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1. Introduction

The classical Brunn-Minkowski theory for convex bodies was developed from a
few basic concepts: support functions, Minkowski combinations, and mixed vol-
umes. As a special case of mixed volumes, the Quermassintegrals are important
geometrical quantities of a convex body, and surface area measures are local ver-
sions of Quermassintegrals. The Christoffel-Minkowski problem concerns with the
existence of convex bodies with prescribed surface area measure, for details please
refer to [17,3,8,18].

In 1962, Firey [5] generalized the Minkowski combination to p-sums from
p = 1 to p ≥ 1. Later, Lutwak [13,14] showed that Firey’s p-sum also leads to a
Brunn-Minkowski theory for each p > 1. This theory has found many geometry
applications, see for example, [16] and its references. It was also shown in [13]
that the classical surface area measures could be extended to the p-sum case. So
it is natural to consider a generalization of the classical Christoffel-Minkowski
problem for each p > 1. The generalized Minkowski problem has been treated in
[13,15,7,4]. In this paper we study the remaining case, which may be called the
Christoffel-Minkowski problem of p-sum. First we introduce some notations and
relevant results.

Let Kn+1 denote the set of convex bodies (compact, convex subsets with
nonempty interiors) in Euclidean space Rn+1, and let Kn+1

0 denote the set of convex
bodies containing the origin in their interiors. For K ∈ Kn+1, let hK = h(K, ·) :
Sn → R denote the support function of K, and let W0(K), W1(K), ..., Wn+1(K)
denote the Quermassintegrals of K (see, for example [18]). Thus W0(K) = V (K),
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the volume of K and Wn+1 = V (B) = ωn+1, where B is the unit ball in Rn+1.
For each Firey p-sum, Lutwak [13] defined the mixed p-Quermassintegrals by

n + 1 − k

p
Wp,k(K, L) = lim

ε→0+

Wk(K +p ε · L) − Wk(K)
ε

.(1.1)

where K, L ∈ Kn+1
0 and k = 0, · · · , n. When p = 1, Wp,k(K, L) is the usual

mixed Quermassintegral and will be denoted as Wk(K, L). According to [13],
Wp,k has the following integral representation:

Wp,k(K, L) =
1

n + 1

∫
Sn

h(L, u)ph(K, u)1−pdSn−k(K, u)(1.2)

for all L ∈ Kn+1
0 , where Sn−k(K, u) is the (n − k)-th surface area measure of K.

We say that K is of class C2
+ if ∂K is a C2 hypersurface with (everywhere) positive

principal curvatures. From the theory of convex bodies and differential geometry
(see for example [18] and [19]), we see that in this case

dSn−k(K, ·) = Sn−k(hij + δijh)dω.(1.3)

where dω is the Lebesgue measure on Sn, h is the support function of K, hij is the
second covariant derivative with respect to local orthonormal frame {e1, e2, ..., en}
on Sn and Sn−k(hij + δijh) is the (n − k)-th elementary symmetric function of
the eigenvalues of (hij + δijh). This leads to

Definition 1. For each p ≥ 1 and K ∈ Kn+1
o of class C2

+, we call

h1−pSk(hij + δijh)

the k-th p-area function of K.

For each Firey’s p-sum, one can consider the problem of prescribing the k-th p-
area function of a convex body. In the smooth category, it reduces to the problem
of finding the convex solutions to the nonlinear elliptic equation

Sk(uij + δiju) = up−1f on Sn(1.4)

where the convexity means

(uij + δiju) > 0 on Sn.(1.5)

When p = 1, this corresponds to the classical Christoffel-Minkowski problem [18].
Lutwak [13] is the first to study the generalized Minkowski problem for p > 1.

He proved existence of a unique solution K ∈ Kn+1
0 with h(K, u)1−pdSn(K, u) =

dµ(p �= n+1), where µ is a given even positive Borel measure on Sn which does not
concentrated on a great sphere of Sn. The regularity of the solution was proved in
[15]. Recently, K.S.Chou and X.J.Wang [4] and P.F.Guan and C.S.Lin [7] dropped
the evenness assumption for p ≥ n + 1 in the smooth category. In [7] they got
partial smoothly results for n−1

2 < p < n + 1. Moreover the weak solution for
−n − 1 < p < n + 1 was obtained in [4].
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In the present paper we study the existence of convex bodies of prescribed the k-
th p-area functions for 1 ≤ k < n. For a positive function f ∈ Cm(Sn) (m ≥ 2),
we say that f is spherical convex on Sn if the spherical hessian (fij + δijf) is
positive semidefinite on Sn, where subscript denotes covariant derivative in a local
orthonormal frame field on Sn.

Theorem 1. Let 1 ≤ k < n and p ≥ k + 1.

(i) When p > k + 1, for any 0 < f ∈ Cm(Sn)(m ≥ 2), if f− 1
p+k+1 is

spherical convex on Sn, then there exists a unique convex body K ∈ Kn+1
0 with

Cm+1,α(0 < α < 1) boundary ∂K, such that its k-th p-area function equal to f .

