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Abstract

We give a positive lower bound for the Gaussian curvature of the convex level
sets of p-harmonic functions with the Gaussian curvature of the boundary and
the norm of the gradient on the boundary. Combining the deformation process,
this estimate gives a new approach to studying the convexity of the level sets of
the p-harmonic function. © 2010 Wiley Periodicals, Inc.

1 Introduction

The convexity of the level sets of the solutions of elliptic partial differential
equations has been studied for a long time. Using conformal mapping, Caratheo-
dory obtained that the level curves of the Green’s function on a simply connected
convex domain in the plane are convex Jordan curves. For the minimal annulus
whose boundary consists of two closed convex curves in parallel planes P; and
P5, in 1956 Shiffman [20] proved that the intersection of the surface with any
parallel plane P between P; and P is a convex Jordan curve. For elliptic partial
differential equations on domains in R”, the convexity of the level sets of solutions
was first considered by Gabriel [8] in 1957. He proved that the level sets of the
Green function on a three-dimensional bounded convex domain are strictly convex.
Later, in 1977, Lewis [12] extended Gabriel’s result to p-harmonic functions in
higher dimensions and obtained the following theorem.

THEOREM 1.1 (Gabriel [8] and Lewis [12]) Let u satisfy

div(]Vu[P72Vu) =0 inQ = Qo \ Q1,
(1.1) u=0 on 9%,
u=1 on 0921,
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where 1 < p < 400 and Q¢ and 21 are bounded convex domains in R", n > 2,
Q1 C Qo. (We say that u satisfies the homogeneous Dirichlet boundary conditions
in the convex ring Q@ = Qg \ Q1.) Then all the level sets of u are strictly convex
with respect to the normal Vu.

In 1982, Caffarelli and Spruck [5] generalized the Lewis [12] results to a class
of semilinear elliptic partial differential equations. Motivated by the result of Caf-
farelli and Friedman [3], Korevaar [11] gave a new proof of Theorem 1.1 using the
following observation: if the level sets of the solution of (1.1) are convex with re-
spect to the gradient direction Vu, then the rank of the second fundamental form of
the level sets is constant in the domain. For more recent related extensions, please
see the papers by Bianchini, Longinetti, and Salani [2] and Bian, Guan, Ma, and
Xu [1]. A survey of this subject is given by Kawohl [10].

The aforementioned results are of a qualitative nature. This naturally leads us
to the question of quantitative results, that is, estimates for the curvature of the
level sets of the solutions of such elliptic problems. This is the topic of the present
paper. The quantitative study in partial differential equations is very important in
many problems; for example, see the survey by Lin [13].

For a two-dimensional harmonic function defined on a convex ring with homo-
geneous Dirichlet boundary conditions, by the theorem of Lewis [12], the level
sets of this function are strictly convex. In 1983 Longinetti [14] proved that the
curvature of the level sets of such a two-dimensional harmonic function attains its
minimum on the boundary (see also Talenti [22] for some related results). Later, in
1987, Longinetti [15] obtained a similar theorem for minimal surfaces, where the
convexity of the level sets follows from the theorem of Shiffman [20]. Recently
Jost, Ma, and Ou [9] proved that the Gaussian curvature (i.e., the product of all
the principal curvatures; see [21]) of the convex level sets of three-dimensional
harmonic functions attains its minimum on the boundary. Ma, Ye, and Ye [17]
got a sharp lower bound for the principal curvature of the level sets of harmonic
functions and minimal graphs defined on convex rings in R* with homogeneous
Dirichlet boundary conditions. For the other related results and its application to
the free boundary problem, please see the papers by Rosay and Rudin [18] and
Dolbeault and Monneau [7].

In this paper, using the strong minimum principle, we obtain a lower bound on
the Gaussian curvature of the convex level sets of higher-dimension p-harmonic
functions. Our estimates depend on the Gaussian curvature of the boundary of the
domain and the norm of the boundary gradient of the p-harmonic functions. From
our estimates and combining the deformation process, we can give a new approach
to studying the convexity of the level sets of p-harmonic functions.

Now we state our theorems.

THEOREM 1.2_ Let Q be a bounded smooth domain in R*, n > 2, and u €
C*(Q) N C?(Q) be a p-harmonic function in Q, i.e.,

(1.2) div(|Vu|?™2Vu) =0 in Q.
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Assume 1 < p < 400 and |Vu| # 0 in Q, and let K be the Gaussian curvature
of the level sets. If the level sets of u are strictly convex with respect to the normal
Vu, then we have the following statements:

Case 1. Forn > 2,1 < p < 400, the function
|Vu[PH1-2r g
attains its minimum on the boundary.
Case?2. Forn =2,1 < p < 400, and forn > 3, 1 + % < p < n, the function
|Vu|'"P K

attains its minimum on the boundary.

n+1

Case 3. Forn=2,%§p§3,0rn=3,2§p<oo,orn24,p= >

the function K attains its minimum on the boundary.

If u is a solution for (1.1), then we shall prove a useful fact that the norm of
the gradient |Vu| attains its maximum and minimum on the boundary in Proposi-
tion 4.1. Combining this fact, Theorem 1.1, and Theorem 1.2, we have the follow-
ing consequences:

COROLLARY 1.3 Let u satisfy
div([VulP2Vu) =0 inQ = Qo \ Q1.
(1.3) u=20 on 082,
u=1 on 0921,
where 1 < p < 400, Qo and Q1 are bounded smooth convex domains in R",

n>2 Q1 C Qo. Let K be the Gaussian curvature of the level sets. Then we have
the following estimates:

Case la. For1 < p < %, we have

(1.4) min K > minK(

minyg, |Vu|\" 1727
Q 194

maxyq, |Vu|

Case 1b. For % < p < +00, we have

(minago |Vu| )21’—"—1

(1.5) min K > min K
maxyg, |Vu|

Q 191

Case 2. Forn=2,1<p<+oo,andf0rnz3,1+%fpfn, we have

minyg, |Vu| )p_l

(1.6) min K > minK(
maxyq, |Vul

Q Q
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Case 3. Forn=2,%§p§3,0rn=3,2§p<oo,orn24,p=%,we
have
(1.7) min K > min K.

Q 02

Remark 1.4. In Theorem 1.2, we choose ¥ (x) = |Vu|!"PK(x) forn = 2,1 <
p < +oo,andforn > 3,1+ % < p < n. Now we give an example to explain our
choice for .

Let u(x) be the p-Green function of the ball Bg(0) C R”, i.e.,

p—n p—n
|x|]~T — R»=T  forl < p <n,

1.8 ulx) =
(1.8 ) —log|x| +1log R for p =n.
Then
1—n
PP \x|»=1 forl < p <n,
(19) Val) = | 271 P

1

Tl for p =n,

and the Gaussian curvature of the level set at x is
K(x) = |x|'™".

Hence

(’;;’1’)1_1’ forl < p <n,

(1.10) Y (x) = [Vu|'"PK(x) =
1 for p =n.

From the above calculations, we know our ¥ (x) = |Vu|!=? K(x) is sharp in some
sense.

Remark 1.5. Our function ¥ (x) = |Vu|' 7?7 K in Theorem 1.2 is partly motivated
by the works in Talenti [22]. Let u be a two-dimensional harmonic function with
no critical points in the domain. Let k be the curvature of the level curve of u. In
[22] Talenti proved |Vu|~'k is a harmonic function. From this observation one
can also get the upper bound estimates on the curvature of the convex level curve
of a two-dimensional harmonic function with boundary data.

