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Abstract—Federated Learning (FL) is a newly-emerging dis-
tributed machine learning paradigm, whereby a server can
coordinate multiple clients to jointly train a learning model by
using their private datasets. Many researches focus on designing
incentive mechanisms in FL, but most of them cannot allow that
clients flexibly determine privacy budgets by themselves. In this
paper, we propose a privacy-preserviNg InCentive mEchanism
(NICE) based on Differential Privacy (DP) and Stackelberg game
for FL systems in industrial IoT. First, we design a flexible
privacy-preserving mechanism for NICE, in which clients can add
a Laplace noise into the loss function according to a customized
privacy budget. Under this mechanism, we design two incentive
utility functions for the server and clients. Next, we model the
utility optimization problems as a two-stage Stackelberg game by
seeing the server as a leader and the clients as followers. Finally,
we derive an optimal Stackelberg equilibrium solution for the
both stages of the whole game. Based on this solution, NICE can
make the server and all clients achieve their maximum utilities
simultaneously. In addition, we conduct extensive simulations on
real-world datasets to demonstrate the significant performance
of the proposed mechanism.

Index Terms—Federated learning, Industrial IoT, Privacy p-
reservation, Stackelberg game.

I. INTRODUCTION

THe past few years have witnessed the proliferation of
intelligent industry by integrating Machine Learning (M-

L) and industrial Internet of Things (IoT). The success of
ML for IoT stems from the availability of big real-time
data and enormous computation power [1], [2]. However, in
many industrial IoT applications, data might be generated by
distributed advanced sensors owned by different individuals
or institutes, even involving sensitive information. Moreover,
it becomes difficult to aggregate massive data for energy-
intensive centralized training owing to the increasing data
scale. To reconcile these concerns, Federated Learning (FL),
as a compelling eye-catching distributed ML paradigm, is
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Fig. 1. The Federated Learning Framework

employed which can make multiple parties jointly train an
ML model using their private datasets locally.

A typical FL system consists of a server and some clients,
each of which has a private dataset generated by industrial IoT
(called industrial dataset), and the server can coordinate clients
to jointly train a global ML model, as shown in Fig. 1. We
take driver drowsiness monitoring as an example to expound
its advantages. A company intends to train a driver drowsiness
detection model to increase road safety. Through shifting the
ML training from the centralized cloud to drivers’ end devices
(e.g., smart in-car cameras), the company can fully leverage
drivers’ computation resources to unload the training burden.
More importantly, each driver locally trains the local model
and only transmits the model parameters instead of disclosing
their private driving data (e.g., the expression feature and
gesture), thereby protecting sensitive data from being eaves-
dropped upon by malicious attackers. Finally, the company can
acquire a global model with the desired accuracy by repeatedly
aggregating local models. Currently, many works have been
dedicated to different FL issues [3]–[6].

One of the most important issues in industrial IoT applica-
tions is how to protect the industrial data privacy of clients
from being revealed during the whole ML model training.
Many techniques have been employed to solve the problem,
including encryption, secure multi-party computation, and
Differential Privacy (DP) [7]. Among them, DP attracts much
attention since it is a lightweight tool. The most common
way to achieve DP is to add noises into industrial datasets
according to a certain privacy budget. The smaller the privacy
budget, the more the noise needs to be injected, and the higher
the privacy protection level. For instance, [8] proposed an
anonymous and differentially private FL scheme, in which
DP-based Gaussian mechanisms are leveraged to protect the
privacy of industrial big data. [9] applied local DP by injecting
random noises into the updated local model to protect UAVs’
privacy. In most of these works, the privacy budget of each
client is preassigned, which implies that the added noises
are fixed during the whole process. Consequently, when the
privacy budgets are small, the corresponding clients need
to add more noises into industrial datasets, producing low-
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accurate local models and making the global model converge
very slowly or even fail to converge. Therefore, it is necessary
to design a flexible privacy-preserving mechanism to satisfy
different privacy demands of clients.

In this paper, we allow clients to flexibly determine their
privacy budgets by themselves. Moreover, we endeavor to
design an incentive mechanism, which can incentivize clients
to select a suitable privacy budget so as to achieve a bal-
ance between privacy protection and model accuracy. Many
remarkable incentive mechanisms for FL have been proposed
[10]–[13], among of which only a few studies have taken
preserving privacy into consideration, e.g., [12] designed an
incentive mechanism to award clients under DP. However,
none of the previous works has addressed how to motivate
clients to properly discard some privacy in exchange for higher
model accuracies (i.e., more rewards) by customizing privacy
budgets. Actually, there are two trade-offs in this problem. On
one hand, each client wants to select a smaller privacy budget
to improve the privacy protection level. However, the smaller
privacy budget means more noise injected into the local model,
which leads to a lower local model accuracy. Consequently,
the server will pay a less reward to the client. Therefore, there
is a trade-off between monetary rewards and privacy protection
levels. On the other hand, there is also a trade-off for the server
between the total payment to clients and gain from the model
accuracies. When the server gives a low payment, clients are
unwilling to sacrifice a large amount of privacy and choose
small privacy budgets, which will result in low-accurate local
models. Designing a privacy-preserving incentive mechanism,
which can achieve privacy-flexibility and make a balance of
two trade-offs, is much challenging.

To address the above challenges, we propose a privacy-
preserviNg InCentive mEchanism (NICE) based on DP and S-
tackelberg game, which integrates a flexible privacy-preserving
mechanism and an incentive mechanism. We first design
the flexible privacy-preserving mechanism (Section III). Each
client can choose a sequence of proper privacy budgets by
itself, according to which the client adds Laplace noises
into the loss function so as to achieve the DP property. To
determine the privacy budget for each client, we next propose
the incentive mechanism (Section IV). Specifically, we design
two utility functions for the server and clients, respectively.
The incentive problem is modeled as a two-stage Stackelberg
game, in which the server is a leader and clients work as
followers. We derive the optimal payment strategy for the
server and the optimal privacy budget strategy for each client
to maximize their utilities and balance their trade-offs, re-
spectively. Additionally, we prove that these optimal strategies
constitute a unique Stackelberg equilibrium of the game, based
on which the incentive mechanism can incite clients to make
an optimal balance between training accurate ML models
and preserving the privacy of their local industrial datasets.
Overall, our salient contribution is multifold as follows:
• We propose a novel privacy-preserving incentive mechanis-

m, namely NICE, which integrates Stackelberg game and
DP skillfully. Different from the existing studies, NICE fa-
cilitates the trade-off between monetary rewards and privacy
protection levels so as to solve privacy-flexibility and utility

TABLE I
DESCRIPTION OF MAJOR NOTATIONS

Variable Description

i,N , N
the index of the client i, the set of all clients, and
the number of clients, respectively.

