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Abstract

We use the deformation methods to obtain the strictly log concavity of solution of a class Hessian equa-
tion in bounded convex domain in R

3, as an application we get the Brunn–Minkowski inequality for the
Hessian eigenvalue and characterize the equality case in bounded strictly convex domain in R

3.
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1. Introduction

The convexity is an issue of interest for a long time in partial differential equation. It connects
the geometric properties to analysis inequalities. In 1976, Brascamp and Lieb [2] establish the
log-concavity of the fundamental solution of diffusion equation with convex potential in bounded
convex domain in R

n. As a consequence, they proved the log-concavity of the first eigenfunction
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of Laplace equation in convex domains. At the same time, they obtained the Brunn–Minkowski
inequality for the first eigenvalue as following:

λ
(
(1 − t)K0 + tK1

)− 1
2 � (1 − t)λ(K0)

− 1
2 + tλ(K1)

− 1
2 , (1.1)

where t ∈ [0,1], K0, K1 are nonempty convex bodies in R
n. In fact, in that paper they proved that

this inequality holds for all compact connected domain having sufficiently regular boundary. One
always is interesting on the equality case. For example, Jerison [7] pointed out that it is related to
uniqueness of the solution for the Minkowski problem about λ. In [5], Colesanti provides a new
proof of (1.1) for convex bodies, and essentially tells us that equality holds if and only if K0 is
homothetic to K1. At the same time, he asked whether the same kind of result holds for a class
of fully nonlinear elliptic operator called Hessian operators other than Laplace operator.

If we consider the following eigenvalue problems for bounded strict convex domain K ⊂ Rn

with C∞ boundary,

{
Sk

(
D2u

) = λ(K)(−u)k, u < 0 in K,

u = 0 on ∂K,
(1.2)

where Sk is the so-called Hessian operators. For k = 1, . . . , n, and a C2 function u, the k-th
Hessian operator Sk(D

2u) is the k-th elementary symmetric function of the eigenvalues of the
Hessian matrix of u. Also if u satisfies Si(D

2u) > 0 for all 1 � i � k, then we call u an admissible
solution of (1.2) (see for example [4]).

Equivalently we can define

λ(K) = inf

{
−

∫
K

uSk(D
2u)dx∫

K
|u|k+1 dx

}
, (1.3)

where the inf is taken over the functions u ∈ C2(K) ∩ C(K̄), admissible and u = 0 on ∂K .
Obviously this functional λ(K) is homogeneous of order −2k.

Note that when k = 1, the last equation (1.2) is corresponding to the Laplace operator, the
Brunn–Minkowski inequality for λ(K) is just (1.1). When k = n, Eq. (1.2) is corresponding
to the Monge–Ampère operator, the Brunn–Minkowski inequality of the λ(K) had obtained in

Salani [14], i.e. λ− 1
2n (K) is concave in K , and the equality holds if and only if K0 is homothetic

to K1.
Wang [16] proved for 1 < k < n, up to a positive factor, for Eq. (1.2) exists a unique negative

admissible solution u ∈ C∞(K) ∩ C1,1(K̄). Furthermore Eq. (1.2) exists exactly one positive
eigenvalue in a convex domain with smooth boundary (in fact, the result by Wang is true for
a larger class of domains). In this paper, we use Wang’s result to deal with the case k = 2 in
3-dimensional convex domain.

Theorem 1.1. Suppose K is a bounded smooth strict convex domain in R
3, and u ∈ C∞(K) ∩

C1,1(K̄) is the unique (up to a positive factor) admissible solution of{
S2

(
D2u

) = λ(K)(−u)2, u < 0 in K,

u = 0 on ∂K,
(1.4)

then v = − log(−u) is a strictly convex function in K .



1618 P. Liu et al. / Advances in Mathematics 225 (2010) 1616–1633
With this result we will prove the Brunn–Minkowski inequality for the positive eigenvalue of
S2 operator. Our method is from Colesanti [5] and Salani [14].

Theorem 1.2. Suppose K0,K1 are bounded smooth strict convex domains in R
3, and t ∈ [0,1],

then the functional λ satisfies the inequality:

λ
(
(1 − t)K0 + tK1

)− 1
4 � (1 − t)λ(K0)

− 1
4 + tλ(K1)

− 1
4 . (1.5)

Moreover equality holds if and only if K0 is homothetic to K1.

The plan of the paper is as follows. In Section 2, we prove the Hessian of v has constant rank
if the function v in Theorem 1.1 is convex, this is essential for our paper. In Section 3, combing
the boundary estimates we use the deformation process to get the function v is strict convex,
then we complete the proof of Theorem 1.1. In the last section, we prove the Brunn–Minkowski
inequality and characterize the equality case.

