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1 Introduction

This paper is a sequel to [15] on geometric fully nonlinear partial differential

equations associated to the Christoffel-Minkowski problem. In [15], we considered

the existence of convex solutions of the following equation:

(1.1) Sk(ui j + uδi j ) = ϕ on S
n,

where Sk is the k th elementary symmetric function and ui j the second-order covari-

ant derivatives of u with respect to orthonormal frames on S
n , and where a function

u ∈ C2(Sn) is called convex if

(1.2) (ui j + uδi j ) > 0 on S
n.

It is known that (e.g., see [11, 24]) ∀v ∈ C2(Sn),∫
Sn

xm Sk(vi j (x) + v(x)δi j )dx = 0 ∀m = 1, . . . , n + 1.

A necessary condition for equation (1.1) to have a solution is∫
Sn

xiϕ(x)dx = 0 ∀i = 1, . . . , n + 1.(1.3)

Condition (1.3) is also sufficient for the Minkowski problem, which corre-

sponds to k = n in equation (1.1). In this case, equation (1.1) is the Monge-Ampère

equation corresponding to the Minkowski problem

(1.4) det(ui j + uδi j ) = ϕ on S
n.

The Minkowski problem has been settled completely by Nirenberg [21] and Pogo-

relov [22] for dimension 2 and by Cheng and Yau [6] and Pogorelov [24] for gen-

eral dimensions. From their work, for any positive function ϕ ∈ C2(Sn) satisfying
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the necessary condition (1.3), the Monge-Ampère equation (1.4) always has a con-

vex solution.

At the other end k = 1, equation (1.1) corresponds to the Christoffel problem

and has the following simple form:

(1.5) �u + nu = ϕ on S
n,

where � is the Beltrami-Laplace operator of the round unit sphere. The operator

L = � + n is linear and self-adjoint. From linear elliptic theory, equation (1.1) is

solvable if and only if ϕ is orthogonal to the kernel of the operator L = � + n.

Since n is the second eigenvalue of the operator −�, the kernel of L is exactly

span{x1, . . . , xn+1}. Therefore, condition (1.3) is necessary and sufficient for the

solvability of equation (1.5). In general, a solution to equation (1.5) is not neces-

sarily convex (this is the point Christoffel overlooked when he made the premature

claim in [8]). Alexandrov [1] constructed some positive analytic function ϕ satisfy-

ing (1.3) such that equation (1.1) has no convex solution. The convexity of solution

u to equation (1.1) is equivalent to a positive lower bound of the eigenvalues of the

spherical Hessian (ui j + uδi j ), which in turn are exactly the principal radii of the

convex hypersurface with u as its support function. Alexandrov’s examples indi-

cate that when k < n, there exists no such bound. Equation (1.5) is linear on S
n ,

a necessary and sufficient condition for the existence of convex solutions of (1.5)

was found by reading off from the explicit construction of the Green function by

Firey [9].

For the intermediate cases 1 < k < n, the situation is much more delicate.

Let’s first define the admissible solutions for equation (1.1). Let S be the space

consisting all n×n symmetric matrices. For any symmetric matrix A ∈ S, Sk(A) is

defined to be Sk(λ), where λ = (λ1, . . . , λn) are the eigenvalues of A. �k defined in

[10] can be written equivalently as the connected cone in S containing the identity

matrix determined by

(1.6) �k = {A ∈ S : S1(A) > 0, . . . , Sk(A) > 0}.

By the works of [4, 17, 19], k-convex functions are the natural class of functions

where equation (1.1) is elliptic.

DEFINITION 1.1 For 1 ≤ k ≤ n, let �k be as in (1.6). If u ∈ C2(Sn), we say u is

k-convex if W (x) = {ui j (x) + u(x)δi j } is in �k for each x ∈ S
n . We observe that

u is convex on S
n if u is n-convex. Furthermore, u is called an admissible solution

of (1.1) if u is k-convex and satisfies (1.1).

When k �= n, the class of admissible solutions of equation (1.1) is much larger

(e.g., [4]). We treated the intermediate Christoffel-Minkowski problem in [15] as

a convexity problem for fully nonlinear equations and a sufficient condition was

found there. The convexity is a fundamental problem in the theory of nonlinear

elliptic partial differential equations. Equation (1.1) is a special form of some
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general, fully nonlinear equations related to Weingarten curvature functions. One

particular class of equations is the following:

(1.7)
Sk(ui j + δi j u)

Sl(ui j + δi j u)
= ϕ on S

n,

where 0 ≤ l < k ≤ n. It is known that admissible solutions of equation (1.7)

are exactly k-convex functions. In the special case k = n, the equation is re-

lated to the problem of prescribing j th Weingarten curvature Wj (κ) of a con-

vex hypersurface M ⊂ R
n+1 proposed by Alexandrov [2] and Chern [7], where

Wj (κ) = Sj (κ1, . . . , κn) and κ = (κ1, . . . , κn) are the principal curvatures of M .

When k = n, admissible solutions of (1.7) are exactly convex functions; the prob-

lem was addressed in [11]. For general 0 ≤ l < k ≤ n, equation (1.7) corresponds

to the problem of prescribing the quotient of Weingarten curvatures on outer nor-

mals of a convex hypersurface in R
n+1. In this case, admissible solutions of (1.7)

are not necessarily convex. As a first result of this paper, we establish a convexity

criterion for equation (1.7).

THEOREM 1.2 (Full Rank Theorem) Suppose u is an admissible solution of (1.7)

such that W = (ui j + δi j u) is semidefinite on S
n. If {(ϕ−1/(k−l))i j + ϕ−1/(k−l)δi j } is

semipositive definite everywhere on S
n, then W is positive definite on S

n.

Another objective of this paper is regarding the existence of admissible so-

lutions of equation (1.1). We note that when k = 1, equation (1.1) is exactly

(1.5). (1.3) is the necessary and sufficient condition for (1.1) to be solvable. When

k = n, admissible solutions of (1.1) are exactly convex functions. The existence

of admissible solutions follows from the works of Nirenberg, Cheng and Yau, and

Pogorelov. Though a sufficient condition for the existence of a convex solution of

equation (1.1) was given in [15], the general existence of an admissible solution to

equation (1.1) was left open. Here we prove that condition (1.3) is also the neces-

sary and sufficient condition for the existence of admissible solutions of equation

(1.1).

THEOREM 1.3 (Existence) Let ϕ(x) ∈ C1,1(Sn) be a positive function, and suppose

ϕ satisfies (1.3). Then equation (1.1) has a solution. More precisely, there exist a

constant C depending only on n, α, min ϕ, and ‖ϕ‖C1,1(Sn) and a C3,α (∀α : 0 <

α < 1) k-convex solution u of (1.1) such that

‖u‖C3,α (Sn) ≤ C.(1.8)

Furthermore, if ϕ(x) ∈ Cl,γ (Sn) (l ≥ 2, γ > 0), then u is C2+l,γ . If ϕ is analytic,

u is analytic.

