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1. Introduction

Surface area measures are local versions of quermassintegrals in the theory
of convex bodies. If the boundary of the convex body is smooth, the corres-
ponding surface area function is a symmetric function of the principal radii
of its boundary. The general problem of finding a convex hypersurface with
the k-th symmetric function of the principal radii prescribed on its outer
normals is often called the Christoffel-Minkowski problem. It corresponds
to finding convex solutions of the nonlinear elliptic Hessian equation (see
next section for the derivation):

Sk((uij + uδij )) = ϕ on S
n,(1.1)

with the positive definite condition

(uij + uδij) > 0, on S
n,(1.2)

where uij are the second order covariant derivatives with respect to any
orthonormal frame {e1, e2, . . . , en} on Sn, δij is the standard Kronecker
symbol and Sk is the k-th elementary symmetric function.

We will call a function u ∈ C2(Sn) convex if u satisfies (1.2). The natural
class of solutions of (1.1) consists of k-convex functions (see Definition 2.1),
which in general are not convex. For the Christoffel-Minkowski problem,
one needs to find the convex solutions. The main objective of this paper is to

Research of the first author was supported in part by NSERC Grant OGP-0046732.
Research of the second author was supported by in part by grants of Foundation for University
Key Teacher of the Ministry of Education of China, Shanghai Priority Academic Discipline
and NSFC No.10001011.



554 P. Guan, X.-N. Ma

study the existence of the solutions of equation (1.1) satisfying the convexity
condition (1.2).

The Alexandrov-Fenchel-Jessen Theorem ([2] and [10]) asserts the
uniqueness of the convex solutions of equation (1.1). In the case k = 1,
(1.1) is the equation for the Christoffel problem. The early treatments in
this case were given in Christoffel [8], Hurwitz [19], Hilbert [17], Süss [30]
and others; the final solution was obtained in Firey [11], [12] and Berg [3].

The other extreme case of (1.1) is k = n, which corresponds to the
Minkowski problem. This case has been settled by the works of Minkow-
ski [25], Alexandrov [1], Lewy [24], Nirenberg [26], Pogorelov [28] and
Cheng-Yau [7]. The intermediate problems still remain open; very little
is known though there is an extensive literature devoted to them (e.g.,
see [4], [29] and the references there).

It is known that for (1.1) to be solvable, the function ϕ has to satisfy
(e.g., see [28])

∫
Sn

xiϕ(x) dx = 0, i = 1, . . . , n + 1.(1.3)

For the Minkowski problem, (1.3) is also sufficient. But it is not sufficient
for the cases 1 ≤ k < n as pointed out by Alexandrov in [2]. For both the
Minkowski problem and the Christoffel problem (k = n and k = 1), the sum
of k-th surface area functions of two convex bodies is again a k-th surface
area function of a third convex body. These k-th surface area sums are
related to the Blaschke and Minkowski sums of convex bodies respectively.
For the intermediate cases 2 ≤ k ≤ n − 1, this is no longer true in general.
There exist two strictly convex bodies with analytic boundary such that the
sum of their k-th surface area functions is not a k-th surface area function of
any convex body (see [9] and [15], also discussion on p. 396 in [29]). This
type of example suggests that the intermediate problems are much more
complicated.

The intermediate Christoffel-Minkowski problems raise the following
fundamental question in PDE:

Question:. for what functions ϕ on the right hand side of the equation (1.1),
is there a regular convex solution?

In order to establish the strict convexity of a solution, it is necessary to
prove the positivity of the eigenvalues of the hessian of the solution. If k = n,
we have a Monge-Ampère equation which is the product of the eigenvalues
of the spherical hessian. The works of Cheng-Yau [7] and Pogorelov [28]
give upper bounds for the eigenvalues and so automatically also give a lower
positive bound on the eigenvalues since the product is positive. Thus the
continuity method builds convexity into the solution class. When k < n, the
matter is more delicate. For example, in the case k = 1, one may have the
trace of the hessian positive while some eigenvalues might be non-positive.
Hence, the major issue here is to find conditions for the existence of convex
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solutions of (1.1). In the case of the Christoffel problem, the equation (1.1)
is linear. The necessary and sufficient conditions in [11] were derived from
the linear representation formula of Green’s function. For the intermediate
cases (2 ≤ k ≤ n − 1), (1.1) is a fully nonlinear equation. We have to take
a different approach. We deal with the problem using the continuity method
as a deformation process together with the strong minimum principle to
force convexity. This approach has been successfully used previously by
Caffarelli-Friedman [6] and Korevaar-Lewis [22] (it appears that Yau also
suggested a similar approach, see [21]) for semilinear equations in domains
ofRn. A crucial deformation lemma (Lemma 4.1) will be established in this
paper for the fully nonlinear Hessian equation (1.1).

We introduce some notation.

Definition 1.1. For s ∈ R, we define Cs to be the cone of positive C1,1

functions on Sn satisfying (1.3) and such that ( f s
ij + δij f s) is positive semi-

definite almost everywhere in Sn, where f s(x) = ( f(x))s. Moreover we say
f is connected to g in Cs if there is a continuous (relative to the C1,1-norm)
path h(t, .) ∈ Cs, such that h(0, x) = f(x) and h(1, x) = g(x), ∀x ∈ Sn.

We note that the definition is independent of the choice of orthonormal
frame. Moreover, note that a positive C1,1 function f is in Cs if and only if f
satisfies (1.3) and f̃ s is a convex function inRn+1, where f̃ s(x) = |x| f s( x

|x|)
is the homogeneous extension of f s of order one to Rn+1. One of the main
thrusts of this paper is that C− 1

k
turns out to be related to the existence

of convex solutions of equation (1.1). We refer to Remark 5.2 below for
a heuristic discussion.

We now state our main results.

Theorem 1.2. (Full Rank Theorem) Suppose u is an admissible solu-
tion (Definition 2.1) of equation (1.1) with positive semi-definite spherical
hessian W = (uij + uδij ) on Sn. If ϕ ∈ C− 1

k
, then W is positive definite

on Sn.

The following is the existence theorem.

Theorem 1.3. (Existence Theorem) Let ϕ(x) ∈ C− 1
k

and suppose ϕ is
connected to 1 in C− 1

k
. Then the Christoffel-Minkowski problem (1.1) has

a unique solution up to translations. More precisely, there exists a closed
strictly convex hypersurface M in Rn+1 of class C3,α (for all 0 < α < 1)
whose principal radii of curvature function of order k is ϕ(x). M is unique
up to translations. Furthermore, if ϕ(x) ∈ Cl,γ (Sn) (l ≥ 2, γ > 0), then M
is C2+l,γ . If ϕ is analytic, M is analytic.

In subsequent joint work with B. Andrews, we will study a curvature
flow equation associated to Christoffel-Minkowski problems. The condition
on ϕ in Theorem 1.3 will be replaced by the simpler condition ϕ ∈ C− 1

k
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alone via a curvature flow approach with the assistance of the Full Rank
Theorem (Theorem 1.2).

