
Contemporary Mathematics 
Volume 367, 2005 

Convex solutions of fully nonlinear elliptic equations in 
classical differential geometry 

Pengfei Guan and Xi-Nan Ma 

1. Introduction 

The convexity is an issue of interest for a long time in PDE, it is intimately 
related to the study of geometric properties of solutions of general elliptic partial 
differential equations. A beautiful result of Gabriel [18] states that: the level sets 
of the Green function in three convex domains are strictly convex. Makar-Limanov 
[35] considered equation 

(1.1) -1 in n, 
u 0 on 80, 

in bounded plane convex domain n. By an ingenious argument involving the max-
imum principle, he proved that y'u is concave. 

In an important article by Brascamp-Lieb [9], they established the log-concavity 
of the fundamental solution of diffusion equation with convex potential. As a conse-
quence, they proved the log-concavity of the first eigenfunction of Laplace equation 
in convex domains and the Brunn-Minkowski inequality for the first eigenvalues. 

For the case of dimension two, another proof of Brascamp-Lieb's result was 
found in Acker-Payne-Philippin [1]. It was observed that the function v = logu 
satisfies the following equation, 

(1.2) Av -(Al + 1Dvl2) in n, 
v --t -()() on n. 

If we let v = y'u in (1.1), then it satisfies equation 

(1.3) vAv -(1 + 1Dvl2) in n, 
v 0 on an. 

The second author [34] gave a new proof the concavity of the function v when n 
is a bounded convex plane domain, moreover he obtained a sharp estimate on the 
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116 PENGFEI GUAN AND XI-NAN MA 

lower bound of the Gauss curvature of the graph of v in terms of the curvature of 
aD. But the methods in [1] and [34] are restricted to two dimensions. 

In [30, 31], Korevaar studied the convexity of the capillary surface. He intro-
duced a very useful maximum principle (now named Korevaar's concavity maxi-
mum principle) in convex domains. Under certain boundary value conditions, he 
established convexity results for the mean curvature type equations. New proofs of 
the log-concavity of the first eigenfunction of convex domains were also given by 
Korevaar [31] and Caffarelli-Spruck [13]. Their methods were developed further 
by Kawohl [28] (for the intermediate case) and by Kennington [29] to establish 
an improved maximum principle, which enables them to give a higher dimensional 
generalization of the result of Makar-Limanov [35]. Recently, Alvarez-Lasry-Lions 
[5] found a new approach for the convexity problem and they treated a large class 
fully nonlinear elliptic equations. 

In a fundamental work of Singer-Wong-Yau-Yau [43] and Caffarelli-Friedman 
[10], they devised a new technique to deal with the convexity issue via homotopy 
method of deformation. Caffarelli-Friedman [10] establish the strictly convexity of 
level sets of solution of the following equation in two dimension: 

(1.4) ~u(x) f(u(x)), XED, 

u 0 on aD. 

Their result was generalized by Korevaar-Lewis [33] to higher dimensions. This 
deformation approach (see also [32] for the earlier contribution of Yau related to 
this development) is very powerful, it is the main inspiration for our discussion on 
the convexity problem of some nonlinear elliptic equations in classical differential 
geometry in the next sections. 

2. The Christoffel-Minkowski problem 

In this section, we consider fully nonlinear differential equations on §n associ-
ated to the intermediate Christoffel-Minkowski problem. The Minkowski problem 
is a problem of finding a convex hypersurface with the prescribed Gauss curvature 
on its outer normals. The general problem of finding a convex hypersurface M with 
kth symmetric function sk of principal radii prescribed as a function of rp on its 
outer normals is often called Christoffel-Minkowski problem, where Sk is defined as 
follows. 

DEFINITION 1. For A= (A1, · · · , An) E lRn, Sk(A) is defined as 

Sk(A) = L Ail···Aik' 

where the sum is taking over for all increasing sequences i 1 , ... , ik of the indices 
chosen from the set { 1, ... , n}. The definition can be extended to symmetric matrices. 

