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1 Statement of Main Results

Convexity is an important geometric property associated with the study of par-

tial differential equations, in particular for equations related to problems in dif-

ferential geometry. There is a vast literature on this subject. In an important de-

velopment in 1985, a technique was devised to deal with the convexity issue via

the homotopy method of deformation in the work of Caffarelli and Friedman [7].

In [7], the existence of convex solutions for semilinear elliptic equations in two

dimensions was proved by a form of deformation lemma using the strong maxi-

mum principle (see also the work of Singer, Wong, Yau, and Yau [17] for a similar

approach). The core of this approach is the establishment of the constant rank

theorem; that is, the rank of the Hessian of the corresponding convex solution is

constant. The result in [7] was later generalized to higher dimensions in [15].

The constant rank theorem is a refined statement of convexity. This has pro-

found implications in the geometry of solutions. The idea of the deformation

lemma and the establishment of the constant rank theorem can be extended to var-

ious nonlinear differential equations in differential geometry involving symmetric

curvature tensors. Recently, in connection to the Christoffel-Minkowski problem

and the problem of prescribing Weingarten curvatures in classical differential ge-

ometry, this form of deformation lemma was extended to some equations involving

the second fundamental forms of embedded hypersurfaces in R
n [11, 12, 13]. The

constant rank theorem shares similar geometric flavors in spirit with a classical the-

orem of Hartman and Nirenberg [14], where they treated hypersurfaces in R
n with

a vanishing spherical Jacobian.

A pertinent question is under what structural conditions for partial differential

equations is the positivity of the symmetric curvature tensor preserved under ho-

motopy deformation? The purpose of this paper is to establish a general principle
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in this direction. More specifically, we establish the constant rank theorem for

a wide class of elliptic, fully nonlinear equations involving symmetric curvature

tensors on Riemannian manifolds.

Let us fix some notation. Let � ⊂ R
n be an open symmetric domain, denote

Sym(n) = {n × n real symmetric matrices}, and set

�̃ = {A ∈ Sym(n) : λ(A) ∈ �}.
We assume

f ∈ C2(�) symmetric and

fλi
(λ) = ∂ f

∂λi

(λ) > 0 ∀i = 1, . . . , n, ∀λ ∈ �,
(1.1)

and extend it to F : �̃ → R by F(A) = f (λ(A)). Condition (1.1) ensures F is

elliptic. We define F̃(A) = F(A−1) whenever A−1 ∈ �̃, and we will assume

(1.2) F̃ is locally convex.

Condition (1.2) was introduced by Alvarez, Lasry, and Lions in [1], where they

used it to prove the convexity of viscosity solutions in convex domains in R
n under

boundary conditions involving state constraints.

To illustrate the nature of our results, we first consider fully nonlinear elliptic

equations in domains of R
n .

THEOREM 1.1 Under conditions (1.1)–(1.2), assume u is a C3 convex solution of

the following equation in a domain � in R
n:

(1.3) F(ui j (x)) = ϕ(x, u(x),∇u(x)) ∀x ∈ �,

for some ϕ ∈ C1,1(� × R × R
n). If ϕ(x, u, p) is concave in � × R for any fixed

p ∈ R
n, then the Hessian (ui j ) has constant rank in �.

We now treat fully nonlinear equations arising from classical differential ge-

ometry treated in [11, 12, 13]. Convexity of a hypersurface is equivalent to the

positivity of its second fundamental form.

Let M be an oriented, immersed, connected hypersurface in R
n+1 with a non-

negative definite second fundamental form. Let κ(X) = (κ1(X), . . . , κn(X)) be

the principal curvature at X ∈ M . We consider the curvature equation

(1.4) f (κ(X)) = ϕ(X, �n(X)) ∀X ∈ M,

where �n(X) is the unit normal of M at X .

THEOREM 1.2 Suppose f and F are as in Theorem 1.1. Suppose � ⊂ R
n+1 × S

n

is a bounded open set and ϕ ∈ C1,1(�) and ϕ(X, y) are locally concave in the X-

variable for any y ∈ S
n. Let M be an oriented, immersed, connected hypersurface

in R
n+1 with a nonnegative definite second fundamental form. If (X, �n(X)) ∈ �

for each X ∈ M and the principal curvatures of M satisfy equation (1.4), then the

second fundamental form of M is of constant rank. If M is also compact, then M

is the boundary of a strongly convex bounded domain in R
n+1.
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We next consider the Christoffel-Minkowski-type equation

(1.5) F(ui j + uδi j ) = ϕ on � ⊂ S
n,

where the ui j are the second covariant derivatives of u with respect to orthonormal

frames on S
n .

THEOREM 1.3 Let f and F be as in Theorem 1.1, and assume f is of homogeneous

degree −1 and � is an open domain in S
n. If 0 > ϕ ∈ C1,1(�) and (ϕi j +ϕδi j ) ≤ 0

on �, and if u is a solution of equation (1.5) with ui j + uδi j nonnegative, then

(ui j + uδi j ) is of constant rank. If � = S
n, then (ui j + uδi j ) is positive definite

everywhere on S
n.

We now turn to the Riemannian geometry. Let (M, g) be a connected Riemann-

ian manifold, for each x ∈ M , and let τ(x) be the minimum of sectional curvatures

at x . A symmetric 2-tensor W on M is call a Codazzi tensor if

∇X W (Y, Z) = ∇Y W (X, Z)

for all tangent vectors X , Y , and Z , where ∇ is the Levi-Civita connection.

THEOREM 1.4 Let F be as in Theorem 1.3, and (M, g) be a connected Riemannian

manifold. Suppose ϕ ∈ C2(M) with Hess(ϕ)(x) + τ(x)ϕ(x)g(x) ≤ 0 for every

x ∈ M. If W is a semipositive definite Codazzi tensor on M satisfying equation

(1.6) F(g−1W ) = ϕ on M,

then W is of constant rank.

