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1 Introduction

Curvature measure and surface area measure are the basic notions in the classical dif-

ferential geometry. They play fundamental roles in the theory of convex bodies. They are

closely related to the differential geometry and integral geometry of convex hypersur-

faces. The Minkowski problem is the problem of prescribing nth surface area measure

on S
n. The Christoffel problem concerns the prescribing the first surface area measure

(e.g. see [1, 3, 6, 7, 14, 17, 19]). The general problem of prescribing surface area mea-

sures is called the Christoffel–Minkowski problem, we refer [12] for an updated account.

The problem of prescribing zeroth curvature measure is called the Alexandrov prob-

lem, which is a counterpart to Minkowski problem. The problem is equivalent to solve

a Monge–Ampère-type equation on S
n. The existence and uniqueness were obtained by

Alexandrov [2]. The regularity of the Alexandrov problem in elliptic case was proved by

Pogorelov [18] for n = 2 and by Oliker [16] for higher-dimension case. The general regu-

larity results (degenerate case) of the problem were obtained in [9]. The general problem

of prescribing (n − k)th curvature measure for case k ≤ n is an interesting counterpart

of the Christoffel–Minkowski problem. It has been discussed in literature (e.g. [20]).

Nevertheless, very little is known except for the Alexandrov problem.
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In this article, we are concerned with the existence of convex bodies with the

prescribed (n − k)th curvature measure for 1 ≤ k < n.

We start with the definitions of curvature measures and surface area measures

for convex bodies with smooth boundary. Let � be a bounded convex body in R
n+1 with

C 2 boundary M, the corresponding curvature measures and surface area measures of �

can be defined according to some geometric quantities of M. Let κ = (κ1, . . . , κn) be the

principal curvatures of M at point x, let Wk(x) = Sk(κ(x)) be the kth Weingarten curvature

of M at x (where Sk is the kth elementary symmetric function). In particular, W1, W2, and

Wn are the mean curvature, the scalar curvature, and the Gauss–Kronecker curvature,

respectively. The kth curvature measure of � is defined as

Ck(�, β) :=
∫

β∩M
Wn−kd Fn

for every Borel measurable set β in R
n+1, where d Fn is the volume element of the induced

metric of R
n+1 on M. Since M is convex, M is star-shaped about some point. We may

assume that the origin is inside of �. Since M and S
n is diffeomorphic through radial

correspondence RM. Then the kth curvature measure can also be defined as a measure

on each Borel set β in S
n (e.g. see [20]):

Ck(M, β) =
∫

RM (β)
Wn−kd Fn.

We note that Ck(M, Sn) is the kth quermassintegral of �. Similarly, if M is strictly convex,

let r1, . . . , rn be the principal radii of curvature of M, Pk = Sk(r1, . . . , rn). The kth surface

area measure of � then can be defined as

Sk(�, β) :=
∫

β

Pkdσn

for every Borel set β in S
n, where dσn is standard volume element on S

n.

We are interested in the problem of prescribing (n − k)th curvature measure in a

differential geometrical setting. Suppose 1 ≤ k < n is a given integer, we consider.

1.1 Curvature measure problem

For each positive function f ∈ C 2(Sn), find a convex hypersurface M as a graph over S
n,

such that Cn−k(M, β) = ∫
β

fdσ for each Borel set β in S
n, where dσ is the standard volume

element on S
n.
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We would like to deduce the problem to a fully nonlinear partial differential

equation on S
n. If M is of class C 2, then

Cn−k(M, β) =
∫

RM (β)
Skd F =

∫
β

Skgdσn. (1.1)

where g is the density of d F with respect to standard volume element dσn on S
n. If

we view M as a graph over S
n, we may write X(x) = ρ(x)x, x ∈ S

n, ∀X ∈ M. The density

function g in (1.1) can be computed (see (2.4) in the next section) as

g = ρn−1(ρ2 + |∇ρ|2)
1
2 .

Therefore by (1.1), the problem of prescribing (n − k)th curvature measure can be reduced

to the following curvature equation:

Sk(κ1, κ2, . . . , κn) = fρ1−n(ρ2 + |∇ρ|2)−1/2, on S
n, (1.2)

where f > 0 is the given function on S
n.

This type of equations can be put in a more general form:

Sk(κ1, κ2, . . . , κn) = g(x, ρ, ∇ρ), 1 ≤ k ≤ n on S
n. (1.3)

A solution of (1.2) is called admissible if at each point X ∈ M, its principal cur-

vatures (κ1, κ2, . . . , κn) is in the Garding’s cone:

�k = {λ ∈ R
n | Si(λ) > 0, ∀i ≤ k.}

For k < n, an admissible solution is not necessarily a convex solution. The issue of

convexity of admissible solution when k < n arising naturally as in the Christoffel–

Minkowski problem [12]. Lemma 2.4 in the next section states that admissible solution

to Equation (1.2) is unique if it exists. Therefore, some condition on f is necessary to

ensure the existence of convex solutions when k < n. The other challenging problem

for Equation (1.2) is the lack of some appropriate C 2 a priori estimates for admissible

solutions. Equation (1.2) is similar to the equation of prescribing Weingarten curvature

equation in [5, 11]. But there is a difference: g1/k(x, ρ, ∇ρ) may not be necessary convex in

∇ρ. This makes the matter delicate. The problem of C 2 a priori estimates for admissible
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solutions of Equation (1.2) is still open. We will discuss this in the last section of the

article.

Equation (1.2) was studied in an unpublished notes [10] by Yan Yan Li and the first

author. The uniqueness and C 1 estimates were established for admissible solutions in

[10]. But the issue of convexity and C 2 estimates for Equation (1.2) were left open (except

for k = 1 and k = n, the first case follows from the theory of quasi-linear equations and

the latter case was dealt with in [9, 16]).

We now state our main results.

Theorem 1.1. Suppose f (x) ∈ C 2(Sn), f > 0, n ≥ 2, 1 ≤ k ≤ n − 1. If f satisfies the con-

dition

|X| n+1
k f

(
X

|X|
)− 1

k

is a strictly convex function in R
n+1 \ {0}, (1.4)

then there exists a unique strictly convex hypersurface M ∈ C 3,α, α ∈ (0, 1) such that it

satisfies (1.2). �

When k = 1 or 2, the strict convex condition (1.4) can be weakened.