The support function u of a convex hypersurface M satisfies the following 
nonlinear elliptic Hessian equation (e.g., [21]): 
(2.1) Sk({uij+u6ij})=rp on §n, 

where Uij are the second order covariant derivatives with respect to any given local 
orthonormal frame { e1 , e2 , ... , en} on §n. Since M is convex, u satisfies the following 
convexity condition: 

(2.2) 
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CONVEXITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS 117 

In what follows in this section, a function u E C 2 (§11 ) is called convex if u 
satisfies (2.2). For 1 ::;: k ::;: n, define 

rk ={A E lR11 : S1(.\) > 0, ... , Sk(.\) > 0}. 

A function u E 0 2 (§11 ) is called k-convex if the eigenvalues of W(x) = {uij(x) + 
u(x)6ij} is in rk for each x E §n. u is called an admissible solution of (2.1) if it is 
k-convex. u is convex if and only u is n-convex. 

We first note that 

(2.3) r Xicp(x) dx = 0, i = 1, ... , n + 1, }§n 
is a necessary condition for (2.1) to be solvable (e.g., see [41, 21]). 

At one end k = n, equation (2.1) corresponds to the Minkowski problem. By 
the work of Nirenberg [36], Pogorelov [39, 41] and Cheng-Yau [14], (2.3) is also 
sufficient in this case. But when 1 ::;: k < n, the natural solution class for this of type 
equations is much larger than the class of convex functions. Hence the major issue 
is to find conditions for the existence of convex solutions of (2.1). At the other end 
k = 1, equation (2.1) is linear and it corresponds to the Christoffel problem. The 
necessary and sufficient conditions for the existence of a convex solution can be read 
off from the Green function [17]. For the intermediate cases (2 ::;: k ::;: n- 1), (2.1) 
is a fully nonlinear equation, Pogorelov in [41] found a sufficient condition for the 
existence of convex solutions. But it is rather restrictive (see remark 5.5 in [26]). In 
[26], we introduced a general sufficient condition for the solution of the intermediate 
Christoffel-Minkowski problem. We deal with the problem via continuity method 
as a deformation process together with strong minimum principle to enforce the 
convexity. 

DEFINITION 2. Let f be a positive 0 1•1 function on § 11 satisfies (2.3), \Is E JR., 
we say f is in Cs if (fij + 6ij jB) is semi-positive definite almost everywhere in §n. 

The following full rank theorem was proved in [26]. 

THEOREM 1. Suppose u is an admissible solution of equation (2.1) with semi-
positive definite spherical Hessian W = { Uij + u6ij} on § 11 • If cp E C _ 1 , then W is 

k 
positive definite on §n. 

As a consequence, an existence result can be established for the Christoffel-
Minkowski problem. 

THEOREM 2. Let cp(x) E C_l, then Christoffel-Minkowski problem ( 2.1) has 
k 

a unique convex solution up to translations. 

Theorem 2 was first proved in [26] under further assumption that cp is connected 
to 1 in C 1 . It turns out this extra condition is redundant as C 1 is indeed -k -k 
connected. This fact was first proved in the joint work of Andrews and the second 
author [7] via curvature flow approach. More recently, this fact was also verified 
directly by Sheng-Trudinger-Wang [42]. 

The proof of Theorem 1 relies on a deformation lemma for Hessian equa-
tion (2.1), a fully nonlinear version of the results of Caffarelli-Friedman [10] and 
Korevaar-Lewis [33]. This type of deformation lemma enables us to apply the 
strong Maximum Principal to enforce the constant rank of ( Uij + u6ij) on §n. The 
proof of such deformation lemma in [26] relies on some delicate algebraic structure 
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118 PENGFEI GUAN AND XI-NAN MA 

of Sk. Theorem 1 was subsequently generalized to Hessian quotient equations in 1 
[27]. All these results point to a general phenomenon, as we observe that -s;:" is 
concave. The following general convexity principle was established recently in [11]. 

THEOREM 3. Let f be C 2 symmetric function of homogeneous degree -1 defined 
on a symmetric domain \If C f 1 in IR.n. Let {if= {A E Sym(n): .\(A) E \If}, and 
define F : {if __, R by F(A) = f(.\(A)). Suppose F(A) = -F(A-1 ) is locally 
concave on the positive definitive matrices, f>.., = if > 0. If 0 > g E C 2 (§n) and 
g(x) is concave in JRn+l after being extended to JRn+1 as a function of homogeneous 
function of degree 1, if u is an admissible solution of the equation on §n 

(2.4) F(u;j + ub;j) = g, 

with ( U;j + ub;j) semi-positive definite on §n, then the Hessian ( U;j + ub;j) positive 
definite on §n. 