Let K be the Gaussian curvature of the convex level sets, and let V¥ (x) =
|Vu|2? K. For a suitable choice of 6 we shall show that

¢ = log ¥ (x) = log K(x) 4 60 log |Vul|?
satisfies the following elliptic differential inequality:
(1.11) > F%pu <0 mod Ve inQ,
1<a,<n

where
FB(Vu) = |Vu|28a/3 + (p —2uqug.
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In (1.11), we have suppressed the terms containing the gradient of ¢ with locally
bounded coefficients; then we apply the strong minimum principle to obtain the
results.

In Section 2, we first give a brief definition on the convexity of the level sets, and
then obtain the curvature matrix (a;;) of the level sets of a function, which appeared
in [1, 9]. We prove the main theorem in Section 3, and then the corollary and some
remarks in Section 4. The technique in the proof of these theorems consists in
rearranging the terms in the second and third derivatives using the equation and
the first-derivative condition of ¢. The key idea is Pogorelov’s method in a priori
estimates in fully nonlinear elliptic equations.

2 The Curvature Matrix of Level Sets

In this section, we shall give a brief definition of the convexity of the level sets,
then introduce the curvature matrix (a;;) of the level sets of a function, which
appeared in [1].

We first recall some fundamental notation in classical surface theory and give
the definition of the convexity of a graph in Euclidean space with respect to the
upward normal. Then we introduce the definition of the convexity of the level sets
of a function u, and we derive the curvature matrix for the level sets of u.

2.1 Classical Differential Geometry of a Graph and Its Convexity

First we recall some fundamental notation in classical surface theory as in [6].
Assume a surface ¥ C R” is given by the graph of a function v in a domain in
R

xn =v(x), x' = (x1.%x2,...,Xp—1) € R"7L.
The first fundamental form for the graph of x,, = v(x’) is given by
gij = 0ij + viv;.

The upward normal direction v and the second fundamental form for the graph

xn = v(x’) are given by
1 Vij

V= W(_Ula_v2, .. -,_Un—lv 1)’ blj =W

where 1 <i,j <n—land W = (1 + |Vv|?)!/2.
Now we recall the definition of a convex graph in classical differential geome-
try [6].

DEFINITION 2.1 We define the graph of a function x,, = v(x’) to be convex with
respect to the upward normal

1
2.1 V= —(—v1,—V2,...,—Up-1,1
(2.1 W( 1,—V2 n—1,1)

if the second fundamental form b;; = v;j/ W of the graph x, = v(x’) is nonneg-
ative definite.
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The principal curvature x = (k1,...,kn—1) of the graph of v, being the eigen-
values of the second fundamental form relative to the first fundamental form, sat-
isfies

det(bij - Klgij) =0.
Equivalently, the «; satisfy
det(a,-j —KISij) =0,
where
N i1
(aij) = (8')2 (i) ()2,
(g') is the inverse matrix to (g; 7), and (g'7)1/2 is the positive square root of (g*/).
They are given explicitly by
l]: ”_Uivj . vivj
£ T T Ty W+ W)’

Then we have the following well-known formula:

()7 = 8ij

LEMMA 2.2 ([4]) The principal curvature of the graph x,, = v(x') with respect to

the upward normal (2.1) are the eigenvalues of the symmetric curvature matrix
1 Vi VjVj] V] Vg Vi ViV ViV Vjk

22 a;;] = —V;7] — _ ,

2.2) T=w U T wa+w) T WA+ w) T W21+ W)2

where the summation convention over repeated indices is employed.

2.2 Convexity of Level Sets of a Function

Now we give the definition of the convex level sets of a function u. Let 2 be a
domain in R” and u € C?(Q); its level sets can usually be defined in the following
sense.

DEFINITION 2.3 Assuming |Vu| # 0 in €2, we define the level set of u passing
through the point xo €  as T**0) = {x € Q | u(x) = u(xo)}.

Now we shall locally work near the point xo where |Vu(xo)| # 0. We first state
the definition of the convexity for the level set £*(*0) in this special case. Without
loss of generality we assume u,(xg) 7# 0 and work on the small neighborhood
of xp.

By the implicit function theorem, locally the level set £#(X0) can be represented
as a graph

xp =0, x' =(x1.%x2,...,%,-1) € R"L,
and v(x’) satisfies the equation
u(xl ’ x2, LI ) xn—l, v(x17 x2a LI xn—l)) = u(x())
It follows that
(2.3) ui +uyv; = 0;
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hence

(2.4) v = ——.

From (2.4), the first fundamental form of the level set is
e Uju;
gij = bij + R
and
|Vl

Using (2.1) and (2.5), it follows that the upward normal direction of the level set is

(2.5) W =(+|Vu]})? =

|un|

2.6 V=
26) Y |Vu|uy,

(ul,u2, .. -,un—l,un)-

Now we differentiate (2.3) again; we have

Ujj + UinVj + UpjVi + UppViVj + Uyvij =0,

then
1
Vij = === (Uij + UinVj + UnjVi + Unn¥iv;)
n
— 2, .. L s s
= —u—3(unuu + UppUilj — UpUjUin — UpUiUjp).
n
If we set
2
2.7) hij = UpUij + UppUillj —UpUjUin — UpUiUjp,

it follows that
]ﬂ

(2.8) vijj = —

From (2.5) and (2.8), with respect to the upward normal direction (2.1), the second
fundamental form of the level set of function u is

vij _ |unlhis
w |Vulul

From Definition 2.1, we now give the definition of the convexity for the level set
$#(0) = {x € Q | u(x) = u(xo)} of function u(x) where |Vu|(x) # 0 in Q.

2.9 bij =

DEFINITION 2.4 For the function u € C2(Q2) we assume |Vu| # 0 in . Without
loss of generality we can let u,(xo) # 0 for xo € Q. We define locally the level
set T4(0) = {x € Q | u(x) = u(xp)} to be convex with respect to the upward
normal direction

|un|

|Vuluy

1_5= (ul’u27~-'aun—laun)
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if the second fundamental form
_ |unlhij
|Vu|u?

b; j =
is nonnegative definite.

Remark 2.5. If we let Vu be the upward normal of the level set £*(*0) at xo, then
un(x9) > 0 by (2.6). From Definition 2.4, if the level set **0) is convex with
respect to the normal Vu, then the matrix (/;;(x)) is nonpositive definite.

2.3 Curvature Matrix of Level Sets of a Function

Now we obtain the representation of the curvature matrix (a;;) of the level sets
of a function 1 with the derivative of the function 1. We work locally on X#&0) =
{x € Q| u(x) = u(xop)}. Let Vu be the upward normal of the level set £%(X0) at
Xo; then u, (xg) > 0.

From (2.2), (2.5), and (2.9), it follows that the symmetric curvature matrix (a;;)
becomes

uiuhj
ajj = ———>1"hij + ————
YO vuuz | Y T w4 Wu2
wjurhyp — wiujugughyg
WA+ Wyu2 W21+ W)2uil)

(2.10)

From now on we denote

By = ujurhj ujurh; ’
@.11) W+ Wyuz W1+ W)u

-

u}’l
and
(2.12) Ajj = —h;j + Bij — Cjj;
then the symmetric curvature matrix of the level sets of u can be represented as
(2.13) aijj = ——|—hij + Bij — Cij] = —1 Ajj.
|Vuluz |V |u2

With the above notation, we end this section with the following Codazzi-type
formula, which will be used in the next section:

PROPOSITION 2.6 (See [1].) Denote

da;j

Gijk = 0xy

for1 <i,j,k < n—1; then at the point where u, = |Vu| > 0, u; = 0, a;;
commutesini, j, and k, i.e.,

aijsk = alka}
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PROOEF: Direct calculation shows
-1 -2
(2.14) Ajjk = —Up, Uijke + Uy~ (UijUiy + UikUjn + UjgUin).

