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On a class of fully nonlinear flows
in Kihler geometry

By Hao Fang and Mijia Lai at lowa City, and Xinan Ma at Hefei

Abstract. In this paper, we study a class of fully nonlinear metric flows on Kéhler
manifolds, which includes the J-flow as a special case. We provide a sufficient and neces-
sary condition for the long time convergence of the flow, generalizing the result of Song—
Weinkove. As a consequence, under the given condition, we solve the corresponding Euler
equation, which is fully nonlinear of Monge—Ampeére type. As an application, we also dis-
cuss a complex Monge—Ampere type equation including terms of mixed degrees, which was
first posed by Chen.

1. Introduction

In the study of Kédhler geometry, the geometric flow method has been applied exten-
sively to obtain “optimal” metrics. One classical example is the Kédhler—Ricci flow. If the
manifold has negative or vanishing first Chern class, the Kédhler—Ricci flow converges to
the Einstein metric, see Cao [2]. Another example is the so-called J-flow. It was introduced
by Donaldson [6] in the setting of moment maps and by Chen in [3], [4], as the gradient
flow of the J-functional, which appears as a term of the Mabuchi energy. In [18], Weinkove
settled the question of Donaldson for surfaces. A sufficient class condition for the conver-
gence of the J-flow is derived in [19]. In [12], Song and Weinkove proved a positivity con-
dition to be equivalent to the convergence of the J-flow to a critical metric. The precise
statement of this condition can be found in the discussion after (1.6). In general, the solu-
tion of these geometric flows usually depends on establishing a priori estimates of parabolic
PDEs.

In this paper, we will study a class of fully non-linear geometric flows, which was mo-
tivated by the construction of J-flow.
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of the third-named author is partially supported by NSFC grant number 10671186, NSF grant number DMS
0635607 and Ziirich Financial Services.



190 Fang, Lai and Ma, On a class of fully nonlinear flows in Kdihler geometry

Let (M, ®) be a closed Kdhler manifold of dimension n. Define
(1.1) A" ={lxe H (M) |3y ey, x> 0}.

Let [y] € # " and y, € [y] be another Kéhler form on M. We define the corresponding
Kaéhler cone and Kéhler potential space with respect to [y] as

v_1 _ .

(1.2) %/m—{)((/,—)(O+T(36¢>0|¢GC“(M) ,
0 V-1 =

(1.3) QZO:{(/)GC (M)|X¢=)(0+T&6(p>0 :

For a fixed integer k € [1,n], and 2 = (41, ..., 4,) € R", the k-th elementary symmetric
polynomial of A is defined as
O'()(}u) - 17
Uk(}L) = Z )“fllliz'“}'ik? kg 1.

1<ii<ib<-<ix<n

When no confusion arises, we also use g;(A4) to denote the k-th elementary symmetric func-
tion of eigenvalues of a Hermitian matrix A.

In a local normal coordinate system of M with respect to w, we have

,/_1 i T \/_1 i i
Yo = —5Xojdz' Nz, Xw:T(ZOif—i_(”if)dZ ndz!.

Following the notation above, we denote

n—k

k
n\x, \Nw
atz) = ().

COVI

which is just the k-th elementary symmetric polynomial of the eigenvalues of the matrix
(x, gt %") with respect to the background metric .

We set the volume form on M as dv = " /n!. It is clear that

J 2 ot
M

Ck = k.ol (2] = )

|1
M

n
(1) atner [ orstm)a
M M

Tz T [ ou(xe) dv
M M

ro_
k= ko)l =
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are topological constants. Now we consider the following flow in 2,

v—1 -
X = Xo +Tﬁﬁw,,
1
agﬂ 2 O'n—k()( ) g
1.4 = — | — 2
( ) a[ ck < O'”(X%) ) )
9o = 0.

Clearly, the stationary metric of this flow is a Kdhler metric y € 7, satisfying:

n—k k
VAN
(1.5) "Faor =yt = <7qu0 - )x”.

7

In the case of k = 1, our flow is the same as the J-flow. Song—Weinkove [12] gave a
sufficient and necessary condition for the J-flow to exist and converge to a solution of (1.5).

One of the purposes of this paper is to give a necessary and sufficient condition for the
flow (1.4) to converge to the stationary metric, which we now describe as a cone condition.
For M and w given as above, we define € = 1 (w) as

(1.6)  Grlw)={[xe#" | elx, st any™" > (n—k)y" "' ro*}.

% is an affine cone in #*. For k = 1, Cy is first defined in [12]. It is easy to check
that [y] € % is a necessary condition for the equation (1.5) to be solvable (see Section 2 for
more details). The main theorem of this paper is the following:

Theorem 1.1. Suppose M, w and y, € [x] are defined as above. Let 1 <k <n. If
[x] € €r(w), then flow (1.4) has a long time solution, which converges to a smooth metric sat-

isfying (1.5).

It is worthwhile to point out the case of & = n. Notice that the corresponding equa-
tion is equivalent to

—

o3

X
Q

‘ N

(1.7) =4,

Te—

where Q is any given volume form. This was solved by Yau in his celebrated paper [20].
Also notice that the condition (1.6) becomes trivial in this case; in other words, €, = #*.
Cao [2] provides a parabolic approach to this equation, using Ricci flow.

Notice that for the £ = 1 case, our condition and conclusion are exactly the same as
the ones in [12].

Theorem 1.1 can be viewed as a finite interpolation between results of Yau [20], Cao
[2] and Song—Weinkove [12]. In fact, our basic approach to prove Theorem 1.1 closely
follows these earlier works. In particular, the idea of establishing a partial Cy estimate
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before C, and Cj estimates first appears in [18]. However, new convexity phoneomena
show up for k =+ 1, n cases.

Theorem 1.1 can be understood from several aspects.

First, Theorem 1.1 can be understood geometrically. One motivation for the con-
struction of this flow (1.4), as well as an important ingredient of the proof of Theorem
1.1, is the following functional defined for y, with ¢ € #, and j = 0,

1 . .
(18) Z(X(/ﬁ) = Ojﬂ{—}{% Ao d[,

where ¢, € 2, t € [0, 1] is a path in connecting y, and y,. #; is shown to be independent of
the choice of path [5]. Furthermore, a functional defined as

(19) g}j,n(xm)w) = 371(%¢) - Cnfjegjn(x(p)
can be viewed as a functional depending only on xy, x, € 4.