Theorem 3 has a counter part for domains in !Rn. 

THEOREM 4. Let f be a C 2 symmetric function defined on a symmetric domain 
\If c f 1 in IR.n. Let {if = {A E Sym(n) : .\(A) E \If}, and define F : {if __, R by 
F(A) = f(.\(A)). IfF= -F(A-1 ) is a concave function on the positive definitive 
matrices, f>..i = g{ > 0. Then if u is a C4 convex solution of the following equation 
in a domain fl in IR.n 

(2.5) 

and g(x) is concave function in fl. Then the Hessian U;j is constant rank in fl. 

REMARK 1. The concavity condition on G(W) = - F(W- 1 ) was introduced 
by Alvarez-Lasry-Lions [5]. It was used by Andrews [6] in a similar spirit to obtain 
a pinching estimate of curvature flow for convex hypersurfaces. Theorem 1 is a 

1 

special case of Theorem 3 with the setting of F(A) = -s;:" (A). Both of them 
implies that there is a priori upper bound of principal curvatures of the convex 
hypersurface M satisfying (2.1). The existence of such estimate has been known 
for sometime if a stronger condition ( ('P-i );j +'P-i b;j) > 0 is imposed. Under this 
condition, the upper bound of the principal curvatures can be deduced simply from 
the equation (2.1) combining the ellipticity and concavity of the fully nonlinear 

1 

operators F(W) = -s;:" (A) and G(W) = -F(A- 1 ). 

PROPOSITION 1. Suppose there exists a positive constant c0 such that ( ('P-i );j+ 
'P- t b;j) 2': cobij on sn' then there is a positive constant c depends only on n, k, co, 
inf§n ip and II'PIIc1.1(Sn) such that for the admissible solution u of (2.1) we have 
the following estimate on sn 

1 
C b;J 2': { U;j + ub;j} 2': C b;j. 

Proof. An upper bound of { u;j + uO;j} has been established in [26]. Let W;j 
U;j + ub;j, we rewrite (2.1) as 

_.!. 1 
(2.6) F(W;J) = -Sk k (W;J) = -rp-,. 

Let wij be inverse matrix of W;j' and P( X) = wkt ~k~l (X)' where ~ is a unit vector 
in Rn. Assume P(x) attains its maximum on X 0 E sn. We can also assume~ is e1 
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CONVEXITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS 119 

and take other directions e2 , ... , en such that ( e1 , e2 , ... , en) is a local orthonormal 
frame near X 0 and Wij(X 0 ) is diagonal. Then the function 

P(x) = W 11 

attains its maximum at Xo E sn 0 Define 

As 

pij _ oF pij,st = 02 F , g(x) ='P-i. 
- 8Wij' 8Wi18Wst 

A straightforward computation yields that, at x 0 , 

0 > 2(W11)2[LFiiwkkWfki + Lpij,klwijlWkll]- wn Lpii 
ik ijkl 

+(wn )2 L piiwii + (wu )2 9n· 
i 

""'piiw - s--k-L..J ii- k - g, """'pii = n- k + 1 S-i;-lS 0 
L..J k k k-1 > 0 

i 

By the upper bound of { Uij + u8ij }, there exists a positive constant C such that 

L.:pii :S c. 

It follows from the concavity of functions F(A) = -F(A- 1) and F(A) as in [46] 
that 

0 :S L pij,stwijl Wstl + 2 L piiWkkWfki· 
ijkl ik 

Combing the above facts, we obtain 

(2.7) W 11 (gu +g) :S c. 
The proof is complete. 0 

This type direct estimate on the upper bound of the principal curvatures blows 
1 

up when some of the eigenvalues of ('P;j" + 'P--k8ij) vanish. On the other hand, 
Theorem 1 or Theorem 4 implies the following stronger result, which even allows 

1 
the eigenvalues of ( 'P ;j" + 'P- -k 8ij) to go negative. 

