention, etc. Real-time analytics on video data demands
intensive computation resources and high energy consumption.
Traditional cloud-based video analytics relies on large central-
ized clusters to ingest video streams. With edge computing,
we can offload compute-intensive analysis tasks to nearby servers,
thus mitigating long latency incurred by data transmission via
wide area networks. When offloading video frames from the
front-end device to an edge server, the application configuration
(i.e., frame sampling rate and frame resolution) will impact
several metrics, such as energy consumption, analytics accu-
racy and user-perceived latency. In this paper, we study the
configuration selection and bandwidth allocation for multiple
video streams, which are connected to the same edge node
sharing an upload link. We propose an efficient online algorithm,
called JCAB, which jointly optimizes configuration adaption and
bandwidth allocation to address a number of key challenges
in edge-based video analytics systems, including edge capacity
limitation, unknown network variation, intrusive dynamics of
video contents. Our algorithm is developed based on Lyapunov
optimization and Markov approximation, works online without
requiring future information, and achieves a provable perfor-
mance bound. We also extend the proposed algorithms to the
multi-edge scenario in which each user or video stream has an
additional choice about which edge server to connect. Extensive
evaluation results show that the proposed solutions can effectively
balance the analytics accuracy and energy consumption while
keeping low system latency in a variety of settings.

Index Terms— Bandwidth allocation, configuration selection,
edge computing, Lyapunov optimization, video analytics.

I. INTRODUCTION

ALARGE number of cameras have been deployed for
various purposes, such as business intelligence, traffic

control, and crime prevention [1]. These cameras generate
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a large amount of video data every second. Quick analysis
on these live video streams is often required. In addition,
many other emerging applications such as cognitive assis-
tance, mobile gaming, virtual reality and augmented real-
ity [2], [3] also rely on effective analysis of videos with low
latency.

Video analytics applications usually require intensive com-
putation resources and high energy consumption. Thus the
front-end devices are often resource-limited to support these
applications with acceptable latency. One way to overcome
this limitation is to transfer videos to cloud data centers
and execute the deep learning algorithms there [4]. However,
cloud-based solutions may incur excessive transmission delay
in wide area networks [5]. Edge computing is an emerg-
ing computing paradigm which advocates processing data
at the logical edge of a network [6]–[12], thereby enabling
video analytics to occur closer to the data source and end
users.

In typical video analytics, frames are extracted from a
video at different sampling rates, compressed into various
resolutions, and then processed by different CNN (convo-
lutional neural network [13]) models. Following previous
works [14]–[16], we refer to a combination of a resolution
and a frame rate as a configuration [14]. Apparently, different
configurations often lead to different accuracies and energy
consumptions. Since edge nodes serve as the backend for video
processing [17], transmitting videos from their sources to an
edge server via time-varying network links is inevitable. Thus,
efficient offloading of video analytics involves configuration
selection and bandwidth allocation.

Both industry and academia have invested heavily
in these two aspects. Most of the previous works
[3], [5], [14], [18]–[22] considered only one of them in
offloading video analytics, which leads to sub-optimal perfor-
mance. However, the joint scheduling of computing resources
(via configuration selection) and networking resources (via
bandwidth allocation) are both of importance to the overall
performance of edge-assisted video analytics.

In this paper, we first consider a practical scenario in which
multiple video streams connect to the same edge server sharing
a narrow uplink channel, as shown in Fig. 1. We call this
scenario the single-edge scenario. Different CNN models are
deployed on the single edge server to match various video
resolutions. A smaller CNN model with fewer convolutional
layers is cheaper, faster but less accurate [1]. We then consider
the multi-edge scenario in which each video stream has
an additional choice about which edge server to connect.
The objective in both scenarios is to decide the frame rate,
resolution, and the share of bandwidth for each video stream
to maximize the overall accuracy and minimize the energy
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consumption, subject to a service latency budget. This problem
faces many challenges for the following reasons:

A. The Best Offloading Configuration Varies Over Time

As we mentioned above, different configurations lead
to different accuracies and energy consumptions. We can
keep choosing the most expensive configuration to ensure a
high accuracy, but this demands more resources and energy.
In many cases, the policy that reduces the frame rate and
lowers the resolution can save energy significantly without
impacting the accuracy. For example, we can choose a
lower frame sampling rate when the target moves slowly.
Meanwhile, the policy that lowers frame resolution will not
hurt accuracy when the target is large in the scenes [5].
The best configuration can optimize the trade-off between
accuracy and energy consumption, which varies over time
depending on the video content.

B. Network Bandwidth Is Often Unpredictable

As many previous works have observed, the wide area
network bandwidth has come to a standstill [23] while traffic
demands are growing at a staggering rate [24]. Not only
is WAN bandwidth scarce, it is also relatively expensive,
and highly variable [5]. Similar scarcity and variations exist
in wireless networks [25], [26], broadband access networks
and cellular networks [27]. When the available bandwidth
becomes insufficient, an offloading configuration which adopts
high frame resolution may incur long transmission latency,
and this problem becomes more noticeable when multiple
video streams have to share the same uplink channel, hence
bandwidth resource management becomes crucial and the
main challenge is to deal with the trade-off between analytics
accuracy and bandwidth consumption.

These observations motivate us to propose adaptive video
analytics which is capable of optimizing the trade-off among
the analytics accuracy, service latency, and energy con-
sumption. We aim to find the most suitable video analytics
offloading configuration and bandwidth allocation scheme,
subject to the computing capacity, bandwidth capacity, and the
delay constraint, for a multi-user edge-assisted video analytics
system. Since the Lyapunov optimization framework [28] is
the de facto standard method to achieve stability in control
theory and is capable of minimizing the time average of a net-
work attribute subject to additional time average constraints,
in this paper, we utilize the Lyapunov framework to transform
the original problem into a series of one slot optimization
problems, each of which is solved by leveraging the Markov
approximation and the KKT condition. We prove that our solu-
tion achieves a close-to-optimal performance, while bounding
the potential violation of the latency constraint.

To our best knowledge, this is the first study to jointly
optimize configuration adaption and bandwidth allocation for
multi-video in the edge environment, explicitly taking into
account the trade-off among the analytics accuracy, service
latency, and energy cost. The main contributions of this paper
are summarized as follows.

• We study a more practical model. We explicitly consider
limited and varying bandwidths between video sources
and edge servers. Each edge server has limited computing
resource. The accuracy function with respect to resolution
or frame rate varies depending on the video contents.

Fig. 1. An illustration of the edge-assisted video analytics system. Different
CNN models are deployed on the single edge server to match various video
resolutions.

Both transmission energy consumption and processing
energy consumption are taken into account.

• We formalize the joint configuration selection and band-
width allocation problem, for optimizing the trade-off
between accuracy and energy cost, under a long-term
latency constraint. The insight behind our problem is
adapting video streams to bandwidth variation and intrin-
sic dynamics of their contents.