2. A constant rank theorem

In this section we establish a constant rank theorem for the convex solution of the related
nonlinear elliptic equation.

In what follows, S n denotes the set of the symmetric n × n matrices, and S n+(S n++) is the
subset of the semipositive (positive) definite matrices.

Let K ⊂ R
3 be any bounded domain. Note that if let v = − log(−u), then Eq. (1.4) is equiva-

lent to {
S2

(
D2v

) − Tr
(
P(Dv)D2v

) = λ(K) in K,

v(x) → +∞, x → ∂K,
(2.1)

where Tr(A) denotes the trace of matrix A, and P(∇v) = (Pij ) is a matrix with

Pij = |∇v|2δij − vivj , i, j = 1,2,3.

It follows that P is semipositive definite, and Tr(PD2v) = ∑3
i,j=1 Pij vij . By a simple observa-

tion, if u is an admissible solution for Eq. (1.4), then v is an admissible solution for Eq. (2.1).
One of main ingredients of the proof of Theorem 1.1 is a constant rank theorem, which states

as follows (see e.g. [3] and [9]). Some related results have been obtained in [11].

Theorem 2.1. Suppose v is a C4(K) admissible solution of (2.1), and the Hessian matrix {vij }
of v is semipositive definite in K ⊂ R

3, then {vij } must have constant rank in K , where K is any
domain.

Proof. Let v be an admissible solution of Eq. (2.1). Let W = {vij } denote the Hessian matrix
of v. Since v is admissible, from Eq. (2.1) the rank of W can be only 2 or 3.

Suppose now z0 ∈ K is a point in which W(z0) is of minimal rank 2, we shall show W is of
constant rank 2 in K .

Let φ(z) = detW(z), and define U = {z ∈ K | φ(z) = 0}. We will show that U = K , which
means W is of constant rank 2 in K . First, U is not empty, since clearly z0 ∈ U . Note that, by the
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definition of U , U is a closed set in K . We shall show that there is a small open neighborhood O

of z0 in U , and φ(z) ≡ 0 in O which implies the set U is an open set in K . Since K is connected,
we must have U = K .

Following the notations in [3] and [9], for two functions h, k defined in an open set O ⊂ K .
Let y ∈ O , we say that h(y) � k(y) if there exist positive constants c1 and c2 such that

(h − k)(y) �
(
c1|∇φ| + c2φ

)
(y). (2.2)

We write h(y) ∼ k(y) if both h(y) � k(y) and k(y) � h(y) hold. Next, we write h � k if the
above inequality holds in O , with the constant c1, and c2 independent of y in this neighborhood.
Finally, say h ∼ k if h � k and k � h.

Now let F = F(Dv,D2v) := S2(D
2v) − Tr(P (Dv)D2v), and we shall use the following

notations:

F ij = ∂F

∂vij

, Fvl
= ∂F

∂vl

,

F ij,rs = ∂2F

∂vij ∂vrs

, F ij
vl

= ∂2F

∂vij ∂vl

, Fvkvl
= ∂2F

∂vk∂vl

.

We shall show that

3∑
i,j=1

F ijφij � 0, (2.3)

in an open small neighborhood O of z0.
Since φ � 0 in K and φ(z0) = 0, it then follows from the strong minimum principle that

φ(z) ≡ 0 in O . In order to prove (2.3) at an arbitrary point z ∈ O , as in Caffarelli–Friedman
[3], we choose the normal coordinate, i.e. we perform a rotation Tz about z so that in the new
coordinates W is diagonal at z and v11 � v22 � v33 at z. Consequently we can choose Tz to vary
smoothly with z. If we can establish (2.3) at z under the assumption that W is diagonal at z, then
go back to the original coordinates we find that (2.3) remains valid with new coefficients c1, c2 in
(2.2), depending smoothly on the independent variable. Thus it remains to establish (2.3) under
the assumption that W is diagonal at z.

Since rank is at least 2, there exists a positive constant C, which depends only on ‖v‖C4 , such
that v11 � v22 � C at z. In the following, all calculations are working at the point z using the
notation “�”, with the understanding that the constants in (2.3) are under control.

