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Abstract

We use the deformation methods to obtain the convexity of solution of a class Hessian equation in
bounded convex domain in R3.
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1. Introduction

The convexity is an issue of interest for a long time in partial differential equations, it is
intimately related to the study of geometric properties of solutions of general elliptic partial
differential equations. It was Gabriel [8] first obtained that the level sets of the Green function in
three-dimension convex domains in R3 are strictly convex. Makar-Limanov [18] considered the
following elliptic boundary value problem:

Au=—1 1in 2,

1.1
u=~0 on 052, (1.1
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in bounded plane convex domain 2. By an ingenious argument involving the maximum princi-
ple, he proved that u'/? is strictly concave.

In 1976, Brascamp, Lieb [3] established the log-concavity of the fundamental solution of
diffusion equation with convex potential. As a consequence, they proved the log-concavity of the
first eigenfunction of Laplace operator in convex domains.

For the case of dimension two, Acker, Payne, Philippin [1] utilized the idea of Makar-Limanov
[18] to obtain a new proof for the Brascamp—Lieb’s result. Along the idea in [1,18], Ma [17] gave
a new proof of problem (1.1), and he obtained an optimal lower bound of the Gaussian curvature
for the graph of u'/2,

In 1983 Korevaar [14] introduced a very useful technique now named Korevaar’s concavity
maximum principle, and established convexity results for the mean curvature type equations un-
der certain boundary value conditions. Then immediately new proofs of the log-concavity of the
first eigenfunction of convex domains was given respectively by Korevaar [15] and Caffarelli,
Spruck [5]. In different extent, Kawohl [12] (for the intermediate case) and Kennington [13]
improved Korevaar’s maximum principle, which enabled them to give a higher-dimensional gen-
eralization of the result of Makar-Limanov [18]. In particular, Kennington pointed out that the
concavity number % of u is sharp in Eq. (1.1) in higher-dimension case.

But Korevaar’s maximum principle have strong restrictions in many applications, for example
we cannot obtain the Gabriel [8] results. In a fundamental work of Singer, Wong, Yau, Yau
[20] and Caffarelli, Friedman [4], they devised a new deformation technique to deal with the
convexity. Caffarelli, Friedman [4] established the strict convexity of level sets of solution of
some equations in two-dimensional convex domain, especially they got the strict log-concavity
of the first eigenfunction of Laplace operator in plane convex domains. Korevaar, Lewis [16]
generalized the deformation method to higher dimensions, and obtained the strict concavity of
u'/? in Eq. (1.1) in higher-dimension case.

Recently, Alvarez, Lasry, Lions [2] generalized the approach of Korevaar [14] and Kennington
[13] to a large class fully nonlinear second order elliptic equations:

F(x,u(x), Du(x), D*u(x)) =0 (1.2)

in convex domain £2 in R”. But the method cannot give the strict convexity of the solutions.
Naturally one wish to generalize the deformation method of Caffarelli, Friedman [4] and Kore-
vaar, Lewis [16] to fully nonlinear version. Motivated by some differential geometry problems,
such deformation lemma (constant rank theorem) was established in Guan, Ma [9] and Caffarelli,
Guan, Ma [7], and they concluded the general convexity principle for the following elliptic equa-
tions:

F(D*u(x)) = f(x,u(x), Du(x)). (1.3)

They found the structure condition on F'(A) just the case as in Alvarez, Lasry, Lions [2], that is
—F(A~Y) is concave on A.

The more detail history and results on the convexity of solutions of elliptic partial differential
equations please consult the book by Kawohl [11] and the survey paper by Guan, Ma [10].

In this paper we shall generalized the results of Makar-Limanov [18] and Korevaar, Lewis [16]
on Eq. (1.1) to a class Hessian equation in three-dimension case. First we need some preparation
to state our theorem.
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Let Sy be the kth elementary symmetric function, that is for 1 <k <n and A = (A1, ...,
)\n) € Rn?

