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Abstract. In this paper, we study a class of fully nonlinear metric flows on Kähler
manifolds, which includes the J-flow as a special case. We provide a su‰cient and neces-
sary condition for the long time convergence of the flow, generalizing the result of Song–
Weinkove. As a consequence, under the given condition, we solve the corresponding Euler
equation, which is fully nonlinear of Monge–Ampère type. As an application, we also dis-
cuss a complex Monge–Ampère type equation including terms of mixed degrees, which was
first posed by Chen.

1. Introduction

In the study of Kähler geometry, the geometric flow method has been applied exten-
sively to obtain ‘‘optimal’’ metrics. One classical example is the Kähler–Ricci flow. If the
manifold has negative or vanishing first Chern class, the Kähler–Ricci flow converges to
the Einstein metric, see Cao [2]. Another example is the so-called J-flow. It was introduced
by Donaldson [6] in the setting of moment maps and by Chen in [3], [4], as the gradient
flow of the J-functional, which appears as a term of the Mabuchi energy. In [18], Weinkove
settled the question of Donaldson for surfaces. A su‰cient class condition for the conver-
gence of the J-flow is derived in [19]. In [12], Song and Weinkove proved a positivity con-
dition to be equivalent to the convergence of the J-flow to a critical metric. The precise
statement of this condition can be found in the discussion after (1.6). In general, the solu-
tion of these geometric flows usually depends on establishing a priori estimates of parabolic
PDEs.

In this paper, we will study a class of fully non-linear geometric flows, which was mo-
tivated by the construction of J-flow.
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Let ðM;oÞ be a closed Kähler manifold of dimension n. Define

Hþ ¼ f½w� A H 1;1ðMÞ
�� bw A ½w�; w > 0g:ð1:1Þ

Let ½w� A Hþ and w0 A ½w� be another Kähler form on M. We define the corresponding
Kähler cone and Kähler potential space with respect to ½w� as

K½w� ¼ wj ¼ w0 þ
ffiffiffiffiffiffiffi
�1

p

2
qqj > 0

�� j A CyðMÞ
( )

;ð1:2Þ

Pw0
¼ j A CyðMÞ

�� wj ¼ w0 þ
ffiffiffiffiffiffiffi
�1

p

2
qqj > 0

( )
:ð1:3Þ

For a fixed integer k A ½1; n�, and l ¼ ðl1; . . . ; lnÞ A Rn, the k-th elementary symmetric
polynomial of l is defined as

s0ðlÞ ¼ 1;

skðlÞ ¼
P

1ei1<i2<���<iken

li1li2 � � � lik ; k f 1:

When no confusion arises, we also use skðAÞ to denote the k-th elementary symmetric func-
tion of eigenvalues of a Hermitian matrix A.

In a local normal coordinate system of M with respect to o, we have

w0 ¼
ffiffiffiffiffiffiffi
�1

p

2
w0ij dzi5dz j; wj ¼

ffiffiffiffiffiffiffi
�1

p

2
ðw0ij þ jijÞ dzi5dz j:

Following the notation above, we denote

skðwjÞ ¼
n

k

� �
wk
j5on�k

on
;

which is just the k-th elementary symmetric polynomial of the eigenvalues of the matrix
ðw

0ij þ jijÞ with respect to the background metric o.

We set the volume form on M as dv ¼ on=n!. It is clear that

ck ¼ ck; ½o�; ½w� ¼

Ð
M

wn�k
0 5okÐ
M

wn
0

;

c 0
k ¼ c 0

k; ½o�; ½w� ¼

n

k

� � Ð
M

wn�k
0 5okÐ

M

wn
0

¼

Ð
M

sn�kðw0Þ dvÐ
M

snðw0Þ dv
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are topological constants. Now we consider the following flow in Pw0
:

wt ¼ w0 þ
ffiffiffiffiffiffiffi
�1

p

2
qqjt;

qjt

qt
¼ c

01
k

k �
sn�kðwjt

Þ
snðwjt

Þ

 !1
k

;ð1:4Þ

j0 ¼ 0:

Clearly, the stationary metric of this flow is a Kähler metric w A K½w� satisfying:

wn�k5ok ¼ ckw
n ¼

Ð
wn�k

0 5okÐ
wn

0

� �
wn:ð1:5Þ

In the case of k ¼ 1, our flow is the same as the J-flow. Song–Weinkove [12] gave a
su‰cient and necessary condition for the J-flow to exist and converge to a solution of (1.5).

One of the purposes of this paper is to give a necessary and su‰cient condition for the
flow (1.4) to converge to the stationary metric, which we now describe as a cone condition.
For M and o given as above, we define Ck ¼ CkðoÞ as

CkðoÞ ¼ f½w� A Hþ �� bw 0 A ½w�; s:t: cknw 0n�1 > ðn � kÞw 0n�k�15okg:ð1:6Þ

Ck is an a‰ne cone in Hþ. For k ¼ 1, C1 is first defined in [12]. It is easy to check
that ½w� A Ck is a necessary condition for the equation (1.5) to be solvable (see Section 2 for
more details). The main theorem of this paper is the following:

Theorem 1.1. Suppose M, o and w0 A ½w� are defined as above. Let 1e k e n. If

½w� A CkðoÞ, then flow (1.4) has a long time solution, which converges to a smooth metric sat-

isfying (1.5).

It is worthwhile to point out the case of k ¼ n. Notice that the corresponding equa-
tion is equivalent to

wn
j ¼

Ð
M

wn
0Ð

M

W
W;ð1:7Þ

where W is any given volume form. This was solved by Yau in his celebrated paper [20].
Also notice that the condition (1.6) becomes trivial in this case; in other words, Cn ¼ Hþ.
Cao [2] provides a parabolic approach to this equation, using Ricci flow.

Notice that for the k ¼ 1 case, our condition and conclusion are exactly the same as
the ones in [12].

Theorem 1.1 can be viewed as a finite interpolation between results of Yau [20], Cao
[2] and Song–Weinkove [12]. In fact, our basic approach to prove Theorem 1.1 closely
follows these earlier works. In particular, the idea of establishing a partial C0 estimate
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before C2 and C0 estimates first appears in [18]. However, new convexity phoneomena
show up for k 3 1; n cases.

Theorem 1.1 can be understood from several aspects.

First, Theorem 1.1 can be understood geometrically. One motivation for the con-
struction of this flow (1.4), as well as an important ingredient of the proof of Theorem
1.1, is the following functional defined for wf with f A Pw0

and j f 0,

FjðwfÞ ¼
Ð1
0

Ð
M

qft

qt
w

j
ft
5on�j dt;ð1:8Þ

where ft A Pw0
, t A ½0; 1� is a path in connecting w0 and wf. Fj is shown to be independent of

the choice of path [5]. Furthermore, a functional defined as

~FFj;nðw0; wfÞ ¼ FjðwfÞ � cn�jFnðwfÞð1:9Þ

can be viewed as a functional depending only on w0; wf A Kw.

Notice that for wi A ½w�, i ¼ 0; 1; 2, we have

~FFj;nðw0; w1Þ þ ~FFj;nðw1; w2Þ ¼ ~FFj;nðw0; w2Þ:

Thus, the minimizer of the functional ~FFj;nðw0; �Þ is independent of the choice of w0. In fact,
this functional can be realized as quotients of Quillen metrics on the determinant bundles
with certain virtual bundle coe‰cients, see Tian [15].

Our flow (1.4) is constructed in such a way that the functional ~FFn�k;nðw0; wjt
Þ is de-

creasing along the flow. It is then easy to check that the corresponding minimum metric
satisfies (1.5). Theorem 1.1 gives an explicit path for the functional ~FFn�k;nðw0; wÞ to obtain
its unique minimal, when the cone condition ½w� A Ck is satisfied. Notice that our flow is not
the gradient flow of the corresponding functionals except the case k ¼ 1. In fact, we modi-
fied the functional’s gradient flow to ensure that certain PDE estimates hold.

Second, Theorem 1.1 provides a necessary and su‰cient condition for (1.5), an ellip-
tic equation of Monge–Ampère type to be solvable. Notice that (1.5) can be written, lo-
cally, for k < n as

c 0
ksnðwjÞ ¼ sn�kðwjÞ;ð1:10Þ

or, equivalently,

skðw�1
j Þ ¼ c 0

k:

The corresponding ½w� A Ck condition states that there exists a w 0 A ½w� such that

skðw 0�1 j iÞ < c 0
k;ð1:11Þ

for 1e ie n. Refer to Section 2 for more details.
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Equation (1.5) is also a special case of a question posed by Chen. In [3], Chen
raised the question of solving a very general fully non-linear equation of Monge–Ampère
type:

wn
j ¼

Pn�1

i¼0

aiw
i
j5on�i;ð1:12Þ

where ai’s are real. Theorem 1.1 gives a complete answer for Chen’s question when the
right-hand side has only one term.