Notice that for y; € [¢], i = 0, 1,2, we have

j’i,n(){m)(l) + %,n(%h)fz) = %,n(){(),)fz)-

Thus, the minimizer of the functional g":jyn (x0, ) 1s independent of the choice of y,. In fact,
this functional can be realized as quotients of Quillen metrics on the determinant bundles
with certain virtual bundle coefficients, see Tian [15].

Our flow (1.4) is constructed in such a way that the functional %, . .(xo, Xp,) 18 de-
creasing along the flow. It is then easy to check that the corresponding minimum metric
satisfies (1.5). Theorem 1.1 gives an explicit path for the functional %, 1 (), 7) to obtain
its unique minimal, when the cone condition [y] € % is satisfied. Notice that our flow is not
the gradient flow of the corresponding functionals except the case k = 1. In fact, we modi-
fied the functional’s gradient flow to ensure that certain PDE estimates hold.

Second, Theorem 1.1 provides a necessary and sufficient condition for (1.5), an ellip-
tic equation of Monge—Ampere type to be solvable. Notice that (1.5) can be written, lo-
cally, for k < n as

(1.10) kon(1y) = On-ic(1y),
or, equivalently,
or(x,') = ¢
The corresponding [y] € % condition states that there exists a y’ € [x] such that

(1.11) o (' i) < ¢,

for 1 < i < n. Refer to Section 2 for more details.
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Equation (1.5) is also a special case of a question posed by Chen. In [3], Chen
raised the question of solving a very general fully non-linear equation of Monge—Ampére

type:

n—1

(1.12) Ty = 2 oc,-){fp/\w”*",

i=0

where o;’s are real. Theorem 1.1 gives a complete answer for Chen’s question when the
right-hand side has only one term.

Using a similar method, we can also extend our result.

Define, for any fixed o € (0, o) and integer k € [1, ],

Chn = Cha o], (1) = Ch + 0Ck—1,

g’;%k?”(XO’X) = y:}”*km(XO)X) + ag':hkarl,n(X(),X),
Gr,o(w) ={[x] € 2" |31 € [x], such that

oy > (n— k)" AR +a(n —k 4+ 1)K A0 .

It is clear to see that when the parameter o runs from 0 to oo, €k 4 = %k .(®) gives a con-
tinuous deformation from the cone 4, = # " to 6;_; = #*. We have the following

Theorem 1.2.  Suppose M, w and y, € || are defined as above. Assume 1 < k < n and
o > 0, then the equation

n—k+1 A k—1

(1.13) kot =" Ak oy )

has a unique smooth solution if and only if [y] € €y ,(w); in this case, the solution minimizes
g;oc?k,n(xm)f)-

Theorem 1.2 is proved by improving the estimates needed in proving Theorem 1.1 to
the product manifold M x C, where C is a smooth algebraic curve.

Based on these known results, we would like to verify that the similar cone condition
would be the necessary and sufficient condition for the problem of Chen. Using a similar
geometric construction as in the proof of Theorem 1.2, we can settle many special cases for
Chen’s problem. See Section 5 for more details. We believe this is one of the few examples
of the Monge—Ampere type equations including terms of mixed degrees. The geometric
structure plays an important role in the solution of these equations.

Finally, we make some remarks.
Remark 1.3. It is interesting to point out that the elliptic PDEs studied in this paper

are all solved by geometric flow method. With the exception of Yau’s original equation,
continuity method does not seem to work for the other cases.
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Remark 1.4. It is interesting to study the various cones we defined in #*. Except
the obvious fact that %,(w) = # " includes all the other cones, the relative position of
%j(w) and G (w) for j * k, j,k #+ nis unknown.

Remark 1.5. The strong concavity property of the symmetric polynomials is very
important for our estimates. We point out that we do not use the optimal concavity prop-
erty available. This leaves room for future construction of other geometric flows in Kéhler
geometry.

The rest of this paper is organized as follows. In Section 2 we introduce further nota-
tion and some preliminary facts about the elementary symmetric polynomials. In Section 3,
we derive the partial C? estimate by maximum principle, following Yau [20] and Weinkove
[18]. In Section 4, we derive the C? estimate and C* estimate and the convergence result.
In Section 5, we discuss various generalizations of Theorem 1.1 and some applications to
complex geometry. In the Appendix, we give an alternative proof of our strong concavity

property.

Acknowledgments. The first-named author would like to thank Jian Song for useful
discussion. All authors would like to thank Pengfei Guan and Lihe Wang for discussion.
They would like to thank the Institute for Advanced Study for support and hospitality.
Most of this work was done when they attended a special year of Geometric non-linear
PDE at IAS. Thanks also go to the referee for his or her careful proof-reading and useful
suggestion.

2. Preliminary

In this section, we set up the notation and prove some preliminary results regarding
elementary symmetric functions.

flo

f X0
. n .
of generality. We also denote ¢ = ¢; = ( k) when no confusion occurs.

For simplicity, after proper scaling, we may assume c; = = 1 without loss

Fix a local coordinate chart U = M. For z = (z1,z3,...,2,) € U, we write
w= \/z_lg” dz’ /\dz
20 = \/2_lyol] dz' A dzf
i = g _dz ndz,
Xp = T (2o + 05) dz' Az,
Xif = Xoj + O

When no confusion occurs, we also use x,, x’, x, to denote the corresponding
Hermitian matrices at the given z. We always choose the normal coordinate of w such
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that g;; = 67 and y,, is diagonal. In other words, we have y,(z) = x = (x1,- - ., x,)- Further-
more, we may assume y; = y; for i > j. That means y; and y, are the maximal and the

minimal eigenvalues of y,,, respectively.

For a Hermitian matrix 4 = (4;),,,,,, define

o 1/k
F(A) = —{ 0_2(4/)1)] = —q/f(47").

It is a well known fact that F is a concave function of 4 and F7 is positive definite when
restricted to the space of positive definite Hermitian matrices (see e.g., [13]). Without fur-
ther specification, we assume that A is positive in the rest of this section.

We compute the derivatives of F with respect to entries of A4 for the future use.

For F given as above, we have

oF 1 <0nk>l/kl (aan—k/aaif_ Un—kadn/aaii>

Proposition 2.1.