Theorem 1.2. Suppose k = 1, or 2 and k < n, and suppose f (x) ∈ C 2(Sn) is a positive

function. If f satisfies

|X| n+1
k f

(
X

|X|
)− 1

k

is a convex function in R
n+1 \ {0}, (1.5)

then there exists unique strictly convex hypersurface M ∈ C 3,α, α ∈ (0, 1) such that it

satisfies Equation (1.2). �

Since the Alexandrov problem (Gauss curvature measure problem) has already

been solved [2, 9, 16, 18], Theorem 1.2 yields solutions to two other important measures,

the mean curvature measure and scalar curvature measure under convex condition (1.5).

The class of functions on S
n satisfying condition (1.5) is quite wide. For example, if v > 0

is a function on S
n with (vi j + δi jv) > 0, then f = v−(n+1) is in this class. This is because

the homogeneous degree one extension h = |X|v− 1
n+1 ( X

|X| ) of v− 1
n+1 is convex in R

n+1 and it

is strictly convex except in the radial direction. It is easy to see that h
n+1

k satisfies (1.5)

since n+1
k > 1. We note that (vi j + δi jv) > 0 is equivalent to say that v is a support function

of a strictly convex body.
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The plan of the article is as follows. In Section 2, we derive uniqueness and C 1

bound of the solutions of (1.3). Theorem 1.1 will be proved in Section 3. The novel feature

is the C 2 estimates. Instead of obtaining an upper bound of the principal curvatures,

we look for a lower bound of the principal curvatures by transforming (1.2) to a new

equation for the support function on S
n through Gauss map. Section 4 is devoted to the

proof of Theorem 1.2. The key part is the C 2 estimates for the case k = 2, which we use

a special structure of S2. Then we establish a deformation lemma 4.3 as in [11, 12] to

ensure the convexity of solutions in the process of applying the method of continuity.

In the last section, we discuss C 2 estimates for admissible solutions of curvature type

Equations (1.3).

2 Uniqueness and C1 Boundness

We first recall some relevant geometric quantities of a smooth closed hypersurface M ⊂
R

n+1. We assume the origin is inside the body enclosed by M.

A, B, . . . will be from 1 to n + 1 and Latin from 1 to n, the repeated indices denote

summation over the indices. Covariant differentiation will simply be indicated by indices.

Let Mn be a n-dimension closed hypersurface immersed in R
n+1. We choose an

orthonormal frame in R
n+1 such that {e1, e2, . . . , en} are tangent to M and en+1 is the

outer normal. Let {ωA} and {ωA,B} be the corresponding coframe and the connection

forms, respectively. We will use the same notions for the pull-back of them through the

immersion. Therefore, on M,

ωn+1 = 0.

The second fundamental form is defined by the symmetric matrix {hij} with

ωi,n+1 = hijω j. (2.1)

We recall the following fundamental formulas of a hypersurface in R
n+1:

Xij = −hijen+1 (Gauss formula)

(en+1)i = hijej (Weingarten equation)

hijk = hikj (Codazzi formula)

Rijkl = hikhjl − hilh jk (Gauss equation), (2.2)
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where Rijkl is the curvature tensor. And we have the following formulas:

hijkl = hijlk + hmj Rimlk + him Rjmlk,

hijkl = hklij + (hmjhil − hmlhij)hmk + (hmjhkl − hmlhkj)hmi,

(en+1)ii =
n∑

j=1

hiijej −
n∑

j=1

h2
i jen+1. (2.3)

Since M is star-shaped with respect to origin, the position vector X of M can be

written as X(x) = ρ(x)x, x ∈ S
n, where ρ is a smooth function on S

n. Let {e1, . . . , en} be

smooth local orthonormal frame on S
n, let ∇ be the gradient on S

n and covariant differen-

tiation will simply be indicated by indices. Then in terms of ρ, the metric of M is given by

gij = ρ2δi j + ρiρ j.

So the area factor

g = (det gij)
1
2 = ρn−1(ρ2 + |∇ρ|2)

1
2 . (2.4)

The second fundamental form of M is

hij = (ρ2 + |∇ρ|2)−
1
2 (ρ2δi j + 2ρiρ j − ρρi j) (2.5)

and the unit outer normal of the hypersurface M in R
n+1 is

N = ρx − ∇ρ√
ρ2 + |∇ρ|2

. (2.6)

The principal curvature (κ1, κ2, . . . , κn) of M are the eigenvalue of the second fundamental

form with respect to the metric satisfying the following equation:

det(hij − kgij) = 0.

Equation (1.3) can be expressed as differential equations on the radial function

ρ and position vector X, respectively. From (2.6) we have

〈X, N〉 = ρ2(ρ2 + |∇ρ|2)−1/2,

Sk(κ1, κ2, . . . , κn)(X) = |X|−(n+1) f
(

X

|X|
)

〈X, N〉, ∀X ∈ M. (2.7)

Equation (1.2) is equivalent to Equation (2.7).
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Definition 2.1. For 1 ≤ k ≤ n, let �k be a cone in R
n determined by

�k = {λ ∈ R
n : S1(λ) > 0, . . . , Sk(λ) > 0}.

A C 2 surface M is called k-admissible if at every point X ∈ M, (κ1, κ2, . . . , κn) ∈ �k. �

The following four lemmas had been proved in [10]; for the completeness, we

provide the proofs here. First we get the C 0 estimates.

Lemma 2.2. If M satisfies (2.7), then

(
minSn f

C k
n

)1/(n−k)

≤ min
Sn

|X| ≤ max
Sn

|X| ≤
(

maxSn f

C k
n

)1/(n−k)

. �

Proof. Since M is compact, |X| attains a maximum R at some point X1. Let BR be a ball

of radius R centered at the origin. We note that M ⊂ BR, and M and ∂ BR have the same

outer normal X1
|X1| at X1. We have 〈X1, N〉 = R and

κi(X1) ≥ R, ∀i = 1, · · · , n.

Hence,

f
(

X1

|X1|
)

= Sk(κ(x1), · · · , κ(X1)) ≥ C k
n Rn−k.

In turn,

max
Sn

|X| ≤
(

maxSn f

C k
n

)1/(n−k)

.

The inequality ( minSn f
C k

n
)1/(n−k) ≤ minSn |X| can be shown in a similar way. �

The next is the gradient estimate for general admissible solution ρ.

Lemma 2.3. If M satisfies (2.7), then there exist a constant C depending only on

n, k, minSn f , | f |C 1 such that

max
Sn

|∇ρ| ≤ C . �
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Proof. Since we have the lower and upper bound for the solution of (2.7), thus we only

need prove

〈X, N〉 ≥ C .