The right-hand side of (2.14) obviously commutes in i, j, and k. O

3 Proof of the Main Theorem
In this section, we shall consider the equation
(3.1 div(|Vu|?™2Vu) =0 inQ,

and we shall prove Theorem 1.2 by the strong minimum principle.
From now on, we employ the convention that the indices 1 < «, 8,y < n and
1<i,j,k<n-—1.

Denote
(3.2) FoP (Vu) = |Vu|?84p + (p — 2)uqup.
Then equation (3.1) is equivalent to
(3.3) > FPuus=o0.
1<a,B<n

PROOF OF THEOREM 1.2: Since the level sets of u are strictly convex with
respect to the normal Vu, the curvature matrix (a;;) of the level sets is positive
definite in Q. We set ¥ (x) = |Vu|?? K(x), and let

¢ = log ¥ (x) = log K(x) + 6 log |Vu|?,

where K(x) = det(a;;) is the Gaussian curvature of the level sets. In this section,
for a suitable choice of 8 we will derive the following elliptic inequality:

(3.4) > F%pu <0 mod Ve inQ,

1<a,B<n

where we modify the terms of V¢ with locally bounded coefficients. Then by the
standard strong minimum principle, we get the result immediately.

In order to prove (3.4) at an arbitrary point xo € €2, as in Caffarelli and Fried-
man [3], we choose the normal coordinate at x¢ by rotating the coordinate system
suitably by TY,; we may assume that u;(xg) = 0,1 <i <n —1, and u,(xo) =
|Vu| > 0. We can further assume that the matrix (u;;(x0)) (1 <i,j <n—1)is
diagonal and u;; (xg) < 0. We also choose Ty, to vary smoothly with x¢. If we can
establish (3.4) at x¢ under the above assumptions, then going back to the original
coordinates we find that (3.4) remains valid with new locally bounded coefficients
on Vg in (3.4) depending smoothly on the independent variables. Thus it suffices
to establish (3.4) under the above assumptions.

From now on, all the calculation will be done at the fixed point x¢. In the
following, we shall prove the theorem in three steps.
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Step 1. We first compute formula (3.26).
Taking the first derivative of ¢, we get

(3.5) ga= Y, d’aije+0[Vu7?|VulZ;
1<i,j<n—1

it follows that

(3.6) > d'aiig = =20, tna + Gu.
1<i<n-—1

Taking the derivative of equation (3.5) once more, we have

Cap = Y. dlaigp— Y d'aVaijeaip

1<i<n—1 1<i,j<n—1

— OV~ [Vul, [Vulg + 0| Vu| 72 | VulZ,.

So
3.7) Y FPgup =1+1+1+1V,
1<a,B<n
where
I= > d" > Faj,
1<i<n-—1 1<a,B<n

H=— > > FPd%Vajea;.
I<i,j<n—11<a,B<n
I = —6|Vu|™* )~ F“ﬂIWI(iIVuI,zg,
1<a,B<n
IV=0Vul2 Y F|vu2,
1<a,B<n

In the rest of this section, we will deal with the four terms above. For the term
II, from (3.2) we have

Fl=|Vu?=u2, 1<i<n-1,
(3.8) F™ = |Vul? + (p — 2u2 = (p — Du2,
F* =0 fora # B.
Then
B9 H=-u; > d%dal,—(p-Du, >  d'a"a},.

1<i,j,k<n—1 1<i,j<n—1
Next we treat terms III and IV. At the considered point xg, equation (3.3) be-
comes
Z F“ﬂuaﬂ = uZAu+ (p — 2)ulup, =0,

1<a,B<n
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ie.,

(p— Dupn = — Z Ujj.

1<i<n-—1
By (2.10) and (2.7), we get
(3.10) Uj; = —Upa;; and h;; = —uzaii,
SO
(3.11) : h >
. Upp = upoy Wwhere oq = ai;.
nn p— 1 n01 1 . ii
1<i<n-—1

Now we have the formulas

ao,,2 _ pnn,?2 ii,,2
E F%;, = F " u;,, + E Fu;,;

1<a=<n 1<i<n—1
(3-12) 1y 2 4,2 2
- p—lun 01 Uy Upi
1<i<n-—1
and
Z F”“"uﬁﬂ = F"u2, + F"" Z uz; + Z F'hu2,
1<a,B<n 1<i<n-—1 1<i<n-—1
i, 2
(3.13) + ) g
1<i<n-—1
1
_ 4 2 2 2 4 2
—p_1”n01+P”n Z Up; + Uy Z aj;-
1<i<n—1 1<i<n—1

Differentiating (3.3) with respect to x,, we have

(3.14) F,?,ﬂ = 2ununn5aﬂ +(p— 2)”001”/3 +(p— z)uauﬂn§

together with (3.2) and (3.3), we can get

(B15) Y FPug=— > Fluu=-20p-2u, Y ul.
1<a,8=n 1<a,B<n I<j<n—1

From (3.8), (3.11), and (3.12), it follows that
M= —6[Vu|™ Y F*|VulZ|Vulj

1<a,B<n
_ -2 an,, 2
(3.16) = —40u, Z F*%u;,
1<a<n
4
= —40 Z u,zu— Oulo?
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In an analogous way, we treat term IV. By (3.10), (3.11), (3.13), and (3.15),
IV =6[Vu|> Y F*|vu|,

1<a,f=<n
= 0u;2 Z FoP (zununaﬂ +2 Z Mya”)’ﬂ)
3.17) 1<a,B<n I<y<n
= 29u;1 Z F“ﬁu,mﬂ + 2914,72 Z F‘wuiﬂ
l<a,f<n l<e,f<n
2
= SOuet+ @200 3 w420 3 4,

1<j=<n-—1 1<j=<n-—1
Combining (3.7), (3.9), (3.16), and (3.17), it follows that

Z Fob Pap

1<a,B<n

_ i af 2 ii jj 2
= > ' Y Flaap—uy ), d"dVaj,

1<i<n—1 1<a,B8<n 1<i,jk<n—1

—(p—Du? Z aiiajjaizj’n+(4—2p)9 Z uﬁj

1<i,j<n—1 1<j<n-1

2 2 2 2 2
p_léun01+29un Z as;.

(3.18)

1<j<n-1
Next we deal with the term
I= Z a't Z F“ﬁaii,aﬂ.
1<i<n—1 1<a,B<n
By (2.13),
Ajj
4 = |Vu|ju,2,;

it follows that
(3.19) Aii = a;; D where D = |Vu|u>.
Taking the first and second derivatives of (3.19), we get
Aiig = aiiaD + ajj Dy,
Ajiop = AijapD + aiiaDp + a;;,g Do + aii Dog:
then
Ajiaf = u%[Aii,aﬂ —aijaDpg — a;; g Do — aji Dygl.

n
Hence

(3.20) I=1, +1, + 13,
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where
1 .
I, = - Z all( Z FaﬂAii,a,B)v
n1<i<n—1 l1<a,B<n
n—1
12 = - 3 ( Z F‘xﬂDaﬂ)v
n 1<a,B<n
2 g
I3 = _u_3 Z Faﬂ( Z a”a,-,-,/g)Da.
" 1<a,B<n 1<i<n-—1
Since
Dy = 3“;21una7
3.21) Dop = Sunlngiing + 3u,21u,m3 + Uy Z Uyalyg,
l<y<n
from (3.8), (3.12)—(3.15), and (3.21), we obtain
n—1
h=——3 ( > F“f’Daﬂ)
" M=a,B=n
n—1
=3 (Sun Z F“ﬂunaunﬂ + 3u% Z F"ﬂunaﬂ
n 1<a,B<n 1<a,B<n
(3.22) tup Y F“ﬂuyauyﬂ)

1<a,B,y<n

= =DGp=17) Y up— =Dy

1<j<n—1

6(n—1)
X Z ajzj — T uiO'IZ
1<j=n-1 P
By (3.6) and (3.12), we have

I3 = —u% Z Faﬂ( Z aiiai,-,/g)Da

" 1<a,B<n 1<i<n-—1

2
= 126u;,> )~ quga_u—3 Y F*Dagy

(3.23) l<a<n n 1<a<n
2 12 2 2
= 126 Z Upj + —— T Ou; o1
1<j=<n—1 P

— 6uy Z unj(pj—6u,2101(pn.