THEOREM 5. For any constant 1 > (3 > 0, there is a positive constant 'Y > 0 
such that if 'P(x) E C 1•1 (§n) is a positive function with infsn 'P > (3 supsn 'P > (3 

supsn 'P - 'II'PIIc1,1(sn) - ' 

and 'P satisfies the necessary condition (2.3) and 
_J_ 1 1 

(2.8) ('Pi/+ 'P-"8ij);::: -'Y'P-qij on §n, 

then Christoffel-Minkowski problem (2.1) has a unique C3 •o: (\1'0 <a < I) convex 
solution upto translations. 

Proof. We argue by contradiction. If the result is not true, for some 0 < (3 < 1, 
there is a sequence of positive functions 'Pl E C 1•1 (§n) such that sup§n 'Pl = 1, 
inf§n 'Pl ;::: (3, II'Ptflc1,1(§n) :S ~' (('Pt--k)ij + 'Pl--k8ij) ;::: -f'Pt--k8ij, 'Pl satisfies 
(2.3), and equation (2.1) has no convex solution. By [27], equation (2.3) has an 
admissible solution Ut with 
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120 PENGFEI GUAN AND XI-NAN MA 

independent of l. Therefore, there exist subsequences, we still denote 'Pl and u1, 

'Pl---> 'P in C 1•a(§n), U[---> U in C3•a(§n), 

for some positive cp E C 1•1 (§n) with ( cp;j k + cp- k c5ij) ;;::: 0, and u satisfies equation 
(2.1) and (uij(x) + u(x)c5ij) :::; 0 at some point x. On the other hand, Theorem 2 
yields a convex solution u E C 3•a(§n) for such cp. By the uniqueness theorem in 
[27], u - u = 2:::~+1 aixi. In turn, ( Uij + uc5ij) = ( Uij + uc5ij) > 0 everywhere. This 
is a contradiction. D 

The same argument also produces a similar a priori estimate for a lower bound 
of eigenvalues of ( Uij + uc5ij) of solution u of equation (2.4) in Theorem 3 with a 
weaker condition that g- .Bixl concave in JRn+l for some ,B > 0. 

3. Weingarten curvature equations 

The Christoffel-Minkowski problem was deduced to a convexity problem of a 
spherical Hessian equation on §n in the last section. It can also be considered as 
a curvature equation on the hypersurface via inverse Gauss map. In this section, 
we discuss some curvature equations related to problems in the classical differential 
geometry. For a compact hypersurface Min JRn+l, the kth Weingarten curvature 
at x E M is defined as 

Wk(x) = Sk(r;,I(x), r;,2(x), · · · , r;,n(x)) 
where r;, = (r;,1 , r;,2 , ... , r;,n) the principal curvatures of M. In particular, W1 is 
the mean curvature, W2 is the scalar curvature, and Wn is the Gauss-Kronecker 
curvature. If the surface is starshaped about the origin, it follows that the surface 
can be parameterized as a graph over §n: 

(3.1) X= p(x)x, X E §n, 

where pis the radial function. In this correspondence, the Weingarten curvature can 
be considered as a function on §nor in JRn+l. The problem of prescribing curvature 
function has attracted much attention. For example, given a positive function F in 
JRn+l \ {0}, one would like to find a starshaped hypersurface M about the origin 
such that its kth Weingarten curvature is F. The problem is equivalent to solve 
the following equation 

(3.2) 
The uniqueness question of starshaped hypersurfaces with prescribed curvature was 
studied by Alexandrov [4] and Aeppli [2]. The problem of prescribing Weingarten 
curvature and similar problems have been studied by various authors, we refer to 
[8, 47, 45, 38, 12, 15, 48, 19, 20, 21] and references there. 

We will use notions of admissible solutions as in last section 

DEFINITION 3. A C2 surface Miscalled k-admissible if at every point X EM, 
"'E rk. 

Under some barrier conditions, an existence result for equation (3.2) was ob-
tained by Bakelman-Kantor [8], Treibergs-Wei [45] for k = 1, and by Caffarelli-
Nirenberg-Spruck in [12] for general 1 :::; k :::; n. The solution of the problem [12] 
in general is not convex if k < n. The question of convexity of solution in [12] was 
treated by Chou [15] (see also [48]) for the mean curvature case under concavity as-
sumption on F, and by Gerhardt [19] for general Weingarten curvature case under 
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CONVEXITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS 121 

concavity assumption on log F, see also [20] for the work on general Riemannian 
manifolds. 