The organization of the paper is as follows. We derive equation (1.1)
together with some basic facts about elementary symmetric functions in
the next section. In Sect. 3, we establish C2 a priori estimates for convex
solutions. The key deformation lemma will be proved in Sect. 4 for the
Hessian equation on Sn . In Sect. 5, we will use the a priori estimates in
Sect. 3 and the deformation lemma in Sect. 4 to prove Theorem 1.2 and
Theorem 1.3.

Acknowledgements. This work was done while the second author was visiting McMaster
University. He would like to thank the Department of Mathematics at McMaster University
for its warm hospitality. We would like to thank Professor D. Jerison and the referee for
valuable comments and suggestions. We would also like to thank Professors C. Riehm and
E. Sawyer for the help in the exposition of the paper.

2. Preliminaries

We recall the definition of k-symmetric functions: For 1 ≤ k ≤ n, and
λ = (λ1, . . . , λn) ∈ Rn,

Sk(λ) =
∑

λi1 . . . λik ,(2.1)

where the sum is taken over all strictly increasing sequences i1, . . . , ik
of the indices from the set {1, . . . , n}. The definition can be extended
to symmetric matrices by letting Sk(W ) = Sk(λ(W )), where λ(W ) =
(λ1(W ), . . . , λn(W )) are the eigenvalues of the symmetric matrix W . We
also set S0 = 1 and Sk = 0 for k > n.

For a strictly convex body K in Rn+1 with smooth boundary M, the
Gauss map �n is a diffeomorphism from M to Sn. For x ∈ Sn , let λ(x) =
(λ1(x), . . . , λn(x)) be the principal radii of curvature of M at the point
�n−1(x). Then

Sk(x) = Sk(λ(x))(2.2)

is the k-th surface area function over the unit sphere Sn at the point x. The
support function of the convex body K , defined by u(x) = maxy∈K x · y,
can in this case be written as u(x) = x · �n−1(x). Let e1, . . . , en be any
orthonormal frame on Sn , and let uij be the covariant derivatives with
respect to this frame. The Hessian matrix W(x) = (uij(x) + u(x)δij ) is
the reverse second fundamental form of the hypersurface. The eigenvalues
λ(W(x)) = (λ1(x), . . . , λn(x)) of W(x) (with respect to the standard metric
on Sn) are the principal radii of M at �n−1(x) (see [7], [28] and also Sect. 2.5
in [29]). Hence, the function u satisfies equation (1.1).

On the other hand, suppose u is a solution of (1.1) satisfying the convex
condition (1.2). After extending it to in Rn+1 as a homogeneous function
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of degree 1, u is convex in Rn+1. So u satisfies the sublinear relation
u(x + y) ≤ u(x) + u(y),∀x, y ∈ Rn+1. In turn, u is the support function
of some convex body in Rn+1 (e.g., Theorem 1.6.5 in [29]). Since W is
positive definite and u ∈ C2, the boundary M of the convex body is C2

(see Appendix in [33]). In fact, if we view u as a homogeneous function of
degree 1 in Rn+1, M can be recovered from u explicitly as the image of the
gradient map ∇Rn+1u (e.g., p. 106 in [29]):

∇Rn+1u(x) = �n−1
( x

|x|
)
, ∀x �= 0 ∈ Rn+1.(2.3)

It follows from this identity that for 0 ≤ α < 1 and l ≥ 2, the inverse Gauss
map �n−1 is Cl−1,α if and only if u is in Cl,α. It is easy to see that M is in
Cl,α if and only if �n is in Cl−1,α as it can be expressed as a local graph.
Therefore, we have a precise regularity relationship (l ≥ 2): M ∈ Cl,α if
and only if u ∈ Cl,α.

We now turn to the definition of admissible solutions of equation (1.1).
The structure of this type of equations has been investigated in [5], [20], [31],
[32], [23]. The natural solution class for this type of equations is the class
of k-convex functions are defined as follows.

Definition 2.1. Let S be the space consisting all n × n symmetric matrices.
For 1 ≤ k ≤ n, let Γk be the connected cone in S containing the identity
matrix determined by

Γk = {W ∈ S : S1(W ) > 0, . . . , Sk(W ) > 0}.

If u ∈ C2(Sn), we say u is k-convex if W(x) = {uij (x) + u(x)δij } is in Γk
for each x ∈ Sn. We observe that u is convex (i.e., satisfying (1.2) ) on Sn if
and only u is n-convex. Furthermore, u is called an admissible solution of
(1.1) if u is k-convex and satisfies (1.1).

It will become clear that the algebraic properties of the elementary
symmetric functions are indispensable in our proofs. We also refer to the
recent work [18] for the important role of elementary symmetric functions
in other contexts. The following are some basic results for the elementary
symmetric functions that we will use in later sections.

Proposition 2.2. If W = (Wij ) is an n × n symmetric matrix, let F(W ) =
Sk(W ) for 1 ≤ k ≤ n. Then the following relations hold.

Sk(W ) = 1

k!
n∑

i1,... ,ik=1
j1,... , jk=1

δ(i1, . . . , ik; j1, . . . , jk)Wi1 j1 · · · Wik jk,
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Fαβ := ∂F

∂Wαβ

(W )

= 1

(k − 1)!
n∑

i1,... ,ik−1=1
j1,... , jk−1=1

δ(α, i1, . . . , ik−1;β, j1, . . . , jk−1)Wi1 j1 · · · Wik−1 jk−1

Fij,rs := ∂2F

∂Wij∂Wrs
(W )

= 1

(k − 2)!
n∑

i1,... ,ik−2=1
j1,... , jk−2=1

δ(i, r, i1,. . ., ik−2; j, s, j1,. . ., jk−2)Wi1 j1 · · · Wik−2 jk−2,

where the Kronecker symbol δ(I; J) for indices I = (i1, . . . , im) and
J = ( j1, . . . , jm) is defined as

δ(I; J) =



1, if I is an even permutation of J;
−1, if I is an odd permutation of J;
0, otherwise.

We will need the next two lemmas in later sections.

Lemma 2.3. For 1 ≤ k ≤ l, G = (λ1, . . . , λl), 1 ≤ i, j ≤ l, i �= j, we
denote by Sk(G|i) the symmetric function with λi = 0 and Sk(G|ij) the
symmetric function with λi = λ j = 0. Then the following hold,

Sk(G)Sl−1(G|α)Sk−1(G|α) − Sl(G)S2
k−1(G|α)

= Sk(G|α)Sl−1(G|α)Sk−1(G|α).

If 1 ≤ k ≤ l, and α �= β,

Sk(G)Sk−2(G|αβ) − Sk−1(G|α)Sk−1(G|β)

= Sk(G|αβ)Sk−2(G|αβ) − S2
k−1(G|αβ).