Using a similar method, we can also extend our result.

Define, for any fixed a A ð0;yÞ and integer k A ½1; n�,

ck;a ¼ ck;a; ½o�; ½w� ¼ ck þ ack�1;

~FFa;k;nðw0; wÞ ¼ ~FFn�k;nðw0; wÞ þ a ~FFn�kþ1;nðw0; wÞ;

Ck;aðoÞ ¼ f½w� A Hþ �� bw 0 A ½w�; such that

ck;anw
0n�1 > ðn � kÞw 0n�k�15ok þ aðn � k þ 1Þw 0n�k5ok�1g:

It is clear to see that when the parameter a runs from 0 to y, Ck;a ¼ Ck;aðoÞ gives a con-
tinuous deformation from the cone Ck HHþ to Ck�1 HHþ. We have the following

Theorem 1.2. Suppose M, o and w0 A ½w� are defined as above. Assume 1e k e n and

a > 0, then the equation

ck;aw
n ¼ wn�k5ok þ awn�kþ15ok�1ð1:13Þ

has a unique smooth solution if and only if ½w� A Ck;aðoÞ; in this case, the solution minimizes
~FFa;k;nðw0; wÞ.

Theorem 1.2 is proved by improving the estimates needed in proving Theorem 1.1 to
the product manifold M � C, where C is a smooth algebraic curve.

Based on these known results, we would like to verify that the similar cone condition
would be the necessary and su‰cient condition for the problem of Chen. Using a similar
geometric construction as in the proof of Theorem 1.2, we can settle many special cases for
Chen’s problem. See Section 5 for more details. We believe this is one of the few examples
of the Monge–Ampère type equations including terms of mixed degrees. The geometric
structure plays an important role in the solution of these equations.

Finally, we make some remarks.

Remark 1.3. It is interesting to point out that the elliptic PDEs studied in this paper
are all solved by geometric flow method. With the exception of Yau’s original equation,
continuity method does not seem to work for the other cases.
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Remark 1.4. It is interesting to study the various cones we defined in Hþ. Except
the obvious fact that CnðoÞ ¼ Hþ includes all the other cones, the relative position of
CjðoÞ and CkðoÞ for j 3 k, j; k 3 n is unknown.

Remark 1.5. The strong concavity property of the symmetric polynomials is very
important for our estimates. We point out that we do not use the optimal concavity prop-
erty available. This leaves room for future construction of other geometric flows in Kähler
geometry.

The rest of this paper is organized as follows. In Section 2 we introduce further nota-
tion and some preliminary facts about the elementary symmetric polynomials. In Section 3,
we derive the partial C2 estimate by maximum principle, following Yau [20] and Weinkove
[18]. In Section 4, we derive the C0 estimate and Cy estimate and the convergence result.
In Section 5, we discuss various generalizations of Theorem 1.1 and some applications to
complex geometry. In the Appendix, we give an alternative proof of our strong concavity
property.

Acknowledgments. The first-named author would like to thank Jian Song for useful
discussion. All authors would like to thank Pengfei Guan and Lihe Wang for discussion.
They would like to thank the Institute for Advanced Study for support and hospitality.
Most of this work was done when they attended a special year of Geometric non-linear
PDE at IAS. Thanks also go to the referee for his or her careful proof-reading and useful
suggestion.

2. Preliminary

In this section, we set up the notation and prove some preliminary results regarding
elementary symmetric functions.

For simplicity, after proper scaling, we may assume ck ¼
Ð
wn�k

0 5okÐ
wn

0

¼ 1 without loss

of generality. We also denote c ¼ c 0
k ¼ n

k

� �
when no confusion occurs.

Fix a local coordinate chart U HM. For z ¼ ðz1; z2; . . . ; znÞ A U , we write

o ¼
ffiffiffiffiffiffiffi
�1

p

2
gij dzi5dz j;

w0 ¼
ffiffiffiffiffiffiffi
�1

p

2
w0ij dzi5dz j;

w 0 ¼
ffiffiffiffiffiffiffi
�1

p

2
w 0

ij
dzi5dz j;

wj ¼
ffiffiffiffiffiffiffi
�1

p

2
ðw0ij þ jijÞ dzi5dz j;

wij ¼ w0ij þ jij:

When no confusion occurs, we also use w0, w 0, wj to denote the corresponding
Hermitian matrices at the given z. We always choose the normal coordinate of o such
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that gij ¼ dij and wj is diagonal. In other words, we have wjðzÞ ¼ w ¼ ðw1; . . . ; wnÞ. Further-
more, we may assume wi f wj for i > j. That means w1 and wn are the maximal and the
minimal eigenvalues of wj, respectively.

For a Hermitian matrix A ¼ ðaijÞn�n, define

FðAÞ :¼ � sn�kðAÞ
snðAÞ

� �1=k

¼ �s
1=k
k ðA�1Þ:

It is a well known fact that F is a concave function of A and F ij is positive definite when
restricted to the space of positive definite Hermitian matrices (see e.g., [13]). Without fur-
ther specification, we assume that A is positive in the rest of this section.

We compute the derivatives of F with respect to entries of A for the future use.

Proposition 2.1. For F given as above, we have

F ijðAÞ :¼ qF

qaij

¼ � 1

k

sn�k

sn

� �1=k�1 qsn�k=qaij

sn

�
sn�kqsn=qaij

s2
n

� �
;

F ij;klðAÞ :¼ q2FðAÞ
qaijqa

kl

:

If A ¼ w ¼ diagðw1; w2; . . . ; wnÞ is diagonal, then F ij can be non trivial i¤ i ¼ j. We

have

F ii ¼ � 1

k

sn�kðwÞ
snðwÞ

� �1=k�1
sn�k�1ðw j iÞ

snðwÞ
� sn�kðwÞsn�1ðw j iÞ

s2
nðwÞ

� �
;

or

F ii ¼ 1

k
s

1=k�1
k ðw�1Þsk�1ðw�1 j iÞ 1

w2
i

:

Furthermore, F ij;kl can be nontrivial i¤ i ¼ j, k ¼ l or i ¼ l, j ¼ k. In this case, we have

F ij; jiðwÞ ¼ 1

k

sn�kðwÞ
snðwÞ

� �1=k�1
snðwÞsn�k�2ðw j i; jÞ � sn�kðwÞsn�2ðw j i; jÞ

s2
nðwÞ

� �
; for i3 j;

where w�1 denotes the inverse matrix of w, skðw j iÞ ¼ skðwÞjwi¼0, skðw j i; jÞ ¼ skðwÞjwi¼0;wj¼0.

Also notice that F is homogeneous of degree �1, so �FðAÞ ¼
P
i; j

F ijðAÞaij.

We proceed to discuss some technical results. First of all, we have the following con-
cavity result. Define

Gn ¼ fðx1; . . . ; xnÞ A Rn j x1 > 0; x2 > 0; . . . ; xn > 0g:
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Proposition 2.2 ([9]). Let gðlÞ ¼ log skðlÞ. For l A Gn, x ¼ ðx1; . . . ; xnÞ A Cn, let

gi :¼
qg

qli

, gij :¼
q2g

qliqlj

. We have

Pn
i¼1

gii þ
gi

li

� �
xixi þ

P
i3j

gijxixj f 0:ð2:1Þ

Proof. We have

gi ¼
sk�1ðl j iÞ
skðlÞ

; gij ¼
sk�2ðl j i; jÞ

skðlÞ
� sk�1ðl j iÞsk�1ðl j jÞ

s2
kðlÞ

:

Using the same reduction as in [8], Lemma 2.3, (2.1) can be reduced to the following in-
equality:

Pn
i¼1

skðl j iÞsn�1ðl j iÞsk�1ðl j iÞjxij2ð2:2Þ

f snðlÞ
P
i3j

fs2
k�1ðl j ijÞ � skðl j ijÞsk�2ðl j ijÞgxixj;

which is just [8], Lemma 2.4. r

Remark 2.3. By the above proposition, if we let gðlÞ ¼ s
1=k
k ðlÞ, for l A Gn, then a

simple calculation shows, for x ¼ ðx1; . . . ; xnÞ A Cn,

gij þ
gi

lj

dij

� �
xixj f 0:

Another proof will be given in the appendix.