S = Y ki (1.4)

1<ij<<ix<n

In a seminal paper by Caffarelli, Nirenberg, Spruck [6], they considered the following Dirichlet
problem for Hessian equation

Sc(M{D*u})=f(x)>0 inQ2cCR",
u=¢ on 8£2, (1.5)

where 2 < k <n — 1 and A{D?u} means the eigenvalues of Hessian matrix {uij(x)}, 2 is a
smooth bounded domain in R”.
In order to state their theorem, we first give some notations from [6].

Definition 1. (See [6].) For 1 <k < n, define
Ii={reR" 5;(})>0,..., A >0}.

A function u € C%(£2) is called an admissible solution of (1.5) if the eigenvalues of {uij(x)}
belong to I for each x € £2.

In order to solve the Dirichlet boundary value problem (1.5), they [6] found that the following
necessary condition for the smooth bounded domain £2 C R”. If we let « = («1,...,k,—1) be
the principal curvature of the boundary 952, then k € I';_;.

Now let us state their existence theorem on the admissible solutions for Eq. (1.5).

Theorem 1. (See [6].)If f(x) € C®(R), f(x) > 00n 2, ¢ € CX(3R), 2 is a smooth bounded
domain in R" with principal curvature k = (k1, ..., kn—1) of 052 satisfies k € I'y_1. Thenforihe
Dirichlet boundary value problem (1.5) there exists a unique admissible solution u(x) € C*(£2).

A natural question is whether the solution obtained by [6] has some similar convexity as in
Laplace equation case (1.1) (see for example [18] and [16]).

In this work we answer this question for the following simplest case. We consider the follow-
ing equation in R3:

S;(A{D*u})=1 inRcCR’

u=0 on d82. (1.6)
The following theorem is our main result.
Theorem 2. Suppose u € C*®(82) is the admissible solution of (1.6), and 2 is a strictly convex

smooth bounded domain in R3, then v := —(—u)l/ 2 s strictly convex, and the convexity index %
is sharp.
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Remark 1. In the above theorem we only obtain the three-dimension case, it seems that for the
higher dimension we need other methods to get the similar results. The another question is how
about the higher-order elementary symmetric function. We believe the similar results holds.

Remark 2. Also in three-dimension case, we can use the above calculation to get the generaliza-
tion of the theorem by Brascamp, Lieb [3], then we obtain the Brunn—Minkowski inequality for
the eigenvalue of a class Hessian operator and prescribing the equality case. This is a joint work
with Professor Liu Pan.

The plan of the paper is as follows. In Section 2, we prove the Hessian of v has constant rank
if the function v in Theorem 2 is convex. In Section 3, we show v is strictly convex by continuity
method and the index % is sharp.

2. Constant rank theorem

If weletv = —(—u)1/2, then Eq. (1.6) is equivalent to

1 1
F(v, Dv, D*v) = S = 7 in 2 CR?, 2.1

v=0 on ds2, 2.2)

where

F(v, Dv, Dzv) =028 (v;j) + v(v% + v%)vll + v(v12 + v%)vzz + v(v]2 + v%)v33

—vu1v2(v12 + v21) — vY1Y3(V13 +v31) — VY23 (V23 +v32).  (2.3)

Lemma 1 (Constant rank theorem). Let u € C*(2) is an admissible solution of Eq. (1.6), where
2 c R3 is any domain. If v := —(—w)'"?isa convex function, i.e. the Hessian matrix of v is
semipositive in 2, i.e. W := {v;;} > 0, then (v;;) has constant rank in £2.

Proof. For n = 3, the rank of matrix {v;;} can only be in three cases: 1, 2 or 3. Rank is equal to 1
is impossible, since rank 1 implies S>(v;;) degenerate, which contradicts to the condition that u
is an admissible solution of Eq. (1.6). Now we suppose W attain to the minimal rank 2 at some
point zo € §2, we will prove that the rank of W always be 2 in £2, otherwise the rank of W is
equal to 3 in £2.

We shall use the strong minimum principle to prove the lemma. Let

P (x) = detv;;(x),

and P(zp) = 0. We shall show that there exists an open small neighborhood O of zg, such that
P(x)=01in O. If it is true, it implies the set {x | P(x) = 0} is an open set. But it is also closed,
then we get P(x) =0 in §2 since §2 connected, i.e. W is of constant rank 2.