Proof. We first make a simple observation on Sl(G) which will also be
used repeatedly in the rest of the paper. As l is equal to the size of G,
Sl(G) = λ1 . . . λl, and we have for α �= β fixed,

Sl(G|α) = 0, Sl(G) = λαSl−1(G|α), Sl(G) = λαλβ Sl−2(G|αβ).
(2.4)

From the definition of Sk(λ), we have the following identities:

Sk(λ) = Sk(λ|i) + λi Sk−1(λ|i),(2.5)
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Sk(λ) = Sk(λ|ij) + λi Sk−1(λ|ij) + λ j Sk−1(λ|ij) + λiλ j Sk−2(λ|ij).(2.6)

Now for any fixed α ∈ G,

Sk(G)Sl−1(G|α)Sk−1(G|α) − Sl(G)S2
k−1(G|α)

= [λαSk−1(G|α) + Sk(G|α)]Sl−1(G|α)Sk−1(G|α) − Sl(G)S2
k−1(G|α)

= Sl(G)Sk−1(G|α)2 + Sk(G|α)Sl−1(G|α)Sk−1(G|α) − Sl(G)S2
k−1(G|α)

= Sk(G|α)Sl−1(G|α)Sk−1(G|α).

The second identity in the lemma follows directly from the identities (2.5)
and (2.6). �	
Lemma 2.4. For 1 ≤ k ≤ l, G = (λ1, . . . , λl) and with λi ≥ 0, for
1 ≤ i ≤ l, ∀α �= β and for all real numbers γ1, . . . , γl ,

∑
α∈G

Sk(G|α)Sl−1(G|α)Sk−1(G|α)γ 2
α

≥ Sl(G)
∑
α �=β

(
S2

k−1(G|αβ) − Sk(G|αβ)Sk−2(G|αβ)
)
γαγβ.(2.7)

Proof. For convenience in notation, we write α ∈ G for λα ∈ G. We first
prove the following equality: for 1 ≤ α ≤ l,

∑
β∈G,β �=α

λβ

[
S2

k−1(G|αβ) − Sk(G|αβ)Sk−2(G|αβ)
] = Sk(G|α)Sk−1(G|α).

(2.8)

By counting the terms in the definition of Sk, for α ∈ G, 0 ≤ m ≤ l − 1
fixed, ∑

β∈G,β �=α

Sm(G|αβ) = (l − m − 1)Sm(G|α).

It follows that
∑

β∈G,β �=α

Sk−1(G|αβ)Sk(G|α) = (l − k)Sk(G|α)Sk−1(G|α),

and
∑

β∈G,β �=α

Sk(G|αβ)Sk−1(G|α) = (l − k − 1)Sk−1(G|α)Sk(G|α).
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From (2.4),
∑
β∈G
β �=α

{
λβ S2

k−1(G|αβ) − λβ Sk(G|αβ)Sk−2(G|αβ)
}

=
∑
β∈G
β �=α

[Sk−1(G|αβ)Sk(G|α) − Sk(G|αβ)(Sk−1(G|αβ) + λβ Sk−2(G|αβ))]

=
∑
β∈G
β �=α

[Sk−1(G|αβ)Sk(G|α) − Sk(G|αβ)Sk−1(G|α)]

= Sk(G|α)[(l − k)Sk−1(G|α) − (l − k − 1)Sk−1(G|α)]
= Sk(G|α)Sk−1(G|α).

This proves (2.8). Now we use the Cauchy inequality and (2.8) to
prove (2.7).

For any α �= β, Sl(G) = λαλβ Sl−2(G|αβ) by (2.4), and by the Newton-
MacLaurin inequality, S2

k−1(G|αβ)− Sk(G|αβ)Sk−2(G|αβ) ≥ 0. Therefore,

Sl(G)
∑

α,β∈G
α �=β

[
S2

k−1(G|αβ) − Sk(G|αβ)Sk−2(G|αβ)
]
γαγβ

=
∑

α,β∈G
α �=β

{
Sl−2(G|αβ)

[
S2

k−1(G|αβ) − Sk(G|αβ)Sk−2(G|αβ)
]}

(λβγα)(λαγβ)

≤
∑

α,β∈G
α �=β

{
Sl−2(G|αβ)

[
S2

k−1(G|αβ) − Sk(G|αβ)Sk−2(G|αβ)
]}λ2

βγ
2
α + λ2

αγ
2
β

2

=
∑

α,β∈G
α �=β

Sl−2(G|αβ)λβ

[
S2

k−1(G|αβ) − Sk(G|αβ)Sk−2(G|αβ)
]
λβγ

2
α

=
∑
α∈G

Sl−1(G|α)
∑

β∈G,β �=α

λβ

[
S2

k−1(G|αβ) − Sk(G|αβ)Sk−2(G|αβ)
]
γ 2

α

=
∑
α∈G

Sk(G|α)Sl−1(G|α)Sk−1(G|α)γ 2
α .

This completes the proof of (2.7). �	

3. A priori estimates

We establish a priori estimates for solutions of equation (1.1) in this section.
The equation (1.1) will be uniformly elliptic once C2 estimates are estab-
lished for u (see [5]). By the Evans-Krylov theorem and Schauder theory,
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one can obtain higher derivative estimates for u. Therefore, we only need to
get C2 estimates for u. We first establish a C0 bound for u. In the case k = n,
Cheng-Yau in [7] obtained a C0 bound using the isoperimetric inequality.
We modify their approach by making use of a quermassintegral inequality.

For a solution u of equation (1.1), u + f is also a solution for any
linear function f . In order to have C0 estimates, we restrict u to satisfy the
following orthogonality condition:

∫
Sn

xiu dx = 0, ∀i = 1, 2, . . . , n + 1.(3.1)

If u is a support function of some convex body Ω, condition (3.1) implies
that the Steiner point of Ω coincides with the origin.

Lemma 3.1. Suppose M ∈ C2, M is a compact convex hypersurface
in Rn+1, and let ϕ be the k-th surface area function of M. If L is the
extrinsic diameter of M, then

L ≤ cn,k

(∫
Sn

ϕ

) k+1
k

{
inf
y∈Sn

∫
Sn

max(0, 〈y, x〉)ϕ(x)

}−1

,

where cn,k is a constant depending only on n and k. In particular, if u is
a support function of M satisfying (1.1) and (3.1), then

0 ≤ min u ≤ max u ≤ cn,k

(∫
Sn

ϕ

) k+1
k

{
inf
y∈Sn

∫
Sn

max(0, 〈y, x〉)ϕ(x)

}−1

.

Proof. The argument follows mainly that in [7]. Here we will make use of
a quermassintegral inequality and the Minkowski formula.

Let p, q ∈ M, such that the line segment joining p and q has length L . We
may assume 0 is in the middle of the line segment. Let �y be a unit vector in
the direction of this line. Let v be the support function, and W = {vij +vδij }.
We have Sk(W ) = ϕ. Now, for x ∈ Sn , we get

v(x) = sup
Z∈M

〈Z, x〉 ≥ 1

2
L max(0, 〈y, x〉).

If we multiply by ϕ and integrate over Sn , we get

L ≤ 2

(∫
Sn

vϕ

) (∫
Sn

max(0, 〈y, x〉)ϕ
)−1

.

By the Quermassintegral inequality,

(∫
Sn

vSk(W )

) 1
k+1

≤ Cn,k

(∫
Sn

vSk−1(W )

) 1
k

.
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On the other hand, from a Minkowski type formula (e.g., (5.3.14) in p. 291
in [29], note that we have a different normalization of Sk), we have

(n − k + 1)

∫
Sn

vSk−1(W ) = k
∫
Sn

Sk(W ) = k
∫
Sn

ϕ.