Fi(4) == ——
(4) 6aif k\ o, oy a2
o 2
FH(4) = 0F(4)
6aij@aki

If A= y=diag(y;,x2,---,x,) is diagonal, then Fi' can be non trivial iff i=j We

have
i 1 (ona(x) /-1 Tnt1(x18) ok (0)an1(x]i)
F“k(mm> ( o2(2) 52(2) )

or

il ke, RN
F'=—0" (¢ o1 (x i) —-
ik 7

Furthermore, F ik can be nontrivial iffi=j, k=1lori= 1 j=k Inthis case, we have

Lok (000uk2 (1)) = ok D2 | 1D
() ( 20 ). sk

FI(z) =

l) = Uk(X)|Xi=0’ O’k(X | iv ]) = 0/((%)';{,-:0,;{,:0‘

where y~! denotes the inverse matrix of y, ox(x

Also notice that F is homogeneous of degree —1, so —F(4) = ) F"/T(A)alj—.
i,j

We proceed to discuss some technical results. First of all, we have the following con-
cavity result. Define

rn:{(xly---axn)eRn|xl >O,X2>O,...,Xn>0}.
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Proposition 2.2 ([9]). Let g(1) =logoi(4). For AeTl,, &= (&,...,&,)eC", let

_dg
gi == L gij = TR We have
(2.1) <gii + %) &+ Y 956 2 0.
i=1 i oy

Proof. We have

g = ok—1(A 1) g = ok—2(A]1,))  or-1(A]i)or-1(4
! O'k()») ’ v O'k(l) O’,%(ﬂ)

)

Using the same reduction as in [8], Lemma 2.3, (2.1) can be reduced to the following in-
equality:

(2.2) > k(2| Don-1 (2| o1 (2] D&
i=1
= 0u(2)Y_A0i_1 (21 1)) = o (2| i) ow-2(2 ] i) }&i&j,
i$j
which is just [8], Lemma 2.4. [
1/k

Remark 2.3. By the above proposition, if we let g(4) = ¢,"(4), for A€ T, then a
simple calculation shows, for & = (&,...,¢&,) € C",

(954 %10v)eg =0
j

Another proof will be given in the appendix.
Second, we have the following local version of the cone condition (1.6).

Proposition 2.4. For k < n, y' € € is equivalent to

Int—1(x" | ) 1y <">
——— T~ — Ok < )

forany je{l,...,n}, where (x'|j) denotes the matrix obtained by deleting the j-th column
and j-th row of y'.

Proof. Assume y' € 6. By (1.6), for any given integer j € [1,n], the coefficient of
n . . —
the (n— 1,n— 1) form [] dz'dz"in y"~! — B Rk A 7%= should be positive; that is,
i=1 n
i%]

(n— Doy (')~ "= F

- k\(n—k —Doy_r_1(x" | j) > 0.
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Dividing both sides by ”

—k
- k!(n—k — 1)lo,_1(x"| j), one obtains

Next, we introduce some simple algebraic facts. Let 4 = (al.f) be a positive Hermitian
matrix.

Lemma 2.5. Let I = (i1, ip,...,ix) = (1,...,n) be an index set, denote its comple-
ment in (1,2,...,n) by I. We always order I so that (I,I) is an even permutation of
(1,2,...,n). For A, a positive Hermitian n x n matrix, let A; be the principal minor
(a7); jer- Then

det(A4) < det(A4;) det(4;).

Proof. Rearrange A if necessary. We may write A4 as

A; M
(2.3) A= [M, Ai]'
By
Id 0174, M A, M
(2:4) _MATY d|| M 4|0 A MATIM|
1 1 1 I

one obtains
det(A) = det(A;) det(4; — M'A; ' M) < det(4;) det(4;),

where M’ means the conjugate transpose matrix of M. The last inequality follows from the
fact that M’A; ' M is positive definite. []

The following corollary is a direct consequence of Lemma 2.5.

n
Corollary 2.6. Let A be as above. Then det(A4) < [] a;
i=1

We are then ready to prove

Lemma 2.7.  Let A = (aj) be a positive Hermitian matrix. Denote A= (a;70;7) to be
the matrix containing only the diagonal terms of A. We have

(2.5) or(A7") S ap(47h).
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Proof. By Corollary 2.6, we have

1 < 1
det(4) = det(4)

This means that Lemma 2.7 holds for k = n. For general k, we have

Jk(/ifl): 3 LLL

=k aili_l aizg aika
(i1, i2yeyiy) €1

1 det(AI—) . O'nfk(A) — 0 -1
§|,|Z:kdet(A,) émzzk det(d) ~ on(a) A O

Finally, we give the following technical statement, which will be used in the next
section.

Theorem 2.8. Assume that M,w,y € [x] are given as before. Assume that k < n and

(%] € 6k. Let F'(y) be given as in Proposition 2.1. Let y' € [x] be the Kihler form satisfying
the condition of €. Assume C) < M < G, for some universal constants C, and C,.

Un(X)

Then there exists a universal constant N, depending only on the given geometric data, such

that, if X1 = N then there exists ¢ > 0 such that

n

(2.6) (1= )3 Filp)y = ol (7).

Proof. Follow the convention, we will verify (2.6) under normal coordinates which
diagonalizes y at some point. So y = diag(x;,2,---, %), and y; =y, = -+ = x,,- In local
on—k(X)

on(X)

when no confusion arises.

coordinates we will use gy ( ){‘1) =

We first notice for the case y, < 1, (2.6) follows easily. Notice ' is a fixed Kdhler
form, so there is a constant 4 > 0 such that

1 > lo.

Therefore,

(27) iF%wmzziF%w

1

n 1
R ){71 Ok—1 )(71 i) —

1 ik
> i—a " (r Voro1 (x| n)

1
k ok Vel
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. 1. 1.
We claim o;_1(x~!|n) — is bounded below. Indeed, a;_1(y~!|n)— is the largest term
4

1 n ) n
among o1 (x| /) — by the fact that y,, is the smallest among y;, 1 <i < n. Thus,
X

i

@8 el I 2 | Sanl 1| = ral)

Now if y, < & = A(Cic)"/¥, (2.6) follows easily from (2.7) and (2.8).
So we just need to consider the case y, = J.

Recall Garding’s inequality: For u,7 € T,
| QR 1/k 1—1/k
D T ok(p) Zo
257, 20 @ )

by /
Thus, by Proposition 2.1, we have, for the matrix B = diag (% X””) Py
21

29) S Pl = ol o (1)
= ()

e A VA )
= a,i/k(B).
Comparing with (2.6), it suffices to show
(2.10) MM (B) = (1+ )6 (x7"), for 6> 0.

