
Journal of Functional Analysis 255 (2008) 1713–1723

www.elsevier.com/locate/jfa

The convexity of solution of a class Hessian equation
in bounded convex domain in R

3

Xi-Nan Ma a,∗,1, Lu Xu b

a Department of Mathematics, University of Science and Technology of China, Hefei 230026, Anhui Province, China
b Wuhan Institute of Physics and Mathematics, The Chinese Academy of Science, Wuhan 430071,

HuBei Province, China

Received 4 October 2007; accepted 10 June 2008

Available online 17 July 2008

Communicated by C. Kenig

Abstract

We use the deformation methods to obtain the convexity of solution of a class Hessian equation in
bounded convex domain in R

3.
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1. Introduction

The convexity is an issue of interest for a long time in partial differential equations, it is
intimately related to the study of geometric properties of solutions of general elliptic partial
differential equations. It was Gabriel [8] first obtained that the level sets of the Green function in
three-dimension convex domains in R

3 are strictly convex. Makar-Limanov [18] considered the
following elliptic boundary value problem:

�u = −1 in Ω,

u = 0 on ∂Ω,
(1.1)
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in bounded plane convex domain Ω . By an ingenious argument involving the maximum princi-
ple, he proved that u1/2 is strictly concave.

In 1976, Brascamp, Lieb [3] established the log-concavity of the fundamental solution of
diffusion equation with convex potential. As a consequence, they proved the log-concavity of the
first eigenfunction of Laplace operator in convex domains.

For the case of dimension two, Acker, Payne, Philippin [1] utilized the idea of Makar-Limanov
[18] to obtain a new proof for the Brascamp–Lieb’s result. Along the idea in [1,18], Ma [17] gave
a new proof of problem (1.1), and he obtained an optimal lower bound of the Gaussian curvature
for the graph of u1/2.

In 1983 Korevaar [14] introduced a very useful technique now named Korevaar’s concavity
maximum principle, and established convexity results for the mean curvature type equations un-
der certain boundary value conditions. Then immediately new proofs of the log-concavity of the
first eigenfunction of convex domains was given respectively by Korevaar [15] and Caffarelli,
Spruck [5]. In different extent, Kawohl [12] (for the intermediate case) and Kennington [13]
improved Korevaar’s maximum principle, which enabled them to give a higher-dimensional gen-
eralization of the result of Makar-Limanov [18]. In particular, Kennington pointed out that the
concavity number 1

2 of u is sharp in Eq. (1.1) in higher-dimension case.
But Korevaar’s maximum principle have strong restrictions in many applications, for example

we cannot obtain the Gabriel [8] results. In a fundamental work of Singer, Wong, Yau, Yau
[20] and Caffarelli, Friedman [4], they devised a new deformation technique to deal with the
convexity. Caffarelli, Friedman [4] established the strict convexity of level sets of solution of
some equations in two-dimensional convex domain, especially they got the strict log-concavity
of the first eigenfunction of Laplace operator in plane convex domains. Korevaar, Lewis [16]
generalized the deformation method to higher dimensions, and obtained the strict concavity of
u1/2 in Eq. (1.1) in higher-dimension case.

Recently, Alvarez, Lasry, Lions [2] generalized the approach of Korevaar [14] and Kennington
[13] to a large class fully nonlinear second order elliptic equations:

F
(
x,u(x),Du(x),D2u(x)

) = 0 (1.2)

in convex domain Ω in R
n. But the method cannot give the strict convexity of the solutions.

Naturally one wish to generalize the deformation method of Caffarelli, Friedman [4] and Kore-
vaar, Lewis [16] to fully nonlinear version. Motivated by some differential geometry problems,
such deformation lemma (constant rank theorem) was established in Guan, Ma [9] and Caffarelli,
Guan, Ma [7], and they concluded the general convexity principle for the following elliptic equa-
tions:

F
(
D2u(x)

) = f
(
x,u(x),Du(x)

)
. (1.3)

They found the structure condition on F(A) just the case as in Alvarez, Lasry, Lions [2], that is
−F(A−1) is concave on A.