1<j=<n-1
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For the term Iy, recalling the definition of A;;, i.e., (2.11) and (2.12), at xo we
have

Ciiap =0,
hence
Ajiap = —hiiap + Biiap-
It follows that

1 ,
h=— Y a”( > FaﬂAiiaB)
3 ,
(3.24) Un 1<i<n—1 1<a,B<n
=Iin+I2
where
1 g
I =— Z a”( Z Faﬂ(_hii,aﬂ))’
n1<i<n—1 1<a,B<n
1 g
112 = -3 Z a”( Z FaﬂBii,aﬂ).
n1<i<n-—1 1<a,B<n

Now we work on term I1,. By (2.11), (3.8), and (3.10),

112=ML3 > a”( > FaﬂBii,oeﬁ)

n1<i<n—1 1<a,f<n
_ 1 S 4t Y pos 2> 1<i<n—1 Uiktihip
M?I 1<i<n-—1 1< =< W(l + W)u% b
(3.25) == sep=n N
1 py ap [ 2iattighii
“a e T
1<i<n-—1 1<a,B<n

=-2up Y a}-2p-1) > ul

1<j=<n-—-1 1<j=<n—1
Combining (3.18), (3.20), (3.22), (3.23), and (3.25), it follows that

> F"‘ﬂ%ﬁ=ui3 Z “”( > Faﬁ(—hii,aﬂ))

1<a,B<n
) Z i jj o2
Mn a a aij’k
1<i,j,k<n-—1
2 i jj 2
— (p — Duy, E a‘a’ai;

1<i,j<n—1

2
+@-2pf > u,z,j—p_leuﬁaer

1<j<n-—1
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+20ur Y a+m-DGp—17) Y uy

1<j=n-1 1<j<n—1
6(n—1)
—(n— Du? Z afj—juﬁof
1=j<n-1 P
) 2 12 ) 2.2
+ 12 Z Uy P u;oq
1<j=n—1
— 6uy, Z UnjQj 6u,%01(pn 2u;, Z ajzj
1<j<n-1 1<j<n-1
—2(p-1) > ul
1<j<n-1

So we have
> FPqup
1<a,B<n
1 .
=i X (T )
n 1<i<n—1 1<a,B<n
—u? Z aiiajjal.zj,k —(p—Du? Z aiiajjal-zj,n
(3.26) 1<i,j,k<n—1 1<i,j<n—1
+ 20 —n— l)u% Z a]zj
1<j<n—1

+[(16=2p)6 +5pn —1Tn =Tp+ 191 Y uz;

1<j<n-—1
10 6(n—1
+[ 19— 1)]14,21012—614,1 Z UnjQj — OUZT1Pn.
P P 1<j<n—1

Step 2. In this step we calculate the following term in (3.26),
> R (—hii,aﬂ));
1<a,B<n

we shall get formula (3.46).
By differentiating (2.7) twice, we have

_ 2., .. 2 s
_hii,a = U, Ujja — 2UupUnoUii — Unnall; — 2uiUjgUnn

+ 2UupUiUnia + 2UnUigUni + 2UpqUiUn;
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and

— 2 .. .
—hiiap = —UnpUijap — 2UnUnaUiip — 2UnUpgUijq + 2UnUiglnyip
+ 2unuiﬂ“nia + 2unuiaﬂuni - 2”nunaﬂuii + 2“na“iﬂ”ni

+ 2upgUiqUni — 2UnpUigUia — 2UpgUnolii -

It follows that

> FP(—hyigp)

1<a,B<n
= —Ui Z Faﬁuii(xﬂ —4uy Z Faﬂunauiiﬂ
1<a,B<n 1<a,B8<n
+ 4uy, Z F“ﬂuiaun,—ﬂ + 2Uply; Z F“ﬂuiaﬂ
3.27) 1<a,f<n 1<a,B<n

—2upu;; Z F“ﬂunaﬁ + 4up; Z Faﬂunauiﬂ

1<a,B<n 1<a,B<n
—2Upn Z Fuﬂ“iﬂuitx — 2uj; Z F“ﬂunﬂuna

1<a,B<n 1<a,B<n

=J1+ 2+ J3+ Jg,

where

J1 = —ui Z F“ﬂu,-,-a/;,

1<a,B<n
Jo=—bun Y FPunouizp +4un Y FPuigunp,
1<a,B<n 1<a,B<n
J3 = 2upp; Z FPuiqp — 2unu;; Z FPupp,
1<a,B<n 1<a,B<n
Js = duy,; Z F“Bunauiﬂ —2Upn Z F“ﬂu,ﬂuia
1<a,B<n 1<a,B<n
—2u;; Z F“Bunﬂuna.
1<a,B<n

We first treat term J5. By (3.8),

Jy = —4uy, Z Faﬁunauiiﬁ+4un Z Faﬂuiauniﬂ

1<a,B<n 1<a,B<n
3 3 3
(3.28) = —4u,, Z Unjuiij —4(p — Dujunntnii + 4upuiini
1<j<n—1

+4(p — 1)”2uniunni-
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From (3.15) and its analogy

(3.29) Y FPugp=— Y FPuus = —2(p — ununiuii,

1<a,B<n 1<a,B<n

together with (3.10), we have

J3 = 2upiy; Z F”Buialg—2unu,—i Z F“ﬂunaﬂ

1<a ﬂ<n 1<a,B<n
= —4(p — QuiuZ ui; + 4(p — 2uiu; Z uz;
(3.30) n nl ii ii nj
1<j<n—1
= 4(p —2uu ma”—4(p Qula; Z uij.
1<j=<n-1

For term J4, taking advantage of (3.8)—(3.11),

Ja = dup; Z F“‘Bunauiﬂ —2Uun Z F“ﬂuiﬂum
1<a,B<n 1<a,B<n
— 2u;; Z Faﬁunﬂuna

1<a,B<n

2 2
—4unumu”—|—2(p 1)un munn 2upUpnti;

(3.31)
—2(p — Duujiuz, —2ulu;; Z “ij
1<j=<n-—-1
2 2 2 59 2 s 2
= —dujuz;aii + 2upuz;01 — P U,a;;01 + o1 Updiioj
-|—2u,3;a,-,- Z uij.
1<j=<n—1
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Finally, we deal with term J;. By differentiating (3.3) twice with respect to x;,

we have

Z Faﬂuaﬂii: Z F uaﬂ 2 Z F“Bua[;,

1<a,B<n 1<a,B<n 1<a,B<n

From (3.2), we have

(3.32) “ﬂ = 2upunibop + (P — 2ugiug + (p — 2)uqug;
and
F?,ﬂ =2 Y u},80p + 2unttiinSap + (P — Diiatip
(3.33) 1<y=<n
+ (p = Duauiip + 2(p — 2uiqUip.
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Therefore,