In the following proof, we us the notations in [4] and [16]. For two functions defined in the
open set O C £2, y € O, we say that h(y) < k(y) is provided if there exist positive constants ¢
and c¢j such that

(h—k)(y) < (c1IVP|+c2P) (). 24
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We also write h(y) ~ k(y) if h(y) < k(y) and k(y) < h(y). Next, we write i < k if the above
inequality holds in O, with the constants ¢y, and ¢y independent of y in this neighborhood.
Finally, h ~k if h <k and k < h.

We shall show that

3
> Fip; <o, (2.5)
ij=1

in an open small neighborhood O of zg.

Since P > 0 in §2 and P(zp) = 0, then it follows from the strong minimum principle that
P(z) =0in O. In order to prove (2.5) at an arbitrary point z € O, we choice the normal coordi-
nates, i.e. we perform a rotation 7, about z so that in the new coordinates W is diagonal at z, and
V11 = V22 2 v33 at z. Consequently we can choice T, to vary smoothly with z. If we can establish
(2.5) at z under the assumption that W is diagonal at z, then going back to the original coordi-
nates we find that (2.5) remain valid with new coefficients ¢y, ¢ in (2.4), depending smoothly
on the independent variable. Thus it remains to establish (2.5) under the assumption that W is
diagonal at z.

For rank is at least 2, then there exists a positive constant C, which depends only on |[v]| -4,
such that vi; > vy > C at z. In the following, all calculations are at the point z using the relation
“<”, with the understanding that the constants in (2.5) are under control.

Next we compute P and its first and second derivatives in the directions x;, x ;. Since W is
diagonalized at z then

0~ P~ w33, 0~ P ~v33, (2.6)
Pij ~v11v22033i5 — 2011v23i V235 — 2022013 V13- (2.7

The following are some notations we will use later:

y oF oF oF
FJZ 5 Fplz_v sz_a
ov;; vy v
2 2 2
piirs _ °F 7 ij _ 0°F , Fil — 8F7
31),'/‘31)” pi avijav[ v 8vij8v
_0%’F _ 9%F _9°F
PPl edny” Pt g udv” T 902

By calculations we get:

F ~vvjjom + vv“(v% + v%) + vvzz(v% + v%)
Fii — OF Ouyg — o oF ’
Burs 81),']' 3I/tij

Fl~ U2U22 + v(v% + v_%),
F2 ~ vy + (v +v3),

F2=F2' ~ —yvjvy, (2.8)
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OF duyg oF

duyg dv ou;j

v
~ 2vv1 v + vzz(v% + v%) + vqg (v% + v%)

F 1
~ovivn + — ~vSH ;) + —
v 4v
F''y + F?uy

v

(2.9)

Note v # 0 in the above relations because the original equation and boundary condition tell us

v < 0 in £2. Furthermore,

Fyy =28 (vij) ~ 2v11v22,

iy N 9%s
F)=—- 2 4oy 2
2 Oujj

rs £
8Mij’/lrs
11
1.9 2 » F
F," ~ vv22+v2—|—v3~7+vv22,

22 2 2 F2
F;2~2vvi + vy +v3 ~ — +ovpg,
v

F12 F2l
Fvlz’\'szl ~ =V~ — ~ —,
v v

Fll,22 — F22,ll — v2’

F12,21 — F21,12 — —U2.

Differentiate (2.1) once in x3 to get
Fijv,'j3 + Fpu3 + Fyv3 =0.
In fact at z it just be
F“v113 + F22v223 + 2F12v123 =—F,vs.

Differentiate (2.1) along the direction of x3 once more. We obtain

y irs ij ij
FY;j33 + FY" 030053 + 2F 5 vij3viz + 2F vij3v3

+ Fpvi33 + Fp p,vi3vs3 + 2F 00303 + Fyoss + Fvv”% =0.

(2.10)

@2.11)

2.12)

2.13)

Note where and thereafter the repeated indices means the sum of these terms. Using (2.6) and

the fact (v;;) is diagonal, one may see

ij ijrs ij 2
FYvij33 ~ —F"7"0;j30,53 — 2F) 0303 — Fypv3.