The more detail history and results on the convexity of solutions of elliptic partial differential
equations please consult the book by Kawohl [11] and the survey paper by Guan, Ma [10].

In this paper we shall generalized the results of Makar-Limanov [18] and Korevaar, Lewis [16]
on Eq. (1.1) to a class Hessian equation in three-dimension case. First we need some preparation
to state our theorem.
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Let Sk be the kth elementary symmetric function, that is for 1 � k � n and λ = (λ1, . . . ,

λn) ∈ R
n,

Sk(λ) =
∑

1�i1<···<ik�n

λi1 · · ·λik . (1.4)

In a seminal paper by Caffarelli, Nirenberg, Spruck [6], they considered the following Dirichlet
problem for Hessian equation

Sk

(
λ
{
D2u

}) = f (x) > 0 in Ω ⊂ R
n,

u = φ on ∂Ω, (1.5)

where 2 � k � n − 1 and λ{D2u} means the eigenvalues of Hessian matrix {uij (x)}, Ω is a
smooth bounded domain in R

n.
In order to state their theorem, we first give some notations from [6].

Definition 1. (See [6].) For 1 � k � n, define

Γk = {
λ ∈ R

n: S1(λ) > 0, . . . , Sk(λ) > 0
}
.

A function u ∈ C2(Ω) is called an admissible solution of (1.5) if the eigenvalues of {uij (x)}
belong to Γk for each x ∈ Ω .

In order to solve the Dirichlet boundary value problem (1.5), they [6] found that the following
necessary condition for the smooth bounded domain Ω ⊂ R

n. If we let κ = (κ1, . . . , κn−1) be
the principal curvature of the boundary ∂Ω , then κ ∈ Γk−1.

Now let us state their existence theorem on the admissible solutions for Eq. (1.5).

Theorem 1. (See [6].) If f (x) ∈ C∞(Ω), f (x) > 0 on Ω , φ ∈ C∞(∂Ω), Ω is a smooth bounded
domain in R

n with principal curvature κ = (κ1, . . . , κn−1) of ∂Ω satisfies κ ∈ Γk−1. Then for the
Dirichlet boundary value problem (1.5) there exists a unique admissible solution u(x) ∈ C∞(Ω).

A natural question is whether the solution obtained by [6] has some similar convexity as in
Laplace equation case (1.1) (see for example [18] and [16]).

In this work we answer this question for the following simplest case. We consider the follow-
ing equation in R

3:

S2
(
λ
{
D2u

}) = 1 in Ω ⊂ R
3,

u = 0 on ∂Ω. (1.6)

The following theorem is our main result.

Theorem 2. Suppose u ∈ C∞(Ω) is the admissible solution of (1.6), and Ω is a strictly convex
smooth bounded domain in R

3, then v := −(−u)1/2 is strictly convex, and the convexity index 1
2

is sharp.
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Remark 1. In the above theorem we only obtain the three-dimension case, it seems that for the
higher dimension we need other methods to get the similar results. The another question is how
about the higher-order elementary symmetric function. We believe the similar results holds.

Remark 2. Also in three-dimension case, we can use the above calculation to get the generaliza-
tion of the theorem by Brascamp, Lieb [3], then we obtain the Brunn–Minkowski inequality for
the eigenvalue of a class Hessian operator and prescribing the equality case. This is a joint work
with Professor Liu Pan.

The plan of the paper is as follows. In Section 2, we prove the Hessian of v has constant rank
if the function v in Theorem 2 is convex. In Section 3, we show v is strictly convex by continuity
method and the index 1

2 is sharp.