In turn, we get

L ≤ cn,k

(∫
Sn

ϕ

) k+1
k

(
inf
y∈Sn

∫
Sn

max(0, (y, x))ϕ

)−1

.

Since u satisfies (3.1), the Steiner point of M is the origin. The last
inequality is a consequence of the above inequality. �	

In the case of k = 1, equation (1.1) is a linear elliptic equation on the
sphere. That C2 a priori estimates hold for a solution u satisfying (3.1) in
this case follows from standard linear elliptic theory. Therefore, we will
restrict ourselves to the case k ≥ 2.

Proposition 3.2. There is a constant C > 0 depending only on n, k,
‖ϕ‖C2(Sn) and minSn ϕ, such that if u satisfies (3.1) and u is an admissi-
ble solution of (1.1), then ‖u‖C2(Sn) ≤ C. There is an explicit bound for the
function H := trace(uij + δiju) = 
u + nu,

min
x∈Sn

(nϕ̃(x)) ≤ max
x∈Sn

H(x) ≤ max
x∈Sn

(nϕ̃(x) − 
ϕ̃(x)),(3.2)

where ϕ̃ := (
ϕ

Ck
n
)

1
k , Ck

n = n!
k!(n−k)! .

Proof. Since u is k-convex (k ≥ 2), the entries |uij + δiju| are controlled
by H . By Lemma 3.1, we have a C0 bound on u. So the |uij | are controlled
by H . C1 estimates follows from interpolation if we have bounds on the
second derivatives. Therefore, we only need to bound H . The first inequality
follows from the Newton-MacLaurin inequality. Assume the maximum
value of H is attained at a point x0 ∈ Sn . We choose an orthonormal local
frame e1, e2, . . . , en near x0 such that uij (x0) is diagonal. If W = (uij +δij u),

we define G(W ) := ( Sk
Ck

n
)

1
k (W ). Then equation (1.1) becomes

G(W ) = ϕ̃.(3.3)

For the standard metric on Sn , one may easily check the commutator identity
Hii = 
Wii − nWii + H . By assumption the matrix W ∈ Γk, so (Gij) is
positive definite. Since (Hij) ≤ 0, and (Gij) is diagonal, by the above
commutator identity, it follows that at x0,

0 ≥ Gij Hij = Gii (
Wii) − nGii Wii + H
n∑
i

Gii .(3.4)
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As G is homogeneous of degree one, we have

Gii Wii = ϕ̃.(3.5)

Next we apply the Laplace operator to equation (3.3) to obtain

Gij Wijk = ∇kϕ̃, Gij,rsWijkWrsk + Gij
Wij = 
ϕ̃.

By the concavity of G, at xo we have

Gii
(Wii) ≥ 
ϕ̃.(3.6)

Combining (3.5), (3.6) and (3.4), we see that

0 ≥ 
ϕ̃ − nϕ̃ + H
n∑

i=1

Gii .(3.7)

As W is diagonal at the point, we may write W = (W11, . . . , Wnn) as
a vector in Rn. A simple calculation yields

Gii = Sk(W )
1
k −1

(Ck
n)

1
k

∂Sk(W )

∂Wii
= Sk(W )

1
k −1

(Ck
n)

1
k

Sk−1(W |i),

where (W |i) is the vector given by W with Wii deleted. It follows from the
Newton-MacLaurin inequality that

n∑
i=1

Gii = (n − k + 1)
Sk(W )

1
k −1

(Ck
n)

1
k

Sk−1(W ) ≥ 1.

By (3.7), H ≤ nϕ̃ − 
ϕ̃. �	
By the Evans-Krylov theorem and Schauder theory (e.g, see [14]), to-

gether with Proposition 3.2, we have the following a priori estimates.

Theorem 3.3. For each integer l ≥ 1 and 0 < α < 1, there exist a constant
C depending only on n, l, α, min ϕ, and ||ϕ||Cl,1(Sn) such that

||u||Cl+1,α (Sn) ≤ C,(3.8)

for all admissible solution of (1.1) satisfying the condition (3.1).

So far, we have obtained an upper bound for the principal radii of
the Christoffel-Minkowski problem. For the Minkowski problem, a lower
bound for the principal radii then follows directly from equation (1.1). But
when k < n, there is no such lower bound in general. In the next section,
we will show that the principal radii of the general Christoffel-Minkowski
problem are bounded from below if ϕ satisfies the condition in Theorem 1.3.
In the case of the Christoffel problem, Firey’s conditions [11] are necessary
and sufficient. But they are very cumbersome and difficulty to verify. It
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is desirable to have some simple sufficient conditions. Pogorelov in [27]
established a lower bound of the principal radii on S2 under the condition

ϕ(x) − ϕss(x) > 0, on S2,(3.9)

where ϕ(x) is differentiated at the point x with respect to arc length of the
great circle on S2.

To conclude this section, we derive a simple estimate which drops the
dimensionality restriction in (3.9). For the Christoffel problem, equation
(1.1) can be written in the simple form

∑n
i=1 Wii = ϕ.

We may assume that the smallest eigenvalue of the matrix (Wij) is
attained at some point xo ∈ Sn and along the e1 direction. Then we have

∇iW11(xo) = 0, i = 1, 2, . . . , n; ∆W11(xo) ≥ 0.

As W11ii = Wii11 + W11 − Wii , at the point xo,

0 ≤
n∑

i=1

W11ii = (∆W )11 + nW11 −
n∑

i=1

Wii = ϕ11 + nW11 − ϕ.

Therefore at xo, nW11 ≥ ϕ − ϕ11.

4. A Deformation Lemma

In this section, we establish the key deformation lemma which will set the
stage for the strong minimum principle. As in the previous section, we let
W = (uij + δiju).

Lemma 4.1. (Deformation Lemma) Let O ⊂ Sn be an open subset, sup-
pose u ∈ C4(O) is a solution of (1.1) in O, and that the matrix W = (Wij )
is positive semi-definite. Suppose there is a positive constant C0 > 0,
such that for a fixed integer (n − 1) ≥ l ≥ k, Sl(W(x)) ≥ C0 for all
x ∈ O, . Let φ(x) = Sl+1(W(x)) and let τ(x) be the largest eigenvalue of
{−(ϕ− 1

k )ij (x)−δijϕ
− 1

k (x)}. Then there are constants C1, C2 depending only
on ||u||C3 , ||ϕ||C1,1 , n, k and C0, such that differential inequality

n∑
α,β

Fαβ(x)φαβ(x) ≤ k(n − l)ϕ
k+1

k (x)Sl(W(x))τ(x) + C1|∇φ(x)| + C2φ(x)

(4.1)

holds in O, where the Fαβ are defined in Proposition 2.2.