(ii) When p = k +1, for any 0 < f ∈ Cm(Sn)(m ≥ 2), if f− 1
2k+1 is spherical

convex on Sn, then there exists a unique positive constant γ and a unique (up to
dilation ) convex body K ∈ Kn+1

0 with Cm+1,α(0 < α < 1) boundary ∂K, such
that its k-th p-area function equal to γf .

Theorem 1 is main result in this paper. To prove theorem 1, we write equation
(1.4) as

Sk(uij + δiju) = up0f on Sn,(1.6)

where p0 = p − 1. This is a Hessian equation, so it is more natural to consider
the existence of admissible solutions (see Definition 3 below). The following two
theorems deal with the existence of admissible solutions of (1.6). First we treat the
case p0 > k

Theorem 2. Let 1 ≤ k < n. If p0 > k, then for any positive function f ∈
Cm(Sn)(m ≥ 2), there is a unique positive admissible solution of (1.6 ) which
satisfies

‖u‖Cm+1,α(Sn) ≤ C.(1.7)

where 0 < α < 1 and the constant C depends only on n, k, α, p0, minSn f,
‖f‖Cm(Sn).

For the case p0 = k, we adapt the technique in [7] to obtain

Theorem 3. Let 1 ≤ k < n and p0 = k, then for any positive function f ∈
Cm(Sn)(m ≥ 2), there is a unique positive constant γ such that the equation

Sk(uij + δiju) = ukγf on Sn.(1.8)

has a positive admissible solution, which is unique upto a dilation.

We remark if f is analytic, then the solutions above are also analytic. The admissible
solutions above are in general not convex. In [8] P.F.Guan and X.N.Ma used ideas
in [1] and [11] to prove a full rank theorem for the classical Christoffel-Minkowski
problem. The corresponding version for the p-sum case is the following
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Theorem 4. Consider the equation

Sk(uij + δiju) = up0f on Sn,(1.9)

where po ≥ 0. Suppose a positive C4 admissible solution u satisfies

(uij + δiju) ≥ 0.(1.10)

Then if f− 1
k+p0 is spherical convex, i.e.((

f− 1
k+p0

)
ij

+ δijf
− 1

k+p0

)
≥ 0,

the matrix (uij + δiju) is positive definite.

With the help of the full rank theorem, we can prove the admissible solutions
obtained in Theorems 2 and 3 are strictly convex (i.e. (uij + δiju) is positive
definition) under the assumptions in Theorem 1.

This paper is organized as follows: in Section 2 we state some notations and
preliminary results needed in this paper. We prove the a priori estimates for a
positive admissible solutions of equation (1.6) in Section 3. Theorems 2 and 3 will
be proved in Section 4. Finally in Section 5 we sketch the proof of our full rank
Theorem and prove Theorem 1.

Acknowledgement. The first two authors would like to thank professors B.Guan and P.F.Guan
and X.J.Wang for their kindly encouragement. The authors thank the referees for his help.

2. Preliminary

In this section we state some definitions and basic properties of elementary sym-
metric functions, which are needed in this paper.

Definition 2. For 1 ≤ k ≤ n and λ = (λ1, · · · , λn) ∈ Rn, the k-th elementary
symmetric function is

Sk(λ) =
∑

i1<···<in

λi1 · · ·λin .(2.1)

where i1, · · · , ik ∈ {1, · · · , n}. Let W = (Wij) be a symmetric n×n matrix.We set
Sk(W ) = Sk(λ(W )), where λ(W ) = (λ1(W ), · · · , λn(W )) are the eigenvalues
of W . We also set S0 = 1 and Sk = 0 for k > n.

Definition 3. Let S be the set of all n × n symmetric matrices. For 1 ≤ k ≤ n,
denote

Γk = {W ∈ S : S1(W ) > 0, · · · , Sk(W ) > 0}.(2.2)

If u ∈ C2(Sn) is the solution of (1.6), we say u is an admissible solution if
W (x) = (uij(x) + δiju(x)) is in Γk for each x ∈ Sn.

The sets Γk are open convex cones and satisfy Γk+1 ⊂ Γk for any k = 1, · · · , n−1.
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Proposition 1. Let W = (Wij) be a n×n symmetric matrix, let G(W ) = Sk(W )
for some 1 ≤ k ≤ n. Then the following relations hold.