With (2.7) then
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Fip;

V11022

y 5
—F"0;j30p53 — 2F 03303 — Fyyv3
2. 2 .
— — FYv3iv13) — — FY vp3v23;
vy v22
2 2.2
~ =207V113v223 + 207 V3

F'y3 4+ F2 03 +2F 203

—2(F31v113+F32v223+2F,}2v123) 7
— Iy

F'y3 4+ F2up3 + 2F12v123>2

- 252(Uij)< -

2
11,2 222 12
11

2
1,2 22 12
3 (F iy + F*v35 +2F Puasvins),
22

1719

(2.14)

where we used (2.12), and from (2.9) we know F;, # 0. Multiplying both the sides of the above
relation by sz, one can write out the coefficients of each term in the right-hand side as follows:

2F22 2F11
vhy 207 F248F,F2F' —88(v;j)(F'?)* = =—F2 -
V11 v22

F

F?2vup + F'ly 1\ F2
~ 2<u2 - #%3 + 8<sz(v,-j) + E)TF12 — 88, (vij)(F'?)?

U11022

_2FPY? F?
2

v 2v11v22 ’

Fll
vhy 2R FNFY 280 (FM1) - szZ

v

2F“FU(
V11

1
VUV —
11 22+4v

Fll 5
~2F,| — +vvp Fll— ZSz(vij)(F“) —
v
N (FI])Z B Flva
202 2011
F11F22v22

2v2U11

~ —

4F12
V[23V113: 2FU(2FU11F12+2F11FU]2) — 88w FM'F? - —F?

v !
Fll F11F12
() P
v v

1
vU11V22 + 1
_ 8S2(v,~,')F11F12 —4F12FUM
' V11

(2.15)

(2.16)
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B 2F11F12 B F12Fv

v2 VUL
F'2 11 22
= vzvn(F vt — F*vp), (2.17)

vi3vns:  —20°F) +2F, (F) F2 + FRF') — 485, (v F! F2

F11F22
= o (2.18)
For the symmetry of sub-indexes 1 and 2, we also get:
s F22
V3t 2F,FRF2 28 (vij)(F?)" — 21)2—2FU2
F11F22v11 (2 19)
202y ’
F12
V1232230 5 (Fzzvzz—Fllvn)-
v2up
So at last
Fip; , FUF2y,, FUF2y,,
—Fy~— |\ v — | 55— V23
V11V 20201 20209,
F12 Fllv _ F22v 2
_F(F v 22) v123> — Avd,,, (2.20)
\/ZUZF“vllFszzz
where
A _(F12)2(F11U“ _ F22U22)2 - 2(F12)2 N Fv2
202F Wy F220y, v? 2v11v22
N —(F)2[(F"v11)? + (FPvp)? — 2F vy F2up]
202F Ny F220y9
B 2(F12)? n (F1vyy + FP2uy)?
V2 202v11v22
F'lo F2un  1\tgi00 12
~ + + — F —(F . 2.21
(2v2F22v22 202F Wy vz)[ (F5)] 221

It is obvious that

F”U F22 1
no v 1Y\,
202F22yy,  202FMUyy 02

Moreover,
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2
FUR2 — (F2)2 ~ [+ 0(a3 + ) [oPon +0(6? +03)] — o202
~ Fv? + 0?2 (viv] + v3v3 + %)
>0. (2.22)
It follows that A 2 0, and the quantity in (2.20) < 0, then (2.5) holds. O

3. Proof of Theorem 2

Now we begin the proof of Theorem 2. After we have Lemma 1 (constant rank theorem),
it is well known the proof of Theorem 2 is standard, see for example the papers by Caffarelli,
Friedman [4] and Korevaar, Lewis [16].

First we have the boundary convexity estimates for the function v := —(—u)"/ 2, where the
function u(x) is the admissible solution of Eq. (1.6), which follows from the following proposi-
tion if we take f (1) = —(—1)/2.