• We develop novel online algorithms, i.e., JCAB and
mJCAB, which can efficiently adapt configurations and
allocate bandwidth resources for video streams on the fly
without foreseeing the future. Both algorithms utilize the
Lyapunov framework to transform the original problem
into a series of one slot optimization problems, each of
which is solved by leveraging the Markov approximation
and the KKT condition. We prove that JCAB and mJCAB
achieve a close-to-optimal performance, while bounding
the potential violation of the latency constraint.

• We evaluate the performance of the design through
extensive and practical simulations with accuracy profiles
obtained from our experiments. Results confirm the supe-
riority of our approach compared to several algorithms.

The remainder of this paper is organized as follows.
Section II describes our system model. Section III develops the
JCAB algorithm. Section IV shows how to deal with the multi-
edge scenario. We evaluate our proposed design in Section V.
Section VI reviews the related work. Section VII discusses the
limitations and future work. Finally, Section VIII concludes
the paper.

II. SYSTEM MODEL

We introduce the system model and present the problem
formulation for the single-edge scenario in this section.

Suppose that a set of K users or video streams, denoted
by U = {u1, u2, . . . , uK}, connect to the same edge server
nearby. They keep offloading video frames to the server,
sharing a narrow uplink channel. As illustrated in Fig. 1,
there are N parallel CNN models M = {m1, m2, . . . , mN}
deployed on the edge server, with different input sizes of
images. Let m0 be the most lightweight CNN model in each
local device. Let ri be the input resolution for the ith CNN mi.

We use si and ci to denote the processing time and cost,
respectively, per frame for the ith CNN mi. It has been well
studied in [29] that a CNN can be compressed to a smaller size
at the expense of accuracy. Such techniques include removing
some expensive convolutional layers and reducing input image
resolution. Thus in our design, a CNN with a lower input
image resolution has a faster processing speed (i.e., smaller
si) and needs less computational resources (i.e., smaller ci).

We divide time into discrete time slots, each of which has
a duration that matches the timescale at which offloading
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Fig. 2. The architecture of the edge-based live video analytics system.

configurations can be updated. The system architecture is
depicted in Fig. 2. We mainly focus on video queries such
as detecting certain objects (like cars or pedestrians). On the
client side, videos are continuously recorded from cameras and
object recognition can be performed locally using lightweight
CNNs, i.e., m0’s. On the server side, the proposed algorithm
runs in the Adaptive Configuration (AC) controller and the
Bandwidth Resource (BR) manager. The former is responsible
for computing a configuration for the next time slot, given
accuracy profiles,1 network conditions and latency goals as
the input; while the latter computes and sends bandwidth
allocation back to the clients.

In the remainder of this section, we first provide analytical
models on the accuracy (Section II-A), the energy consump-
tion (Section II-B), and the latency (Section II-C). Then,
we present the problem formulation (Section II-D).

A. Analytics Accuracy Model

Since we want to optimize the time-averaged accuracy
through CNN model selection and bandwidth allocation, first
of all, we have to know how the model selection and band-
width allocation affect accuracy. In this subsection, we provide
the analytics accuracy models, which captures the relationship
between model selection (i.e., resolution) or bandwidth alloca-
tion (i.e., frame rate) and accuracy. These models are derived
based on the performance measurements obtained from our
real experiments implemented on NVIDIA Jetson TX2.

Since a query configuration is multi-dimensional and dif-
ferent decision variables may affect the analytics accuracy
in different ways, profiling the accuracy of a configuration
is no easy task. We first have to figure out the relationship
between the analytics accuracy and the input image resolution.
To do so, we implement YOLO [30], an object detector
CNN on NVIDIA Jetson TX2 (shown in Fig. 3) to perform
pedestrian detection on a clip from a surveillance video. In this
experiment, video frames are resized to different resolutions,
and the accuracy of a compressed frame is computed by
comparing the detected objects with the objects detected in
the frame with the highest resolution, using the F1 score,
which is the harmonic mean of precision and recall. A detected
object is identified as true positive when its bounding box has
the same label and it has sufficient spatial overlap with the
corresponding ground truth [14]. The spatial overlap can be
measured by IOU (Interaction over Union). In our experiment,
an object is correctly detected when IOU is no less than 0.7.

The results are plotted in Fig. 4(a). The red dashed line
shows the detection accuracy when the targets are small in the
scene in time slot x1, while the blue line shows the detection

1We use ‘accuracy profile’ to represent the content-varying relationship
between the detection accuracy by a CNN model and the frame rate and/or
resolution of a video stream.

Fig. 3. We implement YOLOv3 on NVIDIA Jetson TX2.

Fig. 4. Impact of offloading configurations on the detection accuracy.

accuracy when pedestrians walk nearby in time slot x2. There
are two observations.

The first observation is that a higher resolution produces a
better analytics accuracy and the performance gain decreases
at a high resolution. Hence the relationship between accuracy
and resolution can be formulated as concave functions, e.g.,
the red line in Fig. 4(a) can be fitted as 0.988 − 4.469e−

r
200

with less than 0.02 root mean square error.
The second observation is that the accuracy profile of a

video stream varies over time: high resolution is crucial when
targets are small, but the policy to lower resolution will not
hurt latency much when targets are big enough. The accuracy
models should be updated periodically according to target size.
Based on these observations, we use �t

k(r) to represent the
accuracy function with respect to resolution for user uk in
time slot t. We also introduce a binary variable xi

k,t to indicate
whether the i-th CNN model mi is selected by user uk in slot
t, so

�N
i=0 xi

k,tri is the frame resolution of uk in slot t.
The relationship between accuracy and the sampling frame

rate f is illustrated in Fig. 4(b). We perform cars counting on
a clip from a traffic video with different sampling frame rates.
Since the video segment consists of many frames, we compute
accuracy as the fraction of frames with F1 score ≥ 0.67.
To compute the accuracy of a frame that was not sampled,
we use the location of objects from the previous sampled
frame. In time slot y2, the cars in the scene are moving
fast, while in slot y1, all cars slow down due to a traffic
congestion. Similarly, we model the accuracy function with
respect to frame rate as a concave function φt

k(f), which
should be updated at the start of each time slot according
to the velocities of targets. These observations are consistent
with many previous studies [1], [14], in which the relationship
between resolution or frame sampling rate and accuracy can
often be formulated as concave functions.

It has been experimentally observed in [14] that frame reso-
lution and frame sampling rate independently impact accuracy,
allowing us to model the accuracy of the configuration of uk

in time slot t as

�t
k(

N�
i=0

xi
k,tri)φt

k(fk,t), (1)
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in which fk,t is the frame sampling rate of uk in time slot
t. Then, the average detection accuracy over K users in time
slot t is

at =
1
K

K�
k=1

�t
k(

N�
i=0

xi
k,tri)φt

k(fk,t). (2)

B. Energy Consumption Model

Battery life may become the primary concern of end users
since it is usually inconvenient to recharge mobile devices.
Therefore, we take energy efficiency into consideration. The
energy consumption of a mobile device or smart camera
mainly consists of two parts: transmission energy due to data
transmission and processing energy caused by local video
frame processing.