Second, we have the following local version of the cone condition (1.6).

Proposition 2.4. For k < n, w 0 A Ck is equivalent to

sn�k�1ðw 0 j jÞ
sn�1ðw 0 j jÞ ¼ skðw 0�1 j jÞ < n

k

� �
;

for any j A f1; . . . ; ng, where ðw 0 j jÞ denotes the matrix obtained by deleting the j-th column

and j-th row of w 0.

Proof. Assume w 0 A Ck. By (1.6), for any given integer j A ½1; n�, the coe‰cient of

the ðn � 1; n � 1Þ form
Qn
i¼1
i3j

dzi dzi in w 0n�1 � n � k

n
ok5w 0n�k�1 should be positive; that is,

ðn � 1Þ!sn�1ðw 0 j jÞ � n � k

n
k!ðn � k � 1Þ!sn�k�1ðw 0 j jÞ > 0:
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Dividing both sides by
n � k

n
k!ðn � k � 1Þ!sn�1ðw 0 j jÞ, one obtains

sn�k�1ðw 0 j jÞ
sn�1ðw 0 j jÞ <

n

k

� �
: r

Next, we introduce some simple algebraic facts. Let A ¼ ðaijÞ be a positive Hermitian
matrix.

Lemma 2.5. Let I ¼ ði1; i2; . . . ; ikÞH ð1; . . . ; nÞ be an index set, denote its comple-

ment in ð1; 2; . . . ; nÞ by I. We always order I so that ðI ; IÞ is an even permutation of

ð1; 2; . . . ; nÞ. For A, a positive Hermitian n � n matrix, let AI be the principal minor

ðaijÞi; j A I . Then

detðAÞe detðAI Þ detðAI Þ:

Proof. Rearrange A if necessary. We may write A as

A ¼
AI M

M 0 AI

� �
:ð2:3Þ

By

Id 0

�M 0A�1
I Id

� �
AI M

M 0 AI

� �
¼

AI M

0 AI � M 0A�1
I M

� �
;ð2:4Þ

one obtains

detðAÞ ¼ detðAI Þ detðAI � M 0A�1
I MÞe detðAI Þ detðAI Þ;

where M 0 means the conjugate transpose matrix of M. The last inequality follows from the
fact that M 0A�1

I M is positive definite. r

The following corollary is a direct consequence of Lemma 2.5.

Corollary 2.6. Let A be as above. Then detðAÞe
Qn
i¼1

aii.

We are then ready to prove

Lemma 2.7. Let A ¼ ðaijÞ be a positive Hermitian matrix. Denote ~AA ¼ ðaij dijÞ to be

the matrix containing only the diagonal terms of A. We have

skð ~AA�1Þe skðA�1Þ:ð2:5Þ
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Proof. By Corollary 2.6, we have

1

detð ~AAÞ
e

1

detðAÞ :

This means that Lemma 2.7 holds for k ¼ n. For general k, we have

skð ~AA�1Þ ¼
P
jI j¼k

ði1; i2;...; ikÞ A I

1

ai1i1

1

ai2i2

� � � 1

aikik

e
P
jI j¼k

1

detðAI Þ
e
P
jI j¼k

detðAIÞ
detðAÞ ¼ sn�kðAÞ

snðAÞ ¼ skðA�1Þ: r

Finally, we give the following technical statement, which will be used in the next
section.

Theorem 2.8. Assume that M;o; w A ½w� are given as before. Assume that k < n and

½w� A Ck. Let F iiðwÞ be given as in Proposition 2.1. Let w 0 A ½w� be the Kähler form satisfying

the condition of Ck. Assume C1 e
sn�kðwÞ
snðwÞ

eC2; for some universal constants C1 and C2.

Then there exists a universal constant N, depending only on the given geometric data, such

that, if
w1

wn

fN then there exists e > 0 such that

ð1 � eÞ
Pn
i¼1

F iiðwÞw 0
ii
f c�

1
ks

2
k

kðw
�1Þ:ð2:6Þ

Proof. Follow the convention, we will verify (2.6) under normal coordinates which
diagonalizes w at some point. So w ¼ diagðw1; w2; . . . ; wnÞ, and w1 f w2 f � � �f wn. In local

coordinates we will use skðw�1Þ ¼ sn�kðwÞ
snðwÞ

when no confusion arises.

We first notice for the case wn f 1, (2.6) follows easily. Notice w 0 is a fixed Kähler
form, so there is a constant l > 0 such that

w 0 > lo:

Therefore,

Pn
i¼1

F iiðwÞw 0
ii
f l

Pn
i¼1

F iiðwÞð2:7Þ

¼ l
1

k
s

1=k�1
k ðw�1Þ

Pn
i¼1

sk�1ðw�1 j iÞ 1

w2
i

f l
1

k
s

1=k�1
k ðw�1Þsk�1ðw�1 j nÞ 1

w2
n

:
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We claim sk�1ðw�1 j nÞ 1

wn

is bounded below. Indeed, sk�1ðw�1 j nÞ 1

wn

is the largest term

among sk�1ðw�1 j iÞ 1

wi

by the fact that wn is the smallest among wi, 1e i e n. Thus,

sk�1ðw�1 j nÞ 1

wn

f
1

n

�Pn
i¼1

sk�1ðw�1 j iÞ 1

wi

�
¼ k

n
skðw�1Þ:ð2:8Þ

Now if wn < d ¼ lðC1cÞ1=k, (2.6) follows easily from (2.7) and (2.8).

So we just need to consider the case wn f d.

Recall Gårding’s inequality: For m; t A Gn,

1

k

Pn
j¼1

tj

q

qmj

skðmÞf s
1=k
k ðtÞs1�1=k

k ðmÞ:

Thus, by Proposition 2.1, we have, for the matrix B ¼ diag
w 0

11

w2
1

; . . . ;
w 0

nn

w2
n

 !
¼ w�1~ww 0w�1,

Pn
i¼1

F iiðwÞw 0
ii
¼ s

1=k�1
k ðw�1Þ 1

k

Pn
i¼1

sk�1ðw�1 j iÞ
w 0

ii

ðwiÞ
2

ð2:9Þ

f s
1=k�1
k ðw�1Þs1�1=k

k ðw�1Þs1=k
k ðBÞ

¼ s
1=k
k ðBÞ:

Comparing with (2.6), it su‰ces to show

c1=ks
1=k
k ðBÞf ð1 þ yÞs2=k

k ðw�1Þ; for y > 0:ð2:10Þ

By Proposition 2.4, we have

sk

�
ðw 0 j 1Þ�1�

e
n

k

� �
� h ¼ c � h;ð2:11Þ

for a universal positive constant h < c, depending only on ðM;oÞ and w 0, where ðw 0 j 1Þ�1 is
the inverse matrix of ðw 0 j 1Þ. We have

c1=ks
1=k
k ðBÞf c

c � h

� �1=k

s
1=k
k

�
ðw 0 j 1Þ�1�s1=k

k ðBÞð2:12Þ

f
c

c � h

� �1=k

s
1=k
k

�
ðgw 0 j 1w 0 j 1Þ�1�s1=k

k ðBÞ

f
c

c � h

� �1=k

s
1=k
k

�
ðgw 0 j 1w 0 j 1Þ�1�s1=k

k ðB j 1Þ

f
c

c � h

� �1=k

s
2=k
k ðw�1 j 1Þ:
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We explain the second and last inequality in (2.12). Applying Lemma 2.7 to the matrix
ðw 0 j 1Þ, we have

sk

�
ðw 0 j 1Þ�1�

f sk

�
ðgw 0 j 1w 0 j 1Þ�1�:ð2:13Þ

Recall that B ¼ w�1~ww 0w�1, then the Cauchy–Schwarz inequality yields

skðw�1~ww 0w�1 j 1Þsk

�
ðgw 0 j 1w 0 j 1Þ�1�

f s2
kðw�1 j 1Þ:

Now suppose w1 fNwn, and wn f d. Then

skðw�1 j 1Þ
skðw�1Þ ¼ 1 �

1

w1

sk�1ðw�1 j 1Þ

skðw�1Þð2:14Þ

f 1 �

1

w1

n � 1

k � 1

� �
dk�1

skðw�1Þ f 1 �

n � 1

k � 1

� �
C1Ndk

:

Combine (2.10), (2.12), (2.14), for y su‰ciently small, a positive number

N ¼

n � 1

k � 1

� �
C1d

k

1

1 � ð1 þ yÞ1=2 c � h

c

� �
will satisfy the condition of this proposition. r

3. Partial second order estimate

In this section, we use the maximum principle to obtain an estimate on the second
order derivatives of j in terms of j.