The following is proved in [24]. 

THEOREM 6. Suppose M is a k-admissible surface of equation (3.2} in ~n+ 1 

with semi-positive definite second fundamental form W = { hij} and F(X) : ~n+l \ 
1 

{0}--> ~+ is a given smooth positive function. If F(X)-x: is a convex function in 
a neighborhood of M, then { hij} is positive definite. that is, M is strictly convex. 

As a consequence, we deduce the existence of convex hypersurface with pre-
scribed Weingarten curvature in (3.2) (in [24]): if in addition to the barrier con-

1 
dition in [12], F(X)-x: is a convex function in the region r 1 < lXI < r 2 , then the 
k-admissible solution in Theorem [12] is strictly convex. 

In the literature, the homogeneous Weingarten curvature problem 

(3.3) 

also draws some attention. If M is a starshaped hypersurface about the origin in 
~n+ 1 , by dilation property of the curvature function, the kth Weingarten curvature 
can be considered as a function of homogeneous degree -k in ~n+ 1 \ {0}. IfF is of 
homogeneous degree -k, then the barrier condition in [12] can not be valid unless 
the function is constant. Therefore equation (3.3) needs a different treatment. In 
fact, this problem is a nonlinear eigenvalue problem for the curvature equation. 
When k = n, then equation (3.3) can be expressed as a Monge-Ampere equation of 
radial function p on §n, the problem was studied by Delanoe [16]. The other special 
case k = 1 was considered by Treibergs in [44]. The difficulty for equation (3.3) is 
the lack of gradient estimate, such kind of estimate does not hold in general (see 
[44, 24]). Therefore, some conditions have to be in place for fin (3.3). In [24], a 
uniform treatment for 1 :::;; k :::;; n was given, and together with some discussion on 
the existence of convex solutions. 

THEOREM 7. Suppose n 2 2, 1 :::;; k :::;; n and f is a positive smooth function 
on §n. If k < n, assume further that f satisfies 

(3.4) sup IV !I < 2k 
§n J ' 

Then there exist a unique constant '/ > 0 with 

(3.5) c~ < " < c~ 
maX§n j - - min§n j 

and a smooth k-admissible hypersurface M satisfying (3.3) and solution is unique 
up to homothetic dilations. Furthermore, for 1:::;; k < n, if in addition IX If( I~ I )-i 
is convex in ~n+ 1 \ {0}, then M is strictly convex. 

REMARK 2. Condition (3.4) in Theorem 7 can be weakened, we refer to [24] 
for the precise statement. When k = n, the above result was proved by Delanoe 
[16]. In this case, the solution is convex automatically. The treatment in [24] is 
different from [16]. When k = 1, the existence part of Theorem 7 was proved in 
[44], along with a sufficient condition for the convexity of solutions. 
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122 PENGFEI GUAN AND XI-NAN MA 

We now switch to a similar curvature equation arising from the problem of pre-
scribing curvature measures in the theory of convex bodies. For a bounded convex 
body 0 in J.Rn+1 with C2 boundary M, the corresponding curvature measures of 0 
can be defined according to some geometric quantities of M. The k-th curvature 
measure of n is defined as 

Ck(O, (3) := { Wn-kdFn, 
J{3nM 

for every Borel measurable set (3 in J.Rn+1, where dFn is the volume element of the 
induced metric of J.Rn+1 on M. Since M is convex, M is star-shaped about some 
point. We may assume that the origin is inside of 0. Since M and §n is diffemor-
phism through radial correspondence RM. Then the k-th curvature measure can 
also be defined as a measure on each Borel set (3 in §n: 

Ck(M, (3) = { Wn-kdFn. 
JRM(f3) 

Note that Ck(M, §n) is the k-th quermassintegral of 0. 
The problem of prescribing curvature measures is dual to the Christoffel-Minkow-

ski problem in the previous section. The case k = 0 is named as the Alexandrov 
problem, which can be considered as a counterpart to Minkowski problem. The 
existence and uniqueness results were obtained by Alexandrov [3]. The regularity 
of the Alexandrov problem in elliptic case was proved by Pogorelov [40] for n = 2 
and by Oliker [37] for higher dimension case. A general regularity result ( degen-
erate case) of the problem was obtained in [22]. Yet, very little is known for the 
existence problem of prescribing curvature measures Cn-k for k < n. 