Our arguments also apply to nonlinear parabolic equations as well. There are

corresponding parabolic versions of Theorems 1.1 through 1.4. For example, we

have the following parabolic version of Theorem 1.1:

THEOREM 1.5 Under conditions (1.1)–(1.2), assume u is a C3 convex solution of

the following parabolic equation in a domain � in R
n for 0 < t ≤ T :

(1.7) ut(t, x) − F(ui j (t, x)) = −ϕ(t, x, u(x),∇u(x)) ∀x ∈ �

for some ϕ ∈ C1,1([0, T ]×�×R×R
n). If ϕ(t, x, u, p) is concave in �×R for any

fixed (t, p) ∈ (0, T ) × R
n and if for some t0 ∈ (0, T ], x0 ∈ �, rank(ui j (t0, x0)) ≤

rank(ui j (t, x)) for all 0 < t ≤ t0, x ∈ �, then rank(ui j (t, x)) = const for all

0 ≤ t ≤ t0, x ∈ �.

Some remarks are in order.

Remark 1.6. Condition (1.2) first appeared in [1], where Alvarez, Lasry, and Lions

obtained a general structure condition for the convexity of viscosity solutions in

convex domains under state constraints boundary conditions. The same condition,

together with some proper convex cone condition on � and concavity condition

on f , were also used by Andrews in [2] on pinching estimates of evolving closed

convex hypersurfaces in R
n+1. We also note that a slightly stronger concavity
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condition on 1/F(A−1) was used by Urbas in [18] for the related work on curvature

flow of closed convex hypersurfaces in R
n+1.

Remark 1.7. We list some well-known examples with condition (1.2) satisfied:

f (λ) = σ
1/k

k (λ), f (λ) = (σk/σl)
1/(k−l)(λ), f (λ) = −σ

−1/k

k (λ), and f (λ) =
−(σk/σl)

−1/(k−l)(λ) with � = �k , where 0 ≤ l < k ≤ n, σj is the j th elementary

symmetric function, �k = {λ ∈ R
n| : σj (λ) > 0, ∀1 ≤ j ≤ k} and finally the

equation for special Lagrangian

f (A) = −√−1 log

(
det(I + √−1 A)

det1/2(I + A2)

)
for nonnegative definite A. The results in [7, 11, 12, 13, 15] should be interpreted

as f (λ) = −σ
−1/k

k (λ). We choose this form for the sake of a simple statement of

the condition on ϕ. It should be pointed out that for a specific equation, sometimes

certain transformations (e.g., taking −1/�u = f instead of �u = −1/ f ) may

strengthen results. We note that the homogeneity assumption is not imposed in

Theorem 1.1 and Theorem 1.2.

Remark 1.8. The constant rank results in Theorems 1.1–1.5 are of a local nature in

the sense that there is no global or boundary condition imposed on the solutions.

It is well known that the concavity assumption is important for C1,1 and C2,α es-

timates of solutions of fully nonlinear equations, e.g., the Evans-Krylov theorem

[9, 16] and Caffarelli’s interior C1,1 estimates for concave uniformly elliptic equa-

tions [5, 6]. Condition (1.2) can be viewed as a dual form in this respect, since the

estimation of convexity for a solution is equivalent to the estimation of a positive

lower bound of the Hessian of the solution.

The rest of the paper is organized as follows: We prove Theorem 1.1 and The-

orem 1.5 in Section 2. The proofs of Theorems 1.2 and 1.3 will be presented in

Section 3, modifying the main arguments in the proof of Theorem 1.1. In the

last section, we discuss related results for Codazzi tensors on general Riemannian

manifolds, in particular, manifolds with signed harmonic curvature.

2 Proof of Theorem 1.1

We first present a proof of Theorem 1.1 to illustrate the main idea to establish

a local differential inequality (2.8) near the point where the minimum rank of the

Hessian (ui j ) is attained. One of the key properties we will use is the symmetry of

ui jk with respect to indices i , j , and k. The proofs of Theorem 1.2 and Theorem 1.3

will be given in the next section. The main arguments also work for equations on

Codazzi tensors in Riemannian manifolds, which we will discuss in the last section.

We define

ḟ k = ∂ f

∂λk

, f̈ kl = ∂2 f

∂λk∂λl

, Fαβ = ∂ F

∂ Aαβ

, and Fαβ,rs = ∂2 F

∂ Aαβ∂ Ars

.
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The following lemma is well known (e.g., see [2, 3, 18]. Part (i) was known to

Caffarelli, Nirenberg, and Spruck; it was originally stated in a preliminary version

of [8] and was lately removed from the published version.

LEMMA 2.1

(i) At any diagonal A ∈ �̃ with distinct eigenvalues, let F̈(B, B) be the sec-

ond derivative of F in the direction B ∈ Sym(n); then

(2.1) F̈(B, B) =
n∑

j,k=1

f̈ jk Bj j Bkk + 2
∑
j<k

ḟ j − ḟ k

λj − λk

B2
jk .

(ii) If F̃(A) = −F(A−1) is concave near a positive definite matrix A, then

(2.2)

n∑
j,k,p,q=1

(Fkl,pq(A) + 2F jp(A)Akq)X jk X pq ≥ 0

for every symmetric matrix X.

Inequality (2.2) is where condition (1.2) is used (this is the only place where it

is needed). We will use the following form of Lemma 2.1:

COROLLARY 2.2 Assume F satisfies the condition in Lemma 2.1(ii). Suppose

A ∈ �̃, A semipositive definite and diagonal. Let 0 ≤ λ1 ≤ · · · ≤ λn and λi > 0

∀i ≥ n − l + 1. Then

(2.3)

n∑
j,k=n−l+1

f̈ jk(A)X j j Xkk + 2
∑

n−l+1≤ j<k

ḟ j − ḟ k

λj − λk

X2
jk

+ 2

n∑
i,k=n−l+1

ḟ i (A)

λk

X2
ik ≥ 0

for every symmetric matrix X = (X jk) with X jk = 0 if j ≤ n − l.

PROOF: (2.3) follows directly from (2.1) and (2.2) if A is positive definite. For

semidefinite A, it follows by approximating. �

PROOF OF THEOREM 1.1: We set ϕ̃(x) = ϕ(x, u(x),∇u(x)) and W = (Wi j )

with Wi j = ui j . We rewrite (1.3) in the form

(2.4) F(W (x)) = ϕ̃(x) ∀x ∈ �.