Proposition 1. (See e.g. [5,15].) Let 2 C R" be smooth, bounded and strictly convex (i.e. all the
principal curvature of 382 are positive). Let u € C*(82) satisfy

u<0 inS2, u=0 and Du-v>0 onos2, (3.1)
where v is the exterior normal to 052. Let
2, ={xeR:dx,02)>¢} (3.2)

and let v = f(u). Then for small enough ¢ > 0 the function v is strictly convex in a boundary
strip §2 \ 2. if f satisfies
f/
i f'>0, i) f”>0, (iii) lirg W =0. (3.3)
u—0—

Now we use the deformation technique combine with Lemma 1 (constant rank theorem) to
obtain the proof of Theorem 2 as in Korevaar, Lewis [16], for completeness we repeat partly their
proof.

Proof of Theorem 2. Let us illustrate the continuity method to end Theorem 2. Now, if £2 is the
unit ball B, then the solution of (2.1), (2.2) is

v(x) = —[(1 = 1xP?)/v2nn—1)]"?, xeB.

So clearly v is strictly convex. For an arbitrary strictly convex domain £2, set £2, = (1 —#)B+1S2,
0 <t < 1. Then from the theory of convex bodies (see for example Sections 1.7, 1.8 and 2.5 in
the book [19], and Section 3.1 in the book [21]) we can deform B continuously into §2 by the
family (£2;), 0 <t < 1, of strictly convex domain in such a way that 02, — 9§25 as t — s in
the sense of Hausdorff distance, whenever 0 < s < 1. And the deformation also is chosen so that
082;, 0 <t < 1, can be locally represented for some o, 0 < o < 1, by a function whose norm
in the space C>% of functions with Holder continuous second derivatives depends only on 8,
whenever 0 <t <68 < 1.
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Suppose u € C>(£2) is the admissible solution of (1.6), v := —(—u)l/2 and H; is the cor-
responding Hessian matrix of v. First Hy is positive definite, and from the boundary estimates
(Proposition 1) we have Hj is positive definite in an & neighborhood of 3£25. From the C>¢
estimates of the solution # on the Hessian equation [6], we know this bounded depends only the
uniformly bounded geometry of £2, which depends the geometry £2 and ¢. We conclude that if
v(., s) is strictly convex for all 0 < s < ¢, then v(., t) is convex.

So if for some §, 0 < 6 < 1, Hs is positive semi-definite but not positive definite in £25, we
say it is impossible by constant rank theorem (Lemma 1) and boundary estimates (Proposition 1).
We conclude Hj is positive definite. Then v = —+/—u is strictly convex in 2. O

Remark 3. The convexity index % in Theorem 2 is sharp, we give an analogous counterexample
in [13].

Lemma 2. Assume $2 is a convex domain in R", and u € C(2), ulye =0, u|g < 0. If fora > 0,
y €082, z €82, limsup,_, o+ V(1 = 1)y +tz) =0, then —u is not a-concave in $2.

Proof. Suppose —u is a-concave. Then for ¢ € (0, 1), the concavity of (—u)* implies that
(=) (A =0y +12) = (1 = 1) (=u)* (y) + 1 (=1)* (2) =1 (=1)*(2),
so that r =1y ((1 — 1)y +tz) < u(z) <0, which contradicts assumption. O

Now we show the index % is sharp in Theorem 2.

Proof of the sharpness of index % Let n =3 and x € R", and write x, = x - ¢, and x’ =
X — xue,, where e, = (0, ..., 0, 1) is the nth unit vector in the standard basis for R”. Define an
infinite open cone K for a € (0,1/2) by K = {x € R": |x'| < ax,}. In our problem (1.6), let
£ is a subset of K, 0 € 382 and e, € 2. Construct a function w: K — R by w(x) = (x'|> —
a®x2)/[2(n — 1)(n — 2 —2a?)]. Then w(x) < 0 for all x € K and consequently w(x) < 0= u(x)
for all x € 382, and direct calculation shows that for x € 2, S»(D?*w) = 1 = S»(D?u). So the
comparison principle implies that u(x) > w(x) for all x € £2. For ¢ € (0, 1], let x = te,. Then
x € £2 and so u(x) > w(x) = —a?t?/[2(n — 1)(n — 2 — 2a*)]. Hence

limsupz~V/%u(x) =0
t—0t

if —a~! 42 > 0; that is, if « > 1/2. Then Lemma 2 with y = 0 and z = e, shows that —u is not
a-concave for o > 1/2, which means the index % making —(—u)!/? strictly convex is sharp. O
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