The problem is equivalent to solve the following curvature equation 

(3.6) Sk(f£1, 1'£2, ... , t£n) = ~~:?, 1::; k::; n on §n 

where f is the given function on §n and g(x) is a function involves the gradient 
of solution. The major difficulty around equation (3.6) is the lack of C 2 a priori 
estimates for admissible solutions. Though equation (3.6) is similar to the equation 
of prescribing Weingarten curvature equation (3.2), the function g (depending on 
the gradient of solution) makes the matter very delicate. Equation (3.6) was studied 
in an unpublished notes [23] by Yanyan Li and the first author. The uniqueness 
and C 1 estimates were established for admissible solutions there. In [25], we make 
use of some ideas in the convexity estimate for curvature equations to overcome the 
difficulty on C 2 estimate. 

THEOREM 8. Suppose f(x) E C 2 (§n), f > 0, n 2 2, 1 ::; k ::; n- 1. Iff 
satisfies the condition 

(3.7) is a strictly convex function in J.Rn+l \ {0}, 

then there exists a unique strictly convex hypersurface M E C 3 ,cx, a E (0, 1) such 
that it satisfies (3.6). 

For the C 2 estimates for admissible solutions of (3.6), it is equivalent to estimate 
the upper bounds of principal curvatures. If the hypersurface is strictly convex, it 
is simple to observe that a positive lower bound on the principal curvatures implies 
an upper bound of the principal curvatures. To achieve such a lower bound, we 
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CONVEXITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS 123 

shall use the inverse Gauss map and consider the equation for the support function 
of the hypersurface. The role of the Gauss map here should be compared with the 
role of the Legendre transformation on the graph of convex surface in a domain in 
IR.n. We note that a lower bound on the principal curvature is an upper bound on 
the principal radii which are exactly the eigenvalues of the spherical Hessian of the 
support function. We give a brief illustration how the idea of convexity estimates 
can help us to obtain C 2 estimate for solutions of equation (3.6). 

Let X : M --> JRn+l be a closed strictly convex smooth hypersurface in JRn+l. 
We may assume the X is parameterized by the inverse Gauss map. The support 
function of X is defined by 

u(x) =< x, X(x) >, Vx E §n. 

Let e1 ,e2 , ... ,en be a smooth local orthonormal frame field on §n. The inverse 
second fundamental form of X is 

and the metric of X is 
n 

gij = .L: hilhjl. 
1=1 

The principal radii of curvature are the eigenvalues of matrix 

Wij = Uij + Ut5ij. 

Equation (3.6) can be written as an equation on support function u. 

(3.8) F(Wij) = [ det Wii ]t (x) = G(X)u-i on §n, 
Bn-k(Wij) 

where X is position vector of hypersurface, and 

LEMMA 1. Suppose f satisfies condition (3. 7). If M is a convex hypersurface 
in JRn+l respect to the origin satisfying (3.6}, then the following estimates hold for 
its radial function p = lXI, 
(3.9) 

Proof: C 1 estimate for general admissible solutions follows simply from the 
equation by the maximum principle. We only need to obtain an upper bound of 
H = 2::~= 1 = l:.u + nu. Assume the maximum of H attains at some point X 0 E §n, 
choose an orthonormal frame e1 , e2 , ... , en near X 0 such that Uij(x0 ) is diagonal. 

·· 8F(W) Set F'J = aw,1 . At x 0 , we compute 

n 

(3.10) 0 ~ L piit:,.(Wii)- nF + (c;:_-k)-i H. 
i=1 

By equation (3.8) and the concavity ofF , we get 
n 

(3.11) L[G(X)u-i]u- nF + (c;:_-k)-i H :So. 
1=1 
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124 PENGFEI GUAN AND XI-NAN MA 

The main observation is that [G(X)u--k]u is the dominating term. We use the stan-
dard convention that repeated indices on a, {3 denote summation over the indices 
from 1, 2, · · · , n + 1. Denote Ga = 88f,, Gaf3 = 8}:fxf3. 