The transmission energy consumption is proportional to the
size of data which is uploaded to an edge server. The data size
of a video frame with resolution r is calculated as αr2 bits [3],
where α is a constant. Let γk represent the transmission energy
consumption per bit for uk. Then the transmission energy
consumption of user uk in slot t is

etran
k,t =

N�
i=1

γkα(xi
k,tri)2fk,t. (3)

We use μk to denote the energy cost of processing one frame
on the local device of uk [31]. Then the data processing energy
cost for user uk in time slot t is

eproc
k,t = x0

k,tμkfk,t. (4)

Combining Eqs. (3) and (4) together, we know that the
average energy consumption of all users in time slot t is

et =
1
K

K�
k=1

(etran
k,t + eproc

k,t ). (5)

C. Service Latency Model

The latency per frame consists of two parts: data trans-
mission latency and CNN processing latency. The data trans-
mission latency is jointly determined by the data size of a
frame and the share of the upload bandwidth; we use bk,t to
denote the upload bandwidth shared by uk at time slot t. Then,
the latency per frame experienced by uk in time slot t is

lk,t =

�N
i=1 α(xi

k,tri)2

bk,t
+

N�
i=0

xi
k,tsi, (6)

where the first term is the transmission latency and the second
one is the processing latency. Thus, the average latency for K
video streams in slot t is

lt =
1
K

K�
k=1

lk,t. (7)

Main notations are summarized in Tab. I.

D. Problem Formulation

Analytics on live video streams is energy-consuming and
latency-sensitive, generally requiring high quality. Hence on
designing the adaptive algorithm, we aim at achieving desir-
able analytics accuracy under the long-term latency constraint,
while keeping the energy cost as low as possible. For sim-
plicity of illustration, we define the utility function of a
configuration as the achieved accuracy minus the energy cost.

The natural objective is the maximum of time-averaged utility
for all video streams, which can be formulated as

P : max
{x,b,f}

lim
T→+∞

1
T

�T

t=0
(at − ωet)

s.t. C1 :
N�

i=0

xi
k,t = 1, ∀uk ∈ U , t ∈ T

C2 : xi
k,t ∈ {0, 1}, ∀uk ∈ U ,

t ∈ T , mi ∈M∪ {m0}

C3 : fk,t ≤
N�

i=0

xi
k,t

1
si

, ∀uk ∈ U , t ∈ T

C4 :
K�

k=1

N�
i=1

xi
k,tci ≤ C, ∀t ∈ T

C5 :
K�

k=1

bk,t ≤ Bt, ∀t ∈ T

C6 : lim
T→+∞

1
T

T�
t=0

lt ≤ Lmax. (8)

The weighted parameter ω controls the trade-off between
accuracy and energy consumption. As a result, the optimal
solution of Problem P trades the average accuracy for lower-
ing the energy consumption on mobile devices. Constraints C1

and C2 ensure that, in each time slot, one and only one CNN
model can be selected by user uk. Constraint C3 says that the
selected frame rate cannot exceed the processing frequency
of the CNN model (remote or local), otherwise video frames
would accumulate and lead to a long queue delay. The fourth
constraint C4 is due to the capacity of the edge server, denoted
as C. In this paper, we can estimate the available bandwidth of
the upload link to the edge server at the beginning of each time
slot, and we assume that the bandwidth does not change in
each single time slot. In fact, this assumption can hold in many
scenarios. Even if the bandwidth changes frequently in some
extreme case, we can reduce the length of each slot to mitigate
the effect of the bandwidth change on the performance. Let Bt

represent the uplink bandwidth over the entire slot t, constraint
C5 imposes per-slot constraint on the available bandwidth. The
last constraint C6 requires that the long-term average latency
not exceed the threshold Lmax.

The first major challenge that impedes the derivation of
the optimal solution to the above problem is the lack of
future information. To optimally solve problem P , near future
information about the network condition and the dynamics
of video contents is required, which is difficult to accurately
predict in advance. Moreover, P is a mixed integer nonlinear
programming and is very difficult to solve even if the future
information is known a priori. These challenges call for an
online approach that can efficiently adapt configurations and
allocate bandwidth resources for video streams on the fly
without foreseeing the future.

III. ONLINE ALGORITHM FOR THE SINGLE-EDGE

SCENARIO

To decouple the long-term latency constraint, we transform
the original time-averaged problem into a series of minimiza-
tion problems leveraging the Lyapunov framework [28], and
then we develop a lightweight online algorithm which only
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TABLE I

MAIN NOTATIONS FOR QUICK REFERENCE

relies on the current bandwidth information and video content
to derive the adaptation strategy, without global information
over the long run.

A. JCAB

A major challenge of directly solving Problem P (Eq. (8))
is that the long-term latency constraint couples CNN model
selection, frame rate adaption and bandwidth allocation across
different slots. To address this challenge, we define a virtual
queue q(t) as a historical measurement of the latency overflow
and assume that the initial queue backlog is 0 (i.e., q(0) = 0).
Since the queue is used to capture the latency overflow in each
slot, it is not hard to see that its length evolves as follows:

q(t + 1) = [q(t) +
1
K

K�
k=1

lk,t − Lmax]+, (9)

where [x]+ denotes the maximum among x and 0. From
Eq. (9), we see that the queue backlog at time slot (t + 1)
is the sum of the backlog at slot t and the latency overflow
( 1

K

�K
k=1 lk,t−Lmax) at the current time slot. Without loss of

generality, we assume that the arrivals (i.e., lt = 1
K

�K
k=1 lk,t)

for the queue backlog are independent and identically distrib-
uted (i.i.d) over slots.

If we aggressively pursue high accuracy by adopting the
most expensive configuration, the queue backlog q(t) will
increase unboundedly, leading to unacceptable delays and
poor user experience, so it is crucial to keep the latency
queue stable. We first define a quadratic Lyapunov function
as follows:

L(q(t)) =
1
2
(q(t))2, (10)

which represents a scalar measure of latency queue congestion.
For instance, a small value of L(q(t)) implies that the queue
backlog is small.

To keep queue stability by persistently pushing the Lya-
punov function towards a less congested state, we introduce
the one-slot Lyapunov drift as

Δ(q(t)) = E[L(q(t + 1))− L(q(t))|q(t)], (11)

in which E[x] denotes the expectation of variable x.
The drift Δ(q(t)) denotes the expected change in the

Lyapunov function over one time slot, given the current state
in time slot t. A smaller Δ(q(t)) implies that the virtual
queue has strong stability. Our goal is to find the optimal
adaption strategy for all video streams to coordinate the
network condition, taking the variation of video contents into
consideration as well. By incorporating latency queue stability

into the trade-off between accuracy and energy cost, we define
a Lyapunov drift-plus-penalty term as

Δ(q(t)) − V · E[at − ωet|q(t)]. (12)

The positive parameter V is used to adjust the trade-
off between latency minimization and utility maximization.
Rather than directly minimizing the drift-plus-penalty term
in each slot, the min-drift-plus-penalty algorithm [32] in
Lyapunov optimization seeks to minimize an upper bound of
it. We derive an upper bound on the drift-plus-penalty term in
our specific problem and it is stated in the following lemma:

Lemma 1: Let the largest average delay of all video streams
in all time slots be lmax = maxt∈T {lt}, then B =
1
2 (lmax − Lmax)2 is a constant, which implies the second
moments of arrivals and service are bounded (i.e., ∀t, E[12 (lt−
Lmax)2|q(t)] ≤ B). For all possible values of q(t) by using
any offloading configuration over all time slots, the following
statement holds:
Δ(q(t))− V ·E[at − ωet|q(t)]
≤ B + q(t)E[(lt − Lmax)|q(t)] − V · E[at − ωet|q(t)].