(xj , yj)
the vector xj ∈ Rd is a training sample with d
features, and yj ∈ R is the corresponding label.

Di, Ds the dataset of client i and the server.
M the functionality of the ML model.

wtg ,wti model parameters of the global and local model.
L(wti;Di) the loss function with model parameters and data.

θt the accuracy of the t-th round of global model.
Ψ,Γ the privacy-preserving and incentive mechanism.

Γt,Γti
the total payment and the reward of the i-th client
paid by the server in the t-th round.

εti, ε
t
−i the privacy budget, vector 〈εt1, ..., εtN 〉 expect εti .

Uti ,Ut the utility of client i and the server in round t.

cpvi , ccpi , ccmi
the privacy cost, the computation cost, and the
communication cost of the i-th client.

ξi, ζ the cost per unit εti and a system parameter.

maximization for FL systems in industrial IoT.
• We design a flexible privacy-preserving mechanism for

sensitive data in industrial IoT, in which each client can
decide how much privacy to disclose to the server (indicated
by the privacy budget) according to the personalized privacy
demands. What’s more, we prove that it satisfies the DP
property and demonstrate the convergence analysis.

• We model the incentive problem as a two-stage Stackelberg
game, and derive the optimal strategies for the server and
clients. Additionally, we prove that these optimal strategies
form a unique Stackelberg equilibrium, which guarantees
that no one will deviate from the optimal strategy and
maximizes all parties’ utilities simultaneously.

• We conduct extensive simulations on real datasets to cor-
roborate the good performance of NICE.

II. MODEL AND DESIGN GOALS

A. System Model
We consider an FL system for industrial IoT applications

with the flexible privacy-preserving mechanism and incentive
mechanism, which consists of a server and N clients, denoted
by N ={1, 2, · · · , N}. Each client i∈N has a local private
dataset Di={(xj , yj)|j= 1, 2, · · · , |Di|} collected by indus-
trial IoT, where the vector xj∈Rd is a training sample with
d features, yj ∈R is the corresponding label, and |Di| is the
number of samples. The server has an auxiliary dataset Ds

for validation. We divide the whole FL process into many
rounds, and let t = {1, 2, · · · } indicate the rounds. In each
round, clients use their local data to train local ML models.
The server can aggregate these local models to derive a global
model and verify its accuracy by using the validation dataset.
We denote the global model and the i-th local model in the
t-th round as M(wtg; ·) and M(wti; ·), respectively. Here, M
represents the functionality of the ML model. Matrices wtg and
wti are model parameters, where subscript g means the global
model and i indicates the client. The joint training process
with NICE in FL systems can be roughly described as the
following steps:

1) Initialization: At first, the server constructs an initial
global model M(w0

g; ·) and broadcasts it to all clients
together with the requirements and payment rules. Here,
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the superscript t= 0 means that this is an initial model.
In the requirements, the server can specify the approach
to be adopted, such as Stochastic Gradient Descent.

2) Privacy-preserving Local Training: Each client i receives
the global model M(wt−1g ; ·) of last round from the
sever. Then, the client i lets wt−1i = wt−1g and uses its
private industrial dataset Di to repeatedly train the model
M(wt−1i ; ·) according to the requirements specified by
the server. As the output, the client will get a local model
M(wti; ·), where t is the current round. Essentially, the
local training is to determine a new model parameter
matrix which can minimize a predefined loss function:

wti = arg minL(wt−1
i ;Di). (1)

Here, L is the loss function, including the total error
of the training model over all data items in Di. Note
that, the model parameter matrix wti is derived using the
local private data. Thus, in order to prevent any sensitive
information from being inferred through wti, the client i
adopts a privacy-preserving mechanism to make the local
training produce a disguised model parameter matrix w̃ti.
Denote the privacy-preserving mechanism as a function
Ψ. Then, this process can be represented:

w̃ti = Ψ(wt−1
i ;Di). (2)

Next, the client i will send the disguised model parameter
matrix w̃ti back to the server.

3) Incentive Mechanism: The server collects the local train-
ing models of all clients, i.e., receiving the disguised
model parameter matrix w̃ti from each client i. Then, the
server pays each client i a reward Γti. The value of Γti
is determined by an incentive mechanism. For simplicity,
we denote the incentive mechanism as follows:

Γ={Γti|i∈N , t=1, 2, · · · }, and Γt=
∑
i∈N Γti. (3)

4) Aggregation and Model Updating: The server aggregates
all local model parameters to derive a model parameter
matrix based on the following formula:

wtg=
∑N

i=1
w̃tiri/

∑N

i=1
ri, (4)

where ri is the reliability of the i-th client and can
be derived from historical records. Here, as an example,
we adopt the simple weighted averaging operation as the
aggregation function. Actually, our work can also support
other complex aggregation operations. After the aggrega-
tion, the server will update the global model asM(wtg; ·).
Next, the server evaluates the accuracy of the global mod-
el, i.e., θt =

∑
(xj ,yj)∈Ds

1{M(wt
g ;xj)=yj}/|Ds|. Here, θt

is the accuracy of the t-th round of global model, and 1{·}
is an indicator function. Note that we take a classification
model as an example and NICE can also apply for other
ML models. If the accuracy of the global model converges
or is larger than a given threshold, the server will end the
process. Otherwise, it will broadcast the updated wtg to
all clients to start the next round.

B. Design Goals
In the above model, we aim to design a privacy-preserving

incentive mechanism NICE=〈Ψ,Γ〉, which integrates a flexible
privacy-preserving mechanism Ψ and an incentive mechanism
Γ under Ψ. Specifically, our objectives are as follows.

First, we devote to designing a flexible privacy-preserving
mechanism Ψ, which satisfies the differential privacy property.
The security model is essentially the privacy-preserving model
based on differential privacy, defined as follows:

Definition 1 (Differential Privacy, DP [14]). A randomized
mechanism A has ε-differential privacy if for any two input
sets D1 and D2 differing on at most one element, and for any
set of outcomes O ⊆ Range(A), we have Pr[A(D1) ∈ O] ≤
exp(ε) × Pr[A(D2) ∈ O]. ε > 0 is the privacy budget: the
smaller ε, the stricter protection and lower data availability.