Suppose z0 ∈ � is a point where W is of minimal rank l. We pick an open

neighborhood O of z0 for any z ∈ O and let λ1 ≤ · · · ≤ λn be the eigenvalues of

W at z. There is a positive constant C > 0 depending only on ‖u‖C3 , ‖ϕ‖C2 , and n

such that λn ≥ λn−1 ≤ · · · ≥ λn−l+1 ≥ C . Let G = {n − l + 1, n − l + 2, . . . , n}
and B = {1, . . . , n − l} be the “good” and “bad” sets of indices, respectively.

Let �G = (λn−l+1, . . . , λn) be the good eigenvalues of W at z; for simplicity of

notation, we also write G = �G if there is no confusion.
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Since F is elliptic and W is continuous, if O is sufficiently small, we may pick

a positive constant A such that

(2.5) min
α

Fαα(W (x)) ≥ 100

A

∑
α,β,r,s

|Fαβ,rs(W (x))| ∀x ∈ O.

Set (with the convention that σj (W ) = 0 if j < 0 or j > n)

(2.6) φ(x) = σl+1(W ) + Aσl+2(W ).

Following the notation in [7], for two functions defined in an open set O ⊂ �,

y ∈ O , we say that h(y) � k(y) provided there exist positive constants c1 and c2

such that

(2.7) (h − k)(y) ≤ (c1|∇φ| + c2φ)(y).

We also write h(y) ∼ k(y) if h(y) � k(y) and k(y) � h(y). Next, we write h � k

if the above inequality holds in O , with the constants c1 and c2 depending only on

||u||C3 , ||ϕ̃||C2 , n, and C0 (independently of y and O). Finally, h ∼ k if h � k

and k � h. In the following, all calculations are at the point z using the relation �,

with the understanding that the constants in (2.7) are under control.

We shall show that

(2.8)
1

σl(G)

n∑
α=1

Fααφαα �
∑
i∈B

ϕ̃i i .

To prove (2.8), we may assume u ∈ C4 by approximation. For each z ∈ O fixed,

we can rotate coordinates so that W is diagonal at z, and Wii = λi ∀i = 1, . . . , n.

We note that since W is diagonal at z, (Fαβ) is also diagonal at z and Fαβ,rs = 0

unless α = β and r = s or α = r and β = s.

Now we compute φ and its first and second derivatives in the direction xα. The

following computations follow mainly from [12]. Because W is diagonal at z,

σl+2(W ) ≤ Cσ
(l+2)/(l+1)

l+1 (W ), and we obtain

(2.9) 0 ∼ φ(z) ∼ σl+1(W ) ∼
( ∑

i∈B

Wii

)
σl(G) ∼

∑
i∈B

Wii so Wii ∼ 0, i ∈ B.

Let W be a n × n diagonal matrix; we denote by (W | i) the (n − 1) × (n − 1)

matrix with i th row and i th column deleted, and denote by (W | i j) the (n − 2) ×
(n − 2) matrix with the i th and j th rows and i th and j th columns deleted. We also

denote by (G | i) the subset of G with λi deleted. Since σl+1(W |i) � 0, we have

(2.10) 0 ∼ φα ∼ σl(G)
∑
i∈B

Wiiα ∼
∑
i∈B

Wiiα.



A CONSTANT RANK THEOREM 1775

(2.9) yields that, for 1 ≤ m ≤ l,

(2.11)

σm(W ) ∼ σm(G), σm(W | j) ∼
{

σm(G | j) if j ∈ G,

σm(G) if j ∈ B,

σm(W | i j) ∼




σm(G | i j), if i, j ∈ G, i 
= j ,

σm(G | j), if i ∈ B, j ∈ G,

σm(G), if i, j ∈ B, i 
= j .

Since W is diagonal, it follows from (2.9) and proposition 2.2 in [12] that

(2.12)
∂σl+1(W )

∂Wi j

∼
{

σl(G) if i = j ∈ B,

0 otherwise,

and for 1 ≤ m ≤ n,

(2.13)
∂2σm(W )

∂Wi j∂Wrs

=




σm−2(W | ir) if i = j, r = s, i 
= r ,

−σm−2(W | i j) if i 
= j, r = j, s = i ,

0 otherwise.

From (2.10)–(2.13), we have∑
i∈B
j∈G

σl−1(W | i j)WiiαWj jα ∼
(∑

j∈G

σl−1(G | j)Wj jα

)∑
i∈B

Wiiα ∼ 0,(2.14)

∑
i, j∈B
i 
= j

σl−1(W | i j)WiiαWj jα ∼ −σl−1(G)
∑
i∈B

W 2
i iα,(2.15)

∑
j∈G
i∈B

σl−1(W | i j)W 2
i jα ∼

∑
i∈B, j∈G

σl−1(G | j)W 2
i jα,(2.16)

and if l ≤ n − 2 (that is, |B| ≥ 2)

n∑
i, j=1

∂2σl+2(W )

∂Wi j∂Wrs

Wi jαWrsα ∼
∑

i 
= j∈B

σl(G)WiiαWj jα −
∑

i 
= j∈B

σl(G)W 2
i jα

∼ −
∑
i∈B

σl(G)W 2
i iα −

∑
i 
= j∈B

σl(G)W 2
i jα

∼ −σl(G)
∑

i, j∈B

W 2
i jα.(2.17)

We note that if l = n − 1, we have |B| = 1; (2.17) still holds since wi iα ∼ 0 by

(2.10).
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By (2.11)–(2.16), ∀α ∈ {1, 2, . . . , n},

(2.18)

φαα = Aσl+2(W )αα +
( ∑

i∈G
j∈B

+
∑
i∈B
j∈G

+
∑

i, j∈B
i 
= j

+
∑

i, j∈G
i 
= j

)
σl−1(W | i j)WiiαWj jα

−
( ∑

i∈G
j∈B

+
∑
i∈B
j∈G

+
∑

i, j∈B
i 
= j

+
∑

i, j∈G
i 
= j

)
σl−1(W | i j)W 2

i jα +
∑

i

∂σl+1(W )

∂Wii

Wiiαα

∼ σl(G)
∑
i∈B

Wiiαα + A

n∑
i=1

σl+1(W | i)Wiiαα − 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα

− (σl−1(G) + Aσl(G))
∑

i, j∈B

W 2
i jα.