(334 Ji=-u2 Y FPujie

1<a,B<n

=u? Z Fj.‘fuaﬂ + 2u? Z F";Buaﬁi

1<a,B<n 1<a,B<n

:2uﬁAu Z ul-2a+2u,?;Auunii+2(p—2)u,3, Z UgiiUna

1<a<n 1<a<n

+2(p — 2)uﬁ Z UgiUBiUgp + 4u,?1’um~(Au),-

1<a<n

+4(p— 2)“;3; Z UgiUnia-

1<a<n

From (3.27), (3.28), (3.30), (3.31), and (3.34), let us rewrite the terms in
> F(—hijup)

1<a,B<n
as
(3.35) > F¥(hijap) = L1 + Lo,
1<a,B<n
where
Ly = 2u3 Auuyi; + 2(p — 2u’ Z UgiiUng + 4udup; (Au);
1<a<n
(3.36) +4(p—2uy D Uailtnia — AUy D Unjliiy
1<a=zn 1<j<n—1
—4(p — Dupupniinii + 4uiuiiuni; + 4(p — Dupunitinn
and
Ly = 2u2Au Z u?, +2(p —2)u Z UaiUBilUaB
1<a<n 1<a,B<n
+4(p — 2)u2u,2”a,-i —4(p — 2)u2aii Z u,zlj — 4u,31uﬁia,-,-
1<j=n—-1
(337) 5
+ 2u2u,2”-01 — 1 “;51“1'21'01 + 1 uzaiifﬁz

3 . 2
+ 2u;a;; Z Upj-
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So we have
1 .
I = 3 Z a”( Z Faﬂ(_hii,aﬂ))
(3.38) ln 1<i<n-—1 1<a,B<n
= —3 Z L1 + Lz]
Un 1<i<n

In the following computation, we first concentrate on term L.
By (3.29),
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(p = DuPunni = =2(p — Duntipittis —up D Ujji

1<j=n-—-1
then
Ly =8(p — Dupunitinni + 4(p — Dupuiistnii — 4(p — Dupunnliin
+Qp—=8uy Y uijunj +Aupuni > ujji
1<j<n—1 1<j<n—1
(B39 =—dwdun Y i+ 4 — Duduiiuni
1<j=<n-1

—4(p — Dudupnitiin + 2p — 8)u Z UjjjUnj

1<j=n—1
—16(p — 2)14” mu”
By (2.12), (2.11), and (2.7), we have
Aiig = —hiia = —2UnUnaUii — Upliiaq + 2UnUiglin:

on the other hand by (2.13),
Aiig = (@;i|Vulu)y = upaiiq + 3uiunaaii;
therefore

—1 —1
(3.40) Ujjq = —Unlijq + 2U, Uniliq + U, UpgUjj.

Now making use of (3.40) and recalling (3.10) and (3.11), we can write L as

L = 4uium~ Z ajji —4(p — l)uzuiiaii,n +4(p — l)u:u
1<j=n—1
+ (8 — 2p)u;41 Z aji,jUnj — 16(p — 2)un nlull
1<j<n-1

+ (12p — 32)un nlu,l%—(4 4p)un nz“nn + 4u? sUiilnn

+4(p — l)u,zlunnuizi +@2p— S)Mﬁuii Z uﬁj =

1<j=<n-1

nnQii,n

Yo uy

1<j=<n-—-1
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4 5 5
= duguni Y ajji +4p— Dupaiidiin + 41,018ii 0
1<j=n—1
4 3,2 3.2
+ (8 —-2p)u, Z Ajj, junj + 4pu,u,,;ai; — 4u,o1u;,;

1<j=<n-—-1

4
+ Py lugalza,-i + 4”1510141'21' + (8 — 2p)u,31a,~i Z uﬁj

1<j<n—1
= Ly1 + L2,
where
L1 = 4uium- Z ajji + 4(p — l)uZa,-,-aii,n + 4uzalaii,n
1<j<n-1
+@=2p)uy D diijnj,
1<j<n-1
4
Lia = 4pujuy;ai — 4uponuy; + p__]ruZU%aﬁ + duyonaj;
+ 8 —2p)u,aii Z Uy
I<j=n-1
By (3.6),
1 .
— a - Ly
n 1<i<n—1
=4, Z aiiuniajj,,- +4(p — 1)14,2, Z Ajj,n
1<i,j<n—1 1<i<n—1
(3.41) 8
2 2 2
—|—(4p—16)9 Z unj_ p—l U,01
1<j=<n-—1
+4upo100 + (8 =2p)un Y Unj@j
1<j<n—1
and
1 ii 2
a Z la .L12=(—2pn—|—8n+6p—8)1 Z 1un,-
<j<n— <j<n—
(3.42) == o

y 4p +4n —8
— 40 Z a”u%i—l—%nza

1<i<n-—1
Now we consider the term L,. Set

Ly = Ly1 + Lo,
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where

L21=2u,21Au Z u,-2a+2(p—2)uﬁ Z UgiUBiUgB,

1<a<n 1<a,B<n
Loy = 4(p = Dupup,aii —4(p — Dunaii Y up; —4ujulai;
1<j=<n—1
3.2 2 5 2 5 2
+ 2u,u;;01 — u,a;;o1 + U,ai;oq
p—1 —1
—|—2uza,~i Z u,le.
1<j<n—1
Then by (3.10) and (3.11),
1 iy 4—-2
— Z a' - Ly = p_fuﬁaf—2(p—2)uﬁ Z ajz-j
n 7 _ / —
(3.43) 1<i<n-—1 1<j=<n-1
—4(p-2) > ul.
1<j=<n-—1

‘We also have

_ Z a'l - Loy = (—4pn + 8p + 10n — 22) Z ulej
n i<i<n—1 t=j=n—l

i 2n—4
+ 201 Z at'u?, + P uZof.

1<i<n-—1

From (3.38), we have

1 g
h=1 3 a”( )3 F“ﬁ(—hii,aﬂ))
(3.45) MI” 1<i<n-—1 1<a,B<n
= 3 Z a''[Li1 + Li2 + Loy + Lao).

1<i<n-—1
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In view of (3.41)-(3.44), we have

1 y
i =—3 > a”( > Faﬁ(_hii,aﬂ))
n 1<i<n—1 1<a,B<n
= 4uy Z auniajji + 4(p — Duj Z Qii,n
1<i,j<n—1 1<i<n—1
y 8 2p+6n—28
2 2 2
— 201 Z a”uni—i-(—p_IG—i- P )unol
(3.46) 1sizn—1
+(4—2p)u,21 Z ajz-j
1<j=<n-—1
+[(4p —16)0 — 6pn + 10p + 181 —22] > w7,
1<j=n—-1
+ 4upo19n + (8 — 2p)uy Z UnjPj-
1<j<n-1

Step 3. Now we combine (3.26) and (3.46). It follows that

ap _ .2 i jj o2
Z F™ oup = —uy, E a‘a’ag
I1<a,B<n 1<i,j,k<n—1
2 ii jj 2
—(p—Du, E a‘aa;j; ,
1<i,j<n—1
+ 4u, E a”uniajj,,-
1<i,j<n—1
2 ii,,2
+4(p — Du;, E aiipn — 201 E a'uy;
1<i<n-—1 1<i<n-—1

+RpO+(=HA—p)] > uZ

1<j=<n-—1

(3.47)

2 2 2

+ (FG +2)un0'1

+(29—n—2p+3)u% Z a}j
1<j=n—1

+ (2 —-2puy Z UnjQj —214,%01%-

1<j<n—1

Now we shall concentrate on formula (3.47), and we shall treat it by applying
(3.6). In the following calculation, without loss of generality, we shall isolate the
i = 1terms in (3.6) so that we can obtain the sharp upper bounds of the quadratic
form on a;jq in (3.47). Through very careful calculation, we get formula (3.62).
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Then we choose a suitable 6 such that we can include the sharp case as explained
in Remark 1.4.