As long as a mechanism satisfies ε-DP, it can possess the
DP-based security. Each client i has a privacy budget εi, which
implies the privacy protection level for the sensitive data in
industrial IoT (i.e., the quantity of noises to be added for its
local model). Note that, the flexibility means that each client is
allowed to determine a proper privacy budget by itself in each
round of model training. That is, the heterogeneous privacy
needs of different clients can be satisfied.

Second, we aim to propose an incentive mechanism Γ
to determine each client’s optimal privacy budget (i.e., the
parameter ε for Ψ) and the server’s optimal payment, which
can balance the following trade-offs:

The first trade-off is on the clients’ side: monetary rewards
vs. privacy protection levels. On one hand, each client wishes
to protect local sensitive data with a higher privacy-preserving
level, thus it will add more noises (i.e., select a smaller privacy
budget) to local ML models; on the other hand, it is unwilling
to decrease the local model accuracy due to injecting more
noises, resulting in less rewards from the server.

The second trade-off is on the server’s side: the total
payment to clients vs. gain from the model accuracies. If the
server wants to save its cost by reducing Γti, the client i might
be reluctant to bear more risk of privacy leakage and add more
noises into its local model. Consequently, the server’s gain
might become smaller from these low-accurate local models.

In order to balance the two trade-offs, we need an incentive
mechanism Γ under Ψ, in which each client holds its optimal
privacy budget and the server meets its optimal payment.

III. PRIVACY-PRESERVING MECHANISM
In this section, we design the flexible privacy-preserving

mechanism Ψ, through which each client i can protect the
privacy of local sensitive dataset Di from being revealed. We
adopt the DP approach in the design, because it has a relatively
small computation and communication cost. The basic idea is
to disguise the model parameters wti by adding Laplace noises
into the loss function of training model L(wt−1i ;Di). Here, we
suppose that the privacy budget εi for each client i is known in
advance. For notational simplicity, we omit the superscript of
εti. In the next section, we will introduce the detailed method
to determine the privacy budget of each client.

A. Mechanism Design
Unlike traditional works, our flexible privacy-preserving

mechanism Ψ directly adds Laplace noises into the loss
function of training model, not into the model parameters.
This is because there is a direct and apparent relationship
between the loss function and the model accuracy. The whole
DP mechanism mainly includes the following steps:
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First, we need to determine the sensitivity of the loss
function, which is defined as follows.

Definition 2 (Sensitivity). For any pair of input datasets Di
and D′i which differ on at most one data item, the sensitivity
δL of the loss function L(wt−1i ;Di) satisfies:

δL = max〈Di,D
′
i〉
|L(wt−1

i ;Di)−L(wt−1
i ;D′i)|. (5)

According to Definition 2, the sensitivity value is irrelative
with the dataset and only relies on the loss function. Dif-
ferent training models and loss functions will have different
sensitivity values. Fortunately, J. Zhang et al. and J. Ding et
al. introduced a generalized method to derive the sensitivity
values of different loss functions of ML models [15]. By
using the Stone-Weierstrass theorem [16], any differentiable
and continuous loss function can be rewritten as a polynomial
about the ML model parameters. Thus, the authors turn the
loss function into a polynomial and derive a closed formu-
lation on the sensitivity. Once the loss function is given, the
corresponding sensitivity can be determined. In this paper, we
assume that the loss function is differentiable and continuous,
but do not confine the concrete model for generality. So, we
can directly use the above method to know the sensitivity δL.

Next, the client i produces the Laplace noise and adds the
noise into the loss function. Denote the disguised loss function
as L̃(wt−1i ;Di). Then, it can be formulated as follows:

L̃(wt−1
i ;Di) = L(wt−1

i ;Di)+Lap(δL/εi). (6)

Here, Lap(δL/εi) is the Laplace noise, which is actually
drawn from a Laplace distribution with mean zero and scale
δL/εi. The corresponding probability density function is de-
noted by f(x)=(εi/2δL) exp((−εi/δL)|x|).

Finally, since the client i needs to submit the model
parameters instead of the loss function to the server after
each round of local training, it needs to derive the disguised
model parameters from the disguised loss function. This can
be represented as w̃ti = arg min L̃(wt−1i ;Di). Based on this,
when the client i replaces the loss function L with L̃ in the
local training, it can get the disguised model parameters w̃ti.

The above flexible privacy-preserving mechanism Ψ can be
formulated as follows.

Ψ(wt−1
i ;Di) = arg min

[
L(wt−1

i ;Di)+Lap( δL
εi

)
]
. (7)

B. Theoretical Analysis
Theorem 1. For each client i ∈ N , the flexible privacy-
preserving mechanism Ψ satisfies the εi-differential privacy,
where εi is the privacy budget.
Proof. Consider an arbitrary pair of local datasets Di and D′i
which differ on at most one data item. Let L(wt−1i ; ·) be the
loss function with the sensitivity δL. Moreover, suppose that
l is an arbitrary loss function value. Then, we have:

Pr[l = L(wt−1
i ;Di) + Lap(δL/εi)]

Pr[l = L(wt−1
i ;D′i) + Lap(δL/εi)]

=

εi
2δL

exp(− εi
δL
|l−L(wt−1

i ;Di)|)
εi

2δL
exp(− εi

δL
|l−L(wt−1

i ;D′i)|)

= exp((εi/δL)[|l −L(wt−1
i ;D′i)|−|l−L(wt−1

i ;Di)|])
≤ exp((εi/δL)|L(wt−1

i ;Di)−L(wt−1
i ;D′i)|)=exp(εi). (8)

Each client conducts the mechanism Ψ by itself. On one
hand, all DP mechanisms (i.e., Ψ) are independent of each
other and there is no global DP mechanism. Therefore, the DP

mechanisms of different clients do not need to be composed.
On the other hand, it is straightforward that Ψ conducted in
each round of each client satisfies the Parallel Composition
theorem [17], since all batches are disjoint from each other
in a training epoch. According to Definition 1, the privacy-
preserving mechanism Ψ satisfies the εi-DP.