(13)

Proof: From Eq. (11), we have

Δ(q(t)) = E[L(q(t + 1))− L(q(t))|q(t)]

=
1
2
E[q2(t + 1)− q2(t)|q(t)]

≤ 1
2
E[(q(t) + lt − Lmax)2 − q(t)2|q(t)]

=
1
2
(lt − Lmax)2 + q(t)E[(lt − Lmax)|q(t)]

= B + q(t)E[(lt − Lmax)|q(t)]. (14)

We now incorporate the expected utility over one time slot
to both sides of Eq. (14), then we have

Δ(q(t))− V ·E[at − ωet|q(t)] ≤ B

+q(t)E[(lt − Lmax)|q(t)] − V · E[at − ωet|q(t)]. (15)

The lemma follows immediately. �
Then we attempt to minimize the supremum bound for the

drift-plus-penalty function, and the new real-time optimization
problem can be presented as follows:

P1 : min
{x,b,f}

q(t) · lt − V · (at − ωet)

s.t. C1, C2, C3, C4, C5. (16)

Notice that solving P1 requires only currently available
information as the input. By considering the additional term
q(t) · lt, the system takes into account the average latency
incurred by data transmission and processing in the current
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Algorithm 1: JCAB for the Single-Edge Scenario

Input: q(0)← 0, μk, γk, Lmax, C;
1 for t = 0 to T − 1 do
2 for k = 1 to K do
3 Based on the first few frames at slot t, choose the

most appropriate �t
k(r) and φt

k(f) from a set of
pre-defined functions;

4 Obtain {xt, ft, bt} by solving P1;
5 q(t + 1)← [q(t) + lt − Lmax]+;

slot. As a consequence, when q(t) is large, minimizing the
latency is more critical. Thus, our algorithm works by fol-
lowing the philosophy of “when bandwidth becomes insuffi-
cient, degrade the configuration to avoid violating the latency
constraint”. The latency queue is maintained without future
information, guiding the configuration adaption and bandwidth
allocation to follow the long-term latency constraint, thereby
enabling online decision making.

We develop the JCAB algorithm (shown in Alg. 1) to solve
Problem P . In our online control algorithm JCAB, we divide
time into T discrete time slots. At the beginning of each time
slot, based on the first few frames, JCAB chooses the most
appropriate �t

k(r) and φt
k(f) from a set of pre-defined func-

tions. These pre-defined functions can be obtained as follows:
we roughly divide targets into several categories according
to their relative sizes in the video, and we profile several
accuracy functions with respect to frame resolution under
different conditions; similarly, different accuracy functions
with respect to frame rate are drawn when targets move at
different speed levels. Note that this heuristic method is not
always accurate but it is flexible and quick, while the profiling
cost is relatively low. Given the accuracy functions, we can
find a good configuration and bandwidth allocation scheme for
the current slot by solving problem P1. Finally, the average
latency is utilized to update the virtual queue.

B. Theoretic Analysis of JCAB

In this subsection, we analyses the performance of JCAB.
We first introduce the following lemma:

Lemma 2: For any δ > 0, there exists a stationary and
randomized policy Π for P , which decides bΠ

t , xΠ
t and fΠ

t

independent of the current queue backlogs q(t), such that the
following inequalities are satisfied:

E[lΠt − Lmax] ≤ δ, (17)

and

E[aΠ
t − ωeΠ

t ] ≤ ν∗
t + δ, (18)

in which ν∗
t is used as the optimum for instantaneous sub-

problem per slot.
Proof: We prove this based on Theorem 4.18 in [28].

The evolution of the model selection, frame rate selection,
and bandwidth allocation from time 0 to (T − 1) can be seen
as a walk in the solution space of Problem P . According to
Theorem 4.18 in [28], we know the stationary and randomized
policy Π is in the closure of the optimal solution. If it is closed,
then Eqs (17) and (18) hold with δ = 0. If the optimal solution
is not closed, then Π is a limit point of the optimal solution,
yielding Eqs (17) and (18) hold with δ > 0. �

Now we can present the performance bound of JCAB.

Theorem 1: JCAB achieves the following performance
bounds on the time-averaged utility and service latency:

lim
T→+∞

1
T

T�
t=0

E[at − ωet] ≥ νopt −
B

V
, (19)

lim
T→+∞

1
T

T�
t=0

E[lt] ≤
B

ε
+

V

ε
(νopt − νmin)

+Lmax, (20)

where νmin is the objective value of the worst solution for P ,
νopt is the optimal utility of Problem P that can be achieved
by ignoring the delay constraint, and ε>0 is a constant which
represents the long-term latency surplus achieved by some
stationary control strategy.

Proof: Recall that JCAB seeks to choose strategies that
minimize P1 among the feasible decisions including the policy
in Lemma 2. By plugging Lemma 2 into the drift-plus-cost
inequality in Eq. (13), we obtain

Δ(q(t)) − V ·E[at − ωet|q(t)]
≤ B + q(t)E[(lΠt − Lmax)|q(t)]− E[aΠ

t − ωeΠ
t |q(t)]V

≤ B + δq(t)− V (ν∗
t + δ). (21)

By letting δ approach zero, summing the inequality over t ∈
{0, 1, · · · , T − 1} and then dividing the result by T , we have

1
T

E[L(q(t)) − L(q(0))]− V

T

T−1�
t=0

E[aΠ
t − ωeΠ

t ]

≤ B − V · 1
T

�
t

ν∗
t

≤ B − V · νopt, (22)

where the second inequality holds since for a minimum
optimization, the sum of dynamic optimums is less than the
sum of the global one for all slots.