By Proposition 2.4, we have

(2.11) GMQWUI)§<Z>n=cm

for a universal positive constant # < ¢, depending only on (M, ®) and y’, where (x'| 1)_1 is
the inverse matrix of (y'|1). We have

(212) o (B) = <L>l/k A CAR R LA E:)
C T e

o
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We explain the second and last inequality in (2.12). Applying Lemma 2.7 to the matrix
(x| 1), we have

(2.13) AN EXACANE]

Recall that B = y~'7'y~!, then the Cauchy—Schwarz inequality yields

o A e (' 1)) Z a2 ().
Now suppose y; = Ny,, and y, = 6. Then

1 -1
1 —or1(x 1)
(2.14) o 1) _ |«

or(x 1) ar(xh)

n—1
I \ k-1 (n—l)
B _

o > k—1 .

>1_2 e
o O'k()(_l) o C1N§k

Combine (2.10), (2.12), (2.14), for @ sufficiently small, a positive number

(i) 1

k —
C]é 1— (1 +0)1/2 <C 7’[>
4

will satisfy the condition of this proposition. []

3. Partial second order estimate

In this section, we use the maximum principle to obtain an estimate on the second
order derivatives of ¢ in terms of ¢.

First we establish the ellipticity condition. Notice that by the basic properties of sym-
metric polynomials, (F7) > 0 if y > 0. Differentiating (1.4) with respect to 7 gives

(3.1) % <%> = Flf(;()a,-aj(%).

Standard theory for parabolic equation ensures short time existence of the flow. By the

. . g ) .
maximum principle, 2 achieves extremal values at z = 0, i.e.

(3.2) min— < — < max—
1=



Fang, Lai and Ma, On a class of fully nonlinear flows in Kdihler geometry 201
which in terms implies

On—k On—k

Xp) = SUp
On ( (p) M Op

¥ o (%0)-

(3.3) inf K () <
Hence, 7, > 0, i.e., it remains Kéhler when the flow exists.

Next we prove the partial C? estimate:

Theorem 3.1. Let M, w, and y, € [x] be as above. k is an integer in [1,n]. Suppose
[x] € r, i.e. there exists y' € [y] such that

n—k
m—1 kaX/n7k71 > 0.

Let ¢ be a solution of (1.4) on [0, T). Then there exist constants A > 0, C > 0, depending
only on the initial data and independent of T, such that for any time t = 0,

Haéqu o g CeA((/)finfo[ﬂ.z] ») X

. . V=1 -
Proof. By hypothesis, there exists ¢ € 2,, such that y' =y, + > 00¢, then
1 - . .
X=X+ T@&(gp — ¢). Consider the function

G(X, Z7 é) = log(Xl/_éléj) - A((” - ¢)’
forxe M, and ¢ € Til"o) M, giffié-f = 1. A is a constant to be determined. Fix a time ¢, we
can assume G attains a maximum at (xo, %) € M x [0, 1], along the direction &,. Choose

. 0 . .
normal coordinates of w at xy, so that &, = P and ( )(i].—) is diagonal at xy. By the definition
Z1 k

of G, it is easy to see that y,; = x, is the largest eigenvalue of { Xif} at xo. Without loss of gen-
erality, we can assume #, > 0. Thus, locally, we consider H := logy,; — A(p — ¢) instead,
which also attains its maximum at (xy, ), with H(xo, %) = G(xo, %). We compute the

. .. OH
evolution of H, namely the quantity ST FYH. Then at (x0, 1), we have

aH_Xli_’[_A%

3.4 ot
(4 ot or’
Xi1,if |Xli,f|2
(3.5) H; = o - Xlzi — Ap;; — ¢7)-

. . o . . .
Taking two derivatives along e direction to the equation (1.4), one gets
Z1

do 5 i ikl
(3.6) i = <5>1 = ZIF”XJ,H + 2 P
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Applying (1.4), (3.4), (3.5), (3.6) we have, at (x, )

aﬂ_ - Fl'lT -
o = ii
L (& i ikl dp X i
= ZF Linit 2 F Xig Xkl 1 A__ZF H;
X171 \i=1 1<ijk,I<n a4
- g )= A 4SS F— g+ B
__Z ( Xiial — Xiii) — 6_+ > F o= ¢ +
Xlll ! i=1
n o n s
ZF-ZEF”(XJH—XH,J) —Alc 1/k+F)+AZF”(X +oq—dp) AL+ B
11 1= i=1 i=
n T
X—ZF”( — 1115 — Ac* = 24F — AY F'y-+ B,
11 = i=1
where
1 ikl ii |X11 l|
B=— > FJ X,,lxk,HrZF
VTR ESA N NES, i=1 Xli

includes all the third order derivative terms of ¢.
We claim that B < 0, the proof of which we postpone to the end of this section. By
. L oH 1 -
maximum principle, i > F'"H;: =0 at (xo, ), thus

i=1

—Z iy Y — 1) — Ac'/F = 24F — AZF”X’ >0,

2 5 : =
1e.
(3.7 EZ i = 101, éAéF”sz*ACl/kJrzAF
> Ay Fiyl— Ac kP>
i=1
:Ai i ek 2/k( -1y,
i=1

Notice that
X = Xiiai T iR 5 — xR

so the left-hand side of (3.7) can be simplified as follows:
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1 n i i
(3:8) =2 F (i — i) = ZF (iRt = 211 Ry17)
X117 i=1 1i=
1 .
= —ZF”XJRJH ZF”XU 1137
A1 i=1 A1 i=
_C F n
< — - Y FRy;
X11 i=1
C no
< 2+ G Y FT
X1 i=1

where C; = max{l sup{le}} -G, = mln{ 1, 1nf {R,w}} are upper and lower bounds
of holomorphic blsectlonal curvature of M, and Co C) sup[—F(y,)]- All constants here
M

are positive.

Let y; = --- = g, be the eigenvalues of y with respect to w. Our goal is to get a uni-
form upper bound for y; = x,;.

If k£ < n, we have two cases:

Case 1: “1 < N. N is the constant in Theorem 2.8. From (3.3), it follows that there
Xn

exists a constant C; such that

G <a(y!) < <Z>

k )

from which we get an upper bound

Hence

for some uniform constant C.