We calculate that, at X 0 

(3.12) 

Now (3.11) becomes 

(3 2 1 1 1 1 1 k 1 Ga,f3e'le1 Wuu-"k - [Gaxau-"k + y;;G(X)u_"k_ ]H- nF + (c;;- )-"k H 

2 1 1 11 1 2 2 n 1 
(3.13) -y;;(Gae'lulWu)u_"k_ + y;;(y;; + 1)G(X)u_"k_ IDul + +y;;G(X)u-"k:::; 0. 

Since G(X) is strictly convex and Z:::~= 1 W17 2: ~ 2 , we obtain H(x0 ) :::; C. D 

When k = 1 or 2, the strict convexity condition (3.7) can be weakened. 

THEOREM 9. Suppose k = 1, or 2 and k < n, and suppose f(x) E C 2 (§n) is 
a positive function. If f satisfies 

(3.14) lxl .'l±!.k 1 f(-X ) __ k1 f TD>n+1 \ { } is a convex unction in JN.. 0 , 
lXI 

then there exists unique strictly convex hypersurface ME C3•a, a E (0, 1) such that 
it satisfies equation (3.6). 

LEMMA 2. If M is a convex hypersurface in JRn+1 respect to the origin satisfying 
(3.6) fork= 2, then the following estimates hold for its radial function p = lXI, 

(3.15) 11PIIc2 :::; C. 

Proof: We only need to get an upper bound of the mean curvature H. 
Equation (3.6) can be expressed as 

(3.16) 82(/'\,1, /'\,2, ... , K,n)(X) =¢(X) <X, en+1 >, on M, 
where ¢(X) = IXI-(n+1) f( 1 ~ 1 ). This time, we perform calculation at a maximum 
point X 0 E M of the function P = H + ~ IXI 2, where a is a constant to be chosen 
later. 

A b c {h } d pij as2(>-{h }) d" l X A s e1ore, we may assume ij an = ahij '' are mgona at 0 • t 
this point, 

n n n n 

(3.17)L pij Pij = L pii Hii +a L pii- a< X, en+l > L piihii :::; 0, 
ij=1 i=1 i=1 i=1 

Set IAI 2 = Z:::~= 1 hti, we compute that 
n n n n 

(3.18) '"""' ii '"""' ii 2 '"""' ii '"""' ii 2 L...- F Hii = L...- F hiijj + IAI L...- F hii - H L...- F hii• 
i=1 ij=1 i=1 i=1 
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By equation (3.16), 
n 2: piihiijj = 

ij=l 

At Xo, 

n n 

D.¢ < X, en+l > +2 L ¢jhjj < X, ej > +¢ L < X, en+l >jj 
j=l j=l 

+ 2: hJkt - 2: hjkkhju + 2: h7kk· 
j,k#l j,k,l j,k 

n n 

L <X, en+l >ii= -a L < x, ei > 2 +H -IAI2 <X, en+l >, 
i=l 

and 
n 2: piihiijj 

ij=l 

(3.19) 

In turn, 

i=l 

n 

> -IAI2S2(hij) + ¢H +D.¢< X,en+l > +2 L¢jhjj < X,ej > 
j=l 

n n 

-a¢ L < x,ei > 2 -a2 L < x,ei > 2 . 
i=l i=l 

n 

a(n- 1)H + ¢H + 2 L ¢ihii <X, ei >+D.¢< X, en+l > +3HS3(hij) 
i=l 

n 

(3.20) :::; 2S2(hij) 2 + 2a <X, en+l > S2(hij) +[a¢+ a2] L <X, ei > 2 . 
i=l 

Since M is convex, if a is suitable large, we obtain an upper bound of H at 
~. D 

To ensure the convexity of solutions in the process of applying the method of 
continuity in the proof of Theorem 9, we establish a corresponding deformation 
lemma for equation (3.6) as in Theorem 1 and Theorem 6 under the condition that 
IXI!!f!- f( 1 ~ 1 )-k is a convex in JRn+l \ {0}. We refer [25] for the detail of proof. 
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