Sk(W ) =
1
k!

n∑
i1,··· ,ik=1
j1,··· ,jk=1

δ(i1, · · · , ik; j1, · · · , jk)Wi1j1 · · ·Wikjk
,

Gαβ : =
∂G

∂Wαβ
(W )

=
1

(k−1)!

n∑
i1,··· ,ik−1=1

j1,···,jk−1=1

δ(α, i1, · · ·, ik−1; β, j1, · · ·, jk−1)Wi1j1 · · ·Wik−1jk−1 ,

Gij,rs : =
∂2G

∂Wij∂Wrs

=
1

(k−2)!

n∑
i1,···,ik−2=1

j1,···,jk−2=1

δ(i,r,i1, · · ·, ik−2; j,s,j1,· · ·,jk−2)Wi1j1 · · ·Wik−2jk−2 ,

where the Kronecker symbol δ(I; J) for indices I = (i1, · · · , im) and J =
(j1, · · · , jm) is defined by

δ(I; J) =




1, if I is an even permutation of J ;
−1, if I is an odd permutation of J;
0, otherwise.

Let Sk(λ|i) denote Sk(λ) in which λi = 0. We have the following identities in:

Proposition 2. For any k = 0, · · · , n, i = 1, · · · , n and λ ∈ Rn

∂Sk+1(λ)
∂λi

= Sk(λ|i),
Sk(λ) = Sk(λ|i) + λiSk−1(λ|i),

n∑
i=1

Sk(λ|i) = (n − k)Sk(λ),

n∑
i=1

λiSk(λ|i) = (k + 1)Sk+1(λ).

Also we need the following

Proposition 3. Let λ ∈ Γk for some k ∈ {2, · · · , n}, then for any 0 ≤ h ≤ k − 1,
and 1 ≤ i ≤ n, Sh(λ|i) > 0. Therefore λi ≤ S1(λ) for 1 ≤ i ≤ n.

The refined Newton-Maclaurin inequality is crucial to our a priori C2 estimates.

Proposition 4. For ∀λ ∈ Γk, and k ≥ r, l ≥ s, k − l ≥ r − s ≥ 0, we
have [

SkCl
n

SlCk
n

] 1
k−l

≤
[
SrC

s
n

SsCr
n

] 1
r−s

.(2.3)
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Proposition 1 and 2 are standard. We refer the readers to [10,7] for Proposition 3
and 4.

3. A priori estimates for positive admissible solutions of (1.6)

In this section we get the a priori estimates for positive admissible solutions of the
Hessian equation (1.6).

The C0 estimate is easy.

Lemma 1. Suppose p0 ≥ k. If u > 0 is an admissible solution of (1.6), then

Ck
n

maxSnf
≤ up0−k ≤ Ck

n

minSnf
.(3.1)

When p0 > k, (3.1) gives a C0 estimate for admissible solutions of (1.6).

Proof. Let x0 be a maximum point of u. Choose a local orthonormal frame field
{ei} such that (uij) is diagonal at x0, namely,

(uij + δiju) = diag(u + u11, ...., u + unn)

then at x0, uii ≤ 0 ,i = 1, ..., n. Since u is admissible, by the Newton - Maclaurin
inequality (2.3) we have

Sk

Ck
n

≤
(

S1

C1
n

)k

=

[
1
n

(nu +
n∑

i=1

uii)

]k

≤ uk.

So
up0f ≤ ukCk

n.

which asserts the second inequality. The first inequality is obvious. 	

Now we utilize the C0 - estimate to get an uniform C1 estimate for the case

p0 ≥ k.

Lemma 2. Suppose p0 ≥ k. If u > 0 is an admissible solution of (1.6), then
there exists a positive constant C which depends only on n, k, and maxSn

|∇f |
f

(independent of p0) such that

max
Sn

|∇u|
u

≤ C.

From Lemma 2 we get a Harnack inequality for positive admissible solutions of
equation (1.6) when p0 ≥ k.

Corollary 1. Let po ≥ k. There is a constant C > 0 depending only on n, k, and
maxSn

|∇f |
f (independent of p0) such that

maxSnu

minSnu
≤ C.

Now we begin the proof Lemma 2.
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Proof. Write equation (1.6) as

Sk(Wij) = up0f on Sn,(3.2)

where p0 ≥ k and Wij = uij +δiju. For any positive admissible solution u, denote
v = logu, then (3.2) becomes

Sk(vij + vivj + δij) = e(p0−k)vf on Sn.(3.3)

Let P = |∇v|2, and suppose x0 is a maximum point of P , choose a local orthonor-
mal frame field such that at xo,

∇v = v1e1, v1 > 0.

Since at x0, Pi = 0 and Pii ≤ 0 (i = 1, · · · , n). It follows that

n∑
j=1

vjvji = 0 i.e. v1i = 0, ∀i,(3.4)

and

1
2
Pii =

n∑
j=1

vji
2 +

n∑
j=1

vjvjii ≤ 0.(3.5)

From (3.4) we may rotate e2, · · · , en such that (vij) is diagonal at x0, there-
fore (aij) := vij + vivj + δij = diag(1 + v2

1 , 1 + v22, · · · , 1 + vnn) :=
diag(λ1, · · · , λn).