Remark 4.2. The lemma is a fully nonlinear version of the corresponding
results of Caffarelli-Friedman [6] and Korevaar-Lewis [22] for the Lapalace
equation inRn . We note that the a priori estimates established in the previous
section are not used here since we are working on the assumption u ∈ C4.
Also, we make no assumption on the size of Sl+1, and the constants C1, C2
in Lemma 4.1 depend only on ||u||C3 , ||ϕ||C1,1 , n, k and C0. This dependence
is crucial in establishing Theorem 1.3 for ϕ ∈ C1,1.
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The rest of this section will be devoted to the proof of the Deformation
Lemma. As the proof is technically complicated, we would like to sketch
some of the main lines first. Let

Fαβ = ∂Sk(W )

∂Wαβ

, Fij,rs = ∂Sk(W )

∂Wij∂Wrs
(4.2)

as defined in Proposition 2.2. We set

Sij = ∂Sl+1(W )

∂Wij
, Sij,rs = ∂2Sl+1(W )

∂Wij∂Wrs
.(4.3)

Recall that ϕ(x) = Sk(W(x)), and φ(x) = Sl+1(W(x)). Since W is positive
semi-definite and u is k-convex, (Fαβ ) is positive definite and (Sij ) is positive
semi-definite. We observe that there are at least l positive eigenvalues of
W with a controlled lower bound by the assumption Sl(W ) ≥ C0. Let B
be that part of the index set so arranged such that the Wii might be small
(controlled by φ) for i ∈ B (see the proof below for the precise definition).
In view of this observation, Wii is negligible for each i ∈ B. The basic
idea in the proof of Deformation Lemma is to to explore the relationship
between

∑n
α,β Fαβφαβ and ϕ

k+1
k Sl(W )

∑
i{(ϕ− 1

k )ii + δiiϕ
− 1

k }. One of the
key terms to be handled will be

∑
i,α Sii FααWiiαα . With the help of some

basic properties of elementary symmetric functions, it turns out that some
algebraic cancellations will occur after commuting covariant derivatives and
re-arranging the terms to fit the right algebraic formats! Almost all of the
computations in the proof are algebraic and the inequality in Lemma 2.4
will be used in a crucial way in the last step of the proof.

Proof of the Deformation Lemma. Following the notation of Caffarelli and
Friedman [6], for two functions defined in an open set O ⊂ Sn , y ∈ O, we
say that h(y) � k(y) provided there exist positive constants c1 and c2 such
that

(h − k)(y) ≤ (c1|∇φ| + c2φ)(y).(4.4)

We also write h(y) ∼ k(y) if h(y) � k(y) and k(y) � h(y). Next, we
write h � k if the above inequality holds in O, with the constants c1, and
c2 depending only on ||u||C3 , ||ϕ||C2 , n and C0 (independent of y and O).
Finally, h ∼ k if h � k and k � h. We shall show that

n∑
α,β=1

Fαβφαβ � k(n − l)ϕ
k+1

k Sl(W )τ.(4.5)

For any z ∈ O, let λ1 ≥ λ2 . . . ≥ λn be the eigenvalues of W at z.
Since Sl(W ) ≥ C0 > 0 and u ∈ C3, for any z ∈ Sn , there is a positive
constant C > 0 depending only on ||u||C3 , ||ϕ||C2 , n and C0, such that
λ1 ≥ λ2 . . . ≥ λl ≥ C. Let G = {1, 2, . . . , l} and B = {l + 1, . . . , n} be
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the “good” and “bad” sets of indices respectively, and define Sk(W |i) =
Sk((W |i)) where (W |i) means that the matrix W excluding the i-column
and i-row, and (W |ij) means that the matrix W excluding the i, j columns
and i, j rows. Let ΛG = (λ1, . . . , λl) be the “good” eigenvalues of W at z;
for convenience in notation, we also write G = ΛG if there is no confusion.
In the following, all calculations are at the point z using the relation “�”,
with the understanding that the constants in (4.4) are under control.

For each fixed z ∈ O fixed, we choose a local orthonormal frame
e1, . . . , en so that W is diagonal at z, and Wii = λi,∀i = 1, . . . , n. Now
we compute φ and its first and second derivatives in the direction eα.

We note that Sij in (4.3) is diagonal at the point since W is diagonal. As
φ = Sl+1(W ) and φα = ∑

i, j Sij Wijα, we find that (as W is diagonal at z),

0 ∼ φ(z) ∼
(∑

i∈B

Wii

)
Sl(G) ∼

∑
i∈B

Wii , (so Wii ∼ 0, i ∈ B),

(4.6)

This relation yields that, for 1 ≤ m ≤ l,

Sm(W ) ∼ Sm(G), Sm(W | j) ∼
{

Sm(G| j), if j ∈ G;
Sm(G), if j ∈ B.

(4.7)

Sm(W |ij) ∼



Sm(G|ij), if i, j ∈ G;
Sm(G| j), if i ∈ B, j ∈ G;
Sm(G), if i, j ∈ B, i �= j.

Also,

0 ∼ φα ∼ Sl(G)
∑
i∈B

Wiiα ∼
∑
i∈B

Wiiα(4.8)

By Proposition 2.2,

Sij ∼
{

Sl(G), if i = j ∈ B,
0, otherwise.

(4.9)

Sij,rs =



Sl−1(W |ir), if i = j, r = s, i �= r;
−Sl−1(W |ij), if i �= j, r = j, s = i;
0, otherwise.

(4.10)

In what follows, we will use the relations (4.6)–(4.10) to single out the
main terms in the calculation.
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Since φαα = ∑
i, j (Sij,rsWrsαWijα + Sij Wijαα), it follows from (4.10) that

for any α ∈ {1, 2, . . . , n}
φαα =

∑
i �= j

Sl−1(W |ij)WiiαW jjα −
∑
i �= j

Sl−1(W |ij)W2
ijα +

∑
i

Sii Wiiαα

=
( ∑

i∈G
j∈B

+
∑
i∈B
j∈G

+
∑
i, j∈B
i �= j

+
∑

i, j∈G
i �= j

)
Sl−1(W |ij)WiiαW jjα

−
( ∑

i∈G
j∈B

+
∑
i∈B
j∈G

+
∑
i, j∈B
i �= j

+
∑

i, j∈G
i �= j

)
Sl−1(W |ij)W2

ijα +
∑

i

SiiWiiαα.(4.11)

We want to simplify the above expression. From (4.8) and (4.7), we have
∑
i∈B
j∈G

Sl−1(W |ij)WiiαW jjα ∼
( ∑

j∈G

Sl−1(G| j)W jjα

)∑
i∈B

Wiiα ∼ 0.(4.12)

By (4.8), ∀i ∈ B fixed and ∀α, −Wiiα ∼ ∑
j∈B
j �=i

W jjα. Then (4.7) yields,

∑
i, j∈B
i �= j

Sl−1(W |ij)WiiαW jjα ∼ −Sl−1(G)
∑
i∈B

W2
iiα.(4.13)

and ∑
j∈G,i∈B

Sl−1(W |ij)W2
ijα ∼

∑
i∈B, j∈G

Sl−1(G| j)W2
ijα.(4.14)

Inserting (4.12)–(4.14) into (4.11), by (4.7) we obtain

φαα ∼
∑

i

Sii Wiiαα − 2
∑
i∈B
j∈G

Sl−1(G| j)W2
ijα − Sl−1(G)

∑
i, j∈B

W2
ijα.(4.15)

Now we would like to construct a contraction of φαα with Fαα in (4.2)
(note that Fαβ is diagonal at the point). By Proposition 2.2 and (4.6), we
have for any α ∈ {1, 2, . . . , n}

Fαβ ∼



Sk−1(G|α), if α ∈ G, α = β;
Sk−1(G), if α ∈ B, α = β;
0, if α �= β,

(4.16)

and

Fij,rs =



Sk−2(W |ir), if i = j, r = s, i �= r;
−Sk−2(W |ij), if i �= j, r = j, s = i;
0, otherwise.