Rewrite (3.47) as
(3.48) > FPgup = My + My + Ms,
1<a,B<n
where

2 i jj 2 ij
M, = —u; E a'ta’ ai;  + dup E a’unjai; g,

1<i,j,k<n—1 1<i,j<n—1
My = —(p — Du? Z aiiajjaizj,n + 4(p — Du? Z Aiin,
1<i,j<n—1 1<i<n—1
Ms=-201 Y d"ul+[2p0+@0-3)(1-p] Y up
1<i<n-—1 1<j<n—-1
2
+ (F9+2)u,21012+(29—n—2p+3)u% Z ajzj

1<j=n—1

+ (2 —-2p)uy Z Unj@Q;j — 2”%(7190}1-

1<j=n—-1
For the term M7, we have
(3.49) My = My + Mya + M3 + Mg,
where

2 ii jj 2 2 ii 2
My =—u) ) aa’al . Mip=-uy Y (@ai)’

1<i,j,k<n—1 I<i<n—1
i#j,j #k.k#i
2 ii 2 2 ii jj 2
M3 = —u;, Z (@' a;i j)° —2u; Z a a”aij’j,
1<i,j<n—1 1<i,j<n—1
i#j i#j
Mi4 = 4uy, Z a”unjaii,j.
1<i,j<n—1
By (3.6),
3 50 11 — ii .. _29 _1 .
(3.50) a alla = a dija U, Uno + Qa;

2<i<n-—1
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hence

(3.51)

and

(3.52)
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My =—uj@an ) —uy Y (@ai)?

2<i<n-—1
2
2 ii ii
=—un( Z a aii,l) —49unun1 Z a daijj,1
2<i<n—1 2<i<n—1
2.2 2 ii 2 2
—40%u;; + 2u;,01 Z a‘aji + 40upuni 1 — U, @1
2<i<n-—1
2 ii 2
—up Y (@ ai)?,
2<i<n—1
2 ij 11 2
M3 = —u;, Z (1+2ay1a”)-(a an,;)
2<j=<n—1
2 i ii 2
— Uy, E (1 —i—2a,~,~a”)-(a a,-,-,j)
2<i<n—1
1<j<n-1
i#]j
2
2 ij ii
=-uy ) (1+2611161”)'( Y a aii,j)
2<j<n—1 2<i<n—1
— 462 2{: (1 +—2a11a11)u§j
2<j=<n—1

— 40u, Z (1 4+ 2a1a’ yupja'ai; j
2<i,j<n—1
2 ijN i1
+ 2u; 2{: (1 +2ar1a’)a'a;;je;
2<i,j<n—1

+ 40u, Z 1+ Zallajj)unj(Pj

2<j<n—1

—uy Y (1+2ana”)e;
2<j=n—1

—up Y (1+2aa')- (@ aiig)?
2<i<n-—1

_u’21 Z (1 +2aiiajj)-(aiiaii,j)2.

2<i,j<n—1

i#j
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Making use of (3.50) again,

ii ii
M4 = 4uy, E aupiai,i + 4up E a’Upidjji

1<i<n-—1 1<i<n-—1
2<j<n—1
4 11 iy,
= AUplUpn1 (a a )au,l
2<i<n—1
(3.53) —du, Y and’auniag,

2<i,j<n—1
ii ii
+ 4up E a upidjj; + 4upa E a Uni@Qi
2<i,j<n—1 2<i<n—1
ii 2
— 86 E apna'’uy;.
1<i<n—1

By (3.49) and (3.51)—(3.53),

2
My=- ) (1+2aiia”)'(una”aii,1)2—( > una”aii,l)

2<i<n—1 2<i<n—1
+tum Y (aa'' —1-0)- (upa' aiiy)
2<i<n—1
.. P 2
+ Z %—(1 +2(111a”)-( Z u,,a”a,-i,j)
2<j<n—1 2<i<n—1
- > 2auad” - (uudai ) = Y (ued'aii ;)
2<i<n—1 2<i<n—1
i#j
+ 4uy; Z [aiia’”? — 6 — (1 4+ 20)a;a’’]- (Mnaiiaii,j)}
2<i<n—1
(3.54) —u? Z aiiajjafj’k — (407 + 80)uz,
1<i,j,k<n—1
i# ), JFk.k#
- Z (46% + 80%ay1a” + 89a11ajj)uﬁj
2<j<n—1
+20e Y dlai + 40uuumen
2<i<n—1
+2uﬁ Z (1 +2a11ajj)aiiaii,jg0j
2<i,j<n—1
+ 46u, Z (1 + 2a11a"” Yup;p; + 4unar, Z alun;p;
2<j=<n—1 2<j<n-1

—ulp? —u? Z (1+2a11ajj)<p12.

2<j<n-1
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For the term M5, we write

My = M>y + M»»,

where

Moy =4(p—Dup Y aiin,

1<i<n—1

My = —(p — l)u,zl Z aiiajjaizj-,n.

1<i,j<n—1
By (3.50), together with (3.11), we obtain
May = 4(p — DuZaiin + 4(p — Du? Z Aiin

2<i<n-—1

=—4(p — l)u% Z alla""aii’n — 89u%a1101

(3.55)
2<i<n—1
+4(p — DuZanign +4(p—Du2 > aiin.
2<i<n-—1
Also by (3.50) and (3.11),
My, = —(p — 1)u,21 Z aiiajjalzj,n
1<i,j<n—1
i#j
—(p—Duj@ ann)> —(p—Dup Y (@ aiin)?
2<i<n-—1
=—(p— 1)u,21 Z aiiajjalzj’n
1<i,j<n—1
(3.56) i#j
. 2 4
—(p— l)u’%( Z allaii,n) — Tlg%lialz
2<i<n—1 p
—40ujor Yy daiia+2(p—Dupen Y. daiin
2<i<n-—1 2<i<n-—1

+40uy0100 — (P — Dupgon — (p— Dupy Y (" aiin).

2<i<n-—1
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Combining (3.55)—(3.56), we get

(3.57) My =—(p— Du? Z a"iajjaizj’n

1<i,j<n—1
i#j
.. 2
—(p— 1)14,2,( > a”aii,n)
2<i<n—1
—(p—=Duy > (@ aiin)’
2<i<n—1
+4(p — Du? Z (1 —apa'aiin
2<i<n-—1
—4014,2101 Z aiiai,-,,,
r<i<n—1
4 2.2 2 2 2
_ F 0-u, o0y —80uy,ar101 + 4(p — Du,ai1¢n

+2(p — Dulgp Z Cliiaii,n + 40uzo100 — (p — Dupey.