In what follows our calculations will be done at x0. Since the solution u is

admissible so the matrix (aij) ∈ Γk . Denote F ij = ∂Sk(aij)
∂aij

, then
n∑

i,j=1
F ijPij ≤

0, from (3.5) and the following Ricci identity

vjii = viji = viij + vsRsiji = viij + vs(δsjδii − δsiδij) = viij + vj − viδij ,

we have

n∑
i=1

F iiv2
ii +

n∑
i,s=1

F iiviisvs + v2
1

n∑
i=2

F ii ≤ 0.(3.6)

Differentiating (3.3) in direction es and contracting with vs, we get

n∑
i,s=1

F iiviisvs = [(p0 − k)v2
1f + v1f1]e(p0−k)v.(3.7)

From (3.6)–(3.7) and the fact p0 ≥ k, we obtain

v1

n∑
i=2

F ii + f1e
(p0−k)v ≤ 0.(3.8)
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By Proposition 2 and 3,

n∑
i=2

F ii=
n∑

i=2

Sk−1(λ|i)=(n − k + 1)Sk−1(λ)−Sk−1(λ|1)≥(n − k)Sk−1(λ).

Furthermore, by the Newton-Maclaurin inequality

Sk−1(λ) ≥ Ck−1
n

[
Sk(λ)
Ck

n

] k−1
k

= Ck−1
n

[
e(p0−k)v

Ck
n

f

] k−1
k

.

So (3.8) implies

v1
(n − k)k
n − k + 1

[
e(p0−k)v

Ck
n

f

]− 1
k

+
f1

f
≤ 0.(3.9)

Noting that ev = u is an admissible solution of equation (1.6), by (3.1) we get

v1
k(n − k)
n − k + 1

≤ max
Sn

|∇f |
f

(
maxf

minf
)

1
k

.

Since maxf
minf can be controlled by maxSn

|∇f |
f , so

|∇v| ≤ C(n, k)[max
Sn

|∇f |
f

]
1+ 1

k

.

The proof is complete. 	

In the following we will get C2 estimates for positive admissible solutions of

equation (1.6) under the assumption p0 > k ≥ 2. Since for k = 1 (1.6) is semilinear
elliptic equation, the C0 and C1 estimates implies high order derivative estimates.

Let u > 0 be an admissible solution of equation (1.6) for p0 > k, let

ũ =
u

l
, where l = minSnu.

Then (1.6) can be written as

Sk(ũij + δij ũ) = ũp0 f̃ ,(3.10)

where f̃ = lp0−kf . By (3.1) we have

f

maxf
Ck

n ≤ f̃ ≤ f

minf
Ck

n,

minũ = 1,

ũp0−k ≤ maxf

minf
.

Define

G =
H̃

ũ
,

where H̃ = tr(ũij + δij ũ). Then G = H
u with H = tr(uij + δiju).
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Lemma 3. Suppose p0 > k ≥ 2. There is a positive constant C which depends
only on n, k, maxSn

|∇f |
f , maxSn

|�f |
f , and p0 such that for any positive admissible

solution u of (1.6)

maxSnG ≤ C.

Furthermore, if k < p0 ≤ k + 1, C is independent of p0.

Proof. Write equation (3.10) as

F (W̃ ) = ũσϕ̃,(3.11)

where F = S
1
k

k , W̃ = (W̃ij), W̃ij = ũij + δij ũ, σ = p0
k , and ϕ̃ = f̃

1
k .

At a maximum point xo of G,

∇H̃

H̃
=

∇ũ

ũ
, and H̃ij ≤ Gũij .(3.12)

Choose a local orthonormal frame field {ei} such that W̃ = (W̃ij) is diagonal at

x0. Denote F ij =
∂F

∂W̃ij

, then (F ij) is also diagonal at x0 and

F ii =
1
k

S
1
k −1
k (λ)Sk−1(λ|i), (i = 1, · · · , n),

where λ = (λ1, λ2, ..., λn) are the eigenvalues of W̃ . In what follows our calcula-
tions will be done at xo. By (3.12)∑

ij

F ijH̃ij ≤ G
∑
ij

F ij ũij .(3.13)

Commuting the second derivatives,∑
ij

F ijH̃ij =
∑
ik

F iiW̃iikk + H̃
∑

i

F ii − nũσϕ̃.(3.14)

Differentiating (3.10) along ek twice, and by the concavity of F , we get∑
ik

F iiW̃iikk ≥ σ(σ − 1)ũσ−2|∇ũ|2ϕ̃ + σũσ−1ϕ̃H̃ − nσũσϕ̃

+ 2σũσ−1∇ũ · ∇ϕ̃ + ũσ�ϕ̃.(3.15)

Combining (3.13)–(3.15) we have

G
∑
ij

F ij ũij ≥ H̃
∑

i

F ii − n(σ + 1)ũσϕ̃ + σ(σ − 1)ũσ−2| ∇ũ |2ϕ̃

+ σũσ−1ϕ̃H̃ + 2σũσ−1∇ũ · ∇ϕ̃ + ũσ�ϕ̃.(3.16)
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On the other hand

G
∑
ij

F ij ũij = G
∑
ij

F ij(W̃ij − δij ũ)

= GF − ũG
∑

i

F ii

=
H̃

ũ
ũσϕ̃ − H̃

∑
i

F ii.