Next we compute φ, its first and second derivatives in the directions ei, ej , we find

0 ∼ φ ∼ v33, (2.4)

0 ∼ φi ∼ v33i , (2.5)

and

φij ∼ v11v22v33ij − 2v11v23iv23j − 2v22v13iv13j . (2.6)



1620 P. Liu et al. / Advances in Mathematics 225 (2010) 1616–1633
Differentiating Eq. (2.1) along e3 once we get

F ij vij3 + Fvl
vl3 = 0. (2.7)

In this paper, the summation convention over repeated indices will be employed.
From (2.4)–(2.5), and since (vij ) is diagonal at z, one can see

F 11v113 + F 22v223 + 2F 12v123 ∼ 0. (2.8)

Differentiating Eq. (2.1) along e3 twice to get

F ij vij33 + F ij,rsvij3vrs3 + 2F ij
vl

vij3vl3 + Fvl
vl33 + Fvlvs vl3vs3 = 0, (2.9)

it follows that

F ij vij33 ∼ −F ij,rsvij3vrs3,

which together with (2.6) imply

F ijφij

v11v22
∼ −F ij,rsvij3vrs3 − 2

v11
F ij v13iv13j − 2

v22
F ij v23iv23j . (2.10)

Now we compute the partial derivatives of F along (vij ), it follows that

F 11 ∼ v22 − (
v2

2 + v2
3

)
, F 22 ∼ v11 − (

v2
1 + v2

3

)
, F 12 = F 21 ∼ v1v2, (2.11)

F 11,22 = F 22,11 = 1, F 12,21 = F 21,12 = −1. (2.12)

Hence we have

F ijφij

v11v22
∼ −2v113v223 + 2v2

123

− 2

v11

(
F 11v2

113 + F 22v2
123 + 2F 12v113v123

)
− 2

v22

(
F 11v2

123 + F 22v2
223 + 2F 12v223v123

)
. (2.13)

We want to prove

F ijφij

v11v22
� 0.

It comes out two possibilities.
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Case 1. If F 12v123 �= 0, put (2.8) into (2.13) to substitute 2F 12v123 above, then

F ijφij

v11v22
∼ −2v113v223 + 2v2

123 − 2F 11

v11
v2

113 − 2F 22

v22
v2

223

−
(

2F 22

v11
+ 2F 11

v22

)
v2

123

+
(

2

v11
v113 + 2

v22
v223

)(
F 11v113 + F 22v223

)

∼ 2

(
1 − F 22

v11
− F 11

v22

)(
v2

123 − v113v223
)

∼ −2
v11v22 − (v2

1 + v2
3)v22 − (v2

2 + v2
3)v11

v11v22

(
v2

123 − v113v223
)

∼ −2λ

v11v22

(
v2

123 − v113v223
)
. (2.14)

The last “∼” comes from the original equation

λ = F ∼ v11v22 − (
v2

1 + v2
3

)
v22 − (

v2
2 + v2

3

)
v11.

If v113v223 � 0, then the proof of (2.3) is concluded.
While if v113v223 > 0, by using (2.8) and (2.11) again we have

4v2
1v2

2v2
123 ∼ (

F 11v113 + F 22v223
)2

� 4F 11F 22v113v223

� 4
[
λ + (

v2
2 + v2

3

)(
v2

1 + v2
3

)]
v113v223

� 4v2
1v2

2v113v223. (2.15)

Recall (2.14), this implies (2.3) true.

Case 2. If F 12v123 = 0, we still use (2.8) to substitute v223 in (2.13), then

F ijφij

v11v22
∼ 2

(
1 − F 22

v11
− F 11

v22

)
v2

123

− 2(F 11v11 + F 22v22 − v11v22)F
11

F 22v11v22
v2

113

∼ −2λ

v11v22

(
v2

123 + F 11

F 22
v2

113

)
� 0. (2.16)

So the proof of (2.3) is concluded. Then proof of Theorem 2.1 is completed. �
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3. Proof of Theorem 1.1

In this section, we shall use the deformation process to prove Theorem 1.1. The constant rank
theorem is a very powerful tool to produce strict convex solution for nonlinear elliptic equation,
see for example Caffarelli and Friedman [3], Korevaar and Lewis [9] and Guan and Ma [6]. Here
we follow the approach of Korevaar and Lewis [9] and Ma and Xu [11] to get the result. First we
need understand the radial solution of Eq. (1.4) defined on ball. Then we study the geometrical
properties of the solution near the convex boundary.

The following lemma is well known, for completeness we give the proof along the idea of
McCuan [12] (see pp. 172–173 in [12]).

Lemma 3.1. Let BR(o) be unit ball in R3 with radius R > 0. Let u ∈ C∞(BR)∩C1,1(B̄R) be the
eigenfunction for Eq. (1.4) in BR(o). Then v = − log(−u) is a strict convex function in BR(o).

Proof. By the uniqueness of solution for Eq. (1.4) up to a constant factor, we know the solution
u is a radial function. We set

u(x) = ϕ
(|x|) = ϕ(r), for r = |x|,

where r ∈ [0,R], ϕ(r) < 0 for r ∈ [0,R). Then ϕ is an increasing function in (0,R) and ϕ′(0) =
ϕ(R) = 0.