2. Constant rank theorem

If we let v = −(−u)1/2, then Eq. (1.6) is equivalent to

F
(
v,Dv,D2v

) = 1

4
S2(uij ) = 1

4
in Ω ⊂ R

3, (2.1)

v = 0 on ∂Ω, (2.2)

where

F
(
v,Dv,D2v

) = v2S2(vij ) + v
(
v2

2 + v2
3

)
v11 + v

(
v2

1 + v2
3

)
v22 + v

(
v2

1 + v2
2

)
v33

− vv1v2(v12 + v21) − vv1v3(v13 + v31) − vv2v3(v23 + v32). (2.3)

Lemma 1 (Constant rank theorem). Let u ∈ C4(Ω) is an admissible solution of Eq. (1.6), where
Ω ⊂ R

3 is any domain. If v := −(−u)1/2 is a convex function, i.e. the Hessian matrix of v is
semipositive in Ω , i.e. W := {vij } � 0, then (vij ) has constant rank in Ω .

Proof. For n = 3, the rank of matrix {vij } can only be in three cases: 1, 2 or 3. Rank is equal to 1
is impossible, since rank 1 implies S2(vij ) degenerate, which contradicts to the condition that u

is an admissible solution of Eq. (1.6). Now we suppose W attain to the minimal rank 2 at some
point z0 ∈ Ω , we will prove that the rank of W always be 2 in Ω , otherwise the rank of W is
equal to 3 in Ω .

We shall use the strong minimum principle to prove the lemma. Let

P(x) = detvij (x),

and P(z0) = 0. We shall show that there exists an open small neighborhood O of z0, such that
P(x) ≡ 0 in O . If it is true, it implies the set {x | P(x) = 0} is an open set. But it is also closed,
then we get P(x) ≡ 0 in Ω since Ω connected, i.e. W is of constant rank 2.

In the following proof, we us the notations in [4] and [16]. For two functions defined in the
open set O ⊂ Ω , y ∈ O , we say that h(y) � k(y) is provided if there exist positive constants c1
and c2 such that

(h − k)(y) �
(
c1|∇P | + c2P

)
(y). (2.4)
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We also write h(y) ∼ k(y) if h(y) � k(y) and k(y) � h(y). Next, we write h � k if the above
inequality holds in O , with the constants c1, and c2 independent of y in this neighborhood.
Finally, h ∼ k if h � k and k � h.

We shall show that

3∑
i,j=1

F ijPij � 0, (2.5)

in an open small neighborhood O of z0.
Since P � 0 in Ω and P(z0) = 0, then it follows from the strong minimum principle that

P(z) ≡ 0 in O . In order to prove (2.5) at an arbitrary point z ∈ O , we choice the normal coordi-
nates, i.e. we perform a rotation Tz about z so that in the new coordinates W is diagonal at z, and
v11 � v22 � v33 at z. Consequently we can choice Tz to vary smoothly with z. If we can establish
(2.5) at z under the assumption that W is diagonal at z, then going back to the original coordi-
nates we find that (2.5) remain valid with new coefficients c1, c2 in (2.4), depending smoothly
on the independent variable. Thus it remains to establish (2.5) under the assumption that W is
diagonal at z.

For rank is at least 2, then there exists a positive constant C, which depends only on ‖v‖C4 ,
such that v11 � v22 � C at z. In the following, all calculations are at the point z using the relation
“�”, with the understanding that the constants in (2.5) are under control.

Next we compute P and its first and second derivatives in the directions xi, xj . Since W is
diagonalized at z then

0 ∼ P ∼ v33, 0 ∼ Pi ∼ v33i , (2.6)

Pij ∼ v11v22v33ij − 2v11v23iv23j − 2v22v13iv13j . (2.7)

The following are some notations we will use later:

F ij = ∂F

∂vij

, Fpl
= ∂F

∂vl

, Fv = ∂F

∂v
,

F ij,rs = ∂2F

∂vij ∂vrs

, F
ij
pl

= ∂2F

∂vij ∂vl

, F ij
v = ∂2F

∂vij ∂v
,

Fpk,pl
= ∂2F

∂vk∂vl

, Fpk,v = ∂2F

∂vk∂v
, Fvv = ∂2F

∂v2
.