First we establish the ellipticity condition. Notice that by the basic properties of sym-
metric polynomials, ðF ijÞ > 0 if w > 0. Di¤erentiating (1.4) with respect to t gives

q

qt

qj

qt

� �
¼ F ijðwÞqiq j

qj

qt

� �
:ð3:1Þ

Standard theory for parabolic equation ensures short time existence of the flow. By the

maximum principle,
qj

qt
achieves extremal values at t ¼ 0, i.e.

min
t¼0

qj

qt
e

qj

qt
e max

t¼0

qj

qt
;ð3:2Þ
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which in terms implies

inf
M

sn�k

sn

ðw0Þe
sn�k

sn

ðwjÞe sup
M

sn�k

sn

ðw0Þ:ð3:3Þ

Hence, wj > 0, i.e., it remains Kähler when the flow exists.

Next we prove the partial C2 estimate:

Theorem 3.1. Let M, o, and w0 A ½w� be as above. k is an integer in ½1; n�. Suppose

½w� A Ck, i.e. there exists w 0 A ½w� such that

w 0n�1 � n � k

n
ok5w 0n�k�1 > 0:

Let j be a solution of (1.4) on ½0;TÞ. Then there exist constants A > 0, C > 0, depending

only on the initial data and independent of T , such that for any time tf 0,

kqqjkC 0 eCeAðj�infM�½0; t� jÞ:

Proof. By hypothesis, there exists f A Pw0
, such that w 0 ¼ w0 þ

ffiffiffiffiffiffiffi
�1

p

2
qqf; then

wj ¼ w 0 þ
ffiffiffiffiffiffiffi
�1

p

2
qqðj� fÞ. Consider the function

Gðx; t; xÞ :¼ logðwijx
ix jÞ � Aðj� fÞ;

for x A M, and x A Tð1;0Þ
x M, gijx

ix j ¼ 1. A is a constant to be determined. Fix a time t, we
can assume G attains a maximum at ðx0; t0Þ A M � ½0; t�, along the direction x0. Choose

normal coordinates of o at x0, so that x0 ¼ q

qz1
and ðwijÞ is diagonal at x0. By the definition

of G, it is easy to see that w11 ¼ w1 is the largest eigenvalue of fwijg at x0. Without loss of gen-
erality, we can assume t0 > 0. Thus, locally, we consider H :¼ log w11 � Aðj� fÞ instead,
which also attains its maximum at ðx0; t0Þ, with Hðx0; t0Þ ¼ Gðx0; t0Þ. We compute the

evolution of H, namely the quantity
qH

qt
� F ijHij. Then at ðx0; t0Þ, we have

qH

qt
¼

w11; t

w11

� A
qj

qt
;ð3:4Þ

Hii ¼
w11; ii

w11

�
jw11; ij

2

w2
11

� Aðjii � fiiÞ:ð3:5Þ

Taking two derivatives along
q

qz1
direction to the equation (1.4), one gets

w11; t ¼
qj

qt

� �
11

¼
Pn
i¼1

F iiw
ii;11 þ

P
1ei; j;k; len

F ij;klwij;1wkl;1
:ð3:6Þ
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Applying (1.4), (3.4), (3.5), (3.6) we have, at ðx0; t0Þ

qH

qt
�
Pn
i¼1

F iiHii

¼ 1

w11

�Pn
i¼1

F iiw
ii;11 þ

P
1ei; j;k; len

F ij;klwij;1wkl;1

�
� A

qj

qt
�
Pn
i¼1

F iiHii

¼ 1

w11

Pn
i¼1

F iiðw
ii;11 � w11; iiÞ � A

qj

qt
þ A

Pn
i¼1

F iiðjii � fiiÞ þ B

¼ 1

w11

Pn
i¼1

F iiðw
ii;11 � w11; iiÞ � Aðc1=k þ FÞ þ A

Pn
i¼1

F iiðw 0
ii
þ jii � fiiÞ � A

Pn
i¼1

F iiw 0
ii
þ B

¼ 1

w11

Pn
i¼1

F iiðw
ii;11 � w11; iiÞ � Ac1=k � 2AF � A

Pn
i¼1

F iiw 0
ii
þ B;

where

B ¼ 1

w11

P
1ei; j;k; len

F ij;klwij;1wkl;1 þ
Pn
i¼1

F ii
jw11; ij

2

w2
11

includes all the third order derivative terms of j.

We claim that Be 0, the proof of which we postpone to the end of this section. By

maximum principle,
qH

qt
�
Pn
i¼1

F iiHii f 0 at ðx0; t0Þ, thus

1

w11

Pn
i¼1

F iiðw
ii;11 � w11; iiÞ � Ac1=k � 2AF � A

Pn
i¼1

F iiw 0
ii
f 0;

i.e.

1

w11

Pn
i¼1

F iiðw
ii;11 � w11; iiÞfA

Pn
i¼1

F iiw 0
ii
þ Ac1=k þ 2AFð3:7Þ

fA
Pn
i¼1

F iiw 0
ii
� Ac�1=kF 2

¼ A
Pn
i¼1

F iiw 0
ii
� Ac�1=ks

2=k
k ðw�1Þ:

Notice that

w11; ii ¼ w
ii;11 þ w11R11; ii � wiiRii;11;

so the left-hand side of (3.7) can be simplified as follows:
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1

w11

Pn
i¼1

F iiðw
ii;11 � w11; iiÞ ¼

1

w11

Pn
i¼1

F iiðwiiRii11 � w11R11ii
Þð3:8Þ

¼ 1

w11

Pn
i¼1

F iiwiiRii11 �
1

w11

Pn
i¼1

F iiw11R11ii

e
�C1F

w11

�
Pn
i¼1

F iiR11ii

e
C0

w11

þ C2

Pn
i¼1

F ii;

where C1 ¼ max
n

1; sup
i; j

fRiijjg
o

, �C2 ¼ min
n
�1; inf

i; j
fRiijjg

o
are upper and lower bounds

of holomorphic bisectional curvature of M, and C0 ¼ C1 sup
M

½�Fðw0Þ�. All constants here
are positive.

Let w1 f � � �f wn be the eigenvalues of w with respect to o. Our goal is to get a uni-
form upper bound for w1 ¼ w11.

If k < n, we have two cases:

Case 1:
w1

wn

eN. N is the constant in Theorem 2.8. From (3.3), it follows that there

exists a constant C3 such that

C3 e skðw�1Þe

n

k

� �
wk

n

;

from which we get an upper bound

wn e

n

k

� �
C3

0BBB@
1CCCA

1=k

:

Hence

w1 eNwn eC;

for some uniform constant C.

Case 2:
w1

wn

fN. Then by Theorem 2.8, there exists e > 0 such that

Pn
i¼1

F iiw 0
ii
� c�1=ks

2=k
k ðw�1Þf e

Pn
i¼1

F iiw 0
ii
:ð3:9Þ
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Since w 0 is fixed and M is compact, there exists g > 0, such that

e
Pn
i¼1

F iiw 0
ii
f g

Pn
i¼1

F ii:ð3:10Þ

Combining (3.7), (3.8), (3.9) and (3.10), we get

C0

w1

þ C2

Pn
i¼1

F ii
fAg

Pn
i¼1

F ii:ð3:11Þ

Since g > 0, we can choose A so that Ag� C2 ¼ 1. Hence,

C0

w1

f
Pn
i¼1

F ii:ð3:12Þ

Applying Gårding’s inequality, the Cauchy inequality and (3.3), we have

Pn
j¼1

F jj ¼
Pn
j¼1

1

k
s

1=k�1
k ðw�1Þsk�1ðw�1 j jÞ 1

w2
j

ð3:13Þ

f s
1=k�1
k ðw�1Þs1�1=k

k ðw�1Þs1=k
k ðw�2Þ

f
s

2=k
k ðw�1Þ

n

k

� � f
C

2=k
3

n

k

� � :

Combine (3.12) and (3.13), we have

w1 eC;

for some constant C depending only on the initial data.