Since

∂r

∂xi

= xi

r
,

∂2r

∂xi∂xj

= −r−3xixj + r−1δij ,

it follows that

uij = (
ϕ′′r−2 − ϕ′r−3)xixj + ϕ′r−1δij ,

and

S2
(
D2u

) = 2ϕ′ϕ′′r−1 + (
ϕ′)2

r−2. (3.1)

For v = − log(−ϕ), we have

ϕ′ = e−vv′,

ϕ′′ = e−v
[
v′′ − (

v′)2]
.

So Eq. (1.4) on u transforms to the following equation on v.

2rv′v′′ − 2r
(
v′)3 + (

v′)2 = λr2 for 0 < r < R. (3.2)

It follows that
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v′(0) = 0, v′(r) > 0 for 0 < r < R,

and

v′′(0) � 0. (3.3)

Now let L = limr→0+[ v′(r)
r

], then by L’Hopital rule provides that

L = lim
r→0+ v′′(r) = v′′(0). (3.4)

From (3.2)–(3.4), it follows that

v′′(0) =
√

λ

3
> 0. (3.5)

We assume by contradiction the existence of a smallest positive ro for which v′′(ro) = 0. We
know v′(r) > 0 for 0 < r � R and v′′(r) > 0 for 0 < r < ro. Differentiating (3.2) and evaluating
at r = ro, we obtain

v′′′(ro) = λ

v′(ro)
+ (v′(ro))2

ro
> 0, (3.6)

which contradicts the sign of v′′.
Hence v is strictly convex in [0,R) and the lemma is proven. �
Now we state the following well-known boundary convexity lemma, see for example Caf-

farelli and Friedman [3] (p. 450, Lemma 4.3) or Korevaar [8] (p. 610, Lemma 2.4).

Lemma 3.2. (See [3] or [8].) Let Ω ⊂ R
n be smooth, bounded and strictly convex (i.e. all the

principal curvature of ∂Ω are positive). Let u ∈ C∞(Ω) ∩ C1,1(Ω̄) satisfies

u < 0 in Ω, u = 0 and Du · ν > 0 on ∂Ω, (3.7)

where ν is the exterior normal to ∂Ω . Let

Ωε = {
x ∈ Ω: d(x, ∂Ω) > ε

}
(3.8)

and let v = f (u). Then for small enough ε > 0 the function v is strictly convex in a boundary
strip Ω\Ωε if f satisfies

(i) f ′ > 0, (ii) f ′′ > 0, (iii) lim
u→0−

f ′

f ′′ = 0. (3.9)

Remark 3.3. In Korevaar [8], the function u ∈ C2(Ω̄). But we can follow the calculation in
Caffarelli and Friedman [3] to know the similar result is true in our case u ∈ C∞(Ω) ∩ C1,1(Ω̄).
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Now we use the deformation technique combined with Theorem 2.1 (constant rank theorem)
to obtain the proof of Theorem 1.1 as in Korevaar and Lewis [9] and Ma and Xu [11]. For
completeness we repeat partly their proof.

Proof of Theorem 1.1. Now if K is the ball BR(o), by Lemma 3.1, for the solution u of (1.4), we
have v = − log(−u) is a strict convex function in BR(o). For an arbitrary bounded strict convex
domain K , set Kt = (1 − t)BR(o) + tK,0 � t � 1. Then from the theory of convex bodies
(see for example Sections 1.7, 1.8 and 2.5 in the book [15], and Section 3.1 in the book [17]).
We can deform BR(o) continuously into K by the family (Kt ), 0 � t < 1, of strictly convex
domain in such a way that ∂Kt → ∂Ks as t → s in the sense of Hausdorff distance, whenever
0 � s � 1. And the deformation also is chosen so that ∂Kt , 0 � t < 1, can be locally represented
for some α, 0 < α < 1, by a function whose norm in the space C2,α of functions with Hölder
continuous second derivatives depends only on δ, whenever 0 < t � δ < 1.

Suppose ut ∈ C∞(Kt ) ∩ C1,1(K̄t ) is the admissible solution of (1.4), vt := − log(−ut ) and
Ht is the corresponding Hessian matrix of vt . First H0 is positive definite, and from the boundary
estimates (Lemma 3.2) we have Hδ is positive definite in an ε neighborhood of ∂Kδ . From the a
priori estimates of the solution u on the Hessian equation [16], we know this bounded depends
only on the uniformly bounded geometry of Kt which depends on the geometry K and t . We
conclude that if v(., s) is strictly convex for all 0 � s < t , then v(., t) is convex.