By calculations we get:

F ∼ v2v11v22 + vv11
(
v2

2 + v2
3

) + vv22
(
v2

1 + v2
3

)
,

F ij = ∂F

∂urs

∂urs

∂vij

= −2v
∂F

∂uij

,

F 11 ∼ v2v22 + v
(
v2

2 + v2
3

)
,

F 22 ∼ v2v11 + v
(
v2

1 + v2
3

)
,

F 12 = F 21 ∼ −vv1v2, (2.8)
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Fv = ∂F

∂urs

∂urs

∂v
= −2vij

∂F

∂uij

∼ 2vv11v22 + v22
(
v2

1 + v2
3

) + v11
(
v2

2 + v2
3

)
∼ vv11v22 + F

v
∼ vS2(vij ) + 1

4v

∼ F 11v11 + F 22v22

v
. (2.9)

Note v 
= 0 in the above relations because the original equation and boundary condition tell us
v < 0 in Ω . Furthermore,

Fvv = 2S2(vij ) ∼ 2v11v22,

F ij
v = −1

2

∂S2

∂uij

+ vvrs

∂2S2

∂uijurs

,

F 11
v ∼ 2vv22 + v2

2 + v2
3 ∼ F 11

v
+ vv22,

F 22
v ∼ 2vv11 + v2

1 + v2
3 ∼ F 22

v
+ vv11,

F 12
v ∼ F 21

v ∼ −v1v2 ∼ F 12

v
∼ F 21

v
,

F 11,22 = F 22,11 = v2,

F 12,21 = F 21,12 = −v2. (2.10)

Differentiate (2.1) once in x3 to get

F ij vij3 + Fpl
vl3 + Fvv3 = 0. (2.11)

In fact at z it just be

F 11v113 + F 22v223 + 2F 12v123 = −Fvv3. (2.12)

Differentiate (2.1) along the direction of x3 once more. We obtain

F ij vij33 + F ij,rsvij3vrs3 + 2F
ij
pl

vij3vl3 + 2F ij
v vij3v3

+ Fpl
vl33 + Fplps vl3vs3 + 2Fplvvl3v3 + Fvv33 + Fvvv

2
3 = 0. (2.13)

Note where and thereafter the repeated indices means the sum of these terms. Using (2.6) and
the fact (vij ) is diagonal, one may see

F ij vij33 ∼ −F ij,rsvij3vrs3 − 2F ij
v vij3v3 − Fvvv

2
3 .

With (2.7) then
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F ijPij

v11v22
∼ −F ij,rsvij3vrs3 − 2F ij

v vij3v3 − Fvvv
2
3

− 2

v11
F ij v13iv13j − 2

v22
F ij v23iv23j

∼ −2v2v113v223 + 2v2v2
123

− 2
(
F 11

v v113 + F 22
v v223 + 2F 12

v v123
)F 11v113 + F 22v223 + 2F 12v123

−Fv

− 2S2(vij )

(
F 11v113 + F 22v223 + 2F 12v123

−Fv

)2

− 2

v11

(
F 11v2

113 + F 22v2
123 + 2F 12v113v123

)
− 2

v22

(
F 11v2

123 + F 22v2
223 + 2F 12v223v123

)
, (2.14)

where we used (2.12), and from (2.9) we know Fv 
= 0. Multiplying both the sides of the above
relation by F 2

v , one can write out the coefficients of each term in the right-hand side as follows:

v2
123: 2v2F 2

v + 8FvF
12
v F 12 − 8S2(vij )

(
F 12)2 − 2F 22

v11
F 2

v − 2F 11

v22
F 2

v

∼ 2

(
v2 − F 22v22 + F 11v11

v11v22

)
F 2

v + 8

(
vS2(vij ) + 1

4v

)
F 12

v
F 12 − 8S2(vij )

(
F 12)2

∼ 2(F 12)2

v2
− F 2

v

2v11v22
, (2.15)

v2
113: 2FvF

11
v F 11 − 2S2(vij )

(
F 11)2 − 2

F 11

v11
F 2

v

∼ 2Fv

(
F 11

v
+ vv22

)
F 11 − 2S2(vij )

(
F 11)2 − 2F 11Fv

v11

(
vv11v22 + 1

4v

)