Case 2: X1 = N. Then by Theorem 2.8, there exists ¢ > 0 such that
Zn

(39) ZFilTX;[_ C_l/kO'i/k( 1) > SZF” s
=1 i=1
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Since y' is fixed and M is compact, there exists y > 0, such that
(3.10) 8ZF"’T)(;—§ ySOFU
i=1 i=1
Combining (3.7), (3.8), (3.9) and (3.10), we get

(3.11) §—+c ZF">AyzF”
1 i= i=

Since y > 0, we can choose 4 so that Ay — C, = 1. Hence,
n I3
(3.12) =0 > S F".

Applying Garding’s inequality, the Cauchy inequality and (3.3), we have

(3.13) z Fi =

n _ 1
> % Lot (g )=
]:1 Xj

zai/k_l(x’l) VAR LA

2/k< Z/k

A6}

Combine (3.12) and (3.13), we have

Xlécv

for some constant C depending only on the initial data.

For k = n, notice in this case ¢ = 1. From Proposition 2.1,

n - 1 n 1
(3.14) SSFi =g (>~

i=1 n i=1Xi
By (3.3), there exist two positive constants C4 and Cs, such that
(3.15) 0<Cy<a,"(y) < Cs < +o0.

Now we can proceed directly from (3.7) and (3.8), namely:

(3.16) A+2AF+AZF” a Q+ CI > F,

i=1 i=1
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Assume )(l.’i- > ¢, > 0. Using (3.15) it follows that

Ae no1 Co no1 n o1
317) A =245,"() + 20V () - £ S G — =G Y~
( ) ) n ( );Xi X1 ;Zi ;X:‘
Apply (3.15) again, we get
Ae, no1
(3.18) ( focy - a)z— <24Cs.
n i=1Xi
A . 1+ C
Now we take A4 such that % Ci—Cy=1,ie., A= % From (3.18), we have
0“4
2”: 1
— < Gs.
i=1Xi
Since y; > 0,
(3.19) %z Gl

Combining (3.15) and (3.19), it follows that

HXi_l> n—1
(i=2 <G c

3.20 X1 = = ) 5
( ) 1 O‘n(%il) C4

for a uniform constant C.

In summary, for all 1 < k < n, there exists a uniform constant C, such that y; < C.
Back in the definition of G, we have

(3.21) log(x;) — A(p — ¢) < log(x1(x0)) — A(p(x0) — (x0)),

S0
log(x;7) = log C — Ap(xo) + Ap + C".

Exponentiating both sides, we get the desired estimate. []

<0.

2
. 1 T RV,
Now we prove the claim: B=— ) F’-/vklxl_.ﬁ i T ZF” #

11 i gkl 11

Proof-

Case 1: k < n. Recall from Proposition 2.1, Fikl s not zero iff i = Jok=lori=1I,
k = j. According to the computation there, we have for i & j



206 Fang, Lai and Ma, On a class of fully nonlinear flows in Kdihler geometry

(3.22) F’f’j"_ - l Tnt(X) Vi OnOn—k—2( | i, J) = On-ron-2(x |1, J)
‘ k\ on(x) o,

] )™
k\ aa(x)
y (Xﬂnkl (1 J) + x0n—sk—1 (1 1 15 7) + xixtjon-k—2(x | 4, J'))
2
O-n

< 0.
So we group terms as follows:
The first group:

2

1 . .

X__< > FU"UXUTIX“_I>+F“| 112,1| <0,
X11 \1<ij<n A,

Let

(3.23) (f " fia) <o,
s
1
If we let 1; = e and g(4) = a,i/k(/l), then (3.23) is equivalent to the following:
3.24 o+ %51 >0
( N ) g/»j/u/‘ +Tl l] = 9

which is true by Proposition 2.2 and Remark 2.3. See also Appendix A for an alternative
proof.

Second group:

_ L& i n il <0
Y—__ZF Xii,l)flfj"'ZF 2 =Y
X]]l:Z i=2 Xli

The idea is to use FI'17 to control F ”2 take i = 2 for example. By the Kéhler property of y,
we have

Lijke = Xijiio - Xijk = Xike,j-
It suffices to show

aFPV A+ FT <0, 41
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1 <Gtzk (X)
kaZ(x) \ ou(x)

x1[on () ons—2(x | 1) = onic () on-2(x [ 1, )]

1/k
After taking out the common factor > , we are left to show

+0n—k(X)(7n—l(X | ]) - O-n—k—l()f | J)O-n()() =0.

Here we simply write y; for y,;. Use the identity ox(x) = ox(x|1) + x10x-1(x| 1), we have

X1 [O-n()(>0'n—k—2()(| 1,]) - O-n—k()()o-n—Z(}d l,j)] + Gn—k(%)o-n—l()dj) - Gn—k—l()( | j)o'n()()
Al

= 0. 10n—k-1(x1J) = Otk (x| )] = Oni () 10n—2(x | 1, J) — on1(x
= —0u(x)on-k-1(x]1,2) £ 0.

The third group have all the remaining terms:

1 T LT
/= — Z FU’]IXI: lxz_i é O
X1 1<i<n AR
2<j<n
i%j

By (3.22), each term in Z is negative.

To sum up, we have
B=X+Y+Z=<0.

Case 2: k =n. If we use the convention a_;(y) = 0, the computation above is valid
and can be simplified. [J

4. Convergence of the flow
In this section, we study the properties of the functionals 5";;(7,1 raised in the introduc-
tion, from which we prove the uniqueness of the solution of (1.5) and C° estimate for the
oscillation of ¢,. After getting a C° estimate of oscillation of ¢,, all the arguments in [19]
can be applied verbatim.

For any ¢ € 2, , let

(4.1) OFk(9) = [ Opxy A" "
M
be the infinitesimal variation of the functional %;. Then one has an explicit formula for %:
Lo k k
Fe(p) = [ | iy ne" " dt,
0 M

where ¢, is an arbitrary path in 2, connecting 0 and ¢, and qﬁt denotes the time derivative.
Then let

(4.2) ﬁk,ﬂ(@ = Tk(P) — ok Fu(P)-
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By the variational characterization of (4.1), one has

(4.3) 0Fn-n(9) = A£ Sp(xy " no* =g

So the Euler-Lagrange equation of %_k,n is
(4.4) X;‘*k Aok — axy =0,

which is exactly (1.5). Regarding the second derivative of % ,, one chooses a path ¢, and
use (4.1), (4.2) to get

dze/n k,n ¢1

(4.5) e

f¢t a0 — )
+ [ 4004 ((n = Kyt noot — angg™)
= f¢r A" = axl)
+A£5¢tAg¢,(Cang L=k aoh).