Rearranging the terms and considering the fact that
L(q(t)) ≥ 0 and L(q(0)) = 0 yield the time-averaged utility
bound:

lim
T→+∞

1
T

T�
t=0

E[at − ωet] ≥ νopt −
B

V
. (23)

To obtain the service delay bound, by using Lemma 2,
we have there are ε > 0, Φ(ε) and a policy Γ that satisfy

E[lΓt − Lmax] ≤ −ε, (24)

and

E[(aΓ
t − ωeΓ

t )− ν∗
t ] = Φ(ε). (25)

Plugging the above into Eq. (13), we have

Δ(q(t)) − V · E[at − ωet] ≤ B − εq(t)− V Φ(ε). (26)

By summing the above over t ∈ {0, 1, · · · , T − 1} and
rearranging terms, we have

1
T

T−1�
t=0

E[q(t)]

≤
B − V (Φ(ε)− 1

T

T−1�
t=0

E[aΓ
t − ωeΓ

t ])

ε

≤ B

ε
− V

ε
(νopt − νmin). (27)

Note that
T−1�
t=0

E[q(t)] ≥
T−1�
t=0

E[lt − Lmax], (28)
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we have

1
T

T−1�
t=0

E[lt] ≤
B

ε
− V

ε
(νopt − νmin) + Lmax. (29)

Taking a lim sup of Eq. (29) as t→ +∞ yields the service
delay bound. The theorem holds immediately. �

Note that Eqs. (19) and (20) characterize the utility delay
tradeoff within [O(1/V ), O(V )]. Specifically, we can use an
arbitrarily large value of V to drive the time-averaged utility
arbitrarily close to the optimal νopt at a cost. As Eq. (20)
implies, the time-averaged queue backlog grows linearly with
V . Such a utility-delay tradeoff allows JCAB to make flexible
configuration adaption. We will explain how the value of V
impacts the overall performance in Section V.

C. A Practical Algorithm for Solving the One-Slot
Problem for JCAB

In the last subsection, we give the performance guarantee of
JCAB. However, to complete the JCAB algorithm, it remains
to solve the optimization problem P1. Unfortunately, even this
real-time optimization problem P1 is NP-hard in general [33],
due to its combinatorial nature. In this subsection, we present
a practical algorithm for solving the one-slot problem for
JCAB. Note that, the performance analysis presented in the
last subsection does not depend on the algorithm discussed in
this subsection.

Let xt denote {xi
k,t|∀mi ∈ M, ∀uk ∈ U}, which is the

collection of model selection variables in time slot t. Similarly,
we use ft = {fk,t|∀uk ∈ U} to represent frame rate selection
for all video streams in time slot t, and bt = {bk,t|∀uk ∈ U}
is the bandwidth allocation scheme in time slot t. Supposed
that model selection xt is fixed, there are two problems left
to be solved.

The first problem is optimizing bandwidth allocation to
reduce latency. Since the utility function is totally determined
by the configuration, while bandwidth allocation only influ-
ences the service latency, the main objective of bandwidth allo-
cation is to minimize the average latency lt in each time slot,

P2 : min
{bt}

q(t) · lt. (30)

The solution satisfies the Karush-Kuhn-Tucker (KKT) con-
dition [34], so the optimal bandwidth allocation can be derived
as follows:

bk,t
∗ =

��N
i=0 α(xi

k,tri)2�K
k=1

��N
i=0 α(xi

k,tri)2
. (31)

The second problem is adapting frame rates to maximize
configuration utility. Given the bandwidth allocation bt and
model selection xt, the frame resolutions are fixed and the
average latency can be seen as a constant. The objective of
frame rate adaption is to find the optimal tradeoff between
detection accuracy and energy consumption, which is equal to
the maximum of the following utility function:

P3 : max
{ft}

at − ωet. (32)

As we mentioned before, the relationship between detection
accuracy and frame rate can be formulated as a concave
function. Suppose that the accuracy function with respect to
frame rate for uk in slot t is h1−h2 e−fk,t/h3 , where h1, h2,
and h3 are known constant coefficients. Therefore, Problem P3

is a simple convex optimization problem [34] with only one

kind of variables, i.e., fk,t. It is not hard to find the optimal
frame rates that make Eq. (32) reach its global maximum:

fk,t
∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−h3 log(
ωμkh3

g2 · �(
�N

i=0 α(xi
k,tri)2)

) if x0
k,t = 1,

−h3 log(
ωγkh3α

�N
i=0(x

i
k,tri)2

h2 · �(
�N

i=0 α(xi
k,tri)2)

) otherwise.

(33)

Based on the analysis above, we can come to the conclusion
that once the optimal CNN model selection xt is found, P2

and P3 are both easy to solve. However, since model selection
variables are binary, the whole problem is still a mix-integer
nonlinear problem, hence, it is impossible to find an optimal
solution in polynomial time. In this work, we propose to
leverage Markov approximation [35] to obtain a near-optimal
solution for model selection, as shown in Algorithm 2.

The one slot optimization algorithm for JCAB is described
in Alg. 2. Without causing any confusion, we use xk,t =
{x1

k,t, x
2
k,t, . . . , x

N
k,t} to denote the model selection vector for

uk. JCAB has multiple optimization objectives. On the one
hand, it aims to find the optimal configuration to maximize the
utility in Eq. (8); on the other hand, it should find the optimal
bandwidth allocation since all cameras connected to the edge
server share the same network channel and video streams vary
in data size and bandwidth requirement. Firstly, we randomly
select a user uk to choose a new CNN model 	m, while the
model selection for other users keeps unchanged, then the new
model selection vector 	xt is obtained, under which the optimal	bt and 	ft can be derived by solving P2 and P3, respectively.
Afterwards, the new objective value 	g is calculated, and g
is known as the objective function value for the old solution
{xt, bt, ft}. In the current iteration, the model selected by uk

is updated to 	m with probability η and keeps unchanged with
probability 1− η depending on the objective value difference
(	g − g). Therefore, changing CNN model selection is more
likely to occur if the new configuration { 	xt, 	bt, 	ft} results
in a lower objective value. The above iterative loop will
continue until Tmax iterations have been reached or there is
no significant improvement (i.e., |	g−g| < 0.01) for more than
10 iterations.

The parameter τ ≥ 0 (Line 7), referred to as the smooth
parameter, is used to control exploration versus exploitation
(i.e. the degree of randomness). When τ is small, the algorithm
tends to keep a new decision with a larger probability if it
is better than the current decision. However, in this case,
it takes more iterations to identify the global optimum since
the algorithm may be stuck in a local optimum for a long
time before exploring other alternatives that may lead to more
efficient solutions. When τ becomes large, the algorithm
tries to explore all possible solutions from time to time
without convergence. The selection of τ will be discussed in
Section V. As shown in [36], by proper parameter tuning,
the Markov approximation-based Alg. 2 can converge in a
super-linear rate.

D. Summary

To summarize this section, we list the major assumptions
made in our work for using the Lyapunov framework:

• The bandwidth is assumed to be stable within each time
slot.
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Algorithm 2: One Slot Optimization for JCAB

Input: �t
k(r), φt

k(f), μk, γk, Lmax, C, initial model
selection vector xt;

Output: model selection xt, frame rate selection ft,
bandwidth allocation bt;

1 repeat
2 Randomly pick a user uk and change its model

selection vector xk,t into 	xk,t by selecting a new
model 	m;

3 if 	xk,t is feasible then
4 	xt ← {x1,t, x2,t, . . . , 	xk,t, . . . , xK,t};
5 Obtain 	b∗t by solving P2 using Eq. (31);
6 Obtain 	f∗

t by solving P3 using Eq. (33);
7 η ← 1

1+e( �g−g
τ

)
;

8 With probability η, user uk accepts the new model
	m, bt ← 	b∗t , ft ← 	f∗

t ;
9 With probability (1− η), uk keeps xk,t unchanged;

10 until Tmax iterations have been reached or there is no
significant improvement (i.e., |	g − g| < 0.01) in the
objective value for more than 10 iterations;

11 return xt, ft, bt;

• The Lyapunov framework actually supports multiple
queues. However, there is only one virtual queue back-
log in our work, whose arrivals in slot t are lt =
1
K

�K
k=1 lk,t and the service is a fixed threshold Lmax.