∼ (F 11)2

2v2
− F 11Fv

2vv11

∼ −F 11F 22v22

2v2v11
, (2.16)

v123v113: 2Fv

(
2F 11

v F 12 + 2F 11F 12
v

) − 8S2(vij )F
11F 12 − 4F 12

v11
F 2

v

∼ 4Fv

((
F 11

v
+ vv22

)
F 12 + F 11F 12

v

)

− 8S2(vij )F
11F 12 − 4F 12Fv

vv11v22 + 1
4v
v11
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= 2F 11F 12

v2
− F 12Fv

vv11

= F 12

v2v11

(
F 11v11 − F 22v22

)
, (2.17)

v113v223: −2v2F 2
v + 2Fv

(
F 11

v F 22 + F 22
v F 11) − 4S2(vij )F

11F 22

= F 11F 22

v2
. (2.18)

For the symmetry of sub-indexes 1 and 2, we also get:

v2
223: 2FvF

22
v F 22 − 2S2(vij )

(
F 22)2 − 2

F 22

v22
F 2

v

∼ −F 11F 22v11

2v2v22
, (2.19)

v123v223: F 12

v2v22

(
F 22v22 − F 11v11

)
.

So at last

F ijPij

v11v22
F 2

v ∼ −
(√

F 11F 22v22

2v2v11
v113 −

√
F 11F 22v11

2v2v22
v223

− F 12(F 11v11 − F 22v22)√
2v2F 11v11F 22v22

v123

)2

− Av2
123, (2.20)

where

A = − (F 12)2(F 11v11 − F 22v22)
2

2v2F 11v11F 22v22
− 2(F 12)2

v2
+ F 2

v

2v11v22

∼ −(F 12)2[(F 11v11)
2 + (F 22v22)

2 − 2F 11v11F
22v22]

2v2F 11v11F 22v22

− 2(F 12)2

v2
+ (F 11v11 + F 22v22)

2

2v2v11v22

∼
(

F 11v11

2v2F 22v22
+ F 22v22

2v2F 11v11
+ 1

v2

)[
F 11F 22 − (

F 12)2]
. (2.21)

It is obvious that (
F 11v11

2v2F 22v22
+ F 22v22

2v2F 11v11
+ 1

v2

)
> 0.

Moreover,
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F 11F 22 − (
F 12)2 ∼ [

v2v22 + v
(
v2

2 + v2
3

)][
v2v11 + v

(
v2

1 + v2
3

)] − v2v2
1v2

2

∼ Fv2 + v2(v2
1v2

3 + v2
2v2

3 + v4
3

)
� 0. (2.22)

It follows that A � 0, and the quantity in (2.20) � 0, then (2.5) holds. �
3. Proof of Theorem 2

Now we begin the proof of Theorem 2. After we have Lemma 1 (constant rank theorem),
it is well known the proof of Theorem 2 is standard, see for example the papers by Caffarelli,
Friedman [4] and Korevaar, Lewis [16].

First we have the boundary convexity estimates for the function v := −(−u)1/2, where the
function u(x) is the admissible solution of Eq. (1.6), which follows from the following proposi-
tion if we take f (t) = −(−t)1/2.

Proposition 1. (See e.g. [5,15].) Let Ω ⊂ R
n be smooth, bounded and strictly convex (i.e. all the

principal curvature of ∂Ω are positive). Let u ∈ C2(Ω) satisfy

u < 0 in Ω, u = 0 and Du · ν > 0 on ∂Ω, (3.1)

where ν is the exterior normal to ∂Ω . Let

Ωε = {
x ∈ Ω: d(x, ∂Ω) > ε

}
(3.2)

and let v = f (u). Then for small enough ε > 0 the function v is strictly convex in a boundary
strip Ω \ Ωε if f satisfies

(i) f ′ > 0, (ii) f ′′ > 0, (iii) lim
u→0−

f ′

f ′′ = 0. (3.3)

Now we use the deformation technique combine with Lemma 1 (constant rank theorem) to
obtain the proof of Theorem 2 as in Korevaar, Lewis [16], for completeness we repeat partly their
proof.