Inserting this into (3.16), we get

0 ≥ 2H̃
∑

i

F ii + (σ − 1)ũσ−1ϕ̃H̃ − n(1 + σ)ũσϕ̃

+ σ(σ − 1)ũσ−2ϕ̃| ∇ũ |2 + 2σũσ−1∇ũ · ∇ϕ̃ + ũσ�ϕ̃.(3.17)

Notice that

∑
i

F ii =
1
k

S
1
k −1
k (λ)

∑
i

Sk−1(λ|i)

=
n − k + 1

k
S

1
k

k (λ)
Sk−1(λ)
Sk(λ)

=
n − k + 1

k
ũσϕ̃

Sk−1(λ)
Sk(λ)

.

Inserting the above relation into (3.17) and then divided by ũσϕ̃, we obtain

0 ≥ 2
(n − k + 1)

k

Sk−1(λ)
Sk(λ)

H̃ + (σ − 1)
H̃

ũ
− n(1 + σ)

+ σ(σ − 1)
| ∇ũ |2

ũ2 + 2σ
∇ũ

ũ
· ∇ϕ̃

ϕ̃
+

�ϕ̃

ϕ̃
.(3.18)

By Lemma 2 and notice the relations:

∇ũ

ũ
=

∇u

u
,

∇ϕ̃

ϕ̃
=

∇f1/k

f1/k
and

�ϕ̃

ϕ̃
=

�f1/k

f1/k
,

we can write (3.18) in the following form:

2
(n − k + 1)

k

Sk−1(λ)
Sk(λ)

H̃ + (σ − 1)
H̃

ũ
≤ σc1 + c2,(3.19)

where c1 ∼ (n, k,maxSn
|∇f |

f ) and c2 ∼ (n, k, maxSn
|∇f |

f , maxSn
|�f |

f ).
Now we treat the first term in (3.19). First we have

ũσ−1ϕ̃ = (
u

l
)

p0−k
k (lp0−kf)

1
k = u

p0−k
k f1/k.
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By equation (3.11) and the above formula,

H̃

S
1
k

k

=
ũG

ũσϕ̃
=

G

ũσ−1ϕ̃
=

G

u
p0−k

k f1/k
.(3.20)

Taking l = 1, r = k−1, and s = 1 in the refined Newton-Maclaurin inequality
(2.3) gives

Sk−1

Sk
≥ c(n, k)

H̃
1

k−1

S
1

k−1
k

.

Hence from (3.20), we obtain

Sk−1

Sk
H̃ ≥ c(n, k)

H̃
k

k−1

S
1

k−1
k

= c(n, k)

(
H̃

S
1
k

k

) k
k−1

= c(n, k)

[
G

u
p0−k

k f1/k

] k
k−1

.(3.21)

By Lemma 1

minf

maxf
Ck

n ≤ fup0−k ≤ maxf

minf
Ck

n.

It follows that

Sk−1(λ)
Sk(λ)

H̃ ≥ c0G
k

k−1 .(3.22)

where c0 ∼ (n, k,maxSn
|∇f |

f ). Now (3.19) and (3.22) imply

c0G
k

k−1 − (σ − 1)G ≤ σc1 + c2.

So we finish the proof of this Lemma. 	

From the above Lemmas we have the following a priori estimates.

Corollary 2. Suppose p0 > k. Then there is a constant C > 0 depending only
on n, k, minSn f,maxSn

|∇f |
f , maxSn

|�f |
f , and p0 such that for any positive

admissible solution u of (1.6),
‖u‖C2 ≤ C.

If k ≤ p0 ≤ k + 1, then there exists constant C depending only on n, k,
maxSn

|∇f |
f , maxSn

|�f |
f (independent of p0) such that for any positive admissible

solution ũ of equation (3.10),
‖ũ‖C2 ≤ C.

Proof. We prove the first formula since the other is similar. When k = 1, equation
(1.6) is semilinear so the a priori estimates follow from standard elliptic theory. For
k ≥ 2, it is a consequence of Proposition 3 and Lemma 3. 	
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4. Proof of Theorem 2 and Theorem 3

We want to solve equation (1.6) in the class of positive admissible solutions. For
the case p0 > k, the following proposition shows that the linearized operator of
(1.6 ) is invertible at any positive admissible solution, so we can use the continuity
method to obtain Theorem 2. For p0 = k we shall use approximation to get the
existence.

Lemma 4. Let u > 0 be an admissible solution of (1.6) and p0 > k, then the
linearized operator Lu has trivial kernel.