For any local orthonormal frame (e1, · · · , en) on M, we have the following formulas:

(|X|2)i = 2〈X, ei〉, (2.8)

(|X|2)i j = 2δi j − 2hij〈X, N〉, (2.9)

〈X, N〉i = hik〈X, ek〉, (2.10)

〈X, N〉i j = hijk〈X, ek〉 + hij − hikhkj〈X, N〉. (2.11)

Set

φ(X) = |X|−(n+1) f
(

X

|X|
)

.

Equation (2.7) becomes

Sk(hij) = φ(X)〈X, N〉. (2.12)

Let

P (X) = γ (t ) − log〈X, N〉, t = |X|2,

of which the function γ (t ) will be determined later in the article.

Assume P (X) attains its maximum at a point Xo ∈ M. If at Xo, 〈X, e〉 = 0 for all e ∈
TXo M, we have 〈X, N〉 = |X|2, there is nothing to proof. So we may assume 〈X, N〉2 < |X|2
at Xo and we may choose the smooth local orthonormal frame {e1, . . . , en} on M such that

at Xo,

〈X, ei〉 = 0, i ≥ 2.

From now on, all the calculations will be done at Xo. Since

Pi(X) = −〈X, N〉i

〈X, N〉 + γ ′(t )(|X|2)i,
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we have

〈X, N〉i

〈X, N〉 = 2γ ′(t )〈X, ei〉. (2.13)

For i = 1, we have

h11〈X, e1〉
〈X, N〉 = 2γ ′(t )〈X, e1〉.

By the assumption, 〈X, e1〉 
= 0. We have

h11 = 2γ ′(t )〈X, N〉.

Again from (2.13), we have for

h1i = 0, i ≥ 2.

Now we may choose a local orthonormal frame field {e1, . . . , en} on M such that (hij) is

diagonal at Xo. Using (2.13), we have

F iihii1 = F ijhij1 = (φ1 + 2φγ ′(t )〈X, e1〉)〈X, N〉, (2.14)

where F ij = Sk (hij )
∂hij

. Since for any 1 ≤ i ≤ n,

Pii = −〈X, N〉ii

〈X, N〉 + 〈X, N〉i
2

〈X, N〉2
+ γ ′′(t )((|X|2)i)

2 + γ ′(t )(|X|2)ii

= − 1

〈X, N〉
[
hii1〈X, e1〉 + hii − h2

ii〈X, N〉]
+ [(γ ′(t ))2 + γ ′′(t )]((|X|2)i)

2 + γ ′(t )(|X|2)ii.
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From (2.14), we get

F ii Pii = −〈X, e1〉
〈X, N〉 F iihii1 − F iihii

〈X, N〉 + F iih2
ii

+ 4[(γ ′(t ))2 + γ ′′(t )]〈X, e1〉2 F 11 + γ ′(t )F ii[2 − 2hii〈X, N〉]
= −φ1〈X, e1〉 − 2φγ ′(t )〈X, e1〉2 − kφ + F iih2

ii

+ 4[(γ ′(t ))2 + γ ′′(t )]〈X, e1〉2 F 11 + 2γ ′(t )F ii − 2k〈X, N〉2γ ′(t )φ

≤ 0.

So we have

〈X, N〉2[2γ ′(t )φ(k − 1) + 4((γ ′(t ))2 + γ ′′(t ))F 11] ≥ 4[(γ ′(t ))2 + γ ′′(t )]|X|2F 11 − φ1〈X, e1〉
− kφ − 2φγ ′(t )|X|2 + 2γ ′(t )F ii + F iih2

ii. (2.15)

Now let

γ (t ) = α

t
,

where α > 0 will be determined later. We have

2γ ′(t )φ(k − 1) + 4((γ ′(t ))2 + γ ′′(t ))F 11 ≤
(

4α2

t4
+ 8α

t3

)
F 11. (2.16)

Now we treat the right-hand side in (2.15), where we shall use some properties

for the elementary symmetry functions (see for example [13]).

Let’s take α large enough such that

− φ1〈X, e1〉 − kφ − 2φγ ′(t )|X|2 = 2α

t2
|X|2φ − φ1〈X, e1〉 − kφ ≥ 0. (2.17)

If λ = (λ1, . . . , λn) ∈ �k, for any 1 ≤ i ≤ n, then (λ|i) = (λ1, . . . , λ̂i, . . . , λn) ∈ �k−1 and

Sk−2(λ|i) > 0, where the hat means this element has been deleted.

We have

Sk−1(λ) = Sk−2(λ|1)λ1 + Sk−1(λ|1),∑
i

F ii = (n − k + 1)Sk−1(hij).
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Since at Xo,

h11 = −2α

t2
〈X, N〉 < 0,

we have

Sk−1(hij) < Sk−1(λ|1) = F 11.

So for α large enough, there is a positive constant Co such that we have

4[(γ ′(t ))2 + γ ′′(t )]|X|2 F 11 + 2γ ′(t )F ii + F iih2
ii

≥ 4
(

α2

t4
+ 2α

t3

)
|X|2 F 11 − 2(n − k + 1)α

t2
Sk−1(hij)

≥ CoF 11. (2.18)

By (2.15)–(2.18), there exists a positive constant that depends only on n, k, minSn f , | f |C 1 ,

such that maxSn |∇ρ| ≤ C . �

The proof of the gradient estimate in Lemma 2.3 follows similar arguments in [5].

One difference is the choice of the test function. Also, a barrier condition ∂(ρ f )
∂ρ

≤ 0 was

imposed in [5]. Equation (2.7) considered here differs from Equation (1) in [5] by a factor

〈X, N〉. This factor arises naturally from the geometric situation. It is also the reason we

are able to prove Lemma 2.3 without any barrier condition. It is of interest to know when

can one obtain a gradient estimate for general curvature equation (1.3).

Let’s denote λ = λ(ρ) = (λ1(ρ), · · · , λn(ρ)) to be the eigenvalues of the second fun-

damental form (hij) with respect to the first fundamental form (gij) of the spherical graph

defined by ρ. For the rest of this section, we set F (λ) = S1/k
k (λ). Equation (1.2) can be

written as

F (λ) ≡ F (λ1, . . . , λn) = f1/kρ (1−n)/k(ρ2 + |∇ρ|2)−1/(2k) ≡ K(x, ρ, ∇ρ).

The following is the uniqueness result of the problem.