(4.17)
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From (4.15) and (4.16) we obtain the contraction

∑
α,β

Fαβφαβ =
n∑

α=1

Fααφαα ∼
n∑

α=1

∑
i

Sii FααWiiαα

− 2
n∑

α=1

∑
i∈B
j∈G

Sl−1(G| j)FααW2
ijα − Sl−1(G)

n∑
α=1

∑
i, j∈B

FααW2
ijα.(4.18)

To put the above in a useful form, we will start to commute the co-
variant derivatives and make use of some basic properties of the ele-
mentary symmetric functions. For example, homogeneity of Sk, identi-
ties (2.4)–(2.6) and the Newton-MacLaurin inequality will be used repeat-
edly.

By (4.6), (4.9) and homogeneity of Sk and Sl+1 (since |B| = n − l)

n∑
α=1

n∑
i=1

Sii Fαα(Wii − Wαα) = (l + 1)φ

n∑
α=1

Fαα − kϕ
n∑

i=1

Sii

∼ −kϕ
∑
i∈B

Sii ∼ −(n − l)kϕSl(G).

Commuting the covariant derivatives, it follows that

n∑
α=1

n∑
i=1

Sii FααWiiαα =
n∑

α=1

n∑
i=1

Sii Fαα(Wααii + Wii − Wαα)(4.19)

∼
n∑

α=1

n∑
i=1

Sii FααWααii − (n − l)kϕSl(G).

Differentiating equation (1.1), we get

ϕii =
∑

α,β,r,s

Fαβ,rsWαβi Wrsi +
∑
α,β

FαβWαβii .

Propositon 2.2, together with (4.17) and (4.9) yield,
∑

α

∑
i

Sii FααWααii =
∑

i

Sii
{
ϕii −

∑
α,β,r,s

Fαβ,rsWαβiWrsi

}

∼
∑
i∈B

{
−

(∑
α∈G
β∈B

+
∑
α∈B
β∈G

+
∑

α,β∈B
α �=β

+
∑

α,β∈G
α �=β

)
Sk−2(W |αβ)Wααi Wββi

+ϕii +
n∑

α,β=1
α �=β

Sk−2(W |αβ)W2
αβi

}
Sl(G).(4.20)
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It follows from (4.7) and (4.8) that for 1 ≤ m ≤ n,∑
α∈B
β∈G

Sm(W |αβ)WααiWββi ∼
[∑

β∈G

Sm(G|β)Wββi

]∑
α∈B

Wααi ∼ 0.(4.21)

In turn,

n∑
α=1

n∑
i=1

Sii FααWααii ∼ Sl(G)
∑
i∈B

{
ϕii −

∑
α,β∈G
α �=β

Sk−2(G|αβ)WββiWααi

(4.22)

−
∑

α,β∈B
α �=β

Sk−2(G)Wββi Wααi +
n∑

α,β=1
α �=β

Sk−2(W |αβ)W2
αβi

}
.

We note that |B| = n − l, so
∑

i∈B kϕ = (n − l)kϕ. Now inserting (4.22)
and (4.19) to (4.18), by (4.7) and (4.16) we have

∑
α,β

Fαβφαβ ∼ Sl(G)
∑
i∈B

(ϕii − kϕ)− Sl(G)
∑
i∈B

∑
α,β∈G
α �=β

Sk−2(G|αβ)Wααi Wββi

(4.23)

− Sl(G)
∑
i∈B

∑
α,β∈B
α �=β

Sk−2(G)Wααi Wββi −2
n∑

α=1

∑
i∈B,β∈G

Sl−1(G|β)Sk−1(W |α)W2
iβα

+ Sl(G)
∑
i∈B

∑
α �=β

Sk−2(W |αβ)W2
αβi −

n∑
α=1

Sl−1(G)
∑

i,β∈B

Sk−1(W |α)W2
iβα.

We need to further simplify the terms in (4.23). We first deal with the
fourth and fifth terms on the right hand side of (4.23). For i ∈ B, we regroup
the summations in these terms as

∑
α �=β

= 2
∑
α∈B
β∈G

+
∑

α,β∈B
α �=β

+
∑

α,β∈G
α �=β

,

n∑
α=1

∑
β∈G

=
∑
α∈B
β∈G

+
∑

α,β∈G
α �=β

+
∑

α=β∈G

.(4.24)

Since W is positive semi-definite, by (2.5), ∀β ∈ G fixed, Wββ Sk−2(G|β)
≤ Sk−1(G). For any α ∈ B, β ∈ G, Sl(G) = Sl−1(G|β)Wββ by (2.4), and
Sk−2(W |αβ) ∼ Sk−2(G|β) by (4.7). So we have,∑

i,α∈B
β∈G

Sl(G)Sk−2(W |αβ)W2
αβi ∼

∑
i,α∈B
β∈G

Sl−1(G|β)Wββ Sk−2(G|β)W2
αβi

≤
∑

i,α∈B
β∈G

Sl−1(G|β)Sk−1(G)W2
αβi .(4.25)
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Also, when α, β ∈ G, α �= β, as W is diagonal, by (2.4) and (2.5),

Sl−1(G|β)Sk−1(G|α) = Sl−1(G|β)[Sk−1(G|αβ) + Wββ Sk−2(G|αβ)]
(4.26)

≥ Sl−1(G|β)Wββ Sk−2(G|αβ) = Sl(G)Sk−2(G|αβ).

From (4.26), we get

∑
i∈B

∑
α,β∈G
α �=β

Sl(G)Sk−2(W |αβ)W2
αβi − 2

∑
i∈B

∑
α,β∈G
α �=β

Sl−1(G|β)Sk−1(G|α)W2
αβi

(4.27)

� −
∑
i∈B

∑
α,β∈G
α �=β

Sl−1(G|β)Sk−1(G|α)W2
αβi ≤ 0.

It is easy to check that Wiβα = Wαβi on the standard Sn (recall that
Wαβ = uαβ + δαβu). Combining (4.25) and (4.27), taking into the account
of the regroup identity (4.24), we obtain the inequality

Sl(G)
∑
i∈B

∑
α �=β

Sk−2(W |αβ)W2
αβi − 2

n∑
α=1

∑
i∈B,β∈G

Sl−1(G|β)Sk−1(W |α)W2
iβα

�
∑
i∈B

∑
α,β∈B
α �=β

Sl(G)Sk−2(W |αβ)W2
αβi − 2

∑
i∈B

∑
α∈G

Sl−1(G|α)Sk−1(G|α)W2
ααi .