Theorem 2. When the number of samples |Di| is large ade-
quately, the difference between the disguised model parameters
w̃ti = arg min L̃(wt−1i ;Di) and the real model parameters
wti = arg minL(wt−1i ;Di) is arbitrarily close to 0.
Proof. We use `(wt−1i ;xj , yj) to represent the loss function
associated with the data sample (xj , yj) and the model pa-
rameters. Then the local loss function at the client i can be
represented as L(wt−1i ;Di) =

∑|Di|
j=1 `(wt−1i ;xj , yj). Owing

to L̃(wt−1i ;Di) = L(wt−1i ;Di)+Lap(δL/εi), we can get the
limit of L̃(wt−1i ;Di) as follows.

lim
|Di|→∞

1
|Di|

L̃(wt−1
i ;Di)= lim

|Di|→∞
1
|Di|

(L(wt−1
i ;Di)+Lap( δL

εi
))

= lim
|Di|→∞

1
|Di|

(
∑|Di|
j=1 `(wt−1

i ;xj , yj) + Lap(δL/εi))

= lim
|Di|→∞

1
|Di|

∑|Di|
j=1 `(wt−1

i ;xj , yj) + lim
|Di|→∞

Lap(δL/εi)
|Di|

= lim
|Di|→∞

1
|Di|

∑|Di|
j=1 `(wt−1

i ;xj , yj) + lim
|Di|→∞

Lap( δL
|Di|εi

) (9)

Since the sensitivity δL and the privacy budget εi are
both finite real numbers, there is lim|Di|→∞ Lap( δL

|Di|εi ) = 0.
What’s more, the loss function can be rewritten as a polynomi-
al and each (xj , yj) is an independent and identically distribut-
ed sample, so the limit of the coefficient of the polynomial will
approach a constant when |Di| → ∞. Therefore, there exists
lim|Di|→∞

1
|Di|L(wt−1i ;Di) = lim|Di|→∞

1
|Di| L̃(wt−1i ;Di).

According to the definition of w̃ti, we further can get w̃ti =
arg min|Di|→∞ L̃(wt−1i ;Di) = wti when |Di| → ∞. That is to
say, w̃ti will be arbitrarily close to wti when there are adequate
training samples, so that the convergence performance after
adopting the mechanism Ψ can be guaranteed.

From the above security analysis, we have proved that the
flexible privacy-preserving mechanism Ψ has a rigorous priva-
cy guarantee, i.e., Ψ satisfies DP property. More importantly,
although we inject the Laplace noise into the loss function
of the local model, the gap between w̃ti and wti is tolerable
according to the convergence analysis on Ψ. Therefore, the
degree of the global model accuracy degradation can be
acceptable, which is consistent with the experimental results.

IV. INCENTIVE MECHANISM
In this section, we propose the incentive mechanism Γ

to stimulate all parties to participate in the FL system. The
server wishes to incentivize all clients to provide accurate
local training models with low payments, while the clients
wish to obtain high rewards by discarding a small amount
of privacy. We model such an incentive problem as a two-
stage Stackelberg game, in which the server is seen as a leader
and the clients are followers. Moreover, we derive the optimal
strategies for all parties based on a unique equilibrium.
A. Two-stage Stackelberg Game Modeling

To formulate the incentive problem, we design two utility
functions for the server and clients, which indicate their net
profits in each round of model training, respectively. The
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server’s utility depends on the model accuracy and the total
payment. The utility of each client is influenced by the re-
ceived reward and the costs. The server can adjust the payment
while each client can flexibly control its privacy budget. All
of them attempt to maximize their own utility values.
Utility Function of Client. The utility of each client i is
its income minus the local training costs. Denote the client’s
utility in the t-th round as U ti . The income only includes the
reward paid by the server, i.e., Γti. For the fairness, the rewards
of all clients are set to be proportional to their privacy budget
values. Thus, we have Γti = Γtεti/

∑
i∈N ε

t
i.

The local training costs consist of three parts: the privacy
cost cpvi , the computation cost ccpi , and the communication
cost ccmi . The privacy cost actually refers to the compensation
that each client asks for bearing the privacy leakage risk.
For the simplicity of presentation and the unification of cost
computation, we treat such a compensation as a special kind
of cost, which is related to the client’s privacy protection
level (i.e., the privacy budget εi), like in [18], [19]. The
larger the privacy budget, the higher the privacy leakage risk,
and consequently, the larger the privacy cost will be. More
specifically, the privacy cost of each client i is proportional
to its privacy budget, i.e., cpvi = ξiε

t
i. Here, ξi is a positive

coefficient determined by each client itself, called unit privacy
cost, which represents how much the client cares about its
privacy loss. Inspired by [20], [21], the client’s computation
cost can be written as ccpi = |Di|δlδgMαi, and communication
cost is ccmi =((2R/QHi−1)QHiMδgβi)/hiR, where δl, δg, R
are hyper-parameters, M is the model size, Q is the channel
bandwidth, Hi is the number of channels requested by client i,
hi is the normalized channel power gain, αi is the client’s unit
computation cost, and βi is the client’s unit communication
cost. Hence, the utility of client i is:
U ti (Γt, εti, εt−i) = Γti − cpvi − c

cp
i − c

cm
i (10)

=
Γtεti∑
i∈N ε

t
i

−ξiεti−|Di|δlδgMαi −
(2

R
QHi − 1)QHiMδgβi

hiR
,

where εt−i denotes the vector 〈εt1, εt2, ..., εtN 〉 expect εti.
Utility Function of Server. The utility of the server is defined
as the gain brought by the trained ML model, which is related
to the model accuracy, minus the total rewards paid to clients.
Let U t denote the server’s utility in the t-th round.

In general, the gain of the server can be seen as a function on
the model accuracy. In this paper, we use the typical logarith-
mic function as the gain of the server, i.e., ζ ·ln(1+

∑
i∈N θ

t
i),

which has been widely used in model designs [9], [22].
Furthermore, we construct the relationship between the model
accuracy and privacy budget. We conduct the experiments to
measure the model accuracy values under different privacy
budgets based on the real-world MNIST dataset [23] and the
CIFAR-10 dataset [24], respectively. In detail, the ML models
used for training are introduced in Section V-A. As illustrated
in Fig. 2, the fitted curves signify that the model accuracy
θti can be regarded as a concave function with respect to
the privacy budget εti. For generality, we directly adopt a
continuous and reversible concave function G : εti → θti to
indicate the relationship between the privacy budget and the
model accuracy. Hence, we can define the utility of the server
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Fig. 2. Model Accuracy vs. Privacy Budget

as follows:
U t(Γt, εti, εt−i) = ζ(ln(1 +

∑
i∈N G(εti)))− Γt, (11)

where ζ > 0 is a system parameter.
Optimization Objectives. Both the server and the clients wish
to maximize their own utilities in each round of model training.
This can be seen as a two-stage Stackelberg game. The server
is a leader. It will determine an optimal total payment Γt to
maximize its utility in the first stage. In the second stage, each
client will choose an optimal privacy budget εti for the local
model training, so as to maximize its utility under the given
payment Γt. These clients work as the followers. The whole
process can be formulated as follows:

Server’s side: Maximize U t(Γt, εti, εt−i) (12)

Client’s side: Maximize U ti (Γt, εti, εt−i) (13)
By means of the game, the server can incentivize each client

to select its optimal privacy budget. In this way, each client
will try to train the accurate local model under the premise
that the risk of privacy leakage is acceptable. Consequently,
the degree of the global model accuracy degradation will be
acceptable.