Lemma 2.4. Suppose 1 ≤ k < n, λ(ρi) ∈ �k, i = 1, 2. Suppose ρ1, ρ2 are solutions of (1.2).

Then ρ1 ≡ ρ2. �
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Proof. We prove it by contradiction. Suppose ρ2 > ρ1 somewhere on S
n. Take t ≥ 1 such

that

tρ1 ≥ ρ2 on S
n, tρ1 = ρ2 at some point P ∈ S

n.

Obviously, λ(tρ1) = t−1λ(ρ1), and therefore F (λ(tρ1)) = t−1 F (λ(ρ1)). It is clear that

K(x, tρ1, ∇(tρ1)) = t−n/k K(x, ρ1, ∇ρ1)

= t−n/k F (λ(ρ1)) ≤ t−1 F (λ(ρ1)) = F (λ(tρ1)).

It follows that

F (λ(tρ1)) − K(x, tρ1, ∇(tρ1)) ≥ 0, F (λ(ρ2)) − K(x, ρ2, ∇ρ2) = 0.

Hence

L̃(tρ1 − ρ2) ≥ 0,

where L̃ is a linear elliptic operator. The strong maximum principle yields tρ1 − ρ2 ≡ 0

on S
n. Since n > k, from Equation (1.2), we conclude that t = 1. �

The following lemma will also be used in this article.

Lemma 2.5. Let L denote the linearized operator of F (λ) − K(x, ρ, ∇ρ) at a solution ρ of

(1.2). If w satisfies Lw = 0 on S
n, then w ≡ 0 on S

n. �

Proof. We write F (x, ρ, ∇ρ, ∇2ρ) ≡ F (λ). The linearized operator L at ρ is defined as

L(u) =
∑
i, j

∂F

∂ρi j
uij +

∑
k

(
∂F

∂ρk
− ∂K

∂ρk

)
uk +

(
∂F

∂ρ
− ∂K

∂ρ

)
u.

We have

F (x, tρ, ∇(tρ), ∇2(tρ)) = F (λ(tρ)) = F (λ(ρ)/t ).
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Applying d
dt

∣∣
t=1 to above identity,

∑
i, j

∂F

∂ρi j
ρi j +

∑
k

∂F

∂ρk
ρk + ∂F

∂ρ
ρ = −

∑
i

λi Fλi = −F .

It is easy to see that

K(x, tρ, ∇(tρ)) = t−n/k K(x, ρ, ∇ρ).

Applying d
dt

∣∣
t=1 to this equation,

∑
k

∂K

∂ρk
ρk + ∂K

∂ρ
ρ = −n/kK(x, ρ, ∇ρ).

It follows that

Lρ = −F (λ) + n/kK(x, ρ, ∇ρ) = (n/k − 1)K(x, ρ, ∇ρ) > 0.

Set w = zρ, we get

0 = Lw = L(zρ) ≡ L ′z + zLρ,

where L ′z = ρ
∑

i, j
∂F
∂ρi j

zij+ first-order derivatives of z. By (2.5), we have ( ∂F
∂ρi j

) < 0. Therefore

at minimum point of z, L ′z ≤ 0. Since Lρ > 0, the minimum value of z must be nonnegative.

Similarly, the maximum value of z must be nonpositive. That is w ≡ 0. �

3 Proof of Theorem 1.1

In this section we prove C 2 estimates for convex of solution of Equation (1.3). For the

mean curvature measure case (k = 1), a gradient bound is enough for a C 2 a priori bound

by the standard theory of quasi-linear elliptic equations. In the rest of this section, we

will assume k > 1.

For the C 2 estimates for admissible solutions of (1.3), it is equivalent to esti-

mate the upper bounds of principal curvatures. If the hypersurface is strictly convex,

it is simple to observe that a positive lower bound on the principal curvatures implies

an upper bound of the principal curvatures. This follows from Equation (1.3) and the
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Newton–Maclaurin inequality,

Sn
1
n (λ) ≤

[
Sk

C k
n

] 1
k

(λ).

This is the starting point of our approach in this section. To achieve such a lower bound,

we shall use the inverse Gauss map and consider the equation for the support function

of the hypersurface. The role of the Gauss map here should be compared with the role of

the Legendre transformation on the graph of convex surface in a domain in R
n. Since M

is curved and compact, the Gauss map fits into the picture neatly. This way, we can make

use of some special features of the support function. We note that a lower bound on the

principal curvature is an upper bound on the principal radii. And the principal radii

are exactly the eigenvalues of the spherical Hessian of the support function. Therefore,

we are led to get a C 2 bound on the support function of M.

Let X : M → R
n+1 be a closed strictly convex smooth hypersurface in R

n+1. We

may assume the X is parameterized by the inverse Gauss map

X : S
n → R

n+1.

The support function of X is defined by

u(x) = 〈x, X(x)〉, at x ∈ S
n.

Let e1, e2, . . . , en be a smooth local orthonormal frame on S
n, we know that the second

fundamental form of X is

hij = uij + uδi j,

and the metric of X is

gij =
n∑

l=1

hilh jl .

The principal radii of curvature are the eigenvalues of matrix (with respect to the stan-

dard metric on S
n)

Wij = uij + uδi j.
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Equation (1.2) can be rewritten as an equation on support function u:

F (Wij) =
[

det Wij

Sn−k(Wij)

] 1
k

(x) = G(X)u− 1
k on S

n, (3.1)

where X is position vector of hypersurface, and

G(X) = |X| n+1
k f− 1

k

(
X

|X|
)

.

Equation (3.1) is similar to the equation in [8], where a problem of prescribing Weingarten

curvature was considered. The position function and the support function have the

following explicit form:

X(x) =
n∑

i=1

uiei + ux, on x ∈ S
n.

Straightforward computations yield

Xl = uilei + ui(ei)l + ul x + uxl = uilei − xuiδil + ul x + uel = Wilei, (3.2)

n∑
l=1

Xll =
n∑

i,l=1

[Willei + Wil (ei)l ]

=
n∑

i=1

[
n∑

l=1

Wll

]
i

ei +
n∑

i,l=1

Wil (−xδil )

=
n∑

i=1

[
n∑

l=1

Wll

]
i

ei − x
n∑

l=1

Wll . (3.3)

The following is a key lemma.