We note that Sm(W |αβ) ∼ Sm(G),∀α, β ∈ B by (4.7). Putting the previous
inequality into (4.23),

n∑
α,β

Fαβφαβ � Sl(G)
[∑

i∈B

(ϕii − kϕ) −
∑
i∈B

∑
α,β∈G
α �=β

Sk−2(G|αβ)Wααi Wββi

]

− 2
∑
i∈B

∑
α∈G

Sl−1(G|α)Sk−1(G|α)W2
ααi

− Sl(G)
∑
i∈B

∑
α,β∈B
α �=β

Sk−2(G)Wααi Wββi

−
n∑

i=1

Sl−1(G)
∑

α,β∈B

Sk−1(W |i)W2
αβi

+
∑
i∈B

∑
α,β∈B
α �=β

Sl(G)Sk−2(G)W2
αβi

= Sl(G)
∑
i∈B

[
ϕii − k + 1

k

ϕ2
i

ϕ
− kϕ

]
+ I1 + I2 + I3,(4.28)



The Christoffel-Minkowski problem I 571

where

I1 = Sl(G)Sk−2(G)
∑

i,α,β∈B
α �=β

[
W2

αβi − WααiWββi

]

−
n∑

i=1

Sl−1(G)
∑

α,β∈B

Sk−1(W |i)W2
αβi,

I2 =
∑
i∈B

(
Sl(G)ϕ2

i

kϕ
−

∑
α∈G

Sl−1(G|α)Sk−1(G|α)W2
ααi

)
,

and

I3 =
∑
i∈B

{
Sl(G)

[
ϕ2

i

ϕ
−

∑
α,β∈G
α �=β

Sk−2(G|αβ)Wααi Wββi

]

−
∑
α∈G

Sl−1(G|α)Sk−1(G|α)W2
ααi

}
.

Claim. I1 � 0, I2 � 0 and I3 � 0.

If the Claim is true, it follows from (4.28) that

n∑
α,β

Fαβφαβ � Sl(G)
∑
i∈B

[
ϕii − k + 1

k

ϕ2
i

ϕ
− kϕ

]
.(4.29)

Then (4.5) follows from (4.29).

Proof of the Claim. Since Wiβα = Wαβi , we observe that by (4.7),

−
n∑

i=1

Sl−1(G)
∑

α,β∈B

Sk−1(W |i)W2
αβi

≤ −
∑
i∈B

Sl−1(G)
∑

α,β∈B

Sk−1(W |i)W2
αβi

= −
∑
i∈B

Sl−1(G)
∑

α,β∈B

Sk−1(W |α)W2
αβi

� −Sl−1(G)Sk−1(G)
{∑

i∈B

∑
α,β∈B
α �=β

W2
αβi +

∑
i∈B

∑
α∈B

W2
ααi

}
.(4.30)

If we put (4.30) into I1, by (4.8), (4.7) and the Newton-MacLaurin inequal-
ity, we get
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I1 �−
{

Sl(G)Sk−2(G)
∑

i,α∈B

Wααi

( ∑
β∈B,β �=α

Wββi

)

+ Sl−1(G)Sk−1(G)
∑

i,α∈B

W2
ααi

}

+
∑
i∈B

∑
α,β∈B
α �=β

[Sl(G)Sk−2(G) − Sl−1(G)Sk−1(G)]W2
αβi

∼ [Sl(G)Sk−2(G) − Sl−1(G)Sk−1(G)]
[ ∑

i,α∈B

W2
ααi +

∑
i∈B

∑
α,β∈B
α �=β

W2
αβi

]
≤ 0.

To treat I2, by (4.8) and Proposition 2.2, for i ∈ B,

ϕi =
(∑

α∈B

+
∑
α∈G

)
Sk−1(W |α)Wααi ∼

∑
α∈G

Sk−1(G|α)Wααi .(4.31)

By homogeneity of Sk(W ), (4.31) and (2.4),

I2 ∼ 1

kϕ

(∑
α∈G

S
1
2
l (G)Sk−1(G|α)Wααi

)2 −
∑
α∈G

Sl−1(G|α)Sk−1(G|α)W2
ααi

= 1

kϕ

[ ∑
α∈G

S
1
2
l−1(G|α)W

1
2
ααSk−1(G|α)Wααi

]2−
∑
α∈G

Sl−1(G|α)Sk−1(G|α)W2
ααi

≤ 1

kϕ

∑
α,β∈G

Sl−1(G|α)Sk−1(G|α)W2
ααiWββ Sk−1(G|β)

−
∑
α∈G

Sl−1(G|α)Sk−1(G|α)W2
ααi

∼
∑
α∈G

Sl−1(G|α)Sk−1(G|α)W2
ααi −

∑
α∈G

Sl−1(G|α)Sk−1(G|α)W2
ααi

= 0.

Now we deal with I3. It follows from (4.31) that for any i ∈ B,

ϕi
2 ∼

∑
α∈G

S2
k−1(G|α)W2

ααi +
∑

α,β∈G
α �=β

Sk−1(G|α)Sk−1(G|β)Wααi Wββi.
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By Lemma 2.3 and Lemma 2.4, as ϕ ∼ Sk(G) by (4.7), we have

ϕI3 ∼
∑
i∈B

{∑
α∈G

[Sl(G)S2
k−1(G|α) − Sk(G)Sl−1(G|α)Sk−1(G|α)]W2

ααi

+ Sl(G)
∑

α,β∈G
α �=β

[Sk−1(G|α)Sk−1(G|β) − Sk(G)Sk−2(G|αβ)]Wααi Wββi

}

=
∑
i∈B

{
−

∑
α∈G

Sk(G|α)Sl−1(G|α)Sk−1(G|α)W2
ααi

+ Sl(G)
∑

α,β∈G
α �=β

[S2
k−1(G|αβ) − Sk(G|αβ)Sk−2(G|αβ)]Wααi Wββi

}
≤ 0.

The Claim is verified. The proof of the Deformation Lemma is
complete. �	

5. The existence and convexity

First, we prove Theorem 1.2.

Proof of Theorem 1.2. By the a priori estimates in Theorem 3.3, u ∈C3,α(Sn),
for 0 < α < 1. If W is not of full rank at some point x0, then there is n −1 ≥
l ≥ k such that Sl(W(x)) > 0,∀x ∈ Sn and φ(x0) = Sl+1(W(x0)) = 0. By
(4.1) in the Deformation Lemma 4.1, as ϕ ∈ C− 1

k
,

n∑
α,β

Fαβ(x)φαβ(x) ≤ C1|∇φ(x)| + C2φ(x).

The strong minimum principle implies φ = Sl+1(W ) ≡ 0. On the other
hand, we may assume u satisfies (3.1), so u is nonnegative on Sn . By
the Minkowski type formula (e.g., page 291 in [29]), (n − l)

∫
Sn uSl(W ) =

(l+1)
∫
Sn Sl+1(W ). We conclude that u ≡ 0. This is a contradiction to (1.1).