For k ¼ n, notice in this case c ¼ 1. From Proposition 2.1,

Pn
i¼1

F ii ¼ 1

n
s�1=n

n ðwÞ
Pn
i¼1

1

wi

:ð3:14Þ

By (3.3), there exist two positive constants C4 and C5, such that

0 < C4 e s�1=n
n ðwÞeC5 < þy:ð3:15Þ

Now we can proceed directly from (3.7) and (3.8), namely:

A þ 2AF þ A
Pn
i¼1

F iiw 0
ii
e

C0

w1

þ C1

Pn
i¼1

F ii:ð3:16Þ
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Assume w 0
ii
f eo > 0. Using (3.15) it follows that

A � 2As�1=n
n ðwÞ þ Aeo

n
s�1=n

n ðwÞ
Pn
i¼1

1

wi

e
C0

w1

þ C6

Pn
i¼1

1

wi

eC7

Pn
i¼1

1

wi

:ð3:17Þ

Apply (3.15) again, we get

Aeo

n
C4 � C7

� �Pn
i¼1

1

wi

e 2AC5:ð3:18Þ

Now we take A such that
Aeo

n
C4 � C7 ¼ 1, i.e., A ¼ nð1 þ C7Þ

eoC4
. From (3.18), we have

Pn
i¼1

1

wi

eC8:

Since wi > 0,

wi fC�1
8 :ð3:19Þ

Combining (3.15) and (3.19), it follows that

w1 ¼

Qn
i¼2

w�1
i

� �
snðw�1Þ e

C n�1
8

C n
4

¼ C;ð3:20Þ

for a uniform constant C.

In summary, for all 1e k e n, there exists a uniform constant C, such that w1 eC.
Back in the definition of G, we have

logðwijÞ � Aðj� fÞe log
�
w1ðx0Þ

�
� A

�
jðx0Þ � fðx0Þ

�
;ð3:21Þ

so

logðwijÞe log C � Ajðx0Þ þ Ajþ C 0:

Exponentiating both sides, we get the desired estimate. r

Now we prove the claim: B ¼ 1

w11

P
i; j;k; l

F ij;klwij;1wkl;1
þ
P

i

F ii
jw11; ij

2

w2
11

e 0.

Proof.

Case 1: k < n. Recall from Proposition 2.1, F ij;kl is not zero i¤ i ¼ j, k ¼ l or i ¼ l,
k ¼ j. According to the computation there, we have for i3 j
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F ij; ji ¼ 1

k

sn�kðwÞ
snðwÞ

� �1=k�1
snsn�k�2ðw j i; jÞ � sn�ksn�2ðw j i; jÞ

s2
n

� �
ð3:22Þ

¼ � 1

k

sn�kðwÞ
snðwÞ

� �1=k�1

�
wisn�k�1ðw j i; jÞ þ wjsn�k�1ðwj j i; jÞ þ wiwjsn�k�2ðw j i; jÞ

s2
n

� �
< 0:

So we group terms as follows:

The first group:

X ¼ 1

w11

� P
1ei; jen

F ii; jjwii;1wjj;1

�
þ F 11

jw11;1j
2

w2
11

e 0:

Let

f ðwÞ ¼ � sn�k

sn

� �1=k

ðwÞ:

It is su‰cient to prove the following point-wise matrix inequality:

fwiwj
þ

fwi

wj

dij

 !
e 0:ð3:23Þ

If we let li ¼
1

wi

, and gðlÞ ¼ s
1=k
k ðlÞ, then (3.23) is equivalent to the following:

glilj
þ gli

li

dij

� �
f 0;ð3:24Þ

which is true by Proposition 2.2 and Remark 2.3. See also Appendix A for an alternative
proof.

Second group:

Y ¼ 1

w11

Pn
i¼2

F i1;1iw
i1;1w1i;1 þ

Pn
i¼2

F ii
jw11; ij

2

w2
11

e 0:

The idea is to use F i1;1i to control F ii, take i ¼ 2 for example. By the Kähler property of w,
we have

wij;k ¼ wkj; i; w
ij;k

¼ w
ik; j

:

It su‰ces to show

w11F j1;1j þ F jj
e 0; j 3 1:
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After taking out the common factor
1

ks2
nðwÞ

sn�kðwÞ
snðwÞ

� �1=k

, we are left to show

w1½snðwÞsn�k�2ðw j 1; jÞ � sn�kðwÞsn�2ðw j 1; jÞ�

þsn�kðwÞsn�1ðw j jÞ � sn�k�1ðw j jÞsnðwÞe 0:

Here we simply write w1 for w11. Use the identity skðwÞ ¼ skðw j 1Þ þ w1sk�1ðw j 1Þ, we have

w1½snðwÞsn�k�2ðw j 1; jÞ � sn�kðwÞsn�2ðw j 1; jÞ� þ sn�kðwÞsn�1ðw j jÞ � sn�k�1ðw j jÞsnðwÞ

¼ snðwÞ½w1sn�k�1ðw j jÞ � sn�k�1ðw j jÞ� � sn�kðwÞ½w1sn�2ðw j 1; jÞ � sn�1ðw j jÞ�

¼ �snðwÞsn�k�1ðw j 1; 2Þe 0:

The third group have all the remaining terms:

Z ¼ 1

w11

P
1eien
2ejen

i3j

F ij; jiwij;1wji;1 e 0:

By (3.22), each term in Z is negative.

To sum up, we have

B ¼ X þ Y þ Z e 0:

Case 2: k ¼ n. If we use the convention s�1ðwÞ ¼ 0, the computation above is valid
and can be simplified. r

4. Convergence of the flow

In this section, we study the properties of the functionals ~FFk;n raised in the introduc-
tion, from which we prove the uniqueness of the solution of (1.5) and C0 estimate for the
oscillation of jt. After getting a C0 estimate of oscillation of jt, all the arguments in [19]
can be applied verbatim.

For any f A Pw0
, let

dFkðfÞ ¼
Ð

M

dfwk
f5on�kð4:1Þ

be the infinitesimal variation of the functional Fk. Then one has an explicit formula for Fk:

FkðfÞ ¼
Ð1
0

Ð
M

_fftw
k
ft
5on�k dt;

where ft is an arbitrary path in Pw0
connecting 0 and f, and _fft denotes the time derivative.

Then let

~FFk;nðfÞ ¼ FkðfÞ � cn�kFnðfÞ:ð4:2Þ
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By the variational characterization of (4.1), one has

d ~FFn�k;nðfÞ ¼
Ð

M

dfðwn�k
f 5ok � ckwf

nÞ:ð4:3Þ

So the Euler–Lagrange equation of ~FFn�k;n is

wn�k
f 5ok � ckw

n
f ¼ 0;ð4:4Þ

which is exactly (1.5). Regarding the second derivative of ~FFk;n, one chooses a path ft and
use (4.1), (4.2) to get

d 2 ~FFn�k;nðftÞ
dt2

¼
Ð

M

€fftðwn�k
f 5ok � ckw

n
fÞð4:5Þ

þ
Ð

M

_fftqq
_fft

�
ðn � kÞwn�k�1

f 5ok � cknwn�1
f

�
¼
Ð

M

€fftðwn�k
f 5ok � ckw

n
fÞ

þ
Ð

M

q _fft5q _fft

�
cknwn�1

f � ðn � kÞwn�k�1
f 5ok

�
:

We observe the following

Theorem 4.1. There is only one critical point at the level of Kähler metric if such crit-

ical point exists.

Proof. Suppose we have two critical points f0 and f1. Consider the a‰ne path
ft ¼ ð1 � tÞf0 þ tf1, t A ½0; 1�. Since f0 and f1 are critical, we have, in local coordinates,
the following equalities:

skðw�1
f0
Þ ¼ skðw�1

f1
Þ ¼ c 0

k:

Recall that in Section 2, we have proved �skðw�1Þ ¼ F is concave, which is equiva-
lent to the convexity of skðw�1Þ. Thus

skðw�1
ft
Þe ð1 � tÞc 0

k þ tc 0
k ¼ c 0

k; t A ½0; 1�:

Since w�1
ft

is positive definite, we have skðw�1
ft

j iÞ < c 0
k. By Proposition 2.4, it follows

cknwn�1
ft

� ðn � kÞwn�k�1
ft

> 0

as an ðn � 1; n � 1Þ form. Therefore by (4.5) and the facts that _fft ¼ f1 � f0, €fft ¼ 0, we con-
clude that ~FFn�k;nðftÞ is a convex function: ½0; 1� ! R, with critical points at t ¼ 0; 1. This
implies that ~FFn�k;nðftÞ is a constant. Furthermore, the identity

d 2 ~FFn�k;nðftÞ
dt2

¼ 0

implies _fft ¼ f1 � f0 ¼ C for some constant C, hence wf0
¼ wf1

. r
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Next, we establish some propositions regarding monotonicity of the functionals
which will lead to the C0 estimates.