Proof. Let Wij = uij + δiju and F = S
1
k

k , then F is homogeneous of degree one
about Wij . Write equation (1.6) as

F (Wij) = uσϕ,(4.1)

where σ = p0
k , ϕ = f

1
k . The linearized operator of (4.1) is:

Lu(v) =
n∑

i,j=1

F ij · (vij + δijv) − σuσ−1ϕv,(4.2)

where F ij = ∂F
∂Wij

. Since u is an admissible solution, the matrix (F ij) > 0. As in
[2], let v = uw, then (4.2) can be written as

Lu(v) = (1 − σ)uσϕw + 2F ijuiwj + uF ijwij .

Suppose Lu(v) = 0, then

uF ijwij + 2F ijuiwj + (1 − σ)uσϕw = 0,

where σ > 1. At a maximum point of w, (wij) ≤ 0 , (F ij) > 0 and wj = 0, we
get

0 ≥ uF ijwij = (σ − 1)uσϕw,

so maxSn w ≤ 0. At a minimum point of w, similar argument shows that
minSn w ≥ 0. Therefore w ≡ 0 on Sn i.e. v ≡ 0 . This proves KerLu = 0.

	

Now we begin the proof of Theorem 2 via the continuity method.

Proof. For 0 ≤ t ≤ 1, consider the family of equations

Sk(uij + δiju) = up0ft (∗t)

where ft = (1 − t)Ck
n + tf . Let

I = {t|0 ≤ t ≤ 1 s.t.(∗t) has positive admissible solution }
Obviously,u ≡ 1 is the solution of (∗0), so I �= ∅.The openness of I comes from

implicit function theorem, Lemma 4, Schauder theory and Fredholm’s alternative.
From Corollary 2 in Section 3 we can get an uniform C2 estimate (with p0 fixed) for
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positive admissible solutions for (∗t), so it is uniform elliptic for positive admissible
solutions. From the Evans – Krylov’s theory [9], we can get higher order estimates.
Therefore, I is closed. So we get the existence part of Theorem 2.

Now we prove the uniqueness of positive admissible solutions of (1.6). Suppose
u and v are two positive admissible solutions. Write (1.6) in the form (4.1). If u �≡ v,
then we may assume that u < v in a neighborhood O of some point x0. Choose a
positive constant ρ > 1 such that ρu ≥ v in O and ρu(x0) = v(x0). Let w = ρu,
then w − v ≥ 0 in O and (w − v)(x0) = 0. Define

ut = (1 − t)v + tu

and denote
U t = (ut

ij + δiju
t) = (1 − t)V + tW,

where V = (vij + δijv) and W = (wij + δijw). Since u and v are admissible
solutions, we have V ∈ Γk and W ∈ Γk. Since Γk is a convex cone, we have
U t ∈ Γk. Thus

(F ij(U t)) > 0

where (F ij(U t)) =
∂S

1
k

k

∂U t
ij

.

Let f(t) = F (U t), then

F (W ) − F (V ) =

1∫
0

f ′(t)dt(4.3)

=
n∑

ij=1


 1∫

0

F ij(U t)dt


 [(wij − vij) + δij(w − v)].

On the other hand, by equation (4.1)

F (W ) − F (V ) = ρ1−σwσϕ − vσϕ.(4.4)

Denote aij =
1∫
0

F ij(U t)dt, then (aij) > 0. From (4.3) and (4.4) we get

(
ρ1−σwσ − vσ

)
ϕ =

∑
ij

aij · (wij − vij) +

(∑
i

aii

)
· (w − v).(4.5)

Since x0 is a local minimum point of w − v ≥ 0 in O,

(wij − vij) ≥ 0 at x0,

and the right side of (4.5) is nonnegative at x0. But at xo

(ρ1−σ − 1)v(x0)σϕ(x0) < 0,

a contradiction. 	
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When p0 = k, equation (1.6) is dilation invariant and we can not get the C0

estimate as in the case p0 > k. Furthermore, the linearized operator of (1.6) is
not invertible and the openness is false in this case. Therefore we can not use the
continuity method. It turns out that the method in [7] is effective for our purpose.

Proof of Theorem 3. Now we consider the equation

Sk(uij + δiju) = ukf.(4.6)

For ∀r ∈ Z+, let ur be the solution of

Sk(uij + δiju) = uk+ 1
r f.(4.7)

We normalize ur by setting :

ũr =
ur

lr
,

where lr = min ur, Lr = max ur. Now ũr satisfies the equation

Sk(ũij + δij ũ) = {ũ}k+ 1
r f̃r,(4.8)

with f̃r = l
1/r
r f . From (3.1) we have

Ck
n

maxf
≤ l1/r

r ≤ L1/r
r ≤ Ck

n

minf
,(4.9)

and

f

maxf
Ck

n ≤ f̃r ≤ f

minf
Ck

n,

maxf̃r

minf̃r

=
maxf

minf
,

�f̃r

f̃r

=
�f

f
.

By Corollary 1 and Corollary 2, there is a constant C independent of r such
that

||ũr||C2 ≤ C.