Proof of Theorem 2. Let us illustrate the continuity method to end Theorem 2. Now, if Ω is the
unit ball B , then the solution of (2.1), (2.2) is

v(x) = −[(
1 − |x|2)/√2n(n − 1)

]1/2
, x ∈ B.

So clearly v is strictly convex. For an arbitrary strictly convex domain Ω , set Ωt = (1− t)B+ tΩ ,
0 � t � 1. Then from the theory of convex bodies (see for example Sections 1.7, 1.8 and 2.5 in
the book [19], and Section 3.1 in the book [21]) we can deform B continuously into Ω by the
family (Ωt ), 0 � t < 1, of strictly convex domain in such a way that ∂Ωt → ∂Ωs as t → s in
the sense of Hausdorff distance, whenever 0 � s � 1. And the deformation also is chosen so that
∂Ωt , 0 � t < 1, can be locally represented for some α, 0 < α < 1, by a function whose norm
in the space C2,α of functions with Hölder continuous second derivatives depends only on δ,
whenever 0 < t � δ < 1.
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Suppose u ∈ C∞(Ω) is the admissible solution of (1.6), v := −(−u)1/2 and Ht is the cor-
responding Hessian matrix of v. First H0 is positive definite, and from the boundary estimates
(Proposition 1) we have Hδ is positive definite in an ε neighborhood of ∂Ωδ . From the C2,α

estimates of the solution u on the Hessian equation [6], we know this bounded depends only the
uniformly bounded geometry of Ωt which depends the geometry Ω and t . We conclude that if
v(., s) is strictly convex for all 0 � s < t , then v(., t) is convex.

So if for some δ, 0 < δ < 1, Hδ is positive semi-definite but not positive definite in Ωδ , we
say it is impossible by constant rank theorem (Lemma 1) and boundary estimates (Proposition 1).
We conclude Hδ is positive definite. Then v = −√−u is strictly convex in Ω . �
Remark 3. The convexity index 1

2 in Theorem 2 is sharp, we give an analogous counterexample
in [13].

Lemma 2. Assume Ω is a convex domain in R
n, and u ∈ C(Ω), u|∂Ω = 0, u|Ω < 0. If for α > 0,

y ∈ ∂Ω , z ∈ Ω , lim supt→0+ t−1/αu((1 − t)y + tz) = 0, then −u is not α-concave in Ω .

Proof. Suppose −u is α-concave. Then for t ∈ (0,1), the concavity of (−u)α implies that

(−u)α
(
(1 − t)y + tz

)
� (1 − t)(−u)α(y) + t (−u)α(z) = t (−u)α(z),

so that t−1/αu((1 − t)y + tz) � u(z) < 0, which contradicts assumption. �
Now we show the index 1

2 is sharp in Theorem 2.

Proof of the sharpness of index 1
2 . Let n = 3 and x ∈ R

n, and write xn = x · en and x′ =
x − xnen, where en = (0, . . . ,0,1) is the nth unit vector in the standard basis for R

n. Define an
infinite open cone K for a ∈ (0,1/2) by K = {x ∈ R

n: |x′| < axn}. In our problem (1.6), let
Ω is a subset of K , 0 ∈ ∂Ω and en ∈ Ω . Construct a function w :K → R by w(x) = (|x′|2 −
a2x2

n)/[2(n− 1)(n− 2 − 2a2)]. Then w(x) � 0 for all x ∈ K and consequently w(x) � 0 = u(x)

for all x ∈ ∂Ω , and direct calculation shows that for x ∈ Ω , S2(D
2w) = 1 = S2(D

2u). So the
comparison principle implies that u(x) � w(x) for all x ∈ Ω . For t ∈ (0,1], let x = ten. Then
x ∈ Ω and so u(x) � w(x) = −a2t2/[2(n − 1)(n − 2 − 2a2)]. Hence

lim sup
t→0+

t−1/αu(x) = 0

if −α−1 + 2 > 0; that is, if α > 1/2. Then Lemma 2 with y = 0 and z = en shows that −u is not
α-concave for α > 1/2, which means the index 1

2 making −(−u)1/2 strictly convex is sharp. �
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