Proposition 4.2. The functional ~FFn�k;n is decreasing along the flow (1.4).

Proof. We write (1.4) as

_jjt ¼ ðc 0
kÞ

1
k þ F ;

where F ¼ � sn�kðjtÞ
snðjtÞ

� �1=k

.

d

dt
~FFn�k;nðjtÞ ¼

Ð
M

_jjtðwn�k
jt

5ok � ckw
n
jÞ

¼ 1

n

k

� � Ð
M

�
ðc 0

kÞ
1=k þ F

�
ð�F k � c 0

kÞwn
jt
e 0:

The integrand is of the form ða1=k � b1=kÞðb � aÞ which is clearly non-positive. r

Corollary 4.3. Assume the convergence of the flow, i.e., the existence of the solution of

(1.5), then the global minimum of ~FFn�k;n is realized by the critical metric.

Proof. It follows directly from Proposition 4.1 and Proposition 4.2. r

Towards a C0 estimate, we need another monotonicity:

Proposition 4.4. Let Fn�k be defined as above, jt the solution of flow (1.4), then

dFn�kðjtÞ
dt

e 0;

i.e. Fn�kðjtÞ decreases along the flow. In particular, Fn�kðjtÞe 0 for all t > 0.

Proof. First we make the following observation:

Ð
M

sn�k dv ¼
Ð

M

sn�k

ðsnÞ
1

kþ1

 !
ðsnÞ

1
kþ1 dvð4:6Þ

e

� Ð
M

sn�k

ðsnÞ
1

kþ1

 !1þk

k

dv

� k

kþ1
� Ð

M

sn dv

� 1
kþ1

¼
� Ð

M

ðsn�kÞ
1þk

k

ðsnÞ
1
k

dv

� k

kþ1
� Ð

M

sn dv

� 1
kþ1

:
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Recall dv ¼ on

n!
, so sn�k dv ¼

n

k

� �
n!

wn�k5ok. So (4.6) gives

Ð
M

sn�k

sn

� �1=k

wn�k5ok
f c

01=k
k

Ð
M

wn�k5ok:ð4:7Þ

Now we compute
d

dt
Fn�kðjtÞ by choosing the path given by the flow, then

d

dt
Fn�kðjtÞ ¼

Ð
M

_jjtw
n�k
jt

5ok

¼
Ð

M

½c 01=k
k þ F �wn�k

jt
5ok

¼
Ð

M

c
01=k
k wn�k

jt
5ok �

Ð
M

sn�k

sn

� �1=k

wn�k
jt

5ok
e 0: r

From Proposition 4.4, we know Fn�kðjtÞe 0. But the definition of Fn�k is indepen-
dent of the choice of the path, we can choose the path gðsÞ ¼ sjt to compute Fn�kðjtÞ as
well.

Fn�kðjtÞ ¼
Ð1
0

Ð
M

jtw
n�k
sjt

5ok ds

¼
Ð1
0

Ð
M

jt

�
swjt

þ ð1 � tÞw0

�n�k
5ok ds

¼
Pn�k

l¼0

Ð1
0

n � k

l

� �
slð1 � sÞn�k�l

ds
Ð

M

jtw
l
jt
5wn�k�l

0 5ok
e 0:

So at time t, we may write in short Fn�kðjtÞ ¼
Ð

M

jt dmt. Now we are in the position to
prove the following:

Theorem 4.5. Suppose that w 0n�1 � n � k

n
ok5w 0n�k�1 > 0. Let jt be a solution

of (1.4) on ½0;yÞ. Then there exists a constant ~CC, depending only on initial data such that

ksup jt � inf jtkC 0 e ~CC:

Proof. It su‰ces to show a uniform lower bound of inf ~jjt, where ~jjt ¼ jt � sup
M

jt.

Following [19], we prove by contradiction. If such a lower bound does not exist, then we
can choose a sequence of times ti ! y such that

� inf
M
fjti
jti

¼ inf
t A ½0; ti �

inf
M
ejtjt,

� inf
M
fjti
jti

! �y.
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Set B ¼ A=ð1 � dÞ where A is the constant in Theorem 3.1, and let d be a small positive
constant to be determined later. Let u ¼ e�Bejti . We apply [19], Lemma 3.3, Lemma 3.4.
There is a constant c 0 independent of u, such that

kukC 0 eC 0kukd:

Since u ¼ e�Bejti and fjti
jti

satisfies sup
M

fjti
jti

¼ 0 and

w
0kl

þ ðfjti
jti

Þ
kl
¼ w

kl
> 0;

we can apply [14], Proposition 2.1, to get a bound on kukd for d small enough. This gives
the uniform C0 estimate of ejtjt. r

So far we got the uniform C0 estimate for oscillation of jt, in order to get conver-
gence we have to normalize jt, namely let

bjtjt ¼ jt �
Fn�kðjtÞÐ

M

dmt

:

Then bjtjt takes the value zero somewhere, by Theorem 4.5, k bjtjtkC 0 e ~CC. With this
choice of normalization, we see the partial C2 estimate is actually uniform. By Theorem 3.1,

kqq bjtjtkC 0 ¼ kqqjtkC 0 eAecðjt�infM�½0; t� jtÞ:

For the exponent, we have

jt � inf
M�½0; t�

jt ¼ bjtjt þ
Fn�kðjtÞÐ

M

dmt

� inf
M�½0; t�

bjtjt þ
Fn�kðjtÞÐ

M

dmt

0B@
1CAð4:8Þ

e bjtjt þ
Fn�kðjtÞÐ

M

dmt

� inf
M�½0; t�

bjtjt � inf
M�½0; t�

Fn�kðjtÞÐ
M

dmt

¼ bjtjt � inf
M�½0; t�

bjtjt þ
Fn�kðjtÞÐ

M

dmt

� inf
M�½0; t�

Fn�kðjtÞÐ
M

dmt

¼ bjtjt � inf
M�½0; t�

bjtjt e 2 ~CC:

The last equality follows from Proposition 4.4 and the fact that
Ð

M

dmt is independent of t.
Hence, we have a uniform constant C such that

kqqjtkC 0 < C:

Since we get a bound for the complex Hessian of j, the underlying real parabolic
equation (1.4) has uniform elliptic constants. By [16], [17], one can deduce C2;a spatial
and time estimate on j. Then the classical Schauder theory can be applied to prove
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estimates all the way to Cy. Consequently the flow exists on ½0;yÞ. We will provide more
explanations of PDE aspect in Appendix B.

To show the convergence without passing to a subsequence, one can follow the
methods in [2], [19].

5. Generalization and applications

In this section, we apply Theorem 3.1 to the product manifold M � C, where C is an
algebraic curve, to prove Theorem 1.2.

Proof. First, let us recall the definition of following constants:

ck ¼ ck; ½o�; ½w� ¼

Ð
M

wk
05on�kÐ
M

wn
0

;ð5:1Þ

ck;a ¼ ck þ ack�1; af 0;ð5:2Þ

and cone condition Ck;a ¼ Ck;aðoÞ:

Ck;aðoÞ ¼ f½w� A Hþ �� bw 0 A ½w�; such thatð5:3Þ

ck;anw
0n�1 > ðn � kÞw 0n�k�15ok þ aðn � k þ 1Þw 0n�k5ok�1g:

Let o0; w0 A ½w� be two Kähler forms on M, o1 be a Kähler form on C. Set

ew0w0 ¼ w0 þ ao1; and fo0o0 ¼ o0 þ o1:

Then on M � C, consider the following flow in Pw0
:

qj

qt
¼ c1=k �

snþ1�kð ewjwjÞ
snþ1ð ewjwjÞ

 !1=k

; jjt¼0 ¼ 0;ð5:4Þ

where ewjwj ¼ ew0w0 þ
ffiffiffiffiffiffiffi
�1

p

2
qqj, and

c ¼

Ð
M�C

snþ1�kð ewjwjÞÐ
M�C

snþ1ð ewjwjÞ ¼
a
Ð

M

sn�kðw0Þ þ
Ð

M

sn�kþ1ðw0Þ

a
Ð

M

snðw0Þ
¼ n

k

� �
ck þ

1

a

n

k � 1

� �
ck�1:

In local coordinates, one shall view the matrix
�
ð ewjwjÞij

�
as

ðwjÞij 0

0 ao1

� �
. In view of

Theorem 3.1, we want to bound the largest eigenvalue of
ðwjÞij 0

0 ao1

� �
. Without loss of

generality, we can assume the corresponding direction is
q

qz1
A T ð1;0ÞM. Otherwise the esti-
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mate follows trivially, since o1 is fixed under the flow. Compare the proof of Theorem 3.1,
we impose the condition

skð ew0w0
�1 j iÞ < c; Ei ¼ 1; 2; . . . ; n;ð5:5Þ

which translates to a condition on M as

1

a
sk�1ðw�1

0 j iÞ þ skðw�1
0 j iÞ < c; Ei ¼ 1; 2; . . . ; n:ð5:6Þ

Then the whole argument applies. Moreover, C0 estimate can be applied directly. There-
fore we get a stationary metric w on M solving

acwn ¼ a
n

k

� �
wn�k5ok þ n

k � 1

� �
wn�kþ15ok�1:ð5:7Þ

After setting a ¼

n

k � 1

� �
a

n

k

� � , one can readily check that ½w� A Ck;a implies (5.5), and (5.7)
becomes

ck;aw
n ¼ wn�k5ok þ awn�kþ15ok�1: r

Based on the known result, we can refine Chen’s problem into the following:

Conjecture 5.1. For fixed q, 0e qe n, and for any given a ¼ ða0; . . . ; apÞ A Rpþ1,
pe n � q ai > 0, 0e ie p, define

ca ¼ ck;a; ½o�; ½w� ¼
Pp
i¼0

ciþqai;

~FFa;nðw0; wÞ ¼
Pp
i¼0

ai
~FFiþq;nðw0; wÞ;

CaðoÞ ¼
	
½w� A Hþ �� bw 0 A ½w�; such that canw

0n�1 >
Pp
i¼0

aiðn � i � qÞw 0n�i�q�15o iþq



:

Then

caw
n
j ¼

Pp
i¼0

aiw
iþq
j 5on�i�qð5:8Þ

has a unique smooth solution if and only if ½w� A CaðoÞ; in this case, ~FFa;nðw0; wÞ is minimized

at the given solution.

Using the same method we can verify Conjecture 5.1 under some additional condi-
tions on ai’s. We consider M � C1 � C2 � � � � � Cp, where Ci are all algebraic curves. Let
oi be Kähler forms on Ci. For ai > 0 set

ew0w0 ¼ w0 þ
Pp
i¼1

aioi; ~oo ¼
Pn
i¼0

oi:
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Following the method above one can solve

csnþpð~wwÞ ¼ snþp�kð~wwÞ on ~MM :¼ M � C1 � C2 � � � � � Cp;ð5:9Þ

where c is the constant satisfying

c ¼

Ð
~MM

snþp�kð~wwÞÐ
~MM

snþpð~wwÞ
:

Similarly, one reduces (5.9) to an equation on M. According to the relationship of k, n, and
p, there will be four cases which we state as a theorem.

Theorem 5.2. Let M, o, and ½w� be as above. Gp is the positive cone in Rp. Conjecture

5.1 holds for the following special equations:

(1) For pf k and n > k,

cwn ¼ b0w
n þ b1w

n�15oþ � � � þ bkw
n�k5ok; c ¼

Pk
i¼0

bici;

for which we require the existence of a b ¼ ðb1; b2; . . . ; bpÞ A Gp such that bi ¼ sk�iðbÞ
n

i

� �
,

i ¼ 0; 1; . . . ; k.

(2) For p < k < n,

cwn ¼ b0w
nþp�k5ok�p þ b1w

nþp�k�15ok�pþ1 þ � � � þ bpw
n�k5ok; c ¼

Pp
i¼0

bick�pþi;

for which we require the existence of a b ¼ ðb1; b2; . . . ; bpÞ A Gp such that

bi ¼ sp�iðbÞ
n

k � p þ i

� �
; i ¼ 0; 1; . . . ; p:

(3) For pf k f n,

cwn ¼ b0w
n þ b1w

n�15oþ � � � þ bno
n; c ¼

Pn
i¼0

bici;

for which we require the existence of a b ¼ ðb1; b2; . . . ; bpÞ A Gp such that bi ¼ sk�iðbÞ
n

i

� �
,

i ¼ 0; 1; . . . ; n.

(4) For k > p and k f n,

cwn ¼ b0w
nþp�k5ok�p þ b1w

nþp�k�15ok�pþ1 þ � � � þ bnþp�ko
n; c ¼

Pnþp�k

i¼0

bick�pþi;
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where we require that there exists some b ¼ ðb1; b2; . . . ; bpÞ A Gp such that

bi ¼ sp�iðbÞ
n

k � p þ i

� �
; i ¼ 0; 1; . . . ; n þ p � k:

Remark 5.3. It is due to our specific method that the bi’s have certain combinatorial
constraints. We expect to remove these technical constraints in future works.

We finish the discussion with a geometric application.

Consider ½w� ¼ ½o� þ e½a�, where ½a� A H 1;1ðMÞ and e A R. Since o is in the cone Ck,
and the cone is obvious open, then for jej small, ½w� A Ck for any k A f1; . . . ; ng. Thus, by
Theorem 1.1, we have w A ½w� such that

wn�k5ok

wn
¼ ck:

On the other hand, it is easy to check that, on the manifold M, we have the following
point-wise inequalities:

wn�15o

wn
f

wn�25o2

wn�15o
f � � �f wn�k5ok

wn�kþ15ok�1
;ð5:10Þ

where any equality holds i¤ w ¼ lo for some constant l. Thus,

wn�15o

wn
f

wn�15o

wn
� w

n�25o2

wn�15o1
� . . . � wn�k5ok

wn�kþ15ok�1

� �1=k

¼ ðckÞ1=k:ð5:11Þ

This leads to Ð
M

wn�15oÐ
M

wn
f ðckÞ1=k ¼

Ð
M

wn�k5okÐ
M

wn

264
375

1=k

:ð5:12Þ

Notice that (5.12) is independent of the choice of w A ½w�. Notice ½w� ¼ ½o� þ e½a�. Take
k ¼ 2, and expand both sides of (5.12) as a series of e, then let e ! 0. We get the following
inequality: � Ð

M

on�25a2

�� Ð
M

on

�
e

n � 1

nðn � 2Þ

� Ð
M

on�15a

�2

;ð5:13Þ

where the identity holds i¤ ½a� ¼ l 0½o� for some constant l 0. This is exactly the Riemann–
Hodge bi-linear relation for ð1; 1Þ-classes (see, e.g., [7]).

Appendix A

In this appendix, we first present another proof of Remark 2.3. For the convenience
of readers, we restate it as the following:
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Proposition A.1. Let g ¼ s
1=k
k ðwÞ, and w A Gn. Let gi :¼

qg

qwi

, gij :¼
q2g

qwiqwj

. Then the

matrix gij þ
gi

wj

dij is nonnegative.

Proof. Step 1. Consider h :¼ skðw
1
kÞ. Use the same notation as above, we claim

hij þ
hi

wj

dij f 0:

Direct computation shows that:

hi ¼
1

k
sk�1ðw1=k j iÞw1=k�1

i ;ðA:1Þ

hij ¼
1

k2
sk�2ðw1=k j i; jÞw1=k�1

i w
1=k�1
j þ 1

k

1

k
� 1

� �
sk�1ðw1=k j iÞw1=k�2

j dij:ðA:2Þ

Introduce the following notation: For I ¼ ði1; i2; . . . ; ilÞ an arbitrary index set of length l,
let sk; I :¼

P
jI j¼k

wIsk�lðw j IÞ, where wI ¼ wi1
wi2

� � � wil
. Basically, it is the collection of terms in

which indices i A I appear. In this notation, we can rewrite (A.1), (A.2) as

hi ¼
sk; i

kwi

;ðA:3Þ

hij ¼
sk; i; j

k2wiwi

; for i3 j;ðA:4Þ

hii ¼
1

k

1

k
� 1

� �
sk; i

w2
i

:ðA:5Þ

So hij þ
hi

wj

dij equals

sk;1

k2w2
1

sk;1;2

k2w1w2

� � � sk;1;n

k2w1wn

sk;1;2

k2w1w2

sk;2

k2w2
2

..

. . .
.

sk;1;n

k2w1wn

� � � sk;n

k2w2
n

2666666666664

3777777777775
:ðA:6Þ

Then it is equivalent to show that

A :¼

sk;1 sk;1;2 � � � sk;1;n

sk;1;2 sk;2

..

. . .
. ..