Alexandrov [2] and Pogorelov [23] studied some general forms of fully nonlin-

ear geometric equations on S
n under various structural conditions. They obtained

some regularity estimates under the assumption that the solution is convex. We

will extend their regularity estimates for admissible solutions in Proposition 2.7.

We will also prove a uniqueness result for admissible solutions in Proposition 3.1.
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The uniqueness result, together with the regularity estimates, enable us to establish

existence of admissible solutions under general structural conditions in Section 3

via a degree argument. One consequence of our existence results in Section 3 to-

gether with Theorem 1.2 is the following:

THEOREM 1.4 Suppose there is an automorphic group G of S
n that has no fixed

points. Suppose ϕ is a smooth positive G-invariant function on S
n and the spherical

Hessian {(ϕ
−1
k−l )i j + ϕ

−1
k−l δi j } is semi-positive definite everywhere, then equation

(1.7) has a G-invariant convex, smooth solution u. In particular, for such ϕ, there

is a strictly convex, smooth hypersurface M ⊂ R
n+1 such that the quotient of

Weingarten curvatures Wn−l(κ)/Wn−k(κ) on the outer normals of M is exactly ϕ.

We remark that the reason to impose a group-invariant condition in Theorem 1.4

is the same as in [11], since for l �= 0, equation (1.7) does not have a variational

structure. For this reason, it is found in [11] that condition (1.3) is neither sufficient

nor necessary for the existence of admissible solutions of (1.7).

The organization of the paper is as follows: In the next section, we will establish

a priori estimates for general, fully nonlinear equations on S
n under some structure

conditions. In Section 3 we prove a general existence result containing Theorem

1.3 as a special case. Theorem 1.4 will also be proved there. Finally, we prove

Theorem 1.2 in Section 4.

2 Structural Conditions and Regularity Estimates

We establish the a priori estimates for admissible solutions of equation (1.1)

in this section. We note that for any solution u(x) of (1.1), u(x) + l(x) is also a

solution of the equation for any linear function l(x) =
∑n+1

i=1 ai xi . We will confine

ourselves to solutions satisfying the following orthogonal condition:

(2.1)

∫
Sn

xi u dx = 0 ∀i = 1, . . . , n + 1.

When u is convex, it is a support function of some convex body 	. Condition (2.1)

implies that the Steiner point of 	 coincides with the origin.

If k = 1, equation (1.1) is a linear, a priori estimates for solution u satisfies

(2.1) follows from standard linear elliptic theory. When k = n, equation (1.1)

is the Monge-Ampère equation, the admissible solutions are exactly the convex

functions; the a priori estimates were obtained in [6, 21, 24]. For the intermediate

case 1 < k < n, the a priori estimates for convex solutions of equation (1.1) were

proved in [15]. Here we establish a priori estimates for admissible solutions. We

note that equation (1.1) will be uniformly elliptic once C2 estimates are established

for u (see [4]). By the Evans-Krylov theorem and the Schauder theory, one may ob-

tain higher-derivative estimates for u. Therefore, we only need to get C2 estimates

for u.
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In fact, the a priori estimates we will prove are valid for a general class of fully

nonlinear elliptic equations on S
n . We consider the following equation:

(2.2) Q(ui j + uδi j ) = ϕ̃ on S
n.

Following [4], we specify some structure conditions so that (2.2) is elliptic. Let

� be an open, symmetric subset in R
n; that is, for λ ∈ � and any permutation σ ,

σ · λ = (λσ(1), . . . , λσ(n)) ∈ �. We assume

(2.3) � is a convex cone and � ⊆ �1,

where �1 = {λ |
∑n

j=1 λj > 0}. It is clear that (1, . . . , 1) ∈ �. We assume that

Q is a C2,γ function defined in � ⊆ �1 for some 0 < γ < 1 and satisfies the

following conditions in �:

∂ Q

∂λi

(λ) > 0 for i = 1, . . . , n and λ ∈ �,(2.4)

Q is concave in �,(2.5)

and for M > 0, there is δM > 0 such that for λ ∈ � with Q(λ) ≤ M ,

(2.6)

n∑
i=1

∂ Q

∂λi

(λ) ≥ δM .

Set

�̃ = {W | W is a symmetric matrix whose eigenvalues λ = (λ1, . . . , λn) ∈ �}.

We note that since � ⊂ �1, for W ∈ �̃, the eigenvalues λi of W satisfy |λi | ≤

(n − 1)λmax, where λmax is the largest eigenvalue of W . From a result in Section 3

in [4], the fact that Q is concave in � implies Q is concave in �̃ and condition

(2.4) implies (∂ Q/∂Wi j ) is positive definite for all W = (Wi j ) ∈ �̃. We will

simply write � for �̃ in the rest of the paper.

Remark 2.1. We note that S
1/k

k and the general quotient operator (Sk/Sl)
1/(k−l),

0 ≤ l < k ≤ n, satisfy the structure conditions (2.3)–(2.6) with � = �k , and one

may take δM = 1 for all M > 0.

DEFINITION 2.2 We say a function u ∈ C2(Sn) is �-admissible if W (x) =

(ui j (x) + δi j u(x)) ∈ � for all x ∈ S
n . If u is �-admissible and satisfies equa-

tion (2.2), we call u an admissible solution of (2.2).

Condition (2.4) is a monotonicity condition that is natural for the ellipticity

of equation (2.2) as we will see that the concavity condition (2.5) is also crucial

for C2 and C2,α estimates. Condition (2.6) appears artificial, but it follows from

some natural conditions on Q. For example, in order for equation (2.2) to have an

admissible solution for some ϕ̃ with sup ϕ̃ = M , there must exist W ∈ � such that

Q(W ) = M . By conditions (2.3)–(2.5), we have

(2.7) Q(t0 I ) ≥ M for some t0 > 0,

where I is the identity matrix.
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LEMMA 2.3 Suppose that Q satisfies (2.3)–(2.5). Set Qi j (W ) = ∂ Q(W )/∂Wi j for

W = (Wi j ) ∈ �.

(i) If Q satisfies (2.7) and

(2.8) limt→+∞Q(tW ) > −∞ for all W ∈ �,

then there is a δM > 0 depending on Q and t0 in (2.7) such that (2.6) is

true.

(ii) If Q satisfies

(2.9) limt→+∞Q(tW1 + W2) > −∞ for all W1, W2 ∈ �,

then
∑

i, j Qi j (W )Wi j > 0 for all W ∈ �.

We also refer the reader to [14] for a related treatment of (2.3)–(2.5) and (2.7).

PROOF: By the concavity condition (2.5),

(2.10) Q(t I ) ≤ Q(W ) +
∑
i, j

Qi j (W )(tδi j − Wi j ).

The concavity condition (2.5) and (2.8) implies that d
dt

Q(tW ) ≥ 0 for all W ∈ �.

That is,
∑

i, j Qi j (W )Wi j ≥ 0 for all W ∈ �. By the monotonicity condition (2.4),

there exists ε > 0 such that Q(2t0 I ) ≥ M + ε. Since Q(W ) ≤ M , (2.6) follows

from (2.10) by letting t = 2t0.