�	
Now we proceed to prove Theorem 1.3.
Since ϕ is connected to 1 in C− 1

k
, there is a continuous function h(t, x)

in [0, 1] × Sn such that h(0, x) = 1, h(1, x) = ϕ(x) and h is in C− 1
k

for
each fixed t. Now, we approximate h by a sequence of positive functions
hm satisfying

Properties:

(i) hm is continuous in [0, 1] × Sn , and hm(0, x) = 1;
(ii) for each t fixed, hm is smooth in the x variables and satisfies (1.3);
(iii) for each fixed m and l, hm is in C([0, 1] × Cl(Sn));
(iv) hm −→ h uniformly in C([0, 1] × C1,1(Sn)).
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Such a sequence can be easily obtained by the operations of smoothing
and projecting in the x variables (to satisfy (1.3)). We point out that we do
not require hm(t, .) to be in C− 1

k
.

We consider the following equation:

Sk
(
ut,m

ij (x) + δij u
t,m(x)

) = hm(t, x), ∀x ∈ Sn.(5.1)

Proposition 5.1. For sufficient large m, the equation (5.1) has a unique
smooth strictly convex solution ut,m satisfying (3.1) for all t ∈ [0, 1].
Proof. Uniqueness follows from the Alexandrov-Fenchel-Jessen Theorem,
regularity follows from Theorem 3.3. We use the continuity method for
existence.

For each m fixed, let Im = {t ∈ [0, 1]|(5.1)has a strictly convex solution}.
Since u is strictly convex and satisfies (1.1), the linearized operator Lu at

u is self-adjoint and Span{x1, . . . , xn+1} is the exact kernel. By the standard
implicit function theorem, Im is open and non-empty (as 0 ∈ Im).

We claim Im is closed when m is sufficiently large. Suppose this is not
true. Then by Theorem 3.3 and the continuity method, there is a sequence of
smooth functions {utm }, and tm > 0, xm ∈ Sn such that Wt = (ut,m

ij +δij ut,m)

is positive definite for t < tm , utm satisfying (5.1) with det(Wtm (xm)) = 0.
Since hm −→ h uniformly in C1,1, by Theorem 3.3 there is a subsequence
{tm j } which converges to t0, so hm j (tm j , x) converges to h(t0, x) in C1,1, and
utm j converges to a function u in C3,α for every 0 ≤ α < 1. The Hessian
matrix W = {uij + δiju} is positive semi-definite on Sn and is degenerate at
some point. On the other hand, u satisfies (1.1) with ϕ = h(t0, x). This is
a contradiction to Theorem 1.2 as h(t0, .) ∈ C− 1

k
. �	

Proof of Theorem 1.3. As mentioned before, uniqueness is given by the
Alexandrov-Fenchel-Jessen theorem. By Proposition 5.1, there is a sequence
of strictly convex functions {um} satisfying

Sk(Wm(x)) = hm(1, x), on S
n.

By Theorem 3.3, there is a subsequence of smooth strictly convex functions
{um j } which converges to u in C3,α for every 0 ≤ α < 1. And u satisfies
(1.1). By Theorem 1.2, u is strictly convex. The higher regularity and the
analyticity of u follows from standard elliptic theory. �	

We conclude this paper with some remarks regarding the sufficient con-
dition in Theorem 1.3.

Remark 5.2. As mentioned in the introduction, ϕ ∈ C− 1
k

is equivalent to
ϕ− 1

k being convex in usual sense in Rn+1 if we view it as a homogeneous
function of degree 1. Equation (1.1) can be rewritten as

ϕ− 1
k Sk

1
k (uij + uδij) = 1.
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We note that the differential operator Sk
1
k is concave. The condition ϕ ∈ C− 1

k

may be interpreted as a dual condition to the concavity of Sk
1
k . If we consider

the standard hessian equation on a domain in Rn

Sk(uij (x)) = ϕ(x),

where uij are the second derivatives of u with respect to the standard flat
metric onRn . There is a natural technical explanation of the convex condition
on ϕ. The matrix (uij ) is strictly positive if and only if there is a positive
lower bound on its eigenvalues. This is equivalent to having an upper bound
on the eigenvalues of (ũij), where ũ is the Legendre transform of u. Note
that ũ satisfies

Sn(ũij )

Sn−k(ũij)
= ϕ−1(∇ũ).(5.2)

As the hessian quotient operator ( Sn
Sn−k

)1/k is concave, the strict convexity of

ϕ−1/k is a natural condition to ensure C2 estimates for equation (5.2).

Remark 5.3. From the proof, the condition on ϕ in Theorem 1.3 can also be
replaced by the condition that ϕ > 0 is connected to Sk(vij + vδij) ∈ C− 1

k

for some arbitrary smooth strictly convex body with support function v in
Theorem 1.3. If ϕ > 0 satisfies (1.3), it is easy to check that the following
condition

{−ϕij + kδijϕ} ≥ 0,(5.3)

implies the condition in Theorem 1.3. So condition (5.3) is stronger than
the condition Theorem 1.3. When k = 1, the Pogorelov’s condition (3.9)
for the Christoffel problem implies condition (5.3). Hence even in the case
of k = 1, the condition in Theorem 1.3 is weaker than condition (3.9).

Remark 5.4. If G is an automorphic group of Sn which has no fixed point
(e.g., G a symmetry action with respect to the origin) and if ϕ1 > 0 and
ϕ2 > 0 are invariant under G, one may connect ϕ1 and ϕ2 in C− 1

k
by the

function h(t, x) = (tϕ(x)1
− 1

k + (1 − t)ϕ2
− 1

k )−k. Then h(t, x) satisfies (1.3)
automatically as it is invariant under G (see [16]). In particular, every
G-invariant function ϕ ∈ C− 1

k
is connected to 1 in C− 1

k
. In this special

situation, ϕ ∈ C− 1
k

if and only if ϕ = v−k for some positive support function
v of a G-invariant convex body. By Theorem 1.3, for any G-invariant
convex bodies K1 and K2 with support functions v1 and v2 respectively,
for λ ∈ [0, 1], there is a unique G-invariant convex body K̃λ with support
function u such that Sk({uij + δiju}) = (λv1 + (1 − λ)v2)

−k. The relation
defines an operation for such G-invariant convex bodies. This observation
shows that the class of functions which satisfy the condition in Theorem 1.3
is quite large.
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Remark 5.5. In the case of figures of revolution, the intermediate Christoffel-
Minkowski problems were solved in Firey [13]. Pogorelov in [28] obtained
a sufficient condition for the intermediate Christoffel-Minkowski problems.
Set gt = (tϕ(x) + 1 − t)

1
k , and let η1(x), . . . , ηn(x) be the eigenvalues of

the matrix {δij gt − (gt)ij} at the point x. Set τ = maxi,x(ηi(x)). Pogorelov’s

condition can be stated as ( n−1
n )

1
2(k−1) τ < minSn gt . Note that at any max-

imum point of gt , it yields ( n−1
n )

1
2(k−1) maxSn gt < minSn gt . This puts the

restriction on gt that ϕ is close to a constant.
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