So if for some δ,0 < δ < 1, Hδ is positive semi-definite but not positive definite in Kδ , we say
it is impossible by constant rank theorem (Theorem 2.1) and boundary estimates (Lemma 3.2).
We conclude Hδ is positive definite. Then v = − log(−u) is strictly convex in K . �
4. Proof of Theorem 1.2

The aim of this section is to prove Theorem 1.2.
Now we state some element propositions on the convexity of the matrix functions. First we

recall Jensen’s inequality for means (see [2]). If a, b are real positive numbers, α ∈ [−∞,+∞]
and λ ∈ (0,1), we define

mα(a, b,λ) =

⎧⎪⎨
⎪⎩

[(1 − λ)aα + λbα]1/α if α ∈ (−∞,0) ∪ (0,+∞),

min(a, b) if α = −∞,

a1−λbλ if α = 0,

max(a, b) if α = +∞.

Jensen’s inequality for means implies that

mα(a, b,λ) � mβ(a, b,λ) if α � β. (4.1)

In particular, the arithmetic–geometric mean inequality holds

a1−λbλ � (1 − λ)a + λb for every a, b � 0, λ ∈ [0,1].

Lemma 4.1. If f (x) is a positive concave function in R
n, then f −1 is convex.

Proof. Note that the condition of f means
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f
(
(1 − t)x + ty

)
� (1 − t)f (x) + tf (y), ∀x, y ∈ R

n, t ∈ [0,1], (4.2)

thus we have

f
(
(1 − t)x + ty

)−1 �
[
(1 − t)f (x) + tf (y)

]−1

= [
(1 − t)

(
f (x)−1)−1 + t

(
f (y)−1)−1]−1

� (1 − t)f (x)−1 + tf (y)−1, (4.3)

where the last inequality comes from Jensen’s inequality above. This says that f −1 is con-
vex. �
Remark 4.2. Note that in the above if f −1 is not strictly convex, i.e. in (4.3)

f
(
(1 − t)x + ty

)−1 = (1 − t)f (x)−1 + tf (y)−1, (4.4)

then the two equalities in (4.3) must hold at the same time, which means f is not strictly concave
then either

f
(
(1 − t)x + ty

) = (1 − t)f (x) + tf (y) (4.5)

or

[
(1 − t)

(
f (x)−1)−1 + t

(
f (y)−1)−1]−1 = (1 − t)f (x)−1 + tf (y)−1. (4.6)

Proposition 4.3. As in Section 2, we let P(∇v) = (Pij ) be a matrix with Pij = |∇v|2δij − vivj ,
i, j = 1,2,3, and we let Tr(PA) = ∑3

i,j=1 Pij aij for A = (aij ). If |Dv| �= 0, then the function

f (A) := S2(A
−1)

Tr(PA−1)
is convex in A ∈ S 3++, and 1

Tr(PA−1)
is concave in A ∈ S 3++.

Proof. 1
Tr(PA−1)

is concave in A ∈ S 3++ from the appendix in [1]. Now we concentrate the proof
of the first part.

By Lemma 4.1, it is sufficiently to prove that f (A)−1 = Tr(PA−1)

S2(A
−1)

is concave in A. Since

P ∈ S 3+, so it can be written as O�P OT with OOT = I and �P , the diagonal matrix of the
eigenvalues of P . Then we have

Tr(PA−1)

S2(A−1)
= Tr(O�P OT A−1)

S2(A−1)

= Tr(�P OT A−1O)

S2(OT A−1O)

= Tr(�P Ã−1)

S2(Ã−1)
. (4.7)

Hence without loss of generality we may assume P = �P is a diagonal matrix, in our case,
which is diagonal(|∇v|2, |∇v|2,0). We are going to show that
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Tr(P (A + B)−1)

S2((A + B)−1)
� Tr(PA−1)

S2(A−1)
+ Tr(PB−1)

S2(B−1)
, (4.8)

for any A,B ∈ S 3++. In fact, it follows from a direct calculation that

Tr(PA−1)

S2(A−1)
= P11(A22A33 − A23A32) + P22(A11A33 − A13A31) + P33(A11A22 − A12A21)

A11 + A22 + A33

= P11A22A33 + P22A11A33 + P33A11A22

TrA

− P11A23A32 + P22A13A31 + P33A12A21

TrA
,

then we have

Tr(P (A + B)−1)

S2((A + B)−1)
− Tr(PA−1)

S2(A−1)
− Tr(PB−1)

S2(B−1)

=
3∑

i=1

Ci[AiiTrB − BiiTrA]2

TrATrBTr(A + B)
+ P11[A23TrB − B23TrA]2

TrATrBTr(A + B)

+ P22[A13TrB − B13TrA]2

TrATrBTr(A + B)
+ P33[A12TrB − B12TrA]2

TrATrBTr(A + B)

� 0,

where Ci = 1
2

∑3
j=1 Pjj − Pii � 0. �

Remark 4.4. Note that actually we have C1 = C2 = P33 = 0, C3 = P11 = P22 = |∇v|2 �= 0, and
the equality in (4.8) holds if and only if

TrA

TrB
= A33

B33
= A13

B13
= A23

B23
. (4.9)

Now we state another useful result.