Since Fαβ is diagonal at z, we have

n∑
α=1

Fααφαα ∼ A

n∑
α=1

n∑
i=1

Fαασl+1(W | i)Wiiαα

+
n∑

α=1

Fαα
[
σl(G)

( ∑
i∈B

Wiiαα − A
∑

i, j∈B

W 2
i jα

)

− σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα

]
.

(2.19)

By equation (2.4),

ϕ̃i =
n∑

α,β=1

FαβWαβi ,

ϕ̃i i =
n∑

α,β,r,s=1

Fαβ,rs Wαβi Wrsi +
n∑

α,β=1

FαβWαβi i .

So for any i ∈ B, we have

(2.20)

n∑
α=1

FααWααi i ∼ ϕ̃i i −
n∑

α,β,r,s=1

Fαβ,rs Wαβi Wrsi .
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Because Wααi i = Wiiαα and σl+1(W | i) ∼ 0, from (2.19) and (2.20),

(2.21)

n∑
α=1

Fααφαα ∼ σl(G)

[ ∑
i∈B

ϕ̃i i −
∑
i∈B

n∑
α,β,r,s=1

Fαβ,rs Wαβi Wrsi

− A

n∑
α=1

∑
i, j∈B

FααW 2
i jα

]
− σl−1(G)

n∑
α=1

∑
i, j∈B

FααW 2
i jα

− 2

n∑
α=1

∑
i∈B
j∈G

σl−1(G | j)FααW 2
i jα.

In order to study terms in (2.21), we may assume the eigenvalues of W are

distinct at z (if necessary, we perturb W and then take the limit). In the following

we let λi = Wii .

Using (2.1), (2.2), and (2.21), we obtain

(2.22)

n∑
α=1

Fααφαα ∼ σl(G)
∑
i∈B

ϕ̃i i

− σl(G)
∑
i∈B

[ n∑
α,β=1

f̈ αβ Wααi Wββi + 2
∑
α<β

ḟ α − ḟ β

λα − λβ

W 2
αβi

]

− (σl−1(G) + Aσl(G))

n∑
α=1

∑
i, j∈B

ḟ αW 2
i jα

− 2

n∑
α=1

∑
i∈B
j∈G

σl−1(G | j) ḟ αW 2
i jα.

Since Wi jk is symmetric with respect to i , j , and k,

1

σl(G)

n∑
α=1

Fααφαα ∼
∑
i∈B

ϕ̃i i(2.23)

−
∑
i∈B

[ ∑
α,β∈B

+
∑

α,β∈G

+2
∑
α∈G
β∈B

]
f̈ αβWααi Wββi

− 2
∑
i∈B

[ ∑
α,β∈G
α<β

+
∑
α∈G
β∈B

+
∑

α,β∈B
α<β

] ḟ α − ḟ β

λα − λβ

W 2
αβi

− A

n∑
α=1

∑
i, j∈B

ḟ αW 2
i jα −
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− 2
∑
i∈B

[ ∑
α,β∈G

+
∑
α∈B
β∈G

] ḟ α

λβ

W 2
αβi

−
∑
i∈B

[ ∑
α,β∈B

+
∑
α∈G
β∈B

]( n∑
k=n−l+1

1

λk

)
ḟ αW 2

αβi .

We note for β, γ ∈ B and α ∈ G, f̈ αβ ∼ f̈ αγ . Thus from (2.10)

2
∑
α∈G
β∈B

f̈ αβWααi Wββi ∼
∑
α∈G

f̈ αβWααi

( ∑
β∈B

Wββi

)
∼ 0.

In turn, we may rewrite (2.23) as

(2.24)

1

σl(G)

n∑
α=1

Fααφαα ∼
∑
i∈B

ϕ̃i i −
∑
i∈B

[ ∑
α,β∈B

+
∑

α,β∈G

]
f̈ αβWααi Wββi

− 2
∑
i∈B

[ ∑
α,β∈G
α<β

+
∑
α∈G
β∈B

+
∑

α,β∈B
α<β

] ḟ α − ḟ β

λα − λβ

W 2
αβi

− A

n∑
α=1

∑
i, j∈B

ḟ αW 2
i jα

− 2
∑
i∈B

[ ∑
α,β∈G

+
∑
α∈B
β∈G

] ḟ α

λβ

W 2
αβi

−
∑
i∈B

[ ∑
α,β∈B

+
∑
α∈G
β∈B

]( n∑
k=n−l+1

1

λk

)
ḟ αW 2

αβi .

By the symmetry of Wi jk and with the choice of A in (2.5), the term

A

n∑
α=1

∑
i, j∈B

ḟ αW 2
i jα

dominates all the terms involving W 2
i jk if at least two of the indices i , j , and k are

in B. With this observation, we deduce from (2.24) that

(2.25)
1

σl(G)

n∑
α=1

Fααφαα ∼
∑
i∈B

ϕ̃i i −
∑
i∈B

Ii − A

2

n∑
α=1

∑
i, j∈B

ḟ αW 2
i jα

where

Ii =
∑

α,β∈G

f̈ αβWααi Wββi + 2
∑

α,β∈G
α<β

ḟ α − ḟ β

λα − λβ

W 2
αβi + 2

∑
α,β∈G

ḟ β

λα

W 2
αβi .
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By (2.3) in Corollary 2.2, we have

(2.26) Ii � 0.

(2.25) becomes

(2.27)
1

σl(G)

n∑
α=1

Fααφαα �
∑
i∈B

ϕ̃i i − A

2

n∑
α=1

∑
i, j∈B

ḟ αW 2
i jα.