Lemma 3.1. If G(X) is strictly convex function in R
n+1 \ {o}, and u(x) satisfies (3.1), then

max(�u + nu) ≤ C , (3.4)

where the constant C depends only on n, maxSn f , minSn f , |∇ f |C 0 , and |∇2 f |C 0 . In turn,

|∇2ρ| ≤ C . (3.5)

�
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Proof. Since we have already obtained C 1 bound in Lemma 2.3, to get (3.5), we only need

to prove (3.4). Let

H =
n∑

l=1

= �u + nu

and assume the maximum of H attains at some point xo ∈ S
n. We choose an orthonormal

frame e1, e2, . . . , en near xo such that uij(xo) is diagonal (so is Wij = uij + uδi j at xo). The

following formula for commuting covariant derivatives are elementary:

(�u)ii = �(uii) + 2�u − 2nuii.

So we have

Hii = (�u)ii + nuii = �(Wii) − nWii + H. (3.6)

Let F ij = ∂F (W)
∂Wij

. At xo the matrix F ij is positive definite, diagonal. Setting the eigenvalues

of Wij at xo as λ(Wij) = (λ1, λ2, . . . , λn)),

F ii = 1

k

(
Sn

Sn−k

) 1
k
[

Sn−1(λ|i)
Sn−k

− SnSn−k−1(λ|i)
Sn−k

2

]
.

The following facts are known (e.g. see [8]):

n∑
i=1

F iiWii = F ,
n∑

i=1

F ii ≥ (
C n−k

n

)− 1
k .

Now at xo, we have

Hi = 0, Hij ≤ 0 (3.7)

At xo, we have

0 ≥
n∑

i, j=1

F ij Hij =
n∑

i=1

F ii Hii =
n∑

i=1

F ii�(Wii) − n
n∑

i=1

F iiWii + H
n∑

i=1

F ii

≥
n∑

i=1

F ii�(Wii) − nF + (
C n−k

n

)− 1
k H. (3.8)
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From Equation (3.1),

F ijWijl = [
G(X)u− 1

k
]
l , F ijWijll + F ij,st Wijl Wstl = [

G(X)u− 1
k
]
ll .

By the concavity of F , we get

n∑
i=1

F ii�(Wii) ≥
n∑

l=1

[
G(X)u− 1

k
]
ll .

Combining this with (3.8), we have the following inequality at xo:

n∑
l=1

[
G(X)u− 1

k
]
ll − nF + (

C n−k
n

)− 1
k H ≤ 0. (3.9)

Now we treat the term [G(X)u− 1
k ]ll . In the following, the repeated indices on α, β denote

summation over the indices from 1, 2, . . . , n + 1. Denote Gα = ∂G
∂ Xα , Gαβ = ∂2G

∂ Xα∂ Xβ .

[
G(X)u− 1

k
]
l = Gα Xα

l u− 1
k + G(X)

(
−1

k

)
u− 1

k −1ul ,

n∑
l=1

[
G(X)u− 1

k
]
ll = Gαβ Xα

l Xβ

l u− 1
k + Gα Xα

llu
− 1

k

− 2

k
Gα Xα

l u− 1
k −1ul + 1

k

(
1

k
+ 1

)
G(X)u− 1

k −2|Du|2 − 1

k
G(X)u− 1

k −1ull .

Using (3.2) and (3.3), it follows that at xo,

n∑
l=1

[
G(X)u− 1

k
]
ll = Gαβeα

l eβ

l W2
ll u

− 1
k −

[
Gαxαu− 1

k + 1

k
G(X)u− 1

k −1

]
H − 2

k

(
Gαeα

l ul Wll
)
u− 1

k −1

+ 1

k

(
1

k
+ 1

)
G(X)u− 1

k −2|Du|2 + +n

k
G(X)u− 1

k . (3.10)

By (3.10), at xo (3.9) becomes

Gαβeα
l eβ

l W2
ll u

− 1
k −

[
Gαxαu− 1

k + 1

k
G(X)u− 1

k −1

]
H − nF + (

C n−k
n

)− 1
k H

− 2

k

(
Gαeα

l ul Wll
)
u− 1

k −1 + 1

k

(
1

k
+ 1

)
G(X)u− 1

k −2|Du|2 + +n

k
G(X)u− 1

k ≤ 0. (3.11)
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If G(X) is strictly convex in R
n+1 \ {o}, then there exist a uniform constant co > 0 such

that

n∑
αβ=1

Gα,βeα
l eβ

l ≥ co, l = 1, 2, . . . , n.

Since
∑n

l=1 W2
ll ≥ H2

n , we obtain H (xo) ≤ C . �

Proof of Theorem 1.1. For any positive function f ∈ C 2(Sn), for 0 ≤ t ≤ 1 and 1 ≤ k ≤
n − 1, set ft (x) = [1 − t + t f− 1

k (x)]−k. We consider the following family of equations for

0 ≤ t ≤ 1:

Sk(κ1, κ2, . . . , κn)(x) = ft (x)ρ1−n(ρ2 + |∇ρ|2)−1/2, on S
n, (3.12)

where n ≥ 2. We want to find solutions in the class of strictly convex hypersurfaces. Let

I = {t ∈ [0, 1] : such that (3.12) is solvable}. Since ρ = [C k
n]−

1
n−2 is a solution for t = 0, I is

not empty. By Lemmas 2.3 and 3.5, o0 < ρ ∈ C 1,1(Sn) and the principal curvatures of the

solution hypersurface are bounded from below and above. The Evans–Krylov theorem

yields ρ ∈ C 2,α(Sn) and

||ρ||C 2,α (Sn) ≤ C , (3.13)

where C depends only on n, maxSn f , minSn f , |∇ f |C 0 and |∇2 f |C 0 , and α. The a priori es-

timates guarantee I is closed. The openness is from Lemma 2.5 and the implicit function

theorem. So we have the existence. The uniqueness of the solution for t ∈ [0, 1] is from

Lemma 2.4. This completes the proof of Theorem 1.1. �

Remark 3.2. We suspect the strict convexity condition (1.4) can be weakened. For the

cases k = 1, 2, this is verified in Theorem 1.2. �

4 Proof of Theorem 1.2

In this section, we will first prove the C 2 estimate for the scalar curvature measure case

under the convexity assumption of the solution. The proof of Theorem 1.2 is different

from the proof of Theorem 1.1 in this section. Due to the weakened condition, we are not

able to obtained a positive lower bound for the principal curvatures directly. Instead, we
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will use special structure of the elementary symmetric function S2 to get an upper bound

of principal curvatures for convex solutions of (1.3). Since the convexity of solutions is not

guaranteed for Equation (1.3) when k < n, we will use condition (1.5) and a deformation

lemma to prove the existence of a strictly convex solution of (1.3) in the next section, as

in [12].