Here, we assume that the arrivals are i.i.d over slots and
their mean rate, E[lk,t], is constant.

• In order to measure the stability of virtual queue backlog,
the latency overflow is used per slot (i.e., the latency
overflow for slot t is lt − Lmax). Then, the Lyapunov
framework requires such latency overflow to be bounded
from two aspects: 1) the second moments of arrivals and
service are bounded

∀t, E[
1
2
(lt − Lmax)2|q(t)] ≤ B,

where B > 0 is a finite constant as shown in Lemma 1;
and 2) the expected latency overflow is negative

∀t, E[lΓt − Lmax] ≤ −ε,

where ε > 0 exists for a policy Γ as shown in Inequality
(24) in our paper and it is equivalent to Lemma 2.
Here, the policy Γ is independent of current queue
backlog, which implies a certain policy always exists
for improving the queue backlog to be cleared. In sum,
these two assumptions imply that the overflow for the
queue backlog could be controlled and cleared to avoid
the violation of time averaged constraints.

• The distance between the feasible sudation of instan-
taneous subproblem and its optimum is acceptable,
∀t, E[aΓ

t − ωeΓ
t − ν∗

t ] = Φ(ε), which also implies the
policy is independent of current queue backlog.

IV. THE MULTI-EDGE SCENARIO

In the last section, we present the online algorithm JCAB
for the single-edge scenario. In this section, we discuss how
to extend JCAB to handle the multi-edge scenario.

A. Problem Formulation

We first present the problem formulation. Assuming that
there are M edge servers, each of which contains K CNN
models m1, m2, · · · , mK . We assume that the edge servers
are close with each other, thus, the propagation delay can be
ignored. The capacity of the j-th edge server is Cj . The uplink
bandwidth of the j-th edge server in time slot t is Bj

t . We use
yj

k,t to indicate whether user uk chooses the j-th server to
offload in time slot t; we use xj,i

k,t to indicate whether user
uk chooses the i-th CNN model on the j-th server to offload
in time slot t. The other notations are similar to those in the
single-edge case. The problem can be formulated as follows:

PM : max
{y,x,b,f}

lim
T→+∞

1
T

�T

t=0
(at − ωet)

s.t. C1 :
M�

j=1

N�
i=0

yj
k,tx

j,i
k,t = 1, ∀k, t

C2 : xj,i
k,t ∈ {0, 1}, ∀k, t, j, i

C3 : fk,t ≤
M�

j=1

N�
i=0

yj
k,tx

j,i
k,t

1
si

, ∀k, t

C4 :
K�

k=1

N�
i=1

yj
k,tx

j,i
k,tci ≤ Cj , ∀j, t

C5 :
K�

k=1

yj
k,tbk,t ≤ Bj

t , ∀j, t

C6 : lim
T→+∞

1
T

T�
t=0

lt ≤ Lmax

C7 :
M�

j=1

yj
k,t = 1, ∀k, t

C8 : yj
k,t ∈ {0, 1}, ∀k, t, j

C9 : xj,i
k,t ≤ yj

k,t, ∀k, t, j.

The above problem has three new constraints. Constraints
C7 and C8 ensure that, in each time slot, one and only one
edge server can be chosen by a user. Constraint C9 says that
a user cannot use the CNN model on an edge server which
is not chosen by it. This problem is harder than Problem P ,
since it allows one more decision for each user about which
edge server to choose.

B. Algorithm Design

The main idea is to decouple the edge server assignment
from the other decisions. Initially, we assign users or video
streams to edge servers based on the capacities and uplink
bandwidths of edge servers; we then update or improve the
edge server assignment at the beginning of each time slot
based on the change of the uplink bandwidths and accuracy
functions. The details are shown in Alg. 3.

Initially, we use first-fit to assign video streams to edge
servers: the size of each video stream is seen as 1, while
the volume of the j-th edge is seen as 
 (Cj+σBj

0)
�M

h=1(Ch+σBh
0 )

K�.
By doing so, we can ensure these M edge server can accom-
modate K video streams. Here, σ is a parameter controlling
the trade-off between computing resources and bandwidth
resources. Intuitively, an edge server with a large computing
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Algorithm 3: mJCAB for the Multi-Edge Scenario

1 for j = 1 to M do

2 volj0 ← 

(Cj+σBj

0)
�M

h=1(Ch+σBh
0 )

K�;

3 Assign K users to M edges using first-fit [37];
4 for t = 0 to T − 1 do
5 for k = 1 to K do
6 Based on the first few frames at slot t, choose the

most appropriate �t
k(r) and φt

k(f) from a set of
pre-defined functions;

7 for j = 1 to M do
8 Kj ←the set of users assigned to j-th edge; if�

k∈Kj
(auc(�t

k(r)) − auc(�t−1
k (r))) < 0,�

k∈Kj
(auc(φt

k(f))− auc(φt−1
k (f))) < 0, or its

uplink bandwidth decreases then
9 uk ← argk mink∈Kj (�t

k(r) + φt
k(r));

10 Move uk to another edge whose uplink
bandwidth increases or the total auc of all users
on that edge increases;

11 Choose {xt, ft, bt} by solving P1 for each edge
server using Alg. 2;

12 for j = 1 to M do

13 qj(t + 1)← [qj(t) +
�K

k=1 yj
k,tlk,t

�K
k=1 yj

k,t

− Lmax]+;

capacity and a large uplink bandwidth should accommodate
more video streams.

At the beginning of each time slot, mJCAB tries to adapt
the edge server assignment to the changing accuracy functions
and bandwidths. The bandwidth change is easy to capture,
however, how can we represent the change of an accuracy
function? We introduce the concept of AUC (area under
curve). The auc of a curve is the area bounded by the y = 0,
the curve itself, x = x1, and x2. For example, in Fig. 4(a),
the auc of the red dashed line is the area bounded by y = 0,
the red dashed curve, x = 360p, and x = 1080p. When the
auc of a curve decreases, it means we need a higher resolution
or frame rate to achieve the accuracy as before. Therefore,
in the mJCAB algorithm, when the uplink bandwidth of an
edge server decreases, the total auc of all users on this edge
decreases, we try to move one user that has the smallest auc
to another edge whose uplink bandwidth increases or the total
auc of all users on that edge increases.

We then choose {xt, ft, bt} by solving P1 for each edge
server using Algorithm 2, after which we update the virtual
queue length for each edge server. Note that, each edge server
has a different virtual queue.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of JCAB and
mJCAB through simulations, and compare its performance
against several baselines. We simulate each edge server with
five CNN models, corresponding to each model, the input
images are 360p, 540p, 720p, 900p and 1080p, respectively.
The processing time per frame of these remote CNN models
increases from 20ms to 250ms, according to their model sizes.