We observe the following

Theorem 4.1. There is only one critical point at the level of Kdhler metric if such crit-
ical point exists.

Proof:  Suppose we have two critical points ¢, and ¢;. Consider the affine path
¢, = (1 —t)py + ¢, t €10,1]. Since ¢, and ¢, are critical, we have, in local coordinates,
the following equalities:

ok(xg) = orlry)) =

Recall that in Section 2, we have proved —ay(y~!) = F is concave, which is equiva-

lent to the convexity of oy (y~!). Thus
ak()(qjtl) S =0+ tep=¢p, tel0,1].

Since )((;’1 is positive definite, we have gy ( )((;11 | i) < c;.. By Proposition 2.4, it follows

ckn)(g ' (n— k))(;’*kfl >0

t

asan (n— 1,n — 1) form. Therefore by (4.5) and the facts that ¢, = ¢, — by, b, = 0, we con-
clude that &, x .(¢,) is a convex function: [0, 1] — R, with critical points at =0, 1. This
implies that #,_i ,(¢,) is a constant. Furthermore, the identity

dzg}hfk,n(@)

dr? =0

implies ¢[ ¢, — ¢y = C for some constant C, hence y, =y, . O
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Next, we establish some propositions regarding monotonicity of the functionals
which will lead to the C° estimates.

Proposition 4.2.  The functional %7,(7 n 1s decreasing along the flow (1.4).

Proof.  We write (1.4) as

1/k
where F = —<0—"k(¢’>> )
Gn((”t)

a5

e Futalo) = | oz no*
M

— k)

= () F)(—F* — ey <o,

n M ¢ =
k
The integrand is of the form (a'/¥ — »'/¥)(h — a) which is clearly non-positive. []

Corollary 4.3.  Assume the convergence of the flow, i.e., the existence of the solution of
(1.5), then the global minimum of %, is realized by the critical metric.

Proof. 1t follows directly from Proposition 4.1 and Proposition 4.2. []
Towards a C” estimate, we need another monotonicity:

Proposition 4.4. Let #,_ be defined as above, ¢, the solution of flow (1.4), then

A7, i(9,)
dt

lIA

0,

i.e. Fu_i(p,) decreases along the flow. In particular, F,_;(p,) < 0 for all t > 0.

Proof.  First we make the following observation:

(4.6) Aj;an,k dv = j( In—k )(gn)kildu

M (gn)m

1+k p

g(zs) ] (g

1+k

(o) (e

lIA
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()
Recall dv = %, SO O,k dv = 5 2" Ak, So (4.6) gives
;. 1/k
(4.7) | ( "k> 1A R > c,’cl/k [ 7" Ak
M Op M

d . .
Now we compute E,%,,k((p,) by choosing the path given by the flow, then

1/k
1k n— On—k -
:J“c,'c/;(;’fk/\wk—j<;> an Aot 0. O
M M n

From Proposition 4.4, we know %, (p,) < 0. But the definition of %,_; is indepen-
dent of the choice of the path, we can choose the path y(s) = sp, to compute Z,_(¢p,) as
well.

1
= j jwt(s)((pt +(1- l))(o)nik Aok ds
0 M

n—k 1 —k
= J"<n ; )sl(l — )" ds | (p,){é,z AT A0k 0.
0 M

So at time 7, we may write in short #,_x(¢,) = | ¢, du,. Now we are in the position to
prove the following: M

Theorem 4.5. Suppose that y"~! —n;wk/\)(’”*kfl > 0. Let ¢, be a solution
n

of (1.4) on [0, o). Then there exists a constant C, depending only on initial data such that
lsupg, —infg,lco < C.

Proof. 1t suffices to show a uniform lower bound of inf ¢,, where ¢, = ¢, — szp ?,.

Following [19], we prove by contradiction. If such a lower bound does not exist, then we
can choose a sequence of times #; — oo such that

. 1}‘1/11“ 0, = IGIR)FZ,’] lﬁf @y,

e inf p, — —
IIA}f¢ti_> 0.
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Set B= A/(1 —0J) where 4 is the constant in Theorem 3.1, and let J be a small positive
constant to be determined later. Let u = ¢ 57, We apply [19], Lemma 3.3, Lemma 3.4.
There is a constant ¢’ independent of u, such that

ull co = Cllul

Since u = ¢ %% and ¢,, satisfies sup ¢, = 0 and
M
Xokr + @)1 = 27> 0,

we can apply [14], Proposition 2.1, to get a bound on |ju||; for 6 small enough. This gives
the uniform C° estimate of ¢,. []

So far we got the uniform C° estimate for oscillation of ¢,, in order to get conver-
gence we have to normalize ¢,, namely let

7 =0, — Fn—t(9,)
t Tt du .
A£ :

Then ¢, takes the value zero somewhere, by Theorem 4.5, ||@,||-0 < C. With this
choice of normalization, we see the partial C? estimate is actually uniform. By Theorem 3.1,

1037 co = 1103p,)|co < Aectorintioaed,

For the exponent, we have

T )  Tni(0,)
48 — ll'lf k((pt) 1nf +7t
(4.8) o= Jof o= ¢ + J"dﬂ, B2 T,
M
Py ) - . F,
<o+ n k((”t) — inf §,— inf n k((/)t)

[du,  mxfp.n”™  mxpq [ dy,
M M

i inf g4 2k@) e Fueil0)
Mx[0,1] [du,  mxpq [ dy
M M

D, f <2C.
0, — Mlil[o ; ¢, =

The last equality follows from Proposition 4.4 and the fact that f dy, 1s independent of ¢.
Hence, we have a uniform constant C such that

100l co < C.

Since we get a bound for the complex Hessian of ¢, the underlying real parabolic
equation (1.4) has uniform elliptic constants. By [16], [17], one can deduce C*?* spatial
and time estimate on ¢. Then the classical Schauder theory can be applied to prove
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estimates all the way to C*. Consequently the flow exists on [0, co). We will provide more
explanations of PDE aspect in Appendix B.