We now prove the second statement in the lemma. Since � is open, for each

W ∈ � there is δ > 0 such that W̃ = W − δ I ∈ �. In turn, t W̃ + δ I ∈ � for all

t > 0. Set g(t) = Q(t W̃ + δ I ). By the concavity of Q and condition (2.9), we

have g′(1) ≥ 0; that is,
∑

i, j Qi j (W )W̃i j ≥ 0. In turn, by condition (2.4) we get∑
i, j Qi j (W )Wi j ≥ δ

∑
i Qii (W ) > 0. �

We now turn our attention to a priori estimates of solutions to equation (2.2).

In [5], Caffarelli, Nirenberg, and Spruck treated similar equations related to the

prescribing Weingarten curvature functions of hypersurfaces in R
n . The main dif-

ference here is there is no barrier assumption for equation (2.2); we need to work

out the C0 estimate. We follow the arguments in [11] to obtain an upper bound on

the largest eigenvalue of the matrix (ui j + δi j u) first. We then come back to deal

with the C0 bound.

PROPOSITION 2.4 Suppose Q satisfies the structural conditions (2.3)–(2.6) and

u ∈ C4(Sn) is an admissible solution of equation (2.2); then there is C > 0 de-

pending only on Q(I ) in (2.7), δ in (2.6), and ‖ϕ‖C2 such that

(2.11) 0 < λmax ≤ C,

where λmax is the largest eigenvalue of the matrix (ui j + δi j u). In particular, for

any eigenvalue λi (x) of (ui j (x) + δi j u(x)),

(2.12) |λi (x)| ≤ (n − 1)C ∀x ∈ S
n.
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PROOF: When Q = S
1/k

k and u is convex, this is the Pogorelov-type estimate

(e.g., [24]). Here we will deal with general admissible solutions of Q under the

structural conditions. It seems that the moving-frames method is more appropriate

for equation (2.2) on S
n . We set W = {ui j + δi j u}.

(2.12) follows from (2.11) and the fact that � ⊂ �1. Also, the positivity of λmax

follows from the assumption that � ⊂ �1. We need to estimate the upper bound

of λmax. Assume the maximum value of λmax is attained at a point x0 ∈ S
n and in

the direction e1, so we can take λmax = W11 at x0. We choose an orthonormal local

frame e1, . . . , en near x0 such that ui j (x0) is diagonal, so W is also diagonal at x0.

For the standard metric on S
n , we have the following commutator identity:

W11i i = Wii11 − Wii + W11.

By the assumption, (Qi j ) is positive definite. Since W11i i ≤ 0 at x0, it follows that

at this point

(2.13) 0 ≥ Qii W11i i = Qii Wii11 − Qii Wii + W11 Qii .

By concavity condition (2.5),∑
i

Qii (W )Wii ≤
∑

i

Qii (W ) + Q(W ) − Q(I )

=
∑

i

Qii (W ) + ϕ̃ − Q(I ).(2.14)

We differentiate equation (2.2) twice in the e1-direction and obtain

Qi j Wi jk1 = ∇1ϕ̃,

Qi j,rs Wi j1Wrs1 + Qi j Wi j11 = ϕ̃11.

By the concavity of Q, at x0 we have

(2.15) Qii Wii11 ≥ ϕ̃11.

Combining (2.14), (2.15), and (2.13), we see that

0 ≥ ϕ̃11 −
∑

i

Qii − ϕ̃ + W11

n∑
i=1

Qii + Q(I ).

By assumption, ϕ̃ ≤ M for some M > 0. From condition (2.6),
∑n

i=1 Qii ≥ δM >

0. It follows that W11 ≤ C . �

COROLLARY 2.5 If u ∈ C4(Sn) is an admissible solution of equation (1.1) (so

W (x) = (ui j (x) + u(x)δi j ) ∈ �k ∀x ∈ S
n), then 0 < maxx∈Sn λmax(x) ≤ C.

In order to obtain a C2 bound, we need a C0 bound for u. In the case of the

Minkowski problem (k = n), such a crucial C0 bound was established by Cheng

and Yau [6] and for general k with the convexity assumption in [15]. The argu-

ments rely on the convexity assumption. Here we use the a priori bounds in Propo-

sition 2.4 to get a C0 bound for general admissible solutions of equation (2.2). A

similar argument was also used in [11].
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LEMMA 2.6 For any �-admissible function u, there is a constant C depending only

on n, maxx∈Sn λmax(x), and maxSn |u| such that

(2.16) ‖u‖C2 ≤ C.

PROOF: The bound on the second derivatives follows directly from the fact that

W (x) = (ui j (x) + δi j u(x)) ∈ � ⊂ �1. The bound on the first derivatives follows

from interpolation. �

Now we establish the C0 estimate. The proof is based on a rescaling argument.

PROPOSITION 2.7 Suppose Q satisfies structure conditions (2.3)–(2.6). If u is

an admissible solution of equation (2.2) and u satisfies (2.1), then there exists a

positive constant C depending only on n, k, ‖ϕ̃‖C2 , and Q such that

(2.17) ‖u‖C2 ≤ C.

PROOF: We need only get a bound on ‖u‖C0 . Suppose there is no such bound;

then there exist ul , l = 1, 2, . . . , satisfying (2.1), a constant C̃ independent of l,

and Q(W l) = ϕ̃l (where W l = (ul
i j + δi j u

l)), with ϕ̃l satisfying

‖ϕ̃l‖C2 ≤ C̃, sup ϕ̃ ≤ 1, ‖ul‖L∞ ≥ l.

Let vl = ul/‖ul‖L∞ ; then

(2.18) ‖vl‖L∞ = 1.

By Proposition 2.4, we have for any eigenvalue λi (W l(x)) of W l(x),

(2.19) |λi (W l(x))| ≤ (n − 1)λmax(W l) ≤ C,

where λmax(W l) is the maximum of the largest eigenvalues of W l on S
n and the

constant C is independent of l. Let W̃ l = (vl
i j + δi jv

l); from (2.19) vl satisfies the

following estimates:

(2.20) |λi (W̃ l(x))| ≤ (n − 1)λmax(W̃ l) ≤
C

‖ul‖L∞

−→ 0.

In particular, �vl + nvl → 0.

On the other hand, by Lemma 2.6, (2.18), and (2.20), we have

‖vl‖C2 ≤ C.

Hence there exists a subsequence {vli } and a function v ∈ C1,α(Sn) satisfying (2.1)

such that

(2.21) vli −→ v in C1,α(Sn) with ‖v‖L∞ = 1.

In the distribution sense we have

�v + nv = 0 on S
n.

By linear elliptic theory, v is in fact smooth. Since v satisfies (2.1), we conclude

that v ≡ 0 on S
n . This is a contradiction to (2.21). �
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The higher regularity would follow from the Evans-Krylov theorem and the

Schauder theory if we can ensure uniform ellipticity for equation (2.2). That can

be guaranteed by the following condition:

(2.22) limW→∂� Q(W ) = 0.