B. The Optimal Equilibrium Solution
In this subsection, we derive the Stackelberg equilibrium

whereby both the server and the clients can determine their
optimal strategies to achieve the maximum utilities. The
backward induction method is exploited to analyze the game.
First, we analyze the second stage game to determine each
client’s optimal privacy budget under a given payment Γt.
Next, we turn to the first stage to find the server’s best payment
Γt by maximizing its utility. Finally, we prove that there
exists a Stackelberg equilibrium so that neither the leader
(the server) nor the followers (clients) have incentives to
unilaterally deviate its optimal decisions.

1) The Optimal Privacy Strategy: To derive the client i’s
optimal privacy budget in the second stage game, we compute
the first-order and second-order derivatives of U ti (Γt, εti, εt−i)
with respect to εti as follows:

∂U ti
∂εti

= Γt
∑
i∈N ε

t
i−εti

(
∑
i∈N ε

t
i)

2
−ξi = Γt

∑
k∈N\i ε

t
k

(
∑
i∈N ε

t
i)

2
−ξi. (14)

∂2U ti
∂(εti)

2
= −2Γt

∑
k∈N\i ε

t
k

(
∑
i∈N ε

t
i)

3
< 0. (15)

According to Eq. (15), the utility of each client is a strict
concave function, where the maximum value can be obtained
by solving ∂U ti /∂εti = 0. Then, the optimal privacy strategy
of the client i, denoted by (εti)

∗, satisfies
(εti)
∗ =

√
(Γt
∑
k∈N\i ε

t
k)/ξi −

∑
k∈N\i ε

t
k. (16)

From Eq. (16), we notice that (εti)
∗ depends on oth-

er clients’ privacy budgets. So the following objective is
to remove the dependence. According to Eq. (14), we let
∂U ti /∂εti = 0 and then have
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Algorithm 1 The whole joint training process with NICE
1: for each round t do
2: //Initialization:
3: The server broadcasts the global model M(wt−1g ; ·) of

the last round, the requirements, the global information,
and the total payment (Γt)∗ to all clients.

4: //Privacy-preserving Local Training:
5: for each client i, i ∈ N do
6: Update local model parameters wt−1i = wt−1g ;
7: Determine its optimal privacy budget (εti)

∗ according
to Eq. (19) and Theorem 3;

8: Determine the sensitivity δL of the loss function;
9: Adopt the flexible privacy-preserving mechanism Ψ

with its private industrial dataset to get the disguised
model parameters w̃ti:

10: w̃ti = arg min
[
L(wt−1i ;Di)+Lap( δL

(εti)
∗ )
]
.

11: Upload w̃ti and (εti)
∗ to the server.

12: end for
13: //Incentive Mechanism Γ:
14: The server computes each client i’s reward Γti:
15: Γ={(Γti)∗=(Γt)∗

(εti)
∗∑

i∈N (εti)
∗ |i∈N , t=1, 2, · · · }.

16: //Aggregation and Model Updating:
17: The server aggregates all w̃ti to derive a new global

model parameter matrix wtg: wtg=
∑N
i=1 w̃tiri/

∑N
i=1 ri.

18: The server evaluates the accuracy of the global model

θt: θt =

∑
(xj ,yj)∈Ds

1{M(wt
g ;xj )=yj}

|Ds| .

19: if θt > A given threshold then
20: End the whole training process.
21: end if
22: if the utility of the server U t ≤ 0 then
23: End the whole training process.
24: end if
25: if any client i’s utility U ti ≤ 0 then
26: The client i refuses to participant in the training.
27: end if
28: end for

Γt
∑
k∈N\i(ε

t
k)∗ = ξi(

∑
i∈N (εti)

∗)2. (17)

Summing up all Eq. (17) for each i ∈ N , we can derive that

Γt(|N |−1)((εt1)∗+...+(εt|N|)
∗)=(

∑
i∈N

ξi)(
∑

i∈N
(εti)
∗)2.

Therefore, we can get
∑
i∈N (εti)

∗=(Γt(|N |−1))/
∑
i∈N ξi.

By substituting this equation into Eq. (17), we have∑
k∈N\i

(εtk)∗=
ξi(
∑
i∈N (εti)

∗)2

Γt
=

Γtξi(|N | − 1)2

(
∑
i∈N ξi)

2
. (18)

Thus, we can derive the optimal privacy strategy of the
client by substituting Eq. (18) into Eq. (16) as follows.

(εti)
∗ =

Γt(|N | − 1)(
∑
i∈N ξi − |N |ξi + ξi)

(
∑
i∈N ξi)

2
. (19)

From Eq. (19), we can observe that the optimal privacy
budget of each client (εti)

∗ is only associated with the total
payment Γt of the server and some open information (e.g.,
|N |,

∑
i∈N ξi). Thus, (εti)

∗ can be determined as long as the
total payment Γt is given. Next, we will present the theorem to
elaborate on how the server determines the optimal payment.