We consider the following prescribed scalar curvature measure equation:

S2(λ{hij})(X) = |X|−(n+1) f
(

X

|X|
)

〈X, N〉, ∀X ∈ M. (4.1)

Lemma 4.1. Let f be a C 2 positive function on S
n and let M be a star-shaped hypersur-

face in R
n+1 with respect to the origin, if M is a convex solution surface of Equation (4.1)

and for the function ρ = |X| on S
n, the following estimates hold:

‖ρ‖C 2 ≤ C , (4.2)

where the constant C depends only on n, k, minSn f and ‖ f‖C 2 . �

Proof. C 1 estimates were already obtained in Lemma 2.3 in the Section 2. We only need

to get an upper bound of the mean curvature H .

Let

F (X) = f
(

X

|X|
)

, φ(X) = |X|−(n+1) F (X), (4.3)

Equation (4.1) becomes

S2(κ1, κ2, . . . , κn)(X) = φ(X)〈X, en+1〉, on M. (4.4)

Assume the function P = H + a
2 |X|2 attains its maximum at Xo ∈ M, where a is a constant,

which will be determined later. At Xo, we have

Pi = Hi + a〈X, ei〉 = 0, (4.5)

Pii = Hii + a[1 − hii〈X, en+1〉]. (4.6)

Let F ij = ∂S2(λ{hij})
∂hij

, we choose a suitable orthonormal frame {e1, e2, . . . , en} in a neighbor-

hood of Xo ∈ M such that at Xo, the matrix {hij} is diagonal. Then at Xo, the matrix {F ij}



1966 P. Guan et al.

is also diagonal and positive definitive. At Xo,

n∑
i j=1

F ij Pij =
n∑

i=1

F ii Hii + a
n∑

i=1

F ii − a〈X, en+1〉
n∑

i=1

F iihii ≤ 0. (4.7)

In what follows, all the calculations will be done at Xo ∈ M. First we deal with

the term
∑n

i=1 F ii Hii. From (4.5) and (2.3), we have

n∑
i=1

F ii Hii =
n∑

i=1

F ii

⎛
⎝ n∑

j=1

hjjii

⎞
⎠ =

n∑
i=1

F ii
n∑

j=1

(
hiijj + hiih

2
j j − hjjh

2
ii

)

=
n∑

i j=1

F iihiij j + |A|2
n∑

i=1

F iihii − H
n∑

i=1

F iih2
ii,

where |A|2 = ∑n
i=1 h2

ii.

We treat the term
∑n

ij=1 F iihiij j. Differentiate Equation (4.4) twice, by (2.2),

n∑
i j=1

F iihiij j =
n∑

j=1

[φ(X)〈X, en+1〉] j j +
∑
j,k 
=l

h2
jkl −

∑
j,k 
=l

h jkkh jll

= �φ〈X, en+1〉 + 2
n∑

j=1

φ jh jj〈X, ej〉 + φ

n∑
j=1

〈X, en+1〉 j j

+
∑
j,k 
=l

h2
jkl −

∑
j,k,l

h jkkh jll +
∑
j,k

h2
jkk.

By (2.2) and (2.3), we have

n∑
i=1

〈X, en+1〉ii =
n∑

i,l=1

[hil〈X, el〉]i

=
n∑

i=1

[
n∑

l=1

hiil〈X, el〉 + hii − h2
ii〈X, en+1〉

]

=
n∑

l=1

Hl〈X, el〉 + H − |A|2〈X, en+1〉

= −a
n∑

i=1

〈x, ei〉2 + H − |A|2〈X, en+1〉.
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In turn, (4.4)–(4.5) yield the following estimate:

n∑
i j=1

F iihiij j ≥ −|A|2S2(hij) + φH + �φ〈X, en+1〉 + 2
n∑

j=1

φ jh jj〈X, ej〉

− aφ

n∑
i=1

〈x, ei〉2 − a2
n∑

i=1

〈x, ei〉2. (4.8)

It is easy to compute that

n∑
i=1

F ii = (n − 1)H ,

n∑
i=1

F iihii = 2S2(hij),

n∑
i=1

F iih2
ii = H S2(hij) − 3S3(hij),

|A|2 = H2 − 2S2(hij). (4.9)

Combining the (4.7)–(4.9), we get

a(n − 1)H + φH + 2
n∑

i=1

φihii〈X, ei〉 + �φ〈X, en+1〉 + 3H S3(hij)

≤ 2S2(hij)
2 + 2a〈X, en+1〉S2(hij) + [aφ + a2]

n∑
i=1

〈X, ei〉2. (4.10)

Let FA, FAB be the ordinary Euclidean differentiations of function F in R
n+1. Using (2.2),

we compute

φi = −(n + 1)|X|−(n+3)〈X, ei〉F (X) + |X|−(n+1)
n+1∑
A=1

FAXA
i ,

�φ =
n∑

i=1

φii = H

[
(n + 1)|X|−(n+3)〈X, en+1〉F − |X|−(n+1)

n+1∑
A=1

FAeA
n+1

]

− 2(n + 1)|X|−(n+3)
n∑

i=1

n+1∑
A=1

〈X, ei〉FAXA
i − n(n + 1)|X|−(n+3) F

+ |X|−(n+1)
n+1∑

A,B=1

n∑
i=1

FAB XA
i XB

i + (n + 1)(n + 3)|X|−(n+5) F
n∑

i=1

〈X, ei〉2.
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As the solution is convex,

S3(hij) ≥ 0, 0 ≤ hii ≤ H.

If a is suitably large, we get the following mean curvature estimate:

max H ≤ C (n, max
Sn

f , min
Sn

f , |∇ f |C 0 , |∇2 f |C 0 ). (4.11)

This finishes the proof of the lemma. �

Since the C 2 estimates in Lemma 4.1 are only valid for convex solutions, in order

to carry on the method of continuity, we need to show the convexity is preserved during

the process.

Theorem 4.2. Suppose M is a convex hypersurface and satisfies Equation (2.7) for k < n

with the second fundamental form W = {hij} and |X| n+1
k f ( X

|X| ) is convex in R
n+1 \ {0}; then

W is positive definite. �

We now use Theorem 4.2 to prove Theorem 1.2.