THEOREM 2.8 Suppose Q satisfies the structure conditions (2.3)–(2.6) and condi-

tion (2.22), and ϕ̃ > 0 on S
n; then for each 0 < α < 1, there exists a constant C

depending only on n, α, min ϕ̃, ‖ϕ̃‖C1,1(Sn), and Q such that

(2.23) ‖u‖C3,α (Sn) ≤ C

for all admissible solutions u of (2.2) satisfying (2.1). If in addition Q ∈ Cl for

some l ≥ 2, then there exists a constant C depending only on n, l, α, min ϕ̃,

‖ϕ̃‖Cl,1(Sn), and Q such that

(2.24) ‖u‖Cl+1,α (Sn) ≤ C.

In particular, estimate (2.24) is true for any admissible solution of (1.1) and (2.1)

with ϕ̃ = ϕ1/k .

PROOF: We verify that equation (2.2) is uniformly elliptic. By Proposition 2.7

and condition (2.22), the set {W (x) ∈ � | Q(W (x)) = ϕ̃(x) ∀x ∈ S
n} is compact

in �. Since Q ∈ C1, equation (2.2) is uniformly elliptic by condition (2.4). �

3 Existence via Degree Theory

The main object of this section is to establish an existence result for equation

(1.1). With the a priori estimates established in the previous section, one may wish

to apply the continuity method to get the existence. This leads to the study of

the linearized operator L of the Hessian operator in (1.1). L is self-adjoint (e.g.,

[6, 24]). In the cases k = 1, n, the kernel of L is exactly the span of the lin-

ear coordinate functions x1, . . . , xn+1. By the standard implicit function theorem,

L is surjective to some appropriate function space modulus span{x1, . . . , xn+1}.

The continuity method yields the existence. For the case 1 < k < n, we are

not able to verify that the kernel of L is span{x1, . . . , xn+1}, though it contains

span{x1, . . . , xn+1}.

We will use a degree theory argument for the existence. In fact, the argument

applies to equation (2.2). In order to compute the degree, we need a uniqueness

result. The following uniqueness result is known when u is a support function of

some convex body, e.g., by Alexandrov’s moving-planes method. But we need to

treat the uniqueness problem for general admissible solutions. If equation (2.2)

carries a variational structure, such a uniqueness result can be proved by integral

formulas as in [7]. Here we use a simple argument involving a priori estimates to

obtain a general uniqueness result in this direction.
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PROPOSITION 3.1 Suppose that Q satisfies condition (2.4) and (2.5). If u is an

admissible solution of the equation

(3.1) Q(ui j + δi j u) = Q(I ) on S
n,

then u = 1 +
∑n+1

j=1 aj xj for some constants a1, . . . , an+1.

PROOF: By concavity, for W = (Wi j ) ∈ �,

Q(I ) ≤ Q(W ) +
∑
i, j

Qi j (W )(δi j − Wi j )

= Q(W ) +

n∑
i

Qii (W ) −

n∑
i, j

Qi j (W )Wi j .(3.2)

Also, by the symmetry,

Q11(I ) = · · · = Qnn(I ) =

∑n
i=1 Qii (I )

n
.

If u is an admissible solution of (3.1), we know u ∈ C2 by definition. Since

Q ∈ C2,γ , by the Evans-Krylov theorem and the Schauder theory, u ∈ C4,γ . Let

W (x) = (ui j (x) + δi j u(x)) and H(x) = tr W (x) = �u(x) + nu(x). Since

Q j j (I ) =

∑n
i=1 Qii (I )

n
∀ j,

by concavity, for all x ∈ S
n ,

Q(W (x)) ≤ Q(I ) +
∑
i, j

Qi j (I )(Wi j (x) − δi j )

= Q(I ) +

∑n
i=1 Qii (I )

n
H(x) −

n∑
i=1

Qii (I ).

Because Q(W (x)) = Q(I ) and
∑n

i=1 Qii (I ) > 0, we get

(3.3) H(x) ≥ n ∀x ∈ S
n.

We want to show H(x) ≤ n for all x ∈ S
n . Suppose that the maximum value

of H(x) is attained at a point x0 ∈ S
n . We choose an orthonormal local frame

e1, . . . , en near x0 such that ui j (x0) is diagonal, so W = {ui j +δi j u} is also diagonal

at x0. For the standard metric on S
n , we have the following commutator identity:

Hii = �Wii − nWii + H.

Since Q(W (x)) = Q(I ), it follows from (3.2) that

n∑
i=1

Qii (W ) ≥

n∑
i=1

Qii (W )Wii .
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Since Hii ≤ 0 at x0,

0 ≥

n∑
i=1

Qii (W )Hii =

n∑
i=1

Qii (W )�Wii − n

n∑
i=1

Qii (W )Wii + H

n∑
i=1

Qii (W )

≥

n∑
i=1

Qii (W )�Wii − n

n∑
i=1

Qii (W ) + H

n∑
i=1

Qii (W ).(3.4)

Applying � to Q(W ) = Q(I ) and by the concavity of Q, we obtain at x0

(3.5) Qii (W )�Wii ≥ �Q(I ) = 0.

It follows from (3.5) and (3.4) that

n

n∑
i=1

Qii (W ) ≥ H

n∑
i=1

Qii (W ).

Since
∑n

i=1 Qii (W ) > 0, we get n ≥ H(x0). Combining (3.3), we conclude that

H(x) = n ∀x ∈ S
n . Therefore, u − 1 ∈ span{x1, . . . , xn+1}. �

For α > 0, l ≥ 0 an integer, we set

(3.6) Al,α = { f ∈ Cl,α(Sn) : f satisfying (2.1)}.

For R > 0 fixed, let

(3.7) OR = {w ∈ Al,α : w is �-admissible and ‖w‖Cl,α(Sn) < R}.

In addition to the structural conditions on Q in the previous section, we need some

further conditions on Q in (2.2) to ensure a general existence result. We assume

that there is a smooth, strictly monotonic positive function F defined in R+ =

(0,∞) such that ∀u ∈ C2(Sn) with W = (ui j + uδi j ) ∈ �k , Q satisfies the

orthogonal condition

(3.8)

∫
Sn

F(Q(W (x)))xm = 0 ∀m = 1, . . . , n + 1.

PROPOSITION 3.2 Suppose Q satisfies the structural conditions (2.3)–(2.6), (2.22),

and the orthogonal condition (3.8). Then for any positive ϕ̃ ∈ C1,1(Sn) with

ϕ(x) = F(ϕ̃(x)) satisfying (2.1), equation (2.2) has an admissible solution u ∈

A3,α ∀0 < α < 1 satisfying

‖u‖C3,α (Sn) ≤ C,

where C is a constant depending only on Q, α, min ϕ, and ‖ϕ‖C1,1(Sn). Further-

more, if Q ∈ Cl,γ and ϕ(x) ∈ Cl,γ (Sn), l ≥ 2, γ > 0, then u is C2+l,γ .