2) The Optimal Payment Strategy: In order to derive the
optimal payment strategy, we prove that there exists a unique
Stackelberg equilibrium, during which we will show that how
the server determines the optimal payment. Before this, we
define the equilibrium solution as follows.
Definition 3 (Nash Equilibrium, NE). The optimal local pri-
vacy budgets 〈(εt1)∗, (εt2)∗, ..., (εtN )∗〉 form a Nash Equilibrium
if for any client i and any εti ≥ 0, we have

U ti (Γt, (εti)∗, (εt−i)
∗) ≥ U ti (Γt, εti, (εt−i)

∗). (20)

Lemma 1. [25] There exists a NE when the conditions are
satisfied: 1) the player set is finite; 2) the strategy sets are
closed, bounded, and convex; and 3) the utility functions are
continuous and quasi-concave in the strategy space.
Theorem 3. There exists a unique Stackelberg equilibrium in
the above two-stage Stackelberg game.
Proof. The second stage can be considered as a non-
cooperative game, since each client is rational and behaves
in a selfish way to maximize its own utility. According to
Eqs. (14), (15), and (19), it is straightforward to verify that
Lemma 1 is satisfied. Thus, the optimal local privacy budgets
〈(εt1)∗, (εt2)∗, ..., (εtN )∗〉 form a Nash equilibrium (Definition
3) in the non-cooperative game among clients. Now, we only
need to prove that all clients’ optimal strategies generated by
the second stage can also form a Nash equilibrium in the first
stage. In this case, the whole two-stage Stackelberg game can
form a Stackelberg equilibrium.

We first substitute all (εti)
∗, i ∈ N into Eq. (11) and get

U t(Γt, εti, εt−i) = ζ(ln(1 +
∑
i∈N G((εti)

∗)))− Γt. (21)

The first-order derivative of U t on the payment Γt is
∂Ut

∂Γt =(ζ
∑
i∈N

∂G
∂(εti)∗

∂(εti)∗

∂Γt )/(1+
∑
i∈N G((εti)

∗))−1. (22)

The second-order derivative of U t with respect to Γt is

∂2U t

∂(Γt)2
= ζ

∑
i∈N ( ∂2G

∂((εti)∗)2
(
∂(εti)∗

∂Γt )2 + ∂G
∂(εti)∗

∂2(εti)∗

∂(Γt)2
)

(1 +
∑
i∈N G((εti)

∗))2
·

(1 +
∑

i∈N
G((εti)

∗))− ζ
(
∑
i∈N

∂G
∂(εti)∗

∂(εti)∗

∂Γt )2

(1 +
∑
i∈N G((εti)

∗))2

= ζ

∑
i∈N ( ∂2G

∂((εti)∗)2
(
∂(εti)∗

∂Γt )2)

1 +
∑
i∈N G((εti)

∗)
− ζ

(
∑
i∈N

∂G
∂(εti)∗

∂(εti)∗

∂Γt )2

(1 +
∑
i∈N G((εti)

∗))2
.

Due to the concavity of the function G, we have
∂2G/∂((εti)

∗)2<0. Thus, we can derive that ∂2U t/∂(Γt)2<0.
That is to say, there is a unique optimal payment solution
for ∂U t/∂Γt=0, denoted as (Γt)∗. By substituting Eqs. (19)
and (22) into ∂U t/∂Γt= 0, we can get an equation on the
optimal payment (Γt)∗. Note that G(·) is a continuous and
reversible concave function on (εti)

∗ as well as (εti)
∗ is a

linear function of (Γt)∗. By using the two properties, we can
derive the solution of ∂U t/∂Γt=0 to get (Γt)∗. If solving the
equation ∂U t/∂Γt = 0 cannot obtain a closed-form optimal
payment due to the complexity of the function G, we can adopt
some mathematical approximating methods (e.g., the bisection
or Newton’s method) to acquire an approximation of (Γt)∗.

Because both the server and the clients can find the opti-
mal strategies to maximize their own utilities, the two-stage
Stackelberg game possesses a Stackelberg equilibrium.

According to Theorem 3, the server can derive the optimal
payment (Γt)∗. Then, each client i∈N can determine its own
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optimal privacy budget (εti)
∗ by substituting (Γt)∗ into Eq.

(19). Now, the incentive mechanism can be instantiated as:

Γ={(Γti)∗=(Γt)∗
(εti)
∗∑

i∈N (εti)
∗ |i∈N , t=1, 2, · · · }. (23)

By means of this incentive mechanism, both the server and
clients can determine their optimal strategies (i.e., the optimal
payment (Γt)∗ and the optimal privacy budget (εti)

∗). (εti)
∗

ensures that the client i can obtain a maximum utility while
compensating its privacy cost. Actually, this is the best privacy
budget that the client i can accept, i.e., the maximum effort
that the client is willing to make.

We illustrate the whole joint training process pseudocode in
Algorithm 1, which mainly contains the designed mechanisms
(i.e., Ψ and Γ). To be specific, the process of the flexible
privacy-preserving local training with the sensitive industrial
dataset is corresponding to the section III (Lines 4∼12), and
the section IV has depicted the design of the incentive mecha-
nism in great detail (Lines 13∼15). Moreover, the computation
complexity of Algorithm 1 is O(TNT ′|D|d), where T is the
number of global rounds, T ′ is the required number of local
training epochs, |D| is the required dataset size of each client,
and d is the dimension of each training sample.

V. PERFORMANCE EVALUATION
In this section, we conduct extensive simulations to verify

the performance of NICE based on real-world datasets. We
first examine our theoretical results to validate the effective-
ness of the proposed incentive mechanisms, and then provide
numerical results for FL using TensorFlow [26].

A. Experiment Setup
Simulation Settings: In the simulations, we let the number

of clients (i.e., N ) be selected from [20, 500], and let N = 20
by default. We generate the system parameter (i.e., ζ) from
[180, 220] and let ζ = 200 by default. When generating the
unit privacy cost of each client (i.e., ξi), we adopt the truncated
Gaussian distribution with the mean value 2 and the standard
deviation σ. The value of σ will change from [0.1, 1] to
evaluate its influence. Also, we set σ = 0.5, ccpi = ccmi = 0.1
by default and use U t(Γt, εti, εt−i)=ζ(ln(1+

∑
i∈N (εti)

∗))−Γt

to denote the utility of the server for simplicity. In addition,
to evaluate the training effect of FL, we use two representa-
tive datasets which are simulated as big data collected from
industrial IoT: a handwritten digit dataset MNIST which con-
tains 60,000 training samples of 10 digits and 10,000 testing
samples [23], and a three-channel image dataset CIFAR-10
which contains 50,000 training samples in 10 classes and
10,000 test samples [24]. For the classification problem, we
construct a common neural network model and train the model
in a differentially-private manner. For MINST, we implement
a neural network architecture containing two auto-encoder
layers, a fully connected hidden layer, and an output layer. For
the more complex dataset CIFAR-10, we leverage the network
containing eight layers (i.e., five convolutional layers and three
fully-connected layers) based on AlexNet [27]. The details of
the parameter settings are summarized in Table II for clarity.
Due to the limited space, it is unnecessary to observe the effect
of NICE for each client so that we only choose four clients
(i.e., client-2, 9, 14, 18) for illustration.