Fig. 5. Delay comparison of four algorithms.

Fig. 6. Accuracy comparison of four algorithms.

Fig. 7. Variation of accuracy with bandwidth.

Fig. 8. Variation of latency with bandwidth.

Fig. 9. The impact of user number (bars for delay while lines for accuracy).

Fig. 10. Trade off between accuracy and energy.

Video frames processed by the local CNN model are scaled
to 360p, but the processing speed can be much lower with the
mean value of 200ms per frame. The network bandwidth varies
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from 20Mbps to 100Mbps, according to the experimental
measurements in [5]. Energy consumption of local processing
(μk) is 5 J/frame and γk for all front-end devices are uniformly
set to be 0.5×10−5 (J). Similar to Chameleon [14], frame rates
and resolution of a video stream can be dynamically adjusted
by FFmpeg [38].

We roughly divide targets into three categories according to
their relative sizes in the video, and we profile several accu-
racy functions with respect to resolution. Similarly, different
accuracy functions with respect to frame rate are drawn when
targets move at different speed levels. At the beginning of
each time slot, the most appropriate model will be selected
according to the characteristics of targets. In the simulation,
we compare our algorithms with three other algorithms:

• Non-adaptive: All video streams pick the most expensive
configurations throughout the simulations to maximize
the accuracy, while the energy and latency constraint are
ignored.

• Delay-optimal: It aims to minimize the average service
delay in each slot, regardless of the analytics accuracy
and energy consumption.

• Delay-myopic: It imposes a hard latency constraint in
each slot. It can satisfy the long-term delay constraint
without requiring future information. However, it is less
adaptive and purely myopic.

The reasons for choosing the above algorithms are as fol-
lows. Firstly, as we mentioned before, the joint configuration
adaption and bandwidth allocation problem in this paper is
significantly different from any existing studies, thus, none
of existing algorithms can be used as comparison algorithm
without any modifications.

Secondly, since we are mostly interested in the following
two metrics: accuracy and delay, we want to compare JCAB
and mJCAB with other baselines on these two metrics. Non-
adaptive ignores the energy and delay constraints and it
always pick the most expensive configurations, i.e., the highest
resolution and the highest frame rate, therefore, Non-adaptive
can achieve the highest accuracy in any situations and it
can provide an upper bound on the accuracy. Delay-optimal
minimizes the delay while ignoring the accuracy and energy
constraints, thus, it provides a lower bound on the delay.
Delay-myopic imposes a hard delay constraints in each slot,
which means it may lose some possible opportunities to
increase the accuracy with temporarily violating the delay
constraint. Delay-myopic can be seen as a degeneration of
JCAB when the Lyapunov optimization techniques are not
used.

A. Comparison in the Single-Edge Scenario

We compare JCAB with Non-adaptive, Delay-optimal, and
Delay-myopic in this subsection.

Figs. 5 and 6 show the average system delay and accuracy
over time of four different algorithms. Note that JCAB has
a convergence process, during which the algorithm gradu-
ally finds the optimal trade-off between latency and accu-
racy. Generally, JCAB achieves a desirable average accuracy
while closely following the long-term energy constraint. The
Non-adaptive scheme achieves the highest system accuracy as
expected. However, it is achieved at the cost of an extremely
long average latency per frame. Compared to Non-adaptive,
JCAB slightly sacrifices the accuracy performance to meet

the latency constraint. In contrast to Non-adaptive, the Delay-
optimal method achieves the lowest latency in every slot, but
the short latency comes with a big sacrifice in the average
accuracy. For the Delay-myopic scheme, the long-term latency
constraint Lmax = 0.23 is also satisfied. However, because
a hard latency constraint is imposed in every time slot,
the algorithm is less flexible, resulting an inferior accuracy
performance compared to JCAB.

1) Impact of Bandwidth: Figs. 7 and 8 show the impact of
bandwidth on the converged time-averaged system delay and
accuracy. Bandwidth traces are generated with the mean value
increasing from 25Mbps to 100Mbps, according to the exper-
imental measurements in [5]. As shown in Fig. 7, generally,
all algorithms except Non-adaptive achieve a higher accuracy
when bandwidth increases, since a higher bandwidth can
support more expensive configurations. The average service
latency of both JCAB and Delay-myopic are bounded. There
is an insignificant latency performance gap between them
when bandwidth is insufficient, but the gap decreases when
bandwidth increases. However, the other two algorithms are
more sensitive to bandwidth variation, under which the system
latency decreases dramatically when the uplink bandwidth
increases.

2) Impact of User Number: Fig. 9 shows the average
perceived latency and analytics accuracy versus the number of
users. For the Non-adaptive scheme, the latency increases sig-
nificantly due to serious bandwidth contention. Accordingly,
the converged time-averaged accuracy has a slight decrease
when the user number exceeds 6, due to the limited computing
resource of the edge server. For the Delay-optimal offloading,
the achieved accuracy remains at a relative low level with
a steady growth in system latency. The long-term average
latency of JCAB and Delay-myopic closely follows the latency
constraint under various user numbers. When serving more
users, the latency constraint is achieved at a slight sacrifice
in the analytics accuracy. For the Delay-myopic method,
the time-averaged latency can be even slightly below the
latency constraint when the user number is small.

B. A Running Example

Fig. 11 shows how the configurations adapt to bandwidth
variation and video content dynamics. There are three cameras
connected to the same edge server. The video content varies
over time; in the 20th slot, targets in video stream 1 move
slow, while targets in video stream 2 move fast, and thus
the optimal frame rate for these two video streams changes
accordingly. The intuition behind this adaption is that “more
frames can be skipped if the difference between adjacent
frames is small”. In the 15th slot, targets in video stream
3 move near, we can degrade resolution for energy saving,
while still maintaining the desired accuracy. As illustrated
in Fig. 11(a), there are occasions when available bandwidth
decreases dramatically, and all video streams subsequently
lower the resolution to reduce the bandwidth requirement.
Specifically, Camera 3 switches to local video processing,
since it is less sensitive to resolution degradation relative to
the other two video streams.

C. The Impact of Hyperparameters

We evaluate the impact of several hyperparameters in this
subsection.
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Fig. 11. Runtime behavior of JCAB over time.

Fig. 12. Convergence of Algorithm 2.

Fig. 13. The impact of latency constraint Lmax.

Fig. 14. The impact of weight V .

Fig. 15. Variation of accuracy in multi-edge.

Fig. 16. Delay comparison in multi-edge.

1) Accuracy-Energy Tradeoff: Fig. 10 presents the con-
verged time-averaged accuracy and energy consumption of
JCAB under different values of the control parameter ω.

Fig. 17. Accuracy comparison in multi-edge.

We observe that when increasing ω from 0.001 to 0.003,
the algorithm gains up to 44% energy consumption reduction
with only 4% loss of the analytics accuracy. It implies that
when a proper ω is set, our proposed algorithms will effi-
ciently save energy consumption while maintaining a desirable
accuracy.