PROOF: For each fixed 0 < ϕ̃ ∈ C∞(Sn) with ϕ = F(ϕ̃) satisfying (2.1) and

for 0 ≤ t ≤ 1, we define

(3.9) Tt(u) = F(Q({ui j + uδi j })) − tϕ − (1 − t)Q(I ).
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Tt is a nonlinear differential operator that maps Al+2,α into Al,α. If R is sufficiently

large, Tt(u) = 0 has no solution on ∂OR by the a priori estimates in Theorem 2.8.

Therefore, the degree of Tt is well-defined (e.g., [20]). Since degree is a homotopic

invariant,

deg(T0,OR, 0) = deg(T1,OR, 0).

At t = 0, by Proposition 3.1, u = 1 is the unique solution of (2.2) in OR. We may

compute the degree using the formula

deg(T0,OR, 0) =
∑
µj >0

(−1)βj ,

where µj are the eigenvalues of the linearized operator of T0 and βj is its multi-

plicity. Since Q is symmetric, it is easy to show that the linearized operator of T0

at u = 1 is

L = ν(� + n)

for some constant ν > 0. Because the eigenvalues of the Beltrami-Laplace operator

� on S
n are strictly less than −n except for the first two eigenvalues 0 and −n,

there is only one positive eigenvalue of L with multiplicity 1, namely µ = nν.

Therefore,

deg(T1,OR, 0) = deg(T0,OR, 0) = −1.

That is, there is an admissible solution of equation (2.2). The regularity and esti-

mates of the solution follow directly from Theorem 2.8. �

We now prove Theorem 1.3.

PROOF: Since Q(W ) = S
1/k

k (W ) satisfies conditions (2.3)–(2.6) and (2.22),

Theorem 1.3 follows from the above proposition. The orthogonal condition (3.8)

follows from (1.3). �

Remark 3.3. Since the C2 a priori bound in Proposition 2.7 is independent of the

lower bound of ϕ̃ (we note it is used only for the C2,α estimate), Proposition 3.2 can

be used to prove the existence of C1,1 solutions to equation (2.2) in the degenerate

case. To be more precise, if Q satisfies the structural conditions (2.3)–(2.6), (2.22),

and the orthogonal condition (3.8), then for any nonnegative ϕ̃ ∈ C1,1(Sn) with

ϕ(x) = F(ϕ̃(x)) satisfying (2.1), equation (2.2) has a solution u ∈ C1,1(Sn).

For equation (1.1), we can do a little better. One can prove that if ϕ ≥ 0 satisfies

(1.3) and ϕ1/(k−1) ∈ C1,1, then equation (1.1) has a C1,1 solution (see [12, 13] for

similar results for the degenerate Monge-Ampère equation). For this, we need only

rework Proposition 2.4. Instead, we estimate H = �u + nu. Following along the

same line as in the proof of Proposition 2.4, the desired estimate can be obtained

using two facts: (1) for f = ϕ1/(k−1), we have |∇ f (x)|2 ≤ C f (x) for all x ∈ S
n ,

where C depends only on the C1,1 norm of f , and (2) for k > 1 and Q = S
1/k

k ,

n∑
i=1

Qii (W ) ≥
1

k
S

− 1
k(k−1)

k (W )S
1

k−1

1 (W )
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(for a proof, see fact 3.5 on page 1429 in [16]).

The structural conditions (2.3)–(2.6) and (2.22) are satisfied for the quotient

operator

Q(W ) = (
Sk(W )

Sl(W )
)

1
k−l

with � = �k for any 0 ≤ l < k. Also, the unique solution of Q(W ) = 1 is

constant in A2,α by Proposition 3.1. Unfortunately, the orthogonal condition (3.8)

is not valid in general by some simple examples in [11]. Nevertheless, as in [11],

we have the following existence result:

PROPOSITION 3.4 Suppose Q satisfies the structural conditions (2.3)–(2.6) and

(2.22). Assume ϕ̃ ∈ Cl,1(Sn), l ≥ 1, is a positive function. Suppose there is an

automorphic group G of S
n that has no fixed points. If ϕ̃ is invariant under G,

i.e., ϕ̃(g(x)) = ϕ̃(x) for all g ∈ G and x ∈ S
n, then there exists a G-invariant

admissible function u ∈ Cl+2,α, ∀ 0 < α < 1, such that u satisfies equation (2.2).

Moreover, there is a constant C depending only on α, min ϕ̃, and ‖ϕ̃‖Cl,1(Sn) such

that

‖u‖Cl+1,α (Sn) ≤ C.

In particular, for any positive G-invariant positive ϕ ∈ C1,1(Sn), equation (1.7)

has a k-convex G-invariant solution.

PROOF: We only sketch the main arguments of the proof since any G-invariant

function is orthogonal to span{x1, . . . , xn+1} by [11]. Therefore, u = 1 is the

unique G-invariant solution of (2.2) by Proposition 3.1. We again use degree theory.

This time, we consider G-invariant function spaces

Ãl,α = { f ∈ Cl,α(Sn) : f is G-invariant}

and

ÕR = {w is k-convex, w ∈ Ãl,α : ‖w‖Cl,α(Sn) < R}.

One may compute that the degree of Q is not vanishing as in the proof of

Theorem 3.2 (see also [11]). �

We will prove Theorem 1.2 in the next section. Here we will use it together

with Proposition 3.4 to prove Theorem 1.4.

PROOF: For 0 ≤ t ≤ 1, we define

ϕt = (1 − t + tϕ
−1
k−l )−k+l .

Certainly ϕt is G-invariant and {(ϕt
−1/(k−l))i j +ϕt

−1/(k−l)δi j } is semipositive definite

everywhere on S
n . We consider equation

(3.10)
Sk

Sl

(ut
i j + utδi j ) = ϕt .

Applying degree theory as in the proof of Proposition 3.4, there exists an admissi-

ble solution ut of equation (3.10) for each 0 ≤ t ≤ 1. When t = 0, u0 = 1 is the
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unique solution by Proposition 3.1 and it is convex. By the continuity of the degree

argument and Theorem 1.2, ut is convex for all 0 ≤ t ≤ 1. �

4 A Convexity Criterion for Spherical Quotient Equations

Now we turn to the convexity of the solutions of equation (1.7). In order to

prove the full rank theorem (Theorem 1.2), as in [15], we need to establish the

following deformation lemma for the Hessian quotient equation (1.7). The proof

below follows along the lines of the proof in [15] by exploring some special alge-

braic structural properties of the quotient operator. The proof involves some direct

but lengthy computations. In a forthcoming article, we will deal with this type of

convexity problem for general elliptic, concave, fully nonlinear equations.

For W = {ui j + δi j u}, we rewrite (1.7) in the form

(4.1) F(W ) =
Sk(W )

Sl(W )
= ϕ on S

n

and let

(4.2) Fαβ :=
∂ F

∂Wαβ

, Fαβ,rs :=
∂2 F

∂Wαβ∂Wrs

.