By the Evans-Krylov and Schauder theory,

‖ũr‖Cm+1,α ≤ Cm+1,α,

with Cm+1,α independent of r. So there is a subsequence rj −→ ∞ such that

ũrj −→ u in Cm+1,α(Sn),

and

l
1

rj
rj −→ γ,
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for some positive constant γ. By (4.9)

Ck
n

maxf
≤ γ ≤ Ck

n

minf
.

Therefore u satisfies the equation

Sk(uij + δiju) = ukγf on Sn.

This proves the existence part of Theorem 3.
The uniqueness upto a dilation is similar to the uniqueness part in Theorem 2.

Finally we prove the uniqueness of γ. Let M(u) =
Sk(uij + δiju)

uk
. Suppose

∃ γ1, γ2 and u1 > 0, u2 > 0, such that

Sk(us
ij + δiju

s) = (us)k
γsf, s = 1, 2.

We may assume that γ1 > γ2. So

M(u1) − M(u2) = (γ1 − γ2)f > 0.(4.10)

Since M is invariant under scaling, we may assume u1 ≤ u2, and u1(x0) =
u2(x0) at some point x0 ∈ Sn. Let

ut = tu1 + (1 − t)u2, and Mt = M(ut).

Then

(ut
ij + δiju

t) = t · (u1
ij + δiju

1) + (1 − t) · (u2
ij + δiju

2).

We have

M(u1) − M(u2) =
∫ 1

0

d
dt

Mtdt.(4.11)

On the other hand,

d
dt

Mt =
d
dt

[
Sk(ut

ij + δiju
t)

(ut)k

]

=
Gij · [(u1 − u2)ij + δij(u1 − u2)]

(ut)k
− kSk(ut

ij + δiju
t)

(ut)k+1 (u1 − u2)

=
Gij · (u1 − u2)ij

(ut)k
+

(
∑

Gii)ut − kSk

(ut)k+1 · (u1 − u2).

where Gij = ∂Sk

∂Wij
. Since us is admissible and Γk is a convex cone, we have

(Gij) > 0 for 0 ≤ t ≤ 1.
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Denote

aij =

1∫
0

Gij

(ut)k
dt,

c =

1∫
0

(
∑

Gii)ut − kSk

(ut)k+1 dt.

Then (aij) > 0 and (4.11) can be written as

M(u1) − M(u2) =
∑
ij

aij(u1, u2) · (u1 − u2)ij + c(u1, u2) · (u1 − u2).

At x0, ((u1 − u2)ij) ≤ 0, thus
∑
ij

aij(u1 − u2)ij ≤ 0. This means that at x0,

M(u1) − M(u2) ≤ 0,

which contradicts to (4.10). Thus we finish the proof of Theorem 3.

5. Proof of Theorems 1 and 4

In this section we will generalize Guan-Ma’s deformation Lemma [8] to equation
(1.6), then similarly to their proof we can get Theorem 4. Combining Theorems
2, 3 and 4 we shall prove Theorem 1. The idea of Theorem 4 comes from [1,11]
and [8]. We follow the notations [8] with the exception that we denote the symbols
Fαβ in [8] as Gαβ .

Lemma 5. Let O ⊂ Sn be an open subset. Suppose u ∈ C4(O) is a solution of
(1.6) in O, and the matrix W = (Wij) = (uij + δiju) is positive semidefinite.
Suppose there is a positive constant C0 > 0, such that for a fixed integer (n−1) ≥
l ≥ k, Sl(W (x)) ≥ C0 for all x0 ∈ O. Let φ(x) = Sl+1(W (x)) and let τ(x) be the

largest eigenvalue of {−(f− 1
k+p ) − δijf

− 1
k+p0 }. Then there are constants C1, C2

depending only on ‖u‖C3 , ‖f‖C1,1 , n, k and C0, such that differential inequality

n∑
α,β

Gαβ(x)φαβ(x) <∼ (p0 + k)(n − l)up0f
p0+k+1

p0+k (x)Sl(W (x))τ(x),(5.1)

holds in O, where the Gαβ as in Proposition 1 .

Remark 1. When p0 = 0, (1.6) is just the equation considered in [8] and Lemma 5
is the deformation Lemma proved there.

Sketch of Proof. Following the notation of Caffarelli and Friedman [1], for two
functions defined in an open set O ⊂ Sn, y ∈ O, we say that h(y) � k(y)
provided there exist positive constants c1 and c2 such that

(h − k)(y) ≤ (c1|∇φ| + c2φ)(y).
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We also write h(y) ∼ k(y) if h(y) � k(y) and k(y) � h(y). Next, we write h � k
if the above inequality holds in O, with the constant c1, and c2 depending only on
||u||C3 , ||ϕ||C2 , n and C0 (independent of y and O). Finally, h ∼ k if h � k and
k � h. We note that we use Gαβ to stand for Fαβ in [8]. Following the arguments of
[8] step by step, except that replacing ϕ by up0f , we can get the following relation
(which corresponds to (4.29) in [8]):

n∑
α,β

Gαβφαβ
<∼ Sl(G)

∑
i∈B

{
(up0f)ii − k + 1

k

(up0f)2i
up0f

− kup0f

}
.(5.2)

Computing the right hand side of (5.2), noticing that for i ∈ B, Wii ∼ 0 implies
uii = Wii − u ∼ −u, ∀i ∈ B, we have

(up0f)ii−
k + 1

k

(up0f)2i
up0f

−kup0f
<∼ up0

[
−
(

1+
1

p0 + k

)
fi

2

f
+fii−(p0+k)f

]
.