Proposition 4.5. S2(A
−1)

1
2 is convex in A ∈ S 3++.

Proof. As a special case of Theorem 15.16 in [10]. �
Along the ideas of Colesanti [5] and Salani [14], now we will prove Theorem 1.2.

Proof of Theorem 1.2. For i = 0,1, let Ki be a convex domain in R
3, and let ui be the solution

of {
S2

(
D2ui

) = λ(Ki)(−ui)
2, ui < 0 in int(Ki),

ui = 0 on ∂Ki,

then the function vi(x) = − log(−ui(x)) solves



P. Liu et al. / Advances in Mathematics 225 (2010) 1616–1633 1627
{
S2

(
D2vi

) − Tr
(
P(∇vi)D

2vi

) = λ(Ki), in int(Ki),

vi(x) → +∞, x → ∂Ki,
(4.10)

where P = (Pij ) with Pij = |∇v|2δij − vivj . In Section 2 we have proved vi is strictly convex
in Ki , so that

det
(
D2vi(x)

)
> 0, ∀x ∈ int(Ki). (4.11)

By the boundary condition verified by vi , we have

∇vi

(
int(Ki)

) = R
3. (4.12)

Let us now consider the conjugate function v∗
i of vi :

v∗
i (ρ) = sup

x∈Ki

[
(x,ρ) − vi(x)

]
, ρ ∈ R

3.

For the basic properties of this function we refer to [13]; here we just put out some points con-
nected with our concerns.

Note that v∗
i is defined on the image of Ki through the gradient map of vi , which is, by (4.12),

the whole R
3. Moreover as vi is strictly convex, vi ∈ C1(R3), and ∇v∗

i is the inverse map of
∇vi :

x = ∇v∗
i

(∇vi(x)
)
, ∀x ∈ Ki.

In particular this identity and (4.11) imply that v∗
i ∈ C2(R3) and

D2vi(x) = [
D2v∗

i

(∇vi(x)
)]−1

, ∀x ∈ Ki. (4.13)

Let t ∈ [0,1], we define Kt = (1 − t)K0 + tK1. Now we introduce a new function w in Kt in
the following:

w(z) = min
{
(1 − t)v0(x) + tv1(y): x ∈ K0, y ∈ K1, (1 − t)x + ty = z

}
, (4.14)

w is called the infimal convolution of v0 and v1 in Kt . It is a strictly convex function, and from
the boundary conditions in problem (4.10) it can be deduced that

lim
z→∂Kt

w(z) = +∞. (4.15)

Moreover w satisfies the following identity (see Theorem 16.4 in [13])

w∗ = (1 − t)v∗
0 + tv∗

1 in R
3. (4.16)

Now (4.11), (4.13), and (4.16) imply that w∗ is C2(R3), strictly convex and

D2w∗ > 0 in R
3.
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Consequently, w ∈ C2(int(Kt )). Let us fix z ∈ Kt , by the definition of w and the boundary
conditions in (4.10), there exist unique x ∈ int(K0) and y ∈ int(K1) such that z = (1 − t)x + ty

and

w(z) = (1 − t)v0(x) + tv1(y). (4.17)

By the Lagrange multipliers theorem one deduces immediately that

∇v0(x) = ∇v1(y) := ρ. (4.18)

On the other hand,

∇w∗(ρ) = (1 − t)∇v∗
0(ρ) + t∇v∗

1(ρ) = (1 − t)x + ty = z = ∇w∗(∇w(z)
)
. (4.19)

Hence by the injectivity of ∇w we have

∇w(z) = ρ. (4.20)

Therefore,

D2w(z) = [
D2(w∗(ρ)

)]−1 = [
(1 − t)D2v∗

0(ρ) + tD2v∗
1(ρ)

]−1

= [
(1 − t)

(
D2v0(x)

)−1 + t
(
D2v1(y)

)−1]−1
. (4.21)

Note that (4.18), (4.20) imply the matrix P satisfies

P(∇w) = P(∇v0) = P(∇v1) ≡ P(ρ) := P. (4.22)

Now we state the following Claim A.

Claim A.