We note that Fαβ is positive definite for W ∈ �k .

LEMMA 4.1 (Deformation Lemma) Let O ⊂ S
n be an open subset, and sup-

pose u ∈ C4(O) is a solution of (1.7) in O and that the matrix W = {Wi j }

is semipositive definite. Suppose further that there is a positive constant C0 >

0 such that for a fixed integer (n − 1) ≥ m ≥ k, Sm(W (x)) ≥ C0 for all

x ∈ O. Let φ(x) = Sm+1(W (x)), and let τ(x) be the largest eigenvalue of

{−(ϕ−1/(k−l))i j (x) − δi jϕ
−1/(k−l)(x)}. Then there are constants C1 and C2 depend-

ing only on ‖u‖C3 , ‖ϕ‖C1,1 , n, and C0 such that the following differential inequality

holds in O:
n∑

α,β

Fαβ(x)φαβ(x) ≤ (k − l)(n − m)ϕ
k−l+1

k−l (x)Sm(W (x))τ (x)

+ C1|∇φ(x)| + C2φ(x),

(4.3)

where the Fαβ are defined by (4.2).

PROOF: The proof will follow mainly the arguments in [15], which in turn were

motivated by Caffarelli and Friedman [3] and Korevaar and Lewis [18].

For two functions defined in an open set O ⊂ S
n , y ∈ O , we say that h(y) �

k(y) provided there exist positive constants c1 and c2 such that

(4.4) (h − k)(y) ≤ (c1|∇φ| + c2φ)(y).

We also write h(y) ∼ k(y) if h(y) � k(y) and k(y) � h(y). Next, we write h � k

if the above inequality holds in O , with the constants c1 and c2 depending only on

‖u‖C3 , ‖ϕ‖C2 , n, and C0 (independent of y and O).
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Finally, h ∼ k if h � k and k � h. We shall show that

(4.5)

n∑
α,β=1

Fαβφαβ � (k − l)(n − m)ϕ
k−l+1

k−l Sm(W )τ.

For any z ∈ O , let λ1 ≥ · · · ≥ λn be the eigenvalues of W at z. Since Sm(W ) ≥

C0 > 0 and u ∈ C3, for any z ∈ S
n , there is a positive constant C > 0 depending

only on ‖u‖C3 , ‖ϕ‖C2 , n, and C0 such that λ1 ≥ · · · ≥ λm ≥ C .

Let G = {1, . . . , m} and B = {m + 1, . . . , n} be the “good” and “bad” sets of

indices. Define Sk(W | i) = Sk((W | i)) where (W | i) means matrix W excluding

the i th column and i th row, and (W | i j) means matrix W excluding columns i and

j and rows i and j . Let �G = (λ1, . . . , λm) be the “good” eigenvalues of W at

z; for simplicity of notation, we also write G = �G if there is no confusion. In

the following, all calculations are taken at the point z using the relation � with the

understanding that the constants in (4.4) are under control.

For each z ∈ O fixed, we choose a local orthonormal frame e1, . . . , en so that

W is diagonal at z, and Wii = λi ∀i = 1, . . . , n. Let

Si j =
∂Sm+1(W )

∂Wi j

, Si j,rs =
∂2Sm+1(W )

∂Wi j∂Wrs

.

We note that Si j is diagonal at the point since W is diagonal. Notice that φα =∑
i, j Si j Wi jα, and we find that (as W is diagonal at z),

(4.6) 0 ∼ φ(z) ∼

(∑
i∈B

Wii

)
Sm(G) ∼

∑
i∈B

Wii (so Wii ∼ 0, i ∈ B).

This relation yields that, ∀t , 1 ≤ t ≤ m,

(4.7)

St(W ) ∼ St(G), St(W | j) ∼

{
St(G | j) if j ∈ G,

St(G) if j ∈ B,

St(W |i j) ∼




St(G | i j) if i, j ∈ G,

St(G | j) if i ∈ B, j ∈ G,

St(G) if i, j ∈ B, i �= j .

Also,

(4.8) 0 ∼ φα ∼ Sm(G)
∑
i∈B

Wiiα ∼
∑
i∈B

Wiiα.

According to [15],

Si j ∼

{
Sm(G) if i = j ∈ B,

0 otherwise,
(4.9)
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Si j,rs =




Sm−1(W |ir) if i = j, r = s, i �= r ,

−Sm−1(W |i j) if i �= j, r = j, s = i ,

0 otherwise.

(4.10)

Since φαα =
∑

i, j [S
i j,rs WrsαWi jα + Si j Wi jαα], by combining (4.6), (4.8), and

(4.10), it follows that for any α ∈ {1, . . . , n},

φαα =
∑
i �= j

Sm−1(W | i j)WiiαWj jα −
∑
i �= j

Sm−1(W | i j)W 2
i jα +

∑
i

Sii Wiiαα

=

(∑
i∈G
j∈B

+
∑
i∈B
j∈G

+
∑

i, j∈B
i �= j

+
∑

i, j∈G
i �= j

)
Sm−1(W | i j)WiiαWj jα(4.11)

−

(∑
i∈G
j∈B

+
∑
i∈B
j∈G

+
∑

i, j∈B
i �= j

+
∑

i, j∈G
i �= j

)
Sm−1(W | i j)W 2

i jα +
∑

i

Sii Wiiαα.

From (4.8) and (4.7), we have

(4.12)
∑
i∈B
j∈G

Sm−1(W | i j)WiiαWj jα ∼

[∑
j∈G

Sm−1(G | j)Wj jα

] ∑
i∈B

Wiiα ∼ 0.

Similarly,

(4.13)
∑
i∈G
j∈B

Sm−1(W | i j)WiiαWj jα ∼ 0.

By (4.8), ∀i ∈ B fixed and ∀α,

−Wiiα ∼
∑
j∈B
j �=i

Wj jα.

Then, (4.7) yields

(4.14)
∑

i, j∈B
i �= j

Sm−1(W | i j)WiiαWj jα ∼ −Sm−1(G)
∑
i∈B

W 2
i iα,

and

(4.15)
∑

j∈G,i∈B

Sm−1(W | i j)W 2
i jα ∼

∑
i∈B, j∈G

Sm−1(G | j)W 2
i jα.

Inserting (4.7) and (4.12)–(4.15) into (4.11), we obtain, as in [15],

(4.16) φαα ∼
∑

i

Sii Wiiαα − 2
∑
i∈B
j∈G

Sm−1(G | j)W 2
i jα − Sm−1(G)

∑
i, j∈B

W 2
i jα.

So we have
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(4.17)
∑
α,β

Fαβφαβ =

n∑
α=1

Fααφαα ∼ Sm(G)

n∑
α=1

∑
i∈B

FααWiiαα

− 2

n∑
α=1

∑
i∈B
j∈G

Sm−1(G | j)FααW 2
i jα − Sm−1(G)

n∑
α=1

∑
i, j∈B

FααW 2
i jα.