2<i<n-—1

After inserting (3.54) and (3.57) into (3.48), we regroup the terms in (3.48) in a
natural way: N1, the terms involving a;; » (2 <i < n—1); N2, the terms involving
aijj1 (2 <i < n—1); N3, the terms involving a;; j, (2 < i,j < n — 1); N, the
terms involving the gradient of ¢; and N5, all the rest of the terms. More precisely,

2
Ny =(p— 1){— > (undaiin)® - ( > Mnaiiaii,n)

2<i<n-—1 2<i<n—1

1 g
+duy Y (@i —an — — (0o (“na”aii,n)},
2<i<n—1 p
B 3 2
Ny = — Z (1 + 2a;:a") - (upa'ajin)* — ( Z una”aii,l)
2<i<n—1 2<i<n-—1

+hug Y (aiia' —1—-0)- (unaaiiy),

2<i<n—1
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and
.. .. 2
N3 = Z {—(1+2a11a”)-( Z una”aii,j)
2<j<n—1 2<i<n-—1
ij ii 2 ii 2
— Y 2aid” - (upd'aii ;) = Y (upd'aii )
2<i<n-—1 2<i<n-—1
i#]j
y y i
+ 4up; Z laija’7 —6 — (1 +20)ar1a”]- (una a,-,-,j)}.
2<i<n—1

For the terms involving the gradient of ¢, we have
Ng = 40uyupni1 + 2M,2,<p1 Z aiiaii,l + (2 —=2p)uy Z Unj@Pj
2<i<n-—1 1<j<n—1
+ 2u? Z (1 + 2a1a”)a' a;; jo;
2<i,j<n—1

+ 40u, Z (1 4+ 2ay1a” yupn;¢;

2<j=n—1
j 2 ii
+ 4unary Z a”unjfpj +2(p — l)un(/)n Z a ajjin
2<j<n—1 2<i<n—1

+ (40 — 20010 + 4(p — DuZay gn — ug?

—uy Y (L+2ana)e} — (p— Dujen,

2<j=<n—1

and the remaining terms are

4 2
N5 = |:——920'12 —80aq101 + (—9 +2)O'12
p—1 p—1

+ 20 —-n—-2p+3) Z afj]uﬁ

1<j<n—1

+ Z [—46% — 80%ay1a” —80ay a’’ — 201a%

2<j<n—1

+2p0 + (n—3)(1 = p)uz;

+ [-46% — 860 — 2014t + 2p0 + (n —3)(1 — p)|uz,

2 i i 2 o 12 ii_jji 2
u;, E aata;; (p — Du;,, Z a‘a”ag; ,.
1<i,j,k<n—1 1<i,j<n—1

i), Ak i#)
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It follows that
(3.58) > F%gug = Ny + Ny + N3+ Ny + Ns.
1<a,B<n

‘We shall maximize the terms N1, N, and N3 via Lemma 3.1 for a different choice
of parameters.

First, let us examine the term Ny. For2 <i <n—1, set X; = una”aii,n,
A=1Lu=uyb; =1,andc; = aj; —ay — ﬁ@al. By Lemma 3.1, we have

2
map-nid| ¥ @ T o]

2<i<n-—1 2<i<n-—1
4(n —2)
(3.59) — [4(;;—1) Y a+ ———— 0%
I<jzm1 (n=1(p—1)
8 4(p—1)
— — 9012 — B (712 + 8961110’1]74,21.

For the term N,, set X; = u,,a”ai,-,l, A=1Lu=uu,bi=1+ 2a;;a'l, and
¢i =ajjal' —1—0@ where2 <i <n—1. By Lemma 3.1, we have

Ny < 4u,2,1 Iy,

where

1
ﬁl_b_ia
we have
o113
i 2B; 7’ l_zﬂi 5
Hence
1 3 2
= 2
2<i<n—1 !
-1 2
1 3
— {1 _Z_
(1+ 2 #) [ X #lm-3-7),
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Since

<1+ Y Bi<n—1,
2<i<n-—1

it follows that

1 1 1 (n4+1 2 3 2
r, <- - 0 10
153 2 g n—l(z * )+(2+)

A

-2 1
- ~(1+6)” + ;(201a" ~2).
Therefore,
4(n—2
(3.60) Ny < [%(1 +6)% + 2014 - 2]u51.

Now we will deal with the term N3. For every j > 2 fixedand2 <i <n —1,
set X;j = upa'ajjj, A = 1+ 2an1a”, p = upj, b = 1+ 2a;;a”’ (i # j),
bj =1,and ¢; = aj;a’’ — 0 — (1 + 20)a1a’’/. By Lemma 3.1, we have

2<j<n—1
where
r 2+Zc"2 1+1+Zl_l+zci2
i = cC5 - —| = — Cj — 1.
R R V) b T &b
2<i<n-—1 2<i<n-—1 2<i<n-—1
i#j i#j i#j
Also, denoting
1 S,
Bi = by (i #J)
we have . . :
gl — =
ajid 2,31' 2 Cj 2,31' s
where .
§ = 5+ 0 + (1 +260)aqa”.
Notice that 3 3 .
= - —20, —=—=+0.
=3 -2t
‘We obtain
1 2
. — 2 .
ed X k(g -0)
2<i<n-—1
i#j
1 -1 1 2
(e 2 o) e 2 o] -
2<i<n-—1 2<i<n-—1

i#j i#j
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1 1 1 “lrn 8\ 9 82
== — (=41 i) (2+2) v+ %
o B (/\+ + X ’3) (2+x) it

2<i<n—1 2<i<n—1
i#j i#j
1 1 1 1in41 2
= - — | =+1 ; 0
4Zﬁi(k++zﬂl)(2+)
2<i<n—1 2<i<n—1
i#j i#j
9 1
- - +6]6.
+4+(2+ )
Obviously,
1
I<g+1+ Z Bi<n—1;
2<i<n—1
i#j
hence
1 1 1 (n+1 2 9 1
r; <— — 6 - —+016
T =y Z Bi n—l( 2 +)+4+(2+)
2<i<n—1
i#j
n—2 2 n—3 1 . . ..
= 62 — 0 —oratl +20%a11aV7 + 20a,1a% .
1 — +2(n_1)+201a + ainna’” +20ana

Therefore, we have

F
A

4n — 8 8 2n —6
2 (n 192_ 0 ; 1
(3.61) 2zjzn1 N 1T " "
+ 201a%7 + 86%ay a7 + 89a11ajj)u,21j.
If we let
q1(0) =20+2p—n—1,
1
q2(0) = m[—492 +(2n—8p+6)0 +2(p—1)(n—2p +1)],

4 8 4
036) =~ (2p =)o =1 pr-3 -2
n—1 n—1

n—1
then collecting (3.58)—(3.61), we finally obtain

Y FPgup < [ql(e) Yook + q2(9)012i|u5
+q3(0) Z u,zlj mod Vo,
1<j=n—1
where we have suppressed the terms containing the gradient of ¢ with locally
bounded coefficients.
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By a simple observation, a sufficient condition to guarantee
Z F“Bgoaﬂ <0 mod Vg
1<a,B<n
is
q1(0) + q2(0) <0,
(3.63) q1(8) + (n — Dg2(6) <0,
q3(0) < 0.
By solving ¢1(8) + g2(68) < 0, we have
. 1<p<2:9§%0r92%—p;
e p=2:—00<6 < +4o00;
. 2<p<+oo:9§%—por
while g1 (0) + (n — 1)g2(0) < 0 implies

e l<p<mf=<Lorg>nt _p
e p=n—00<60 < +o00;
e n<p<+oo: =<l

n=3)(p—1)
RS

1—p
—porf > ==,

Also, from ¢3(0) < 0, we get

o l<p<2:0 <D _org> a3
e p=2:—00<6 < 4o00;

n—3

L 2<p<+OOQSTOI‘92 (n_l)z(p_l)—l.