We now finish the proof of Theorem 1.1. Since (ui j ) is diagonal at the point,∑
i∈B

ϕ̃i i =
∑
i∈B

(ϕxi xi
+ 2ϕxi uui + ϕuuu2

i )

+
∑
i∈B

uii (2ϕxi pi
+ ϕpi pi

uii + ϕu + 2ϕupi
ui ) +

∑
j

ϕpj

∑
i∈B

uii j .

By our assumption on ϕ, (2.9), and (2.10),

(2.28)
∑
i∈B

ϕ̃i i � 0.

By (2.27),

1

σl(G)

n∑
α=1

Fααφαα �
∑
i∈B

ϕ̃i i � 0.

Theorem 1.1 then follows from the strong minimum principle. �

Remark 2.3. We remark that the major difference of the above proof and the proofs

in [7, 11, 12, 13, 15] is the choice of the test function φ in (2.6). While letting φ =
σl+1 as in [7, 11, 12, 13, 15], the calculations there rely heavily on the algebraic

properties of the elementary symmetric functions σk . The extra term Aσl+2 in (2.6)

paves the way for us to deal with a general nonlinear functional F .

Remark 2.4. In the proof of Theorem 1.1, the condition that ϕ(x, u, p) is concave

in � × R for any fixed p ∈ R
n was only used in (2.28). If we write (x, u) =

(y1, . . . , yn, yn+1), by inspection, the assumption that (
∂2ϕ

∂yi ∂yj
(x, u(x),∇u(x))) is

seminegative definite ∀x ∈ � suffices to ensure (2.28). In turn, Theorem 1.1 is

valid under this weakened assumption.

PROOF OF THEOREM 1.5: The parabolic version of Theorem 1.1 follows di-

rectly from our proof above. We adopt the same notation as above. We write

equation (1.7) in the following form:

(2.29) F(ui j ) = ϕ∗,

where ϕ∗ = ut + ϕ̃. As in the proof (2.27) of Theorem 1.1, in a neighborhood of

t0, x0,

1

σl(G)

n∑
α=1

Fααφαα ∼
∑
i∈B

ϕ∗
i i − A

2

n∑
α=1

∑
i, j∈B

ḟ αW 2
i jα.
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Since ϕ∗
i i = utii + ϕ̃i i , it is easy to check that

∑
i∈B

utii ∼ 1

σl(G)
φt .

It follows that

−φt +
n∑

α=1

Fααφαα � 0.

We can deduce Theorem 1.5 from the strong maximum principle for parabolic

equations. �

3 Curvature Equations of Hypersurfaces in R
n+1

In this section, we consider the convexity problem of fully nonlinear curvature

equations of hypersurfaces in R
n+1. We refer to [10, 11, 12, 13] for the geometric

background on these types of equations. We prove Theorem 1.3 first.

PROOF OF THEOREM 1.3: We work on the spherical Hessian W = (ui j +uδi j )

in place of the standard Hessian (ui j ) in the proof of Theorem 1.1.

As in the proof of Theorem 1.1, let z0 ∈ � be a point where W is of minimum

rank and O is a small open neighborhood of z0. For any z ∈ O ⊂ �, we divide

eigenvalues of W at z into G and B, the “good” and “bad” sets of indices, respec-

tively. Define φ as in (2.6). We may assume at the point that W is diagonal under

some local orthonormal frames. We want to show that

(3.1)
1

σl(G)

n∑
α=1

Fααφαα �
∑
i∈B

[ϕi i + ϕ].

The same arguments in the proof of Theorem 1.1 yield (2.9)–(2.10) for W =
(ui j + uδi j ), and

(3.2)

n∑
α=1

Fααφαα ∼
n∑

α=1

Fαα
[
σl(G)

∑
i∈B

Wiiαα − σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]
.
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Since f is of homogeneous degree of −1,
∑n

α=1 FααWαα = −ϕ, and we get

(3.3)

n∑
α=1

Fααφαα ∼
n∑

α=1

Fαα
[
σl(G)

∑
i∈B

(Wααi i + Wii − Wαα)

− σl−1(G)
∑
i∈B
j∈G

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]

∼
n∑

α=1

Fαα
[
σl(G)

∑
i∈B

Wααi i + (n − l)σl(G)ϕ

− σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]
.

Since Wi jk is symmetric with respect to indices {i, j, k} (which is used in the

derivation from (2.22) to (2.23) in the proof of Theorem 1.1), as in (2.25), the left

side of (3.1) reduces to

(3.4)
1

σl(G)

n∑
α=1

Fααφαα ∼
∑
i∈B

[ϕi i + ϕ] −
∑
i∈B

Ii − A

2

n∑
α=1

∑
i, j∈B

f αW 2
i jα,

where Ii is defined similarly as in (2.25). Therefore (3.1) follows from (2.26). The

condition (ϕi j + ϕδi j ) ≤ 0 yields

(3.5)
1

σl(G)

n∑
α=1

Fααφαα � 0.

It follows from the strong minimum principle that W is of constant rank in �. If

� = S
n , the Minkowski integral formula implies W is of full rank (e.g., see an

argument in [12]). �

We now proceed to treat curvature equation (1.4). Let W be the second funda-

mental form of M ; equation (1.4) can be rewritten as

(3.6) F(W (X)) = ϕ(X, �n) ∀X ∈ M.

PROOF OF THEOREM 1.2: We let ϕ̃(X) = ϕ(X, �n(X)). We work on the sec-

ond fundamental form W = (hi j ) in place of the standard Hessian (ui j ) in the

proof of Theorem 1.1.
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As in the proof of Theorem 1.1, let O ⊂ M be an open neighborhood of some

point z0 where the minimum rank of W is attained. For any z ∈ O , we choose

a local orthonormal frame {eA} in the neighborhood of z in M with {e1, . . . , en}
tangent to M and en+1 (= �n) the normal so that the second fundamental form

(Wi j ) is diagonal at z. We divide eigenvalues of W at z into G and B, the good and

bad sets of indices, respectively. Set φ = σl+1(W ) + Aσl+2(W ) as in (2.6). We

want to show

(3.7)
1

σl(G)

n∑
α=1

Fααφαα �
∑
i∈B

ϕ̃i i .