Since F is homogeneous of order k − l,
∑

α FααWαα = (k − l)ϕ. Commuting the

covariant derivatives, it follows that

n∑
α=1

∑
i∈B

FααWiiαα =

n∑
α=1

∑
i∈B

Fαα(Wααi i + Wii − Wαα)

∼

n∑
α=1

∑
i∈B

FααWααi i − (n − m)(k − l)ϕ.(4.18)

Now we compute
∑n

α=1 FααWααi i for i ∈ B. Differentiating equation (4.1), we

have

ϕi =
∑
α,β

FαβWαβi , ϕi i =
∑

α,β,r,s

Fαβ,rs Wαβi Wrsi +
∑
α,β

FαβWαβi i .

So for any i ∈ B, we get

n∑
α=1

FααWααi i

= ϕi i −
∑
α �=β

[
Sk−2(W | αβ)

Sl

− 2
Sk−1(W | α)Sl−1(W | β)

S2
l

−
Sk Sl−2(W | αβ)

S2
l

+ 2
Sk Sl−1(W | α)Sl−1(W | β)

S3
l

]
Wααi Wββi

+ 2

n∑
α=1

[
Sk−1(W | α)Sl−1(W | α)

S2
l

−
Sk S2

l−1(W | α)

S3
l

]
W 2

ααi

+
∑
α �=β

[
Sk−2(W | αβ)

Sl

−
Sk Sl−2(W | αβ)

S2
l

]
W 2

αβi .

(4.19)

By (4.6)–(4.10), we regroup it as

n∑
α=1

FααWααi i

∼ ϕi i +
∑
α �=β

[
Sk−2(W | αβ)

Sl(G)
−

Sk Sl−2(W | αβ)

S2
l (G)

]
W 2

αβi
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+
∑
α∈B

[
Sk−2(G)

Sl(G)
− 2

Sk−1(G)Sl−1(G)

S2
l (G)

−
Sk(G)Sl−2(G)

S2
l (G)

+ 2
Sk(G)S2

l−1(G)

S3
l (G)

]
W 2

ααi

−
∑
α �=β

α,β∈G

[
Sk−2(G | αβ)

Sl(G)
− 2

Sk−1(G | α)Sl−1(G | β)

S2
l (G)

−
Sk(G)Sl−2(G | αβ)

S2
l (G)

+ 2
Sk(G)Sl−1(G | α)Sl−1(G | β)

S3
l (G)

]
Wααi Wββi

+ 2

n∑
α=1

[
Sk−1(W | α)Sl−1(W | α)

S2
l (G)

−
Sk(G)S2

l−1(W | α)

S3
l (G)

]
W 2

ααi .

It follows that

n∑
α=1

Fααφαα

∼ Sm(G)
∑
i∈B

ϕi i − (n − m)(k − l)Sm(G)ϕ

+ Sm(G)
∑
i∈B

[∑
α∈B

{
Sk−2(G)

Sl(G)
−

Sk(G)Sl−2(G)

S2
l (G)

}
W 2

ααi

−
∑
α �=β

α,β∈G

{
Sk−2(G | αβ)

Sl(G)
− 2

Sk−1(G | α)Sl−1(G | β)

S2
l (G)

−
Sk(G)Sl−2(G | αβ)

S2
l (G)

+ 2
Sk(G)Sl−1(G | α)Sl−1(G | β)

S3
l (G)

}
Wααi Wββi

+ 2
∑
α∈G

{
Sk−1(G | α)Sl−1(G | α)

S2
l (G)

−
Sk(G)S2

l−1(G | α)

S3
l (G)

}
W 2

ααi

+
∑
α �=β

{
Sk−2(W | αβ)

Sl(G)
−

Sk(G)Sl−2(W | αβ)

S2
l (G)

}
W 2

αβi




− 2

n∑
α=1

∑
i∈B
j∈G

Sm−1(G | j)FααW 2
i jα − Sm−1(G)

n∑
α=1

∑
i, j∈B

FααW 2
i jα.

(4.20)

We first treat the following three terms in the above formula:
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Set

A = Sm(G)
∑
i∈B

∑
α �=β

Sk−2(W | αβ)

Sl(G)
W 2

αβi

− 2

n∑
α=1

∑
i∈B
j∈G

Sm−1(G | j)FααW 2
i jα

− Sm(G)
∑
i∈B

∑
α �=β

Sk(G)Sl−2(W | αβ)

S2
l (G)

W 2
αβi .

(4.21)

We want to show that

A � Sm(G)
∑
i∈B

∑
α �=β

α,β∈B

[
Sk−2(G)

Sl(G)
−

Sk(G)Sl−2(G)

S2
l (G)

]
W 2

αβi

− 2
∑
i∈B
α∈G

[
Sm−1(G | α)Sk−1(G | α)

Sl(G)

−
Sk(G)Sm−1(G | α)Sl−1(G | α)

S2
l (G)

]
W 2

ααi .

(4.22)

Indeed, since

(4.23) Fαα =
Sk−1(W | α)

Sl(G)
−

Sk(W )Sl−1(W | α)

S2
l (G)

,

by the definition of A, we have

S2
l (G)A = Sm(G)

∑
i∈B

( ∑
α �=β

α,β∈G

+
∑
α �=β

α,β∈B

+2
∑
α∈B
β∈G

)[
Sl(G)Sk−2(W | αβ)

− Sk(G)Sl−2(W | αβ)

]
W 2

αβi

− 2
∑
i∈B

( ∑
α �=β

α,β∈G

+
∑

α=β∈G

+
∑
α∈B
β∈G

)[
Sl(G)Sm−1(G | β)Sk−1(W | α)

− Sk(G)Sm−1(G | β)Sl−1(W | α)

]
W 2

αβi .

Now we should prove that the two terms∑
i∈B

∑
α∈B
β∈G

and
∑
i∈B

∑
α �=β

α,β∈G
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on the right-hand side of the previous equality are nonpositive. More precisely, we

prove that

∑
i∈B

∑
α∈B
β∈G

[
Sm(G)Sl(G)Sk−2(G | β)

− Sm(G)Sk(G)Sl−2(G | β) − Sl(G)Sm−1(G | β)Sk−1(G)

+ Sk(G)Sm−1(G | β)Sl−1(G)
]
W 2

αβi � 0.

(4.24)

As usual, we only need to prove that for each i ∈ B, the term is nonpositive.

For β ∈ G, St(G) = St(G | β) + St−1(G | β)Wββ where t ∈ {l, l − 1, k, k − 1}.

By the Newton-MacLaurin inequality, we have

Wββ Sl(G)Sk−2(G | β) − Wββ Sk(G)Sl−2(G | β)

− Sl(G)Sk−1(G) + Sk(G)Sl−1(G)

= Wββ [Sl(G | β) + Wββ Sl−1(G | β)]Sk−2(G | β)

− Wββ [Sk(G | β) + Wββ Sk−1(G | β)]Sl−2(G | β)

− [Sl(G | β) + Wββ Sl−1(G | β)][Sk−1(G | β) + Wββ Sk−2(G | β)]

+ [Sk(G | β) + Wββ Sk−1(G | β)][Sl−1(G | β) + Wββ Sl−2(G | β)]

= Sk(G | β)Sl−1(G | β) − Sl(G | β)Sk−1(G | β)

� 0.