.

sk;1;n sk;n

266664
377775
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is nonnegative. For an index set I , Let EI be the matrix having entry 1 in the i-th row and
j-th column of an n � n matrix, where i; j A I , and entry 0 elsewhere. It is clear that EI is
nonnegative. Moreover, we have the following nice decomposition:

A ¼
P
jI j¼k

wI EI f 0:ðA:7Þ

Thus

hij þ
hi

wj

dij f 0:

Step 2. We claim

hij þ
hi

wj

dij �
hihj

h
f 0:

We use a nice trick due to Andrews [1]. Since h is homogeneous of degree 1, hiwi ¼ h. Dif-
ferentiating both sides, one gets hijwi ¼ 0. Consequently,

hij þ
hi

wj

dij �
hihj

h

 !
wiwj ¼ 0;ðA:8Þ

i.e. w is a null vector. In order to show hij þ
hi

wj

dij �
hihj

h
f 0, one then only needs to look at

a subspace transversal to the null vector w ¼ ðw1; . . . ; wnÞ: Naturally, we choose the

subspace defined by fx j hixi ¼ 0g. Then hij þ
hi

wj

dij �
hihj

h

 !
xixj ¼ hij þ

hi

wj

dij

 !
xixj, which

is nonnegative from step 1.

Step 3. gðw1; . . . ; wnÞ ¼ h1=kðwk
1 ; . . . ; w

k
n Þ, a simple computation shows that

gij þ
gi

wj

dij ¼ kh1=k�1ðlÞl1�1=k
i l

1�1=k
j hij þ

hi

lj

dij �
k � 1

k

hihi

h

� �
;ðA:9Þ

where wk
i ¼ li. Thus,

hij þ
hi

lj

dij �
k � 1

k

hihi

h
f hij þ

hi

lj

dij �
hihi

h
f 0;ðA:10Þ

the last inequality is due to step 2. The proof is thus completed. r

Remark A.2. It is clear from the above proof that the conclusion of the proposition
holds for g ¼ se

kðwÞ, with e > 0.

Appendix B

In this appendix, we summarize the classical parabolic Krylov–Evans theory that is
applied in this paper. In particular, we deduce time C

a
2 estimates for qqj for (1.4). These

estimates are local in nature. This proof is essentially due to Lihe Wang [17].
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In the parabolic case, it is also convenient to introduce the following regularity no-
tation. We say j ¼ jðx; tÞ A C2;a in the parabolic sense if and only if j A C2;a in the spatial
variable x A Rn, and j A C1; a

2 in the time variable t A R in the usual sense. Di¤erent regular-
ity is due to di¤erent scaling of spatial and time variables. We will also write C

2þa;1þa=2
x; t to

indicate regularity respectively. For a thorough exposition, we refer readers to [16] and
[17].

The fundamental tool to attack the nonlinear parabolic equation is the following:

Theorem B.1 (Krylov–Safanov). Let j be a solution of

jt ¼ aijðx; tÞjij;ðB:1Þ

in Q1, and aij is uniform elliptic, then j is in C a
locðQ1Þ, i.e., j is C a in spatial and j is C a=2 in

time.

The parabolic equation which we have is

qj

qt
¼ c þ FðqqjÞ:ðB:2Þ

By Theorem 3.1, F is a uniform elliptic, concave operator. Taking derivatives with respect
to t on both sides of (B.2), one has

jtt ¼ F ijðjtÞij:ðB:3Þ

By Theorem B.1, jt is C a
x . Thus (B.2) can be viewed as an elliptic equation. Then by the

elliptic Krylov–Evans theory, one has a spatial C a estimate on D2
xj. To have C a estimate

for D2
xj, it is su‰cient to show time C a=2 estimate. Since the problem is local in nature, we

just need to prove time C a=2 estimate at ð0; 0Þ.

Since j is C2;a in spatial, there exist two quadratic polynomials PtðxÞ and P0ðxÞ such
that

jjðx; tÞ � PtjeCjxj2þa; jxje
ffiffi
t

p
;ðB:4Þ

jjðx; 0Þ � P0jeCjxj2þa; jxje
ffiffi
t

p
:ðB:5Þ

Also, since jt A C a,

jjðx; tÞ � jðx; 0Þ � tjtðx; 0ÞjeCt1þa=2; jxje
ffiffi
t

p
:ðB:6Þ

jjtðx; 0Þ � jtð0; 0ÞjeCjxja:ðB:7Þ

By (B.4), (B.5) and (B.6) together, we have

jPtðxÞ � P0ðxÞ � tjtðx; 0ÞjeCt1þa=2:ðB:8Þ
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(B.8) and (B.7) imply that

jPtðxÞ � P0ðxÞjeCt1þa=2; jxje
ffiffi
t

p
:ðB:9Þ

For a quadratic polynomial, one has

kD2
xPkBr

eC
kPkLyðBrÞ

r2
:ðB:10Þ

Therefore,

kD2
xPt � D2

xP0kB ffitp eC
kPt � P0kLyðB ffitp Þ

t
eCta=2;ðB:11Þ

which implies that

kD2
xjð0; tÞ � D2

xjð0; 0ÞkeCta=2:

References

[1] B. Andrews, Pinching estimates and motion of hypersurfaces by curvature functions, J. reine angew. Math.

608 (2007), 17–33.

[2] H. Cao, Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds, Invent.

Math. 81 (1985), 359–372.

[3] X. Chen, On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. (2000), no. 12,

607–623.

[4] X. Chen, A new parabolic flow in Kähler manifolds, Comm. Anal. Geom. 12 (2004), no. 4, 837–852.

[5] X. Chen and G. Tian, Ricci flow on Kähler-Einstein surfaces, Invent. Math. 147 (2002), no. 3, 487–544.

[6] S. Donaldson, Moment maps and di¤eomorphisms, Asian J. Math. 3 (1999), no. 1, 1–16.

[7] P. Gri‰ths and J. Harris, Principles of algebraic geometry, Reprint of the 1978 original, John Wiley & Sons,

Inc., New York 1994.

[8] P. Guan and X. Ma, The Christo¤el-Minkowski problem I: convexity of solutions of a Hessian equation,

Invent. Math. 151 (2003), 553–577.

[9] P. Guan, Q. Li and X. Zhang, A uniqueness theorem in Kähler geometry, Math. Ann. 345 (2009), no. 2, 377–

393.

[10] N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, translated from the Russian by

P. L. Buzytsky, Math. Appl. (Sov. Ser.) 7, D. Reidel Publishing Co., Dordrecht 1987.

[11] G. M. Lieberman, Second order parabolic di¤erential equations, World Scientific Publishing Co., Inc., River

Edge, NJ, 1996.

[12] J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabu-

chi energy, Comm. Pure Appl. Math. 61 (2008), no. 2, 210–229.

[13] J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, http://www.math.jhu.edu/js/

msri.notes.pdf.

[14] G. Tian, On Kähler-Einstein metrics on certain Kähler mainfolds with C1ðMÞ > 0, Invent. Math. 89 (1987),

no. 2, 225–246.

[15] G. Tian, Bott-Chern forms and geometric stability, Discrete Contin. Dyn. Syst. 6 (2000), no. 1, 211–220.

[16] L. Wang, On the regularity theory of fully nonlinear parabolic equations, I, Comm. Pure Appl. Math. 45

(1992), no. 1, 27–76.

[17] L. Wang, On the regularity theory of fully nonlinear parabolic equations, II, Comm. Pure Appl. Math. 45

(1992), no. 2, 141–178.

[18] B. Weinkove, Convergence of the J-flow on Kähler surfaces, Comm. Anal. Geom. 12 (2004), no. 4, 949–965.

219Fang, Lai and Ma, On a class of fully nonlinear flows in Kähler geometry



[19] B. Weinkove, On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy,

J. Di¤. Geom. 73 (2006), no. 2, 351–358.

[20] S. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I,

Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.

Department of Mathematics, University of Iowa, 14 McLean Hall, Iowa City, IA 52240, USA

e-mail: haofang@math.uiowa.edu

Department of Mathematics, University of Iowa, 14 McLean Hall, Iowa City, IA 52240, USA

e-mail: mijlai@math.uiowa.edu

Department of Mathematics, University of Science and Technology of China, Hefei, 230026,

Anhui Province, China

e-mail: xinan@ustc.edu.cn

Eingegangen 26. Mai 2009, in revidierter Fassung 22. Dezember 2009

220 Fang, Lai and Ma, On a class of fully nonlinear flows in Kähler geometry