The same arguments as in the proof of Theorem 1.1 yield (2.9)–(2.10) for W =
(hi j ), and

(3.8)

n∑
α=1

Fααφαα

∼ σl(G)

n∑
α=1

∑
i∈B

FααWiiαα − σl−1(G)

n∑
α=1

∑
i, j∈B

FααW 2
i jα

− 2

n∑
α=1

∑
i∈B
j∈G

σl−1(G | j)FααW 2
i jα − Aσl(G)

n∑
α=1

∑
i, j∈B

FααW 2
i jα.

It follows from the Gauss equation and (2.9) that

n∑
α=1

Fααφαα

∼
n∑

α=1

Fαα

[ ∑
i∈B

σl(G)(Wααi i + Wii W
2
αα − W 2

i i Wαα) − σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]

∼
n∑

α=1

Fαα

[ ∑
i∈B

σl(G)Wααi i − σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]
.
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Since by the Codazzi formula Wi jk is symmetric with respect to indices {i, j, k},
again as in (2.25), the left side of (3.7) reduces to

(3.9)
1

σl(G)

n∑
α=1

Fααϕαα ∼
∑
i∈B

ϕ̃i i −
∑
i∈B

Ii − A

s

n∑
α=1

∑
i, j∈B

f αW 2
i jα,

where Ii is defined similarly as in (2.25). Now (3.7) follows from (2.26) in the

proof of Theorem 1.1.

We now compute ϕ̃i i For all i ∈ {1, 2, . . . , n},

ϕ̃(X)i =
n+1∑
A=1

ϕX A
eA

i + ϕen+1
(en+1)i ,

ϕ̃(X)i i =
n+1∑

A,C=1

ϕX A XC
eA

i eC
i +

n+1∑
A=1

ϕX A
X A

ii

+ 2

n+1∑
A=1

ϕX Aen+1
eA

i (en+1)i + ϕen+1,en+1
(en+1)i (en+1)i + ϕen+1

(en+1)i i .

By the Gauss formula and the Weingarten formula for hypersurfaces, it follows

that

(3.10)
∑
i∈B

ϕ̃(X)i i �
∑
i∈B

n+1∑
A,C=1

ϕX A XC
eA

i eC
i .

By our assumption on ϕ, we conclude that

(3.11)
1

σl(G)

n∑
α=1

Fααφαα � 0.

The strong minimum principle implies W is of constant rank l. If M is com-

pact, there is at least one point where its second fundamental form is positive def-

inite. Therefore it is positive definite everywhere, and M is the boundary of some

strongly convex bounded domain in R
n+1. �

We note the proof of Theorem 1.3 is of local nature; there is a corresponding

local statement of constant rank result for W = (ui j + uδi j ) as in Theorem 1.2.

If � = S
n , the condition on ϕ in Theorem 1.3 is equivalent to saying that ϕ(x)

is concave in R
n+1 after being extended as a homogeneous function of degree 1.

Theorem 1.3 can be used to deduce a positive upper bound on principal curvatures

of M if it satisfies (1.5).

COROLLARY 3.1 In addition to the conditions on F in Theorem 1.3, we assume

that F is concave and

lim
λ→∂�

f (λ) = −∞.
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For any constant β ≥ 1, there exist positive constants γ > 0 and ϑ > 0 such that

if 0 > ϕ(x) ∈ C1,1(Sn) is a negative function with infSn (−ϕ) = 1, ‖ϕ‖C1,1(Sn) ≤ β,

and (ϕi j +(ϕ−γ )δi j ) ≤ 0 on S
n, if u satisfies (1.5) on S

n with (ui j +uδi j ) ≥ 0, then

(ui j + uδi j ) ≥ 1
ϑ

I on S
n. That is, the principal curvature of convex hypersurface

M with u as its support function is bounded from above by ϑ .

PROOF OF COROLLARY 3.1: We argue by contradiction. If the result is not

true, for some β ≥ 1 there are sequences functions 0 ≥ ϕl ∈ C1,1(Sn) and ul ∈
C2(Sn), with sup

Sn ϕl = −1, ‖ϕl‖C1,1(Sn) ≤ β, (ϕi j + (ϕ − 1
l
)δi j ) ≤ 0, W l =

(ul
i j + ulδi j ) ≥ 0 on S

n , and its minimum eigenvalue λl
m(xl) ≤ 1/ l at some point

xl ∈ S
n . Since equation (1.5) is invariant if we transfer u(x) to u(x) + ∑n+1

i=1 ai xi ,

we may assume that ∫
Sn

u(x)xj = 0 ∀ j = 1, . . . , n + 1.

It follows [10, 12, 13] that

‖ul‖C1,1(Sn) ≤ C,

independently of l. By the assumption that

lim
λ→∂�

f (λ) = −∞,

W l stays in a fixed compact subset of � for all l, and F is uniformly elliptic. By

the Evans-Krylov theorem and Schauder theory,

‖ul‖C2,α(Sn) ≤ C,

independently of l. Therefore, there exist subsequences, which we still denote by

ϕl and ul ,

ϕl → ϕ in C1,α(Sn), ul → u in C3,α(Sn),

for 0 > ϕ ∈ C1,1(Sn) with sup
Sn ϕ = −1, (ϕi j + ϕδi j ) ≤ 0 on S

n , u satisfying

equation (1.5), and the smallest eigenvalue of (ui j (x)+ u(x)δi j ) vanishing at some

point x . On the other hand, Theorem 1.3 ensures (ui j + uδi j ) > 0. This is a

contradiction. �

We also have the corresponding consequence of Theorem 1.2.

COROLLARY 3.2 In addition to the conditions on f and F in Theorem 1.2, we

assume that F is concave and

lim
λ→∂�

| f (λ)| = ∞.