TABLE II
EVALUATION SETTINGS

Parameter name Values
number of clients, N [20, 500] (20 in default)
system parameter, ζ [180, 220] (200 in default)

the standard deviation, σ [0.1, 1] (0.5 in default)
the strategy εt9, Γt [0, 25], [160, 230]

unit privacy cost of worker-9, ξ9 [1.5, 3] (1.95 in default)

Algorithms in Comparison: Since NICE combines Stack-
elberg game and DP to solve privacy-flexibility and the in-
centive problem for FL systems in industrial IoT, we compare
NICE with the existing state-of-the-art studies with incentive
mechanism designs [19], [28]. However, the models and
problems in these works are different from ours so that we
cannot compare them directly. Therefore, we tailor the basic
idea in these algorithms for our model and carefully design
three incentive mechanisms for comparison: Contract-based
algorithm [19], Auction-based algorithm [28], and Uniform
cost. Here, the contract-based algorithm is based on contract
theory, the auction-based scheme takes the advantage of the
technique of game theory, and the uniform cost mechanism
means that the unit privacy cost of each client is the same.

B. Experiment Results

We first evaluate the effect of various game strategies (i.e. Γt

and εti) on the parties’ utilities to verify the existence of the
unique Stackelberg equilibrium. Next, we carefully measure
the influence of system parameter ζ, the client-9’s unit privacy
cost ξ9, the client-9’s privacy budget εt9, the payment of the
server Γt, and the standard deviation σ. Then, we consider
the effect of the number of clients N and compare NICE with
other incentive mechanisms. Finally, we evaluate the training
convergence based on the real-world datasets MINST and
CIFAR-10 in FL. It is noteworthy that all of the points in
the figures are in the equilibrium except for Fig. 3 and Fig. 4.

The Optimal Γt. We evaluate the impact of Γt on Server
Utility (SU) in Fig. 3. As the utility of the server U t is a
concave function about Γt, there is a unique value (Γ1)∗ =
197.6 that can achieve the maximum utility U1

max = 686.565.
When we set different system parameters, the server can also
maximize its own utility by adopting the optimal payment
under the unique Stackelberg equilibrium in Fig. 3(b).

The Optimal εti. Fig. 4 shows the impact of privacy budget
on Client Utility (CU) under different system parameters. We
can notice that CU first climbs up and then declines as the
privacy budget grows. It demonstrates that all clients can
meet a Stackelberg equilibrium, i.e., there is a unique optimal
privacy budget for each client to earn the maximum reward.
The reason is that the utility function of each client U ti is
strictly concave with regard to εti. Besides, the client-18’s
utility is higher than others because his privacy cost is lower.
We can attribute this to the fact that a client with a lower cost
would not care about privacy leakage or have a low sensitive
dataset, and thus can attain a better income.

Effect of ζ. To illustrate the impact of the system parameter,
we observe the variation of all parties’ utilities and strategies
along with ζ in Fig. 5. SU rises with the increase of ζ owing to
getting a higher gain according to Eq. (11). Hence, the server
is pleased to pay more to incentivize the clients to train the
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Fig. 8. Effect of the standard deviation σ

more accurate models. CU has the same changing tendency
as SU. This is because the payment Γt will increase along
with the growth of ζ. Thus, each client tends to pick a higher
privacy budget and its utility will grow up. Meanwhile, we can
also find that a client who has a lower privacy cost ξi achieves
a higher utility. The reason is similar to the results in Fig. 4.

Effect of ξ9. Fig. 6(a) reports the utility obtained by each
party when we change the unit privacy cost ξ9 of client-9
from 1.5 to 3. Correspondingly, Fig. 6(b) shows the changes
of all parties’ optimal strategies. We first note that SU and Γt

decrease rapidly with the increase of ξ9. Obviously, a client
is not willing to participate in the FL training process when
his local data has more sensitive information. Therefore, along
with the improvement of the privacy cost, the gain of the server
from client-9 drops off, and the server could cut down on the
payment cost appropriately. When the privacy cost reaches a
certain value, client-9’s loss due to privacy leakage has far
exceeded its reward. In such a case, client-9 might leave to
avoid private information from being divulged, and the rewards
of other clients will increase correspondingly.

Effect of εt9 and Γt. In Fig. 7, we plot the changing
trend of SU and CU when client-9 or the server does not
select the optimal strategy. Firstly, SU increases because the
larger privacy budget means that the client will have a higher
contribution to the global model. So, the server can receive a
better local model from client-9. Secondly, the utilities of other
clients go down as εt9 grows. The reason is that more rewards
will be paid to client-9 according to Eq. (10). The utilities
of all clients increase when the server pays more. Lastly, the

client-9’s utility and the server’s utility first rise and then fall,
which is consistent with Fig. 3 and Fig. 4.

Effect of σ. We change the standard deviation σ to form
different distributions of the unit privacy cost and Fig. 8
presents the effect of σ on utilities and strategies. When N is
large enough, εti will grow up according to Eq. (19) and the
server does not have enough money to compensate these high-
cost clients. Thus, the optimal payment and SU will decrease.

Effect of N . Fig. 9 demonstrates the influence of the
number of clients under different system parameters. Because
the gain of the server is modeled as a logarithmic function,
the server’s gain cannot keep growing indefinitely even if there
are enough clients. Therefore, SU (resp. CU) shows an upward
(resp. downward) trend and then keeps stable. Fig. 9(b) and
Fig. 9(c) signify that a higher ζ will lead to a higher utility.

Incentive Mechanism Comparison. As illustrated in Fig.
10 and Fig. 11, we investigate the impact of ζ and N
under different incentive mechanisms based on contract theory
and game theory, respectively. We see that the value of SU
among various mechanisms differs little and NICE performs
much better than the compared algorithms, as shown in Fig.
10(a), Fig. 10(b), and Fig. 11(b). This is because that the
contract-based algorithm and the auction-based algorithm only
guarantee the non-negativity of clients’ utilities. In Fig. 11(a),
SU of the contract-based mechanism decreases but SU of other
mechanisms slowly grow when N increases. The reason is
that the number of contracts is limited and it cannot satisfy all
clients’ needs compared with NICE. Besides, when the unit
privacy cost of each client is the same (i.e., uniform cost),
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Fig. 9. Effect of the number of clients N on SU & CU under different system parameters
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Fig. 10. SU & Sum of CU vs. ζ under different incentive mechanisms
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Fig. 13. Global Model Accuracy vs. Rounds (CIFAR-10)

both the utility of the server and clients are lowest since no
client is willing to lower its privacy protection level.