Proof of Theorem 1.2. The proof is the same as in the proof of Theorem 1.1 by the

method of continuity; here we make use of Theorem 4.2. The openness and uniqueness

have already treated in the proof of Theorem 1.1. The closeness follows from a priori

estimates in Lemma 2.3 and quasi-linear elliptic theory in the case of k = 1 and the a

priori estimates in Lemma 4.1 in the case of k = 2, and the preservation of convexity in

Theorem 4.2. �

If set F (κ) = −S− frac1k
k (κ), φ = |X| n+1

k f− 1
k ( X

|X| )〈X, N〉− 1
k . Equation (2.7 can be written

as

F (κ) = φ, on M. (4.12)

Without the extra factor 〈X, N〉− 1
k , Theorem 4.2 would follow Theorem 1.2 in [4]. Here we

cannot apply Theorem 1.2 directly. The proof of Theorem 4.2 is similar to the proof of

Theorem 1.2 in [4], it relies on the following deformation lemma. A similar lemma was
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also proved for spherical hessian equations in [12] and for curvature equations in [11]

(only with different homogeneity on the right side of the equation).

Lemma 4.3. Assume Mo is a piece of C 4 hypersurface M; M is the solution of

Equation (2.7) and the matrix W = {hij} is semipositive definite. Suppose there is a posi-

tive constant Co > 0, such that for a fixed integer, (n − 1) ≥ l ≥ k, ∀X ∈ Mo, Sl (W(X)) ≥ Co.

Let φ(X) = Sl+1(W(X)) and let τ (X) be the largest eigenvalue of {−(F − 1
k )XAXB (X, en+1)}, where

the differential is ordinary differential in R
n+1. Then, there are constant C depending

only ||X||C 3 , ||F ||C 2 and Co, so the following differential inequality holds at each point

X ∈ Mo,

∑
α,β

F αβφαβ ≤ k(n − l)F
k+1

k Sl (W)τ 〈X, en+1〉 + C (|∇φ| + φ),

where F αβ = ∂Sk (W)
∂wαβ

. �

Proof. A proof was already given in [11] for the following prescribed curvature equation:

Sk(κ1, κ2, . . . , κn)(X) = F (X), on M. (4.13)

Since we are treating a different homogeneity here, we will make a minor change

in the last step of the proof in [11]. We follow the same notations as in [11] (see also [12]).

For any z ∈ Mo, let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of W at z. Since Sl (W) ≥ Co > 0 and

M ∈ C 3, for any z ∈ M, there is a positive constant C > 0 depending only on ||X||C 3 , ||F ||C 2 ,

n and Co, such that λ1 ≥ λ2 ≥ . . . ≥ λl ≥ C . Let G = {1, 2, . . . , l} and B = {l + 1, . . . , n}. As

φ = Sl+1(W) and φα = ∑
i, j Sijhijα, there is C > 0 such that

Cφ(z) ≥
∑
i∈B

hii(z), C (φ(z) + |φα(z)|) ≥
∑
i∈B

hiiα(z). (4.14)

By (2.21) in [11], there is c > 0 such that

n∑
α=1

F ααφαα ≤ cSl (G)
∑
i∈B

[
fii − k + 1

k

f2
i

f

]
. (4.15)

Since

f (X, en+1) = F (X)〈X, en+1〉,
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use (2.2), so that for ∀ i ∈ {1, 2, . . . , n},

fi =
n+1∑
A=1

FXAeA
i 〈X, en+1〉 + F (X)hii〈X, ei〉,

fii =
n+1∑

A,C=1

FXAXC eA
i eC

i 〈X, en+1〉 +
n+1∑
A=1

FXA XA
ii〈X, en+1〉

+ 2
n+1∑
A=1

FXAeA
i hii〈X, ei〉 + F (X)

⎡
⎣ n∑

j=1

hiij〈X, ej〉 + hii − h2
ii〈X, en+1〉

⎤
⎦ .

From (2.2) and (4.14), for i ∈ B we get

fi =
n+1∑
A=1

FXAeA
i 〈X, en+1〉, fii =

n+1∑
A,C=1

FXAXC eA
i eC

i 〈X, en+1〉.

It follows that for ∀ i ∈ B,

fii − k + 1

k

f2
i

f
≤ C

n+1∑
A,C=1

[
FAC − k + 1

k

FAFC

F

]
eA

i eC
i 〈x, en+1〉. (4.16)

So, the lemma follows from (4.15) and (4.16). The proof of the lemma is complete.

Proof of Theorem 4.2. By the Evans–Krylov theorem and Schauder theorem, X, en+1 ∈
C 4,α. If W = {hij} is not of full rank at some point xo, then there is n − 1 ≥ l ≥ k such that

Sl (W(x)) > 0, ∀x ∈ M and φ(xo) = Sl+1(W(xo)) = 0. By Lemma 4.3 and the condition on F ,

n∑
α,β

F αβφαβ (X) ≤ C1|∇φ(X)| + C2φ(X). (4.17)

The strong minimum principle implies φ = Sl+1(W) ≡ 0. On the other hand, M is star-

shaped with respect to origin, so 〈X, en+1〉 > 0, where 〈, 〉 is ordinary inner product in

R
n+1. Since M is compact, there is a point x ∈ M such that all the principal curvatures of

M at x are positive. This is a contradiction. �

5 The Question of C2 Estimates for Admissible Solutions of Curvature Equations

A large part of the study of curvature measures has been carried out for convex bodies.

There are some generalizations of these curvature measures to other classes of subsets



Existence Problem for Curvature Measures 1971

in Rn+1. The notion of (n − k)th curvature measure can be naturally extended to k-convex

bodies (i.e., the principal curvatures of the boundary (κ1, κ2, . . . , κn) ∈ �k at every point).

Since k < n, an admissible solution of (1.2) is not convex in general. It is important to

study the existence of admissible solutions of Equation (1.2). For k = n, the answer is

affirmative by the solution of the Alexandrov problem. For k = 1, Equation (1.2) is quasi-

linear, which can be solved using the method of continuity. C 1 estimates in Section 2

implies C 2,α estimates by the standard quasi-linear elliptic theory and the Schauder

theorem. Lemma 2.5 guarantees the openness. The following is proved in [10]; it answers

the corresponding Christoffel problem for the mean curvature measure in the admissible

case. The issue of the convexity has been addressed in Theorem 1.2.