Therefore, by solving the inequalities in (3.63), we can obtain the following
solutions:

Forn = 2:

° 1<p<2:0§pT_30r—

e p=2:—00<6 < 4o00;

. 2<p<—|—oo:9§%—porl_Tp§9<—50r9>T.

<40

IA
T
S
o
=
D
Y%
[S][)
|
=

1
2

Forn = 3:

1<p<2:0§min(1_Tp,p—2)or922—p;
p=2:0<—-Jorf>0;
2<P<33QSI_Tpor9=2—p0r9:OOr02p—2;
3<p<+4o0:0<2—porf=00rf>p-2.
Forn > 4:
1<p<2:9§min(%’w_l)or92n;—l_p;
p=20<—-%orf>"3;
2<p<n:9§1_Tp0r9:n;1_por92 (n_l)z(P—l)_l;
en<p<+4oo: < _porg> e
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Combining the above results we arrive at the following conclusions:

Case 1. Forn > 2,1 < p < 400, set § = % — p. Then for ¥ (x) =
[Vu|*T172P K(x) and ¢ = log ¥ (x) = log K(x) + (”TH — p)log |Vu|?, inequal-
ity (3.62) turns into

2(n+1)
Y Flpp=-=——(p-27 > uy
1<a,B<n 1<j<n-—1

<0 mod V.

Case2 Forn = 2,1 < p < 400, and for n > 3,1—|—% < p < n, we set
0 = . Then for ¥(x) = |Vu|'"PK(x) and ¢ = log¥(x) = log K(x) +
1- plog|Vu|2 (3.62) turns into

1
> Faﬂ(paﬂf(p—n)( > afzj_n—lolz)

1<a,B<n 1<j<n-1

TR D S

1<j=<n—1

<0 mod V.

Case 3. Now we set 6 = 0. Then for

3 n—+1
n=2, §§p<3 or n=3,2<p<oo or n>4,p= >

and ¢ = log ¥ (x) = log K(x), (3.62) turns into

2
Z Faﬂ(paﬂf(Zp—n—l)( Z ajzj_n—lalz)

1<wa,8<n 1<j<n—1

1
ro-(t-0) T

1<j<n-1

’

<0 mod V.

In the above formulas we have suppressed the terms containing the gradient of ¢
with locally bounded coefficients.
From the minimum principle we complete our proof. U

Now we state the following elementary calculus lemma.

LEMMA 3.1 LetA >0, u € R, b; >0, and ¢c; € R for2 <i < n — 1. Define the
quadratic polynomial

2
0Xz.... Xp-)=— > b,-X,?—x( > Xi) +ap >

2<i<n—1 2<i<n-—1 2<i<n-—1
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Then we have
O(X2,..., Xn—1) < 4u°T,
where
r— Y i—k(lJrA 3 i)_l( 3 2)2
2<i<n-—1 bi 2<i<n—1 bi 2<i<n—1 bi

PROOF: We shall maximize the quadratic polynomial Q(X5,..., X,—1). At
the maximum point, we have

a—Q=0 fork=2,3,...,n—1,
Xy

ie.,

God)  xp=2uk A Y Xi fork=23,...n—-1
b b

2<i<n—1
Summing (3.64) with respect to 2 < k < n — 1, we obtain
1\! Ck
3.65 Xe=2ul1+A — —.
aey Y wme=w(iea ¥ o) ¥ %
2<k<n—1 2<k<n—1 2<k<n—1
Hence

0(X2,..., Xn-1)

Ci A
> el —= DX
AR Cl( Mo " bi, _* ’)
2<i<n-—1 2<j<n-—1
5 c? 1 2
— E 1] E .
= . bi_/\(l—i_)t , _t)( , Xl)
2<i<n—1 2<i<n—1 2<j<n—1

4 Proof of the Corollary and Some Remarks

In this section, we first prove a proposition on the monotonicity of the norm of
the gradient along the gradient direction, which also appeared in [14, 16]. Using
this observation, we prove Corollary 1.3. We mention that the combination of
Corollary 1.3 and a deformation process gives a new approach to studying the
convexity of the level sets of the solution to the p-harmonic equation on a convex
ring with homogeneous Dirichlet boundary conditions.



GAUSSIAN CURVATURE ESTIMATES FOR CONVEX LEVEL SETS 969

PROPOSITION 4.1 Let u satisfy

div(]VulP72Vu) =0 inQ = Qo \ Qu,
4.1 u=0 on 982,

u=1 on 0921,

where 1 < p < +o0, Q¢ and Q21 are bounded smooth convex domains in R”,
n > 2, Q1 C Q. Then |Vul| strictly increases in the direction Vu. It follows that
|Vu| attains its minimum on 029 and attains its maximum on 90$21.

PROOF: By the Gabriel-Lewis theorem, Theorem 1.1, the level set of u is
strictly convex with respect to the normal direction of Vu. At any fixed point
Xo in 2, we may let u, = |Vu| > 0andu; = 0 (1 <i <n — 1) by rotation. Let
H be the mean curvature of the level set with respect to the normal direction Vu.
Then (4.1) implies

4.2) (p—Dttnn =~ Y uii = unH:
1<i<n—1
hence
2
4.3) Z (|Vu|2)aua = 2u%unn = — 1 qu >0
1<a<n
where the last inequality is due to the strict convexity of the level set. 0

Now we combine Theorem 1.2 and the above proposition to give a proof of
Corollary 1.3.

PROOF OF COROLLARY 1.3: If u is the smooth solution of equation (4.1),
then from the Gabriel-Lewis theorem, Theorem 1.1, we know that the level sets
of u are strictly convex with respect to the normal Vu. Since |Vu| attains its mini-
mum on d€2¢ and attains its maximum on d<21, from Theorem 1.2, we can get the
estimates in Corollary 1.3. g

Remark 4.2. From Corollary 1.3, we can combine the deformation process to give
a new proof of the Gabriel-Lewis theorem when Q¢ and €21 are bounded, smooth,
strictly convex domains.

Let 0 € Q7. At the initial time we let the domain be the standard ball ring
U = Bg(0) \ B-(0) (0 < r < R), and we let

Q=>0-0)U+1Q, 0<t<1,

where the sum is the Minkowski vector sum and Q2 = Q¢ \ Q1. So the domain Q;
is a family of smooth, strictly convex rings (see Schneider [19]). We assume the
p-harmonic function u; satisfies the homogeneous Dirichlet boundary conditions
in the convex ring 2; (see (1.1)). By the maximum principle |Vu;| # 0 in Q;
(Kawohl [10]) and by standard elliptic theory, we have the uniform estimates on
lusllc3(q,) with the bound depending only on the geometry of €2.
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PROOF OF THEOREM 1.1: If Theorem 1.1 is not true, then there exist 0 < tg <
1; it is the first time that the Gaussian curvature of the level sets of u,, becomes 0
at some point x;, € §2;,. Take a sequence {#;} such that; — 7o (0 < t; < t9);
then from estimates (1.4) and (1.5), we get uniformly positive lower bounds for the
Gaussian curvature of the level sets of u,,. Since we have the uniform estimates on
lutllc3(q,)> we can take the limit and get positive lower bounds on the Gaussian
curvature of the level sets of uy,. This contradicts the initial assumption. Then we
complete the proof of Theorem 1.1 on the strictly convex domain case. O

For the general convex domain we can first use the approximation with a strictly
convex domain to get the convexity of the level sets; then we use the constant rank
theorem of the level sets by Korevaar [11] to get its strict convexity.
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