To show the convergence without passing to a subsequence, one can follow the
methods in [2], [19].
5. Generalization and applications

In this section, we apply Theorem 3.1 to the product manifold M x C, where C is an
algebraic curve, to prove Theorem 1.2.

Proof. First, let us recall the definition of following constants:

[ x5 neon
5.1 Ck = Ck.lw). :M—n,
(5.1) [l T
M
(5.2) Ckq = Ck +0Ck—1, o=0,

and cone condition @ , = b .(®):

(53)  Gralw) ={[x] € #* |3y €[], such that

o™V > (n— k)" AR Fan — k4 )" R A0
Let wo, y, € [x] be two Kéhler forms on M, w; be a Kéhler form on C. Set
Xo = Xo+aw;, and @y=wy+ o.

Then on M x C, consider the following flow in 2, :

o awi i (Z)\
54 Wk (e ’ =0,
( ) at < O-VH»] (X(p) ) ¢|t—0

-~ V=l 5
where )(q,:)(o—kT@@(p, and

o M£C Oni1-k(Xp) _ aﬂjl an-k(Y0) + AJ/; an_kH(XO)Z (n)c +l < i )C
MJC ons1(Zy) aAJ;Gn(Xo) k)*Ta\k-1)"*"

. . . ~ =0 .
In local coordinates, one shall view the matrix ((7,);) as <(Xg)u ) In view of
awmi
. = 0 .
Theorem 3.1, we want to bound the largest eigenvalue of <(X((’;)’-’ ) Without loss of
ami

generality, we can assume the corresponding direction is o € 719 M. Otherwise the esti-
21
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mate follows trivially, since w; is fixed under the flow. Compare the proof of Theorem 3.1,
we impose the condition

(5.5) or(go i) <e, Vi=1,2,....n,

which translates to a condition on M as
1 1. 1. .
(5.6) &kal()(o |1) +or(xy i) <e¢, Vi=12,...,n

Then the whole argument applies. Moreover, C° estimate can be applied directly. There-
fore we get a stationary metric y on M solving

(5.7) acy" = a(Z)X"_k INCLEE <k " ) )){"‘kﬂ INCLS

(20)
After setting o = Ak=1/

becomes n
(%)

Based on the known result, we can refine Chen’s problem into the following:

, one can readily check that [y] € %) , implies (5.5), and (5.7)

Ck,oan — ank /\O)k + OC)(nide /\wkfl_ |

Conjecture 5.1. For fixed q, 0 < g < n, and for any given o= (a,...,0)) € RPH,
p=n—qao;>0,0=<i=p,define

)4
Ca = Chyo o), [4]) = D Citq%s
i=0

~ P ~
Fan(X0: %) = 22 %F i q.n(X05 X),

i=0

P . :
Cu(w) = {[)(] e #" |3y’ € [z], such that c,ny" ' > S oi(n —i—q)y" ! Aw’+"}.

i=0

Then
)2 _ )
(5.8) ca;(;‘ =5 oc,»)((;fq A"
i=0

has a unique smooth solution if and only if [y] € €,(w); in this case, F ,(3o, x) is minimized
at the given solution.

Using the same method we can verify Conjecture 5.1 under some additional condi-
tions on o;’s. We consider M x Cy x C, x --- x C,, where C; are all algebraic curves. Let
w; be Kihler forms on C;. For a; > 0 set

V4 n
To=xo+ Y aiw, &=> w.
= Far
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Following the method above one can solve
(5.9) Onip(7) = Onip i (F) ONM:=M x C; x Cy x -+ x Cp,

where c is the constant satisfying

I On+p—k ()Z)

M
c=

B Ianer()?) .
M

Similarly, one reduces (5.9) to an equation on M. According to the relationship of k, n, and
p, there will be four cases which we state as a theorem.

Theorem 5.2. Let M, w, and [y] be as above. T, is the positive cone in RF. Conjecture
5.1 holds for the following special equations:

(1) For p =z k andn > k,

k
" =B+ B A0+ B A0, e= ;)ﬁiciv
=

Sfor which we require the existence of a b = (by,b,,...,b,) € Iy such that f; = o,_;(b) <n >,
i=0,1,... k. !

(2) For p <k <n,
P
an — ﬁoxnﬂFk /\wkfp _|_ﬂlln+p7k71 Awkfpwtl .. _|_ﬂpln7k /\wk’ c= Z%ﬁickfpﬂv
i=

Sfor which we require the existence of a b = (by,b,...,b,) € T, such that

n .
[)’,-:a,,_,-(b)<k_p+i), i=0,1,...,p.

(3) For pz k2,

n
an :ﬂo){"+ﬁ'1){"71 /\er"'Jrﬂnwn’ €= ;)ﬂici’
=

Sfor which we require the existence of a b = (by,bs,...,b,) € ', such that f; = ox_;(b) (IZ )’
i:O,l,...,n.

(4) Fork > p and k = n,

n+p—k
n__ n+p—k k—, n+p—k—1 k—p+1 n _
" = Pox" I AT 4 Byt NPT e B g @" = Y0 BiCk—pis
i=0
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where we require that there exists some b = (by,b,...,b,) € I'), such that
n .
ﬁizo-[’*i(b) k—p+l ’ 120717"'7n+p_k'

Remark 5.3. It is due to our specific method that the f,’s have certain combinatorial
constraints. We expect to remove these technical constraints in future works.

We finish the discussion with a geometric application.

Consider [y] = [w] + ¢[a], where [a] € H''!(M) and ¢ € R. Since  is in the cone %,
and the cone is obvious open, then for |¢| small, [y] € €\ for any k € {1,...,n}. Thus, by
Theorem 1.1, we have y € [y] such that

On the other hand, it is easy to check that, on the manifold M, we have the following
point-wise inequalities:

anl A Xn72 /\602 - ank/\wk

(5.10) >

Xn = Xn_l/\(l) =

= kA kT

where any equality holds iff y = Aw for some constant A. Thus,

_ _ _ _ 1/k

(511) an/\w>xnl/\w'xn 2/\6()2' ' Xn k/\wk / 7( )l/k

: Xn = Xn anl Al T ank+l Akl = Gk :

This leads to
J"anl N PN 1/k

5.12 M >(q)F= M

(5.12) 8% (ck) T
M M

Notice that (5.12) is independent of the choice of y € [¢]. Notice [y] = [@] + ¢[a]. Take
k = 2, and expand both sides of (5.12) as a series of ¢, then let ¢ — 0. We get the following
inequality:

519 (o) (fer) =y (o)

where the identity holds iff [a] = A’[w] for some constant A’. This is exactly the Riemann—
Hodge bi-linear relation for (1, 1)-classes (see, e.g., [7]).