Theorem 5.1. Suppose k = 1, f (x) ∈ C 1(Sn), f > 0, then there exists a unique admis-

sible hypersurface M ∈ C 2,α, α ∈ (0, 1) with positive mean curvature, such that it satisfies

(1.2). �

For the intermediate cases 1 < k < n, the existence of admissible solutions of

Equation (1.2) depends on the establishment of C 2 a priori estimates which is still open.

At this point, we would like to raise a

Question: For a given smooth positive function g(x, t , p), do there exist a priori second

derivative estimates for admissible solutions of equation for the general equation (1.3)

on S
n?

It is known that if g1/k(x, t , p) is convex in p ∈ R
n, such C 2 estimates exist. This

is a quite restrictive condition. The function on the right-hand side of the prescribed

curvature measure equation (1.2) does not satisfy this condition. In the rest of this

section, we prove C 2 estimates for Equation (1.3) in the case k = n. We consider the

following equation:

det hij = G(x, ρ, ∇ρ), (5.1)

where ρ is the radial function of a hypersurface M ⊂ R
n+1, that is ρ is a positive function

on S
n. We assume C 0 estimates for this equation, our purpose is to get the C 2 estimates.

Theorem 5.2. Suppose M is a convex hypersurface and satisfies Equation (5.1), where

the prescribed function G(x, ρ, ∇ρ) is a positive smooth function. Suppose ρ(x) is an

admissible solution with 0 < C1 ≤ ρ(x) ≤ C2 < ∞, x ∈ S
n. Then there exist a positive
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constant C that depends only on the constant C1, C2, |G|C 2 and the lower bound depends

on G, such that we have the following C 2 estimates:

|ρ|C 2 ≤ C . �

Since any function in (x, ρ, ∇ρ) can be written in terms of (X, N), when k = n,

Equation (1.3) can be expressed as

F (hij) = log det hij = log G(x, ρ, ∇ρ) = g(X, N), (5.2)

where F ij = ∂F
∂hij

, F ij,rs = ∂2 F
∂hij∂hrs

. Pick a local orthonormal frame in Rn+1 such that

{e1, e2, . . . , en} are tangent to M. We use the following two different types of indices:

1 ≤ i, j, k ≤ n, 1 ≤ A, B, C ≤ n + 1.

For any point Xo ∈ M, if we choose a local orthonormal frame with diagonal

second fundamental form (hij(Xo)), then at this point we have the following:

Dl g = gXAel
A + gNB (NB )l = gXAel

A + gNB hllel
B , (5.3)

where Dl g is the covariant derivative with respect to el , and gXA = ∂g
∂ XA , gN A = ∂g

∂N A , etc. As

in last section at Xo, we get

D11g = (
gXAe1

A)
1 + (

gNB (NB )1
)

1

= gXAXB e1
Ae1

B + 2gXANB e1
A(NB )1 + gXA

(
e1

A)
1 + gN ANB (N A)1(NB )1 + gNB (NB )11

= gXAXB e1
Ae1

B + +2h11gXANB e1
Ae1

B − h11gXA N A + h2
11gN ANB e1

Ae1
B

+ gNB

(
h11 jej

B − h2
11NB) = h2

11

[
gN ANB e1

Ae1
B − gNB NB]

+ h11
[
2gXANB e1

Ae1
B − gXA N A] + gXAXB e1

Ae1
B + gNB h11 jej

B . (5.4)

Differentiating Equation (5.2), we have

F ijhijl = Dl g, (5.5)

F ijhij11 = D11g − F ij,rshij1hrs1. (5.6)
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Proofof Theorem 5.2. We only need to establish the curvature estimates. Let

P (X, ξ ) = log(hklξkξl )(X) − α〈X, N〉,

where ξ ∈ S
n and α is a positive constant that will be determined later. Suppose that

P (X, ξ ) attains its maximum at some Xo ∈ M and ξ0 ∈ S
n. We may assume ξo is e1 and the

other directions e2, . . . , en can be chosen such that (e1, e2, . . . , en) is a local orthonormal

frame near Xo and hij(Xo) is diagonal. Then the function

P (x) = log h11 − α〈X, N〉 (5.7)

attains its maximum at Xo ∈ M. At the point Xo, we have

Pi(X) = h11i

h11
− α〈X, N〉i.

So at Xo,

h11i

h11
= αhii〈X, ei〉, Pii(X) = h11ii

h11
− h2

11i

h2
11

− α〈X, N〉ii. (5.8)

By (5.4) and (5.6),

h11

∑
i

F ii Pii(X) = F ii[hii11 + hiih
2
11 − h11h2

ii

] − 1

h11
F iih2

11i

−αh11 F ii[hiij〈X, ej〉 + hii − h2
ii〈X, N〉]

= D11g − αh11 F iihiij〈X, ej〉 + [α〈X, N〉 − 1]Hh11

+ h2
11 − nαh11 − F ij,rshij1hrs1 − 1

h11
F iih2

11i

= [α〈X, N〉 − 1]Hh11 + h2
11[1 + gN ANB e1

Ae1
B − gNB NB ]

+ h11[2gXANB e1
Ae1

B − gXA N A − nα] + gXAXB e1
Ae1

B

+ gNB h11 jej
B − αh11 F iihiij〈X, ej〉

− F ij,rshij1hrs1 − 1

h11
F iih2

11i

≤ 0. (5.9)
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From (5.3) and (5.8),

gNB h11 jej
B − αh11 F iihiij〈X, ej〉 = gNB h11 jej

B − αh11 Djg〈X, ej〉
= gNB h11 jej

B − αh11[gXAej
A + gNB hjjej

B ]〈X, ej〉
= gNB ej

B [h11 j − αh11hjj〈X, ej〉] − αh11gXAej
A〈X, ej〉

= −αh11gXAej
A〈X, ej〉. (5.10)

For F = log det,

− F ij,rshij1hrs1 − 1

h11
F iih2

11i ≥ 0. (5.11)

Combining (5.9)–(5.11), we get the following crucial inequality:

[α〈X, N〉 − 1]Hh11 + h2
11[1 + gN ANB e1

Ae1
B − gNB NB ]

+ h11[2gXANB e1
Ae1

B − gXA N A − nα − αgXAej
A〈X, ej〉] + gXAXB e1

Ae1
B ≤ 0. (5.12)

By the assumption 0 < C1 ≤ ρ(x) ≤ C2 < ∞, ∀x ∈ S
n, we have

0 < C3 ≤ 〈X, N〉 ≤ C4 < ∞.

(5.12) yields h11(Xo) ≤ C , if α large enough. �
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