S2
(
D2w(z)

) − Tr
(
PD2w(z)

)
� max

i∈{0,1}
λ(Ki), for all z ∈ Kt . (4.23)

If Claim A is true, then we define

ū(z) := −e−w(z), z ∈ Kt,

so ū(z) has the following properties:

{
S2

(
D2ū

)
� max

i∈{0,1}
λ(Ki)(−ū)2, ū < 0 in int(Kt ),

ū = 0 ∂Kt .
(4.24)

By multiplying both sides of the inequality above by −ū and then integrate over Kt to obtain
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max
i∈{0,1}

λ(Ki) � −
∫
Kt

ūS2(D
2ū) dx∫

Kt
|ū|3 dx

� λ(Kt ), (4.25)

where the last inequality follows from the definition of λ in (1.3). Hence

max
{
λ(K0), λ(K1)

}
� λ

(
(1 − t)K0 + tK1

)
, ∀K0,K1, t ∈ [0,1]. (4.26)

In order to get the Brunn–Minkowski inequality, we just replace K0 with K ′
0, K1 with K ′

1 and t

with t ′ in which

K ′
0 = [

λ(K0)
]1/4

K0, K ′
1 = [

λ(K1)
]1/4

K1,

t ′ = t[λ(K1)]−1/4

(1 − t)[λ(K0)]−1/4 + t[λ(K1)]−1/4
. (4.27)

Proof of Claim A. Since the solution w(z) is strictly convex in Kt , then there exists a unique
point zo ∈ Kt such that Dw(zo) = 0. So we divide two cases to prove Claim A.

Case 1. At the unique point zo ∈ Kt with Dw(zo) = 0.

In this case, we know from (4.18)–(4.20), there are unique xo ∈ K0 and yo ∈ K1 such that
zo = (1 − t)xo + tyo and Dv0(xo) = Dv1(yo) = 0. Moreover by (4.10), we have

λ(K0) = S2
(
D2v0

)
(xo), λ(K1) = S2

(
D2v1

)
(yo).

In order to prove Claim A, (4.23), we only need to prove

S2
(
D2w(zo)

)
� max

{
S2

(
D2v0

)
(xo), S2

(
D2v1

)
(yo)

}
. (4.28)

Since we have (4.21), it follows that

D2w(zo) = [
(1 − t)

(
D2v0(xo)

)−1 + t
(
D2v1(yo)

)−1]−1
, (4.29)

using Proposition 4.5, we have

S
1
2
2

(
D2w(zo)

)
� (1 − t)S

1
2
2

(
D2v0(xo)

) + tS
1
2
2

(
D2v1(yo)

)
, (4.30)

then we have (4.28) and finish the proof of this case.

Case 2. At the point z ∈ Kt with Dw(z) �= 0.

In this case, we know from (4.18)–(4.20), there are unique x ∈ K0 and y ∈ K1 such that
z = (1 − t)x + ty and Dv0(x) = Dv1(y) �= 0.

Using Proposition 4.3 we have

S2(D
2w(z))

2
� (1 − t)

S2(D
2v0(x))

2
+ t

S2(D
2v1(y))

2
. (4.31)
Tr(PD w(z)) Tr(PD v0(x)) Tr(PD v1(y))
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Consequently it follows from (4.10) that

S2(D
2w(z))

Tr(PD2w(z))
� (1 − t)

λ(K0)

Tr(PD2v0(x))
+ t

λ(K1)

Tr(PD2v1(y))
+ 1

� max
i∈{0,1}

λ(Ki)

[
(1 − t)

1

Tr(PD2v0(x))
+ t

1

Tr(PD2v1(y))

]
+ 1

� max
i∈{0,1}

λ(Ki)
1

Tr(PD2w(z))
+ 1, (4.32)

where the last inequality still comes from Proposition 4.3.
So we now get the following inequality

S2
(
D2w(z)

) − Tr
(
PD2w(z)

)
� max

i∈{0,1}
λ(Ki), for all z ∈ Kt, (4.33)

and complete the proof of Claim A. �
Up to now, we complete the proof of the Brunn–Minkowski inequality.

Prescribing the equality case. Now we will deal with the equality case in Theorem 1.2.
If K0 is homothetic to K1, that is, if K0 = K1 + ρ̄ for some ρ̄ ∈ R

3, then the equality holds in
(1.5) by the homogeneity of λ(.) and by the invariance with respect to translation.

Conversely, if equality holds in (1.5), then the arguments in previous show that equality must
hold in (4.26), up to a normalization of the involved sets. Namely, let K ′

0, K ′
1 and t ′ be as in

(4.27) and let

K ′
t = (

1 − t ′
)
K ′

0 + t ′K ′
1.