(4.25)

We now treat the term ∑
i∈B

∑
α �=β

α,β∈G

.

We shall prove that it is also nonpositive. In fact, for any i ∈ B, we have

∑
α �=β

α,β∈G

[
Sl(G)Sm(G)Sk−2(G | αβ) − Sm(G)Sk(G)Sl−2(G | αβ)

− 2Sl(G)Sm−1(G | β)Sk−1(G | α) + 2Sk(G)Sm−1(G | β)Sl−1(G | α)
]

=
∑
α �=β

α,β∈G

Sm−1(G | β)
[
2{Sk(G)Sl−1(G | αβ) − Sl(G)Sk−1(G | αβ)}

+ Wββ{Sk(G)Sl−2(G | αβ) − Sl(G)Sk−2(G | αβ)}
]
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=
∑
α �=β

α,β∈G

[
2Sm−1(G | β){Sk(G | αβ)Sl−1(G | αβ) − Sl(G | αβ)Sk−1(G | αβ)}

+ Sm(G){Sk(G | αβ)Sl−2(G | αβ) − Sl(G | αβ)Sk−2(G | αβ)}

+ Sm(G)(Wαα − Wββ)
{

Sk−2(G | αβ)Sl−1(G | αβ)

− Sl−2(G | αβ)Sk−1(G | αβ)
}]

= 2
∑
α �=β

α,β∈G

Sm−1(G | β)
[
Sk(G | αβ)Sl−1(G | αβ) − Sl(G | αβ)Sk−1(G | αβ)

]

+ Sm(G)
∑
α �=β

α,β∈G

[
Sk(G | αβ)Sl−2(G | αβ) − Sl(G | αβ)Sk−2(G | αβ)

]

� 0.

Here we have again used the Newton-MacLaurin inequality. So (4.22) follows.

Combining (4.20) and (4.22), we have

(4.26)

n∑
α=1

Fααφαα � Sm(G)
∑
i∈B

[
ϕi i −

k − l + 1

k − l

ϕ2
i

ϕ
− (k − l)ϕ

]
+ I1 + I2,

where

I1 = Sm(G)
∑
i∈B

[∑
α∈B

Sk−2(G)

Sl(G)
W 2

ααi −
∑
α∈B

Sk(G)Sl−2(G)

S2
l (G)

W 2
ααi

]

− Sm−1(G)

n∑
α=1

∑
i, j∈B

FααW 2
i jα

+ Sm(G)
∑
i∈B

∑
α �=β

α,β∈B

[
Sk−2(G)

Sl(G)
−

Sk(G)Sl−2(G)

S2
l (G)

]
W 2

αβi ,

and
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I2 =
∑
i∈B

{(
1 +

1

k − l

)
Sm(G)

ϕ2
i

ϕ

− Sm(G)
∑
α �=β

α,β∈G

[
Sk−2(G | αβ)

Sl(G)
− 2

Sk−1(G | α)Sl−1(G | β)

S2
l (G)

−
Sk(G)Sl−2(G | αβ)

S2
l (G)

+ 2
Sk(G)Sl−1(G | α)Sl−1(G | β)

S3
l (G)

]
Wααi Wββi

+ 2Sm(G)
∑
α∈G

[
Sk−1(G | α)Sl−1(G | α)

S2
l (G)

−
Sk(G)S2

l−1(G | α)

S3
l (G)

]
W 2

ααi

− 2
∑
α∈G

[
Sm−1(G | α)Sk−1(G | α)

Sl(G)
−

Sk(G)Sm−1(G | α)Sl−1(G | α)

S2
l (G)

]
W 2

ααi

}
.

CLAIM: I1 � 0 and I2 � 0.

If the claim is true, it follows from (4.26) that

(4.27)

n∑
α,β=1

Fαβφαβ � Sm(G)
∑
i∈B

[
ϕi i −

k − l + 1

k − l

ϕ2
i

ϕ
− (k − l)ϕ

]
.

Thus (4.5) follows from (4.27).

PROOF OF CLAIM: First by induction and the Newton-MacLaurin inequality

we have the following inequality:

(4.28) Sm(G)Sl(G)Sk−2(G) − Sm−1(G)Sk−1(G)Sl(G)

− Sm(G)Sk(G)Sl−2(G) + Sk(G)Sl−1(G)Sm−1(G) ≤ 0.

On the other hand, it is clear by (4.23) that

(4.29)

n∑
α=1

∑
i, j∈B

FααW 2
i jα ≥

∑
i∈B

∑
α,β∈B

[
Sk−1(G)

Sl(G)
−

Sk(G)Sl−1(G)

Sl(G)2

]
W 2

αβi .

If we put (4.29) into I1 and use (4.28), we obtain

S2
l (G)I1 �

[
Sl(G)Sl(G)Sk−2(G) − Sm−1(G)Sk−1(G)Sl(G)

− Sm(G)Sk(G)Sl−2(G) + Sk(G)Sm−1(G)Sl−1(G)
] ∑

i∈B

∑
α,β∈B

W 2
αβi

≤ 0.

To treat I2, it follows from (4.7) and (4.8) that

(4.30) ϕi ∼
∑
α∈G

FααWααi for i ∈ B.
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Using (4.23), we need only verify the following inequality for each i ∈ B:∑
α∈G

{
2

Wαα

[
S2

l (G)Sk(G)Sk−1(G | α) − S2
k (G)Sl(G)Sl−1(G | α)

]
W 2

ααi

+
2

k − l
Sl(G)Sk(G)Sk−1(G | α)Sl−1(G | α)W 2

ααi

+

[(
1 −

1

k − l

)
S2

k (G)S2
l−1(G | α)

−

(
1 +

1

k − l

)
S2

l (G)S2
k−1(G | α)

]
W 2

ααi

}

+
∑
α �=β

α,β∈G

[
S2

l (G)Sk(G)Sk−2(G | αβ) − Sl(G)S2
k (G)Sl−2(G | αβ)

+

(
1 −

1

k − l

)
S2

k (G)Sl−1(G | α)Sl−1(G | β)

+
2

k − l
Sl(G)Sk(G)Sk−1(G | α)Sl−1(G | β)

−

(
1 +

1

k − l

)
S2

l (G)Sk−1(G | α)Sk−1(G | β)

]
Wααi Wββi

≥ 0.

This follows from the fact that the matrix(
f αβ + 2

f α

λα

δαβ

)

is semipositive definite (e.g., [25]) for

f (λ) = −

(
Sk

Sl

)− 1
k−l

(λ)

when λ = (λ1, . . . , λm) where each λi , 1 ≤ i ≤ m, is a positive number, and the

claim is proved. �

With the claim proven, so is Lemma 4.1. �
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