For any constant β ≥ 1, there exist positive constants γ > 0 and ϑ > 0 such that

if ‖ϕ(x)‖C1,1(�) ≤ β and ϕ(X, p) − γ |X |2 is locally concave in X for any p ∈ S
n

fixed, if M is a compact convex hypersurface satisfying (1.4) with ‖M‖C2 ≤ β,

then κi (X) ≥ ϑ for all X ∈ M and i = 1, . . . , n.

The proof of Corollary 3.2 is similar to the proof of Corollary 3.1; we won’t

repeat it here.
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4 Codazzi Tensors on Riemannian Manifolds

Let (M, g) be a Riemannian manifold. A symmetric 2-tensor W is called a

Codazzi tensor if W is closed (viewed as a T M-valued 1-form). W is Codazzi if

and only if

∇X W (Y, Z) = ∇Y W (X, Z)

for all tangent vectors X , Y , and Z , where ∇ is the Levi-Civita connection. In a

local orthonormal frame, the condition is equivalent to wi jk being symmetric with

respect to indices i , j , and k. Codazzi tensors arise naturally from differential

geometry. We refer the reader to [4, chap. 16] for general discussions on Codazzi

tensors in Riemannian geometry. Some important examples are:

(1) The second fundamental form of a hypersurface is a Codazzi tensor, im-

plied by the Codazzi equation.

(2) If (M, g) is a space form of constant curvature c, then for any u ∈ C∞(M),

Wu = Hess(u) + cug is a Codazzi tensor.

(3) If (M, g) has harmonic Riemannian curvature, then the Ricci tensor Ricg

is a Codazzi tensor and its scalar curvature Rg is constant.

(4) If (M, g) has a harmonic Weyl tensor, the Schouten tensor Sg is a Codazzi

tensor.

The convexity principle we established in the previous sections can be general-

ized to Codazzi tensors on Riemannian manifolds. We first prove Theorem 1.4.

PROOF OF THEOREM 1.4: The proof goes similarly to the proof of Proposi-

tion 1.3. We sketch here some necessary modifications.

We work in a small neighborhood of z0 ∈ M , which is a point where W (z0) is

of minimum rank l. Set φ(x) = σl+1(W (x)) + Aσl+2(W ) as in (2.6) for x ∈ O .

For any z ∈ O ⊂ M , we choose a local orthonormal frame so that at the point W

is diagonal. As in the proof of Theorem 1.3, we may divide eigenvalues of W at

z into G and B, the good and bad sets of indices, respectively, with |G| = l and

|B| = n − l. As before, (2.9)–(2.10) hold for our Codazzi tensor W . We want to

show that

(4.1)
1

σl(G)

n∑
α=1

Fααφαα �
∑
i∈B

[ϕi i + τϕ].

Our condition on ϕ implies (1/σl)(G)
∑n

α=1 Fααφαα � 0. Theorem 1.4 would

follow from the strong minimum principle.

The Codazzi condition implies Wi jk is symmetric. The same computation for

φ in the proof of Theorem 1.1 deduces the same formula (3.2) for our Codazzi

tensor W . It follows from the Ricci identity, (2.9), (3.2), and the homogeneity of
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F that

(4.2)

n∑
α=1

Fααφαα

∼
n∑

α=1

Fαα

[
σl(G)

∑
i∈B

(Wααi i + Riαiα(Wii − Wαα))

− σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]

�

n∑
α=1

Fαα

[
σl(G)

∑
i∈B

(Wααi i − τWαα) − σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]

=
n∑

α=1

Fαα

[
σl(G)

∑
i∈B

Wααi i + (n − l)τσl(G)ϕ

− σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]
.

Once more, as in (2.25), inequality (4.1) becomes

(4.3)
1

σl(G)

n∑
α=1

Fααφαα �
∑
i∈B

[ϕi i + τϕ] −
∑
i∈B

Ii − A

2

n∑
α=1

∑
i, j∈B

f αW 2
i jα,

where Ii is defined similarly as in (2.25). (4.1) now follows directly from (2.26).

�

The homogeneity assumption in Theorem 1.4 was used in (4.2) in the above

proof. If the sectional curvature is nonnegative, the homogeneity condition can be

removed.

PROPOSITION 4.1 Let F be as in Theorem 1.1, and (M, g) be a connected Rie-

mannian manifold with nonnegative sectional curvature. Suppose ϕ ∈ C2(M) with

Hess(ϕ)(x) ≤ 0 for every x ∈ M. If W is a semipositive definite Codazzi tensor
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on M satisfying equation

(4.4) F(g−1W ) = ϕ on M,

then W is of constant rank.

PROOF: The proof follows the same lines of argument as in the proof of Theo-

rem 1.4. We deduce immediately from the first line in (4.2) that

(4.5)

n∑
α=1

Fααφαα �

n∑
α=1

Fαα

[
σl(G)

∑
i∈B

Wααi i −
∑

i∈B,α∈G

RiαiαWαα

− σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]
.

We note that ∑
i∈B,α∈G

RiαiαWαα ≥ 0.

Then we get
∑n

α=1 Fααφαα � 0 by applying the same argument as in the proof of

Theorem 1.4. �

COROLLARY 4.2 Suppose (M, g) is a connected Riemannian manifold with non-

negative harmonic Riemannian curvature; then the Ricci tensor is of constant rank.

If the inf of the smallest eigenvalue or the sup of the largest eigenvalue of Ricg is

attained in M, then it must be a constant and its eigenspace is of constant rank.

Moreover, if in addition (M, g) has positive harmonic curvature at some point,

then (M, g) is Einstein.

PROOF: Since (M, g) has a nonnegative harmonic Riemannian curvature, Ricg

is a Codazzi tensor that is semipositive definite and the scalar curvature Rg is con-

stant. Let W = Ricg and F(W ) = σ1(W ). W satisfies

(4.6) F(g−1W ) = c.

Constant rank now follows from Proposition 4.1.

Let λs(x) be the smallest eigenvalue of Ricg at x . If infx∈M λs(x) = λs(x0) = a

is attained at some point x0, define W = Ricg − ag; then W is a semipositive

definite Codazzi tensor satisfying equation

(4.7) σ1(g
−1W ) = c − na.