Appendix A

In this appendix, we first present another proof of Remark 2.3. For the convenience
of readers, we restate it as the following:
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d o?
Proposition A.1. Let g = cr,i/k()(), and y e T',. Let g; := 9 I Then the

, gij = ———

gi xi ’ alia){j
. 1 . .

matrix g;; + ;5,-]- is nonnegative.

J

Proof. Step 1. Consider h := gy ( ;(%). Use the same notation as above, we claim

hi
hj +—0; =0
Zj
Direct computation shows that:
1 N 1 /k—1
(A =gl o
1 ks s k=1 k=1 1 (1 1k | 1 /k=2
(A.2) hjj = Fakd()( LD X +E T U)o (" [i)x;"™ "0y
Introduce the following notation: For I = (i}, i»,...,#) an arbitrary index set of length /,
let ox.1 == > yxyou-1(x | 1), where y; = y; x;, - - - 1, Basically, it is the collection of terms in
[I|=k

which indices i € I appear. In this notation, we can rewrite (A.1), (A.2) as

Of;i
(A.3) hiy = ——,
ky;
Ol;i,j . .
A4 hij = , fori=j,
( ) / kz%i%i
1/1 Ofe:i
A5 hi=—-—-1 i
(A3) k (k ) x7
h;
So hj; +—d;; equals
AT
[ oK1 Ok12 Okl |
k2t k2 k212,
Ok:1,2 Of:2
(A.6) kZXIXZ kz)(%
Olk:1,n o Ok:n
k212 k22
Then it is equivalent to show that
Of;1 Ok;1,2 " Ok;ln

Ok:1,2 Of:2
A=

Ok:1,n Ok:n
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is nonnegative. For an index set /, Let E; be the matrix having entry 1 in the i-th row and
Jj-th column of an n x n matrix, where i, j € I, and entry 0 elsewhere. It is clear that Ej is
nonnegative. Moreover, we have the following nice decomposition:

(A7) A= > yE 20.
=
Thus

Step 2. We claim

[ by
%+£%— ’
X

= 0.

We use a nice trick due to Andrews [1]. Since / is homogeneous of degree 1, /;y; = h. Dif-
ferentiating both sides, one gets /;;; = 0. Consequently,

h; hih;

A.8 hij + =6 — =2 | xit; = 0,

( ) ( ]+Xj iy h >XIX]
. . /’ll' h,‘h]'
i.e. x is a null vector. In order to show /A;; +—0;; — h. = 0, one then only needs to look at

Jj

a subspace transversal to the null vector y = (x;,...,x,). Naturally, we choose the
subspace defined by {&|/;&; = 0}. Then (h,j +— b 51/ hh") & = (h,j + hi&g) ¢;¢;, which
is nonnegative from step 1. % %

Step 3. g(x1,- - s o) = BVE(F, ... xF), a simple computation shows that

gi k=1 )11k 1 1/k h; k —1 hih;

A. s = . Lot 7

(A.9) gij +Xj5'/ kh (A)2; {h, +/1 O T
where y¥ = J;. Thus,

h; k—1 hh; h; hih;
Al jto0j——F——F— 2 hj+-—0; —— =20,
( O) h./ +)~j5] k h = h./ + ijé‘] h 0

the last inequality is due to step 2. The proof is thus completed. []

Remark A.2. It is clear from the above proof that the conclusion of the proposition
holds for g = oj(x), with & > 0.

Appendix B

In this appendix, we summarize the classical parabolic Krylov—Evans theory that is
applied in this paper. In particular, we deduce time C: estimates for ddg for (1.4). These
estimates are local in nature. This proof is essentially due to Lihe Wang [17].
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In the parabolic case, it is also convenient to introduce the following regularity no-
tation. We say ¢ = ¢(x,1) € C2 * in the parabolic sense if and only if ¢ € C** in the spatial
variable x € R”, and ¢ € C"3 in the time variable 7 € R in the usual sense. Different regular—
ity is due to dlfferent scaling of spatial and time variables. We will also write CZH 22 (o
indicate regularity respectively. For a thorough exposition, we refer readers to [16] and
[17].

The fundamental tool to attack the nonlinear parabolic equation is the following:

Theorem B.1 (Krylov—Safanov). Let ¢ be a solution of

(B.1) 00 = ay(x, g,

in Qy, and a;; is uniform elliptic, then ¢ is in C}* (Qy), i.e., ¢ is C* in spatial and ¢ is C*% in
time.

The parabolic equation which we have is
op =
(B.2) i + F(009).

By Theorem 3.1, F is a uniform elliptic, concave operator. Taking derivatives with respect
to ¢ on both sides of (B.2), one has

(B.3) Pu = Fij((”z)ij'

By Theorem B.1, ¢, is C. Thus (B.2) can be viewed as an elliptic equation. Then by the
elliptic Krylov—Evans theory, one has a spatial C* estimate on D2¢. To have C* estimate
for D2, it is sufficient to show time C /2 estimate. Since the problem is local in nature, we
just need to prove time C*/? estimate at (0, 0).

Since ¢ is C*>* in spatial, there exist two quadratic polynomials P,(x) and Py(x) such
that

(B4) |§0(X, t) - Pf| é C|x|2+m) |x| é \/Za
(B.5) |p(x,0) — Po| < C|x|*™,  |x| < V.

: o
Also, since ¢, € C*,

(B.6) [p(x. 1) = p(x,0) = 19,(x,0)] < Cr'™2, |x] < V2.
(B.7) |9,(x,0) = 9,(0,0)] = Clx|".

By (B.4), (B.5) and (B.6) together, we have

(B.8) |P,(x) — Po(x) — tg,(x,0)| £ Ct'**/2,
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(B.8) and (B.7) imply that

(B.9) |P,(x) — Po(x)| < C1'*2 |x| £ V1.

For a quadratic polynomial, one has
1Pl -
2 (Br)

(8.10) D2, < CHl B

Therefore,
1P = Pol| .
(B.11) |D2P, — D2Py|l5, < C— 20 < i,

which implies that

1D3(0, 7) = D3p(0,0)|| < Cr*2.
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