Training Convergence and Comparison. Finally, we con-
duct a series of comparative experiments based on the real-
world MNIST dataset and CIFAR-10 dataset. All clients adopt
the optimal strategies determined by the incentive mechanism
Γ. We assume that these strategies remain unchanged in
each round and randomly select three or five clients in each
round. Next, we alter the number of Hidden Neurons (HN) as
{200, 100, 50, 25} and then borrow the non-private approach
as a baseline for comparison in Fig. 12. It is shown that there
is a fast convergence rate at the early stage of training followed
by a slight increase due to the simplicity of MNIST. The
accuracy of global model raises gradually based on the CIFAR-
10 dataset in Fig. 13. Although we employ the DP mechanism
Ψ to upload disguised model parameters, the degree of the
global model accuracy degradation can be acceptable. Besides,
the convergence rate will be slower if we increase N , because
the partition of clients’ local datasets is related to N (i.e., the
larger the N , the less the training data of each client).

More importantly, our proposed flexible privacy-preserving
mechanism can achieve DP without consuming too much
privacy budget, compared with adding noises into enormous
model parameters. For example, [29] utilized the LDP in feder-
ated learning. Owing to the high variance of their mechanism,
they need more than 200 communication rounds and spend
much more privacy budgets (MINST with ε=500 and CIFAR-
10 with ε=5000). [30] added artificial noise into parameters
at the clients’ side before aggregation, which would require

protection levels ε=50/60/100. Truex et al. [31] proposed α-
CLDP to achieve a higher accuracy by requiring a relatively
privacy budget ε = α ∗ 2c ∗ 10ρ (e.g., α = 1, c = 1, ρ = 10),
which results in a weak privacy guarantee. Overall, the results
prove that the NICE can work efficiently and suitably in real
applications. Moreover, we can enhance the global accuracy
through raising the number of hidden neurons to weaken the
influence of noise. Given a fixed training set, we expect that in-
creasing the number of hidden neurons leads to better learning
performance, but has the greater computational complexity.

VI. RELATED WORK

A. Privacy-Preserving Mechanisms in FL
Even though FL leaves clients’ data locally and eases

concerns about industrial privacy leaks to some extent, recent
researches [32] have shown that some malicious attackers can
still recover the sensitive information of industrial data (e.g.,
image tabs, memberships, industry location, etc) by exploiting
the shared gradient and global parameters.

Existing privacy-preserving approaches are mostly evolved
from three underlying techniques: encryption [7], Secure
Multi-party Computation (SMC) [33], and Differential Privacy
(DP). Despite encryption or SMC can ensure the confiden-
tiality of individual information completely, they would lead
to huge computation and communication overheads. On the
contrary, DP has received growing attention since it is a
lightweight tool. However, the great majority of DP-based
privacy-preserving mechanisms [9], [30] do not consider the
clients’ different privacy preferences, namely, the privacy
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budgets are preset and all clients are treated equally. Only a
few adaptive DP schemes are studied recently [19], [34]–[36].
For example, [19], [34] designed a set of optimal contracts by
considering the information asymmetry and the heterogeneous
types of costs. [35], [36] can satisfy different privacy require-
ments for users by reusing the wasted budget or injecting
adaptive noise. However, the contract designs in [19], [34] are
manipulated by the server and the privacy budgets for clients to
choose from are limited. [35], [36] attempt to harness adaptive
DP-based algorithms for improving the privacy protection
levels of all clients, but we aim to allow clients to determine
their privacy protection levels by themselves according to their
personalized privacy demands. Moreover, we take the game
among all clients and the server into account.

B. Incentive Mechanisms in FL

Recently, a wide spectrum of remarkable incentive mecha-
nisms have been designed for various FL systems. By means
of different tools, these incentive mechanisms can motivate
enough clients to participate in FL systems so as to achieve a
satisfactory global model.

Game theory has been utilized as a powerful tool to study
the incentive mechanisms for FL. For example, the study
in [37] proposed a hierarchical incentive mechanism for FL
using the coalitional game theory approach, in which multiple
model owners can form various federations. The study of [38]
incentivized unmanned aerial vehicles to participate in the
FL training by designing a joint auction-coalition formation
framework. Jiao et al. [28] introduced an auction framework
for the wireless federated learning services market and a
reverse auction mechanism to maximize the social welfare.
The authors in [39] formulated a market model based on
Stackelberg game to obtain the maximum utility of operators
and solved a tradeoff between the revenue and energy con-
sumption.

Some other tools (e.g., contract theory and deep reinforce-
ment learning) have also been applied for the design of
incentive mechanisms. For instance, Lim et al. [40] presented
a contract-theoretic incentive mechanism to stimulate workers
to update the data, which can balance the tradeoff between
age of information (AoI) and service latency in FL systems.
[10] designed a contract theory-based incentive mechanism
to motivate high-reputation workers with high-quality data to
participate in model training of FL. Zhan et al. [41] developed
a deep reinforcement learning-based incentive mechanism,
which can learn the best pricing strategy of the aggregator in
a dynamic environment. However, none of them incorporates
clients’ privacy concerns into incentive mechanism design.
Different from them, we propose an incentive mechanism
taking clients’ heterogeneous industrial privacy demands into
account, which can maximize the utilities of all clients and
the server simultaneously.

VII. CONCLUSION

In this paper, we propose a privacy-preserving incentive
mechanism, named NICE. It adopts a flexible Laplace DP
approach, in which each client can decide the privacy budget
by itself according to its own personalized privacy demand,

i.e., each client can customize how much noise to be added
for protecting its data privacy. In NICE, we model the problem
of determining the optimal privacy budget for each client as an
incentive mechanism design problem, which is further formu-
lated as a two-stage Stackelberg game. Moreover, we derive
the optimal strategies for all parties in this game. Through
rigorous theoretical analysis, we prove that the optimal s-
trategies constitute a unique equilibrium, by which NICE can
make the server and all clients achieve their maximum utilities
simultaneously. Extensive simulations confirm the efficacy of
NICE and indicate significant performance in accordance with
the design expectations.
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