Thanks to the homogeneity of λ we may assume

λ
(
K ′

t

) = λ
(
K ′

0

) = λ
(
K ′

1

) = 1.

Hence reduce the equality to the case in which the bodies K0,K1 and Kt have the same eigen-
value 1.

We shall prove the following Claim B.

Claim B. For x ∈ K0 and y ∈ K1 such that z = (1 − t)x + ty and Dv0(x) = Dv1(y) = Dw(z),
we have

D2v0(x) = D2v1(y). (4.34)

If we have Claim B, then as in Colesanti (p. 129 in [5]), we conclude that

D2v0(x) = D2v1(y) ⇒ D2v∗
0(ρ) = D2v∗

1(ρ) ∀ρ ∈ R
3

�⇒ ∇v∗(ρ) = ∇v∗(ρ) + ρ̄, ∀ρ and for some fixed ρ̄ ∈ R
3.
0 1
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Finally we have

K0 = ∇v∗
0

(
R3) = ∇v∗

1

(
R3) + ρ̄ = K1 + ρ̄,

then we complete the proof of Theorem 1.2.

Proof of Claim B. As in the above Claim A, now we also divide two cases to prove Claim B.

Case 1. At the unique point zo ∈ Kt with Dw(zo) = 0.

In this case, we know from (4.18)–(4.20), there are unique xo ∈ K0 and yo ∈ K1 such that
zo = (1 − t)xo + tyo and Dv0(xo) = Dv1(yo) = 0. Since we have (4.21), it follows that

D2w(zo) = [
(1 − t)

(
D2v0(xo)

)−1 + t
(
D2v1(yo)

)−1]−1
, (4.35)

using the equality case in Proposition 4.5 (Lieberman [10]), we have the following equality

S
1
2
2

(
D2w(zo)

) = (1 − t)S
1
2
2

(
D2v0(xo)

) + tS
1
2
2

(
D2v1(yo)

)
, (4.36)

if and only if

D2v0(xo) = D2v1(yo). (4.37)

Case 2. At the point z ∈ Kt with Dw(z) �= 0.

In this case, we know from (4.18)–(4.20), there are x ∈ K0 and y ∈ K1 such that z = (1 −
t)x + ty and Dv0(x) = Dv1(y) �= 0. Then the calculations above show that all the inequalities in
(4.31)–(4.32) become equalities, in particular from (4.31) we have

S2([(1 − t)(D2v0(x))−1 + t (D2v1(y))−1]−1)

Tr(P [(1 − t)(D2v0(x))−1 + t (D2v1(y))−1]−1)
= (1 − t)

S2(D
2v0(x))

Tr(PD2v0(x))
+ t

S2(D
2v1(y))

Tr(PD2v1(y))
.

For simplicity, let

A = (
D2v0(x)

)−1
, B = (

D2v1(y)
)−1

,

then from the above equality and Remark 4.2 we must have

Tr(P ((1 − t)A + tB)−1)

S2([(1 − t)A + tB]−1)
= (1 − t)

Tr(PA−1)

S2(A−1)
+ t

Tr(PB−1)

S2(B−1)
. (4.38)

This is equivalent to the equality case in (4.8) for its homogeneity of degree 1. Now from Re-
mark 4.4, we have

TrA = A33 = A13 = A31 = A23 = A32 := c. (4.39)

TrB B33 B13 B31 B23 B32
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Notice that the equality in (4.32) implies

1

Tr(P [(1 − t)A + tB]−1)
= (1 − t)

1

Tr(PA−1)
+ t

1

Tr(PB−1)
.

By homogeneity of degree 1, it is equivalent to

1

Tr(PA−1)
+ 1

Tr(PB−1)
− 1

Tr(P (A + B)−1)
= 0. (4.40)

With the help of the arguments in the proof of Proposition 4.3, we may assume P is a diagonal-
ized matrix with P11 = P22 = |∇v|2 > 0, P33 = 0. Hence a simple calculation gives

1

Tr(PA−1)
= detA

P11(A22A33 − A2
23 + A11A33 − A2

13)
. (4.41)

Putting together (4.39)–(4.41), we have

(A12 − cB12)
2 + (A22 − cB22)

2 = 0, (4.42)

which implies

A12 = cB12, A22 = cB22. (4.43)

From (4.39) and (4.43), we have A = cB due to the symmetry of the involved matrix. Now
the equality in (4.31) immediately implies A = B , i.e.

D2v0(x) = D2v1(y),

thanks to the homogeneity of degree −1 in S2(A
−1)

Tr(PA−1)
.

Now we complete the proof of Claim B. �
This finishes the proof of Theorem 1.2. �
We suspect Theorem 1.2 should be true in high-dimensional case.
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