Proposition 4.1 implies λs(x) = a for every x ∈ M , and the null space of W is

of constant rank. Similarly, if the sup of the largest eigenvalue λl(x) of Ricg(x)

is attained at some point y0, a similar conclusion follows by considering W =
λl(y0)g − Ricg.
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Suppose (M, g) has positive harmonic curvature at some point x0. If we attain

the infx∈M λs(x), by a previous statement we know λs(x) is constant in M . Let

W = Ricg − ag. If W does not vanish identically in a small neighborhood O of

x0 (i.e., G 
= ∅), then σ1(g
−1W ) is a positive constant. W satisfies

F(W ) = ϕ,

where F(W ) = σ1(W ) and ϕ = c. The proof of Proposition 4.1 yields (note that

ν(x) = mini 
=α Riαiα(x) > 0 by the positive harmonic curvature assumption)

(4.8)
1

σl(W )

n∑
α=1

Fααφαα � −ν
∑
α∈G

Wαα < 0.

This is a contradiction to the strong minimum principle. A similar argument applies

if the sup of the largest eigenvalue λl(x) of Ricg is attained at some point y0 by

considering W = λl(y0)g − Ricg. �

In the special case n = 3, a metric having harmonic curvature is equivalent

to the vanishing of the Cotton tensor; in turn, it is equivalent to locally conformal

flatness. The condition of nonnegative harmonic Riemannian curvature in Corol-

lary 4.2 can be weakened and the result can be strengthened.

COROLLARY 4.3 Suppose (M, g) is a connected 3-dimensional Riemannian man-

ifold with harmonic Riemannian curvature; if the Ricci tensor is nonnegative, then

it is of constant rank. If in addition the smallest or the largest eigenvalue of the

Ricci tensor is attained in M, then the Ricci tensor is parallel and (M, g) is locally

isometric to either S3
r , R

3, or S2
r × R for some r > 0.

PROOF: Let W = Ricg, and l be the minimal rank of W in M . Then (4.5)

holds. When n = 3 and Ricg is nonnegative, if we make Ri j diagonal at the point

and arrange that 0 ≤ R11 ≤ R22 ≤ R33, then we have R1212 ≤ R1313 ≤ R2323 and

R1313 ≥ 0. With these relations, it is straightforward to check that

(4.9)
∑

i∈B,α∈G

RiαiαWαα ≥ 0.

The same argument in the proof of Proposition 4.1 yields σl+1(W ) ≡ 0.

Let infx∈M λs(x) = λs(x0) = a be attained at some point x0. Let W = Ricg −
ag; (4.9) and the proof of Corollary 4.2 yield that the rank l of W is constant and

0 ≤ l ≤ 2 since B is not empty. In view of (4.5) and (4.9), we must have Riαiα = 0

for all i ∈ B and α ∈ G. Since n = 3, we must have either l = 0 or l = 2. If

l = 2, we have R1212 = R1313 = 0, so R22 = R33 = R2323 = R = const where

R is the scalar curvature. We deduce from this fact together with (4.5) that Ricg is

parallel and M is locally isometric to S2
r × R for some r > 0. For the case l = 0,

then M is Einstein; since n = 3, it has constant sectional curvature, so (M, g) is

locally isometric to either S3
r or R

3.

Finally, the case where the sup of the largest eigenvalue λl(x) of Ricg is attained

can be treated similarly by considering W = λl(y0)g − Ricg. �
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The same argument also works for manifolds with nonpositive harmonic cur-

vature.

PROPOSITION 4.4 Suppose (M, g) is a connected Riemannian manifold with non-

positive harmonic Riemannian curvature; then the Ricci tensor is of constant rank.

PROOF: We work on W = − Ricg. Since (M, g) has nonpositive harmonic

Riemannian curvature, Ricg is a Codazzi tensor, and it is seminegative definite and

the scalar curvature Rg is constant. So W is semipositive definite and σ1(g
−1W ) =

c is a nonnegative constant. Let F(W ) = σ1(W ). W satisfies

(4.10) F(g−1W ) = c.

Suppose z0 ∈ M is the point where W attains the minimal rank l. We choose a

small neighborhood O of z0 and set φ(x) = σl+1(W (x))+ Aσl+2(W (x)) for x ∈ O

as in (2.6). For any z ∈ O , we choose a local orthonormal frame so that at the point

W is diagonal. As in the proof of Theorem 1.3, we may divide eigenvalues of W

at z into G and B, the good and bad sets of indices, respectively, with |G| = l and

|B| = n − l. As before, the proposition will follow if we can show

(4.11)
1

σl(G)

n∑
α=1

Fααφαα � 0.

Following the same computation as in the proof of Theorem 1.1, since W is

diagonal at the point, it follows from the Ricci identity, (2.9), and (3.2) that

(4.12)

n∑
α=1

Fααφαα ∼
n∑

α=1

Fαα

[
σl(G)

∑
i∈B

(Wααi i + Riαiα(Wii − Wαα))

− σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]
.

Since Riαiα ≤ 0, we have |Riαiα| ≤ Wii . Again by (2.9), (4.12) becomes

(4.13)

n∑
α=1

Fααφαα �

n∑
α=1

Fαα

[
σl(G)

∑
i∈B

Wiiαα − σl−1(G)
∑

i, j∈B

W 2
i jα

− 2
∑
i∈B
j∈G

σl−1(G | j)W 2
i jα − Aσl(G)

∑
i, j∈B

W 2
i jα

]
.

As in (2.25), this implies

(4.14)
1

σl(G)

n∑
α=1

Fααφαα �
∑
i∈B

ϕi i −
∑
i∈B

Ii − A

2

∑
α∈G

∑
i, j∈B

f αW 2
i jα,
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where Ii is defined similarly as in (2.25) and ϕ = c. (4.11) now follows directly

from (2.26). �

Remark 4.5. Though we only consider the Codazzi tensors here, all the results in

this section remain valid (under the same assumptions on the Riemannian sectional

curvature) for any symmetric 2-tensor W satisfying the Ricci identity

Wiiαα = Wααi i + Riαiα(Wii − Wαα).
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