2) Convergence: Fig. 12 shows the convergence process of
Alg. 2. In general, a smaller τ leads to a faster convergence
speed. When τ = 0.05, the algorithm converges within 50 iter-
ations. However, blindly decreasing τ impedes the identifi-
cation of global optimum and results in the convergence to
inferior solutions. In our experiment, the most appropriate
value for τ is 0.1, which can achieve a good trade-off between
the solution quality and the convergence rate.

3) Latency-Accuracy Tradeoff: Fig. 13 shows the accuracy
of JACB under different values of Lmax between the 800th and
1,000th time slots in an experiment. We observe that a higher
accuracy can be achieved with a looser latency requirement.
The accuracy fluctuates because of the variability of network
bandwidth and video content. It is also obvious that the distri-
bution of accuracy is more centralized to the median as Lmax

increases. When Lmax is small, the latency constraint can
be easily violated and sometimes accuracy should be greatly
sacrificed to meet the latency constraint. On the contrary,
a large Lmax reduces the fluctuation range of the accuracy.
As we mentioned before, the parameter V also controls the
accuracy-latency tradeoff. Fig. 14 compares the average queue
backlog with different values of the control parameter V .
In Fig. 14, we know that all queue backlogs gradually converge
to certain values, respectively. Thus, if there are more time
slots, the long-term constraint can be satisfied. When the
parameter V is large, it needs more time slots to converge.
On the contrary, when the parameter V decreases, minimizing
the system latency becomes the primary goal, which makes
the service latency more stable.

D. Comparison in the Multi-Edge Scenario

We compare mJCAB with mNon-adaptive, mDelay-optimal,
and mDelay-myopic in this subsection. mNon-adaptive
denotes Non-adaptive with the same edge assignment with
mJCAB; mDelay-optimal denotes Delay-optimal with greedy
edge server assignment at the beginning of each time slot;
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and mDelay-myopic denotes Delay-myopic with randomly
generated edge assignment at the beginning of each time slot.
The results are shown in Figs. 15, 16, and 17.

Fig. 15 shows the impact of bandwidth on the converged
time-averaged detection accuracy. The bandwidth traces are
generated using the same way in the single-edge scenario.
When the available bandwidths increase, all algorithm achieve
better accuracies. Figs. 16 and 17 show the comparison results
in terms of delay. In general, the mNon-adaptive scheme
achieves the highest system accuracy but has the worst system
delay; the mDelay-optimal scheme achieves the best delay
but has the lowest accuracy. mJCAB achieves a desirable
average accuracy while closely following the long-term energy
constraint. In other words, mJCAB slightly sacrifices the
accuracy performance to meet the latency constraint.

VI. RELATED WORK

We discuss the most closely related work in 3 categories.

A. Cloud-Assisted Video Stream Processing

Several studies [5], [18], [19] focused on cloud-assisted
video stream processing. For example, VideoStorm [18] takes
the resource-quality trade-off and the variety in quality and
latency goals into account; GigaSight [19] continuously col-
lects crowd-sourced videos from mobile devices. However,
they all rely on remote clouds to ingest video streams,
and assume that sufficient bandwidth is provisioned between
cameras and the cloud. Different from them, we promote
pushing computation to the network edge in proximity to
data sources. In addition, we allow performing video analytics
locally leveraging the computing power of smart cameras [39].

B. Video Analytics With Single Edge

Chameleon [14] periodically searches an exponentially large
configuration space to find the optimal configuration for a
video query, however, it only focuses on the trade-off between
analytics accuracy and computation resource, while ignoring
the fact that bandwidth is a scarce resource in video ana-
lytics. EAAR [16] utilizes dynamic RoI encoding and the
decoupling of rendering and offloading to optimize the end-
to-end latency, while we aim to find the optimal tradeoff
between accuracy and energy consumption. DDS [40] uses
server-side lightweight feedbacks to save bandwidth usage,
however, it ignores client-side energy consumption and CNN
model selection. Reducto [41] relies on camera-side filter-
ing to mitigate the server-side load, however, Reducto did
not consider camera-side energy consumption and the server
latency constraint. O3 [42] employs online learning to find
the best trigger threshold for switching objection detection
on edge and tracking on camera. The most related work
is probably [43], in which the authors considered the com-
plex interaction among model accuracy, video quality, battery
constraints, network data usage, and network conditions to
determine an optimal offloading strategy. However, there are
no analytical models for resource demand and quality for a
query configuration in [43], and they focused on client-side
scheduling whereas we focus on server-side decisions for mul-
tiple video streams, with constraints on the network bandwidth
and the capacity of edge servers.

C. Video Analytics With Multiple Edges

CrowdVision [20] parallelizes frame offload and local detec-
tion to optimize the processing time. FACT [3] enables fast

and accurate object analytics. In these frameworks, images
are extracted from the video with a fixed sampling rate,
the analytics of different frames is treated as tasks with the
same complexity and accuracy. The assumption, however,
is improper since the frame rate and frame resolution will
impact both the accuracy and query processing time for
video analytics applications. JetStream [21] is the first to use
configuration degradation to address bandwidth limits, but it
requires developers to write manual policies which are gener-
ally sub-optimal. Our work aims to find the optimal tradeoff
between accuracy and energy consumption in edge-assisted
video analytics systems, with a long-term latency constraint,
and thus none of these previous works can be directly and
effectively applied to our problem.

VII. DISCUSSION

In this section, we discuss several potential limitations and
future research directions.

A. More General Accuracy Model

In our work, we pre-trained some accuracy models in edge
servers, and the accuracy profiler selects models for each video
stream according to the characteristics of targets. However, for
two different video streams, the accuracy function with respect
to resolution may not be exactly the same even if they have the
same target size currently. Although our model is not perfect,
we believe that it is a reasonable and valuable step towards
studying content-aware adaptive video analytics in the edge
environment.

B. Intra-Frame Encoding

To decrease the amount of video data per frame, we can
further utilize the redundancy of video frames by encoding
frames based on intra-frame difference. This is especially use-
ful when the bandwidth is the bottleneck while the computing
resources are adequate.

C. Deploying JCAB in Practice

JCAB and mJCAB can run on the user-side. This approach
offers several advantages over deployment on the server-side.
First, video streams do not need to send observations to edge
servers, which avoids unnecessary information exchange and
latency. Second, there is no need to modify edge servers;
in other words, this adaptive configuration selection can be
transparent to edge servers. Therefore, client-side JCAB can
be seen as an overlay on the existing video stream-based
applications; whenever there is failure in JCAB, we could
disable the configuration selection service and fall back to
the default one. This fault recovery mechanism could be
invaluable.

VIII. CONCLUSION

In this paper, we study joint configuration adaption and
bandwidth allocation for the edge-assisted real-time video
analytics system. We proposed efficient online algorithms
which can select appropriate configurations for multiple video
streams according to the network condition and video contents,
taking energy consumption, system latency, analytics accuracy
into consideration. The proposed algorithm is easy to imple-
ment while providing provable performance guarantee.
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