Here we have used Schwartz inequality to part the "cross term":

2p0
1
k

up0−1uifi ≤ p0

(
1 +

p0

k

)
up0−2ui

2f +
p0

k2(1 + p0
k )

up0
f2

i

f
.

Notice that

(fα)ij = αfα−1
[
(α − 1)fifj

f
+ fij

]
.(5.3)

Let α = − 1
p0+k , then (5.3) reads[

f
−

(
1+ 1

p0+k

)]
ii

= − 1
p0 + k

f
−

(
1+ 1

p0+k

) [
−
(

1 +
1

p0 + k

)
f2

i

f
+ fii

]
.

So

up0

[
−
(

1 +
1

p0 + k

)
f2

i

f
+ fii − (p0 + k)f

]

= −(p0 + k)up0f1+ 1
p0+k

[(
f− 1

p0+k

)
ii

+ f− 1
p0+k

]
,

combining these formulas we get (5.1). 	

The same argument as in [8] gives the following

Proof of Theorem 4. Suppose u > 0 is an admissible solution of equation (1.6)
with positive semidefinite spherical hessian W = (uij + δiju) on Sn, if

f− 1
p0+k is spherical convex on Sn, from Lemma 5, strong minimum principle

and Minkowski integral formula [18], we know W is positive definite on Sn.
Now let’s prove the main theorem in this paper.

Proof of Theorem 1. Let’s begin the case p > k + 1, i.e. po = p − 1 > k. For any
positive f ∈ Cm(Sn), m ≥ 2 we consider the equation

Sk(ut
ij + δiju

t) = (ut)p0−k
ft, (∗t)(5.4)
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where p0 = p − 1, 0 ≤ t ≤ 1 and

ft =
[
(1 − t)Ck

n + tf− 1
p0+k

]−(p0+k)
.

It is obvious equation (∗1) is equation (1.6). Suppose that f− 1
p0+k is spherical

convex , then f
− 1

p0+k

t is spherical convex for every 0 ≤ t ≤ 1. Theorem 2 assures
the existence of positive admissible solution ut of equation (5.4). Notice that the
solution of (∗0), u ≡ 1 is strictly spherical convex. We claim that for all 0 ≤ t ≤ 1
, the solution ut is strictly spherical convex. In fact, if the claim is not true, there
would be some t0 ∈ (0, 1] such that ut is strictly spherical convex for 0 ≤ t < t0
but ut0 is not strictly spherical convex. By the a priori estimate for ut, ut0 is
positive semidefinite , but the Theorem 4 asserts that ut0 is positive definite. This
contradiction proves the first part of Theorem 1.

Now we prove treat the p = k.
Our method is similar to the proof of Theorem 3. First suppose f− 1

2k is strictly
spherical convex. For any natural number r ∈ N , consider the equation

Sk(uij + δiju) = uk+ 1
r f(5.5)

It is easy to see that when r is large, f
− 1

2k+ 1
r is also strictly spherical convex.

According to (i), equation (5.5) has strictly spherical convex positive solution u(r).
As in the proof of Theorem 2, let

ũ(r) =
u(r)

lr
, with lr = minSnu(r).

Then ũ(r) is strictly spherical convex and satisfies the equation

Sk(ũ + δij ũ) = ũk+ 1
r f̃r,

where f̃r = l
1
r
r f . By similar argument as in Theorem 2, we can get a subsequence

of {ũ(r)} converges to a function u ( in Cm+1,α) which satisfies equation

Sk(uij + δiju) = ukγf on Sn.

Furthermore, u is spherical convex. Since f− 1
2k is spherical convex, then as in (i)

it follows that u is strictly spherical convex and we get the result.
If f− 1

2k is just spherical convex, we can construct a sequence of positive func-

tions fs(s = 1, 2, · · · ) such that it converges to f in Cm(Sn) and f
− 1

2k
s is strictly

spherical convex. For every fs, consider equation (5.5), and repeat the above argu-
ment, we can get a sequence of positive solutions v(s) which are strictly spherical
convex, and satisfies the equation

Sk(vij + δijv) = vkγsfs.

By Corollary 2, we can get a subsequence such that v(s) −→ v and γs −→ γ,
with v being spherical convex and

Sk(vij + δijv) = vkγf.

Now the same process in (i) implies that v is strictly spherical convex, and we get
the existence part of (ii). The uniqueness has been proved in Theorems 2 and 3.
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