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ABSTRACT. We prove a constant rank theorem for the second
fundamental form of the convex level surfaces of solutions to
equations F(D2u,Du,u,x) = 0 under a structural condition
introduced by Bianchini-Longinetti-Salani in [2].

1. INTRODUCTION

A function u is called quasiconcave if its level set {x | u(x) ≥ c} is convex for
each constant c. The convexity of level-sets of solutions for partial differential
equations was first studied by Gabriel [9] for harmonic functions u in convex ring
domains of the form

(1.1) Ω = Ω0 \Ω1, with boundary condition u
∣∣
∂Ω0

= 0 and u
∣∣
∂Ω1

= 1.

Lewis [15] extended the results in [9] to p-harmonic functions. Caffarelli-Spruck
treated this problem for general inhomogeneous Laplace equation in [6] with
the same boundary condition (1.1) in connection to a free boundary problem.
Kawhol [12] proposed an approach of using quasi-concave envelop to study the
level-set convexity of solutions to PDEs. Colesanti-Salani [7] carried out this ap-
proach for a class of elliptic equations. The technique was extended by Greco [10],
Cuoghi-Salani [8] and Longinetti-Salani [16] for equations of type

(1.2) F(D2u,Du,u,x) = 0

in convex ring under various structure conditions. General structure conditions
on F in equation (1.2) with Dirichlet condition (1.1) have been obtained in a
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recent paper [2] by Bianchini-Longinetti-Salani. All these type of results are of
macroscopic nature. A different direction in the study of the convexity is the
microscopic convexity principles. The constant rank theorem for the second funda-
mental forms of level sets of solutions to certain type of quasilinear equations was
established by Korevaar [13], see also Xu [17] for recent generalization of results
in [13].

Our interest is the microscopic counterpart of Theorem 1.1 in [2] by Bianchini-
Longinetti-Salani. Let Ω be a domain in Rn; Sn denotes the space of real sym-
metric n×n matrices and Λ ⊂ Sn is an open set, and F = F(r ,p,u,x) is a C2,1

function in Λ×Rn ×R×Ω. For each (θ,u) ∈ Sn−1 ×R fixed, set

(1.3) ΓF = {(A, t, x) ∈ Λ× (0,+∞)×Ω | F(t−3A, t−1θ,u,x) ≥ 0}.

We will assume that F satisfies the following conditions: there is γ0 > 0 and
c0 ∈ R,

(1.4) Fαβ :=

(
∂F

∂rαβ
(r , p,u,x)

)
> 0,

∀ (r , p,u,x) ∈ Λ×Rn × (−γ0 + c0, γ0 + c0)×Ω,

and

(1.5) ΓF is locally convex for each (θ,u) ∈ Sn−1 × (−γ0 + c0, γ0 + c0).

Theorem 1.1. Suppose u ∈ C3,1(Ω) is a solution of fully nonlinear equation
(1.2) such that

(D2u(x),Du(x),u(x)) ∈ Λ×Rn × (−γ0 + c0, γ0 + c0)

for each x ∈ Ω. Suppose that F satisfies conditions (1.4) and (1.5), Du ≠ 0, and
the level sets {x ∈ Ω | u(x) ≥ c} of u are connected and locally convex for all
c ∈ (−γ0+c0, γ0+c0) for some γ0 > 0. Then it follows that the second fundamental
form of level surfaces {x ∈ Ω | u(x) = c} has the same constant rank for all c ∈
(−γ0 + c0, γ0 + c0).

Remark 1.2. The structural condition (1.5) is a localized version of a con-
dition introduced by Bianchini-Longinetti-Salani (condition (1.2) in [2]). Un-
der that condition and a weaker ellipticity condition, Bianchini-Longinetti-Salani
proved (Theorem 1.1 in [2]) that any solution u of equation (1.2) on convex
ring Ω = Ω0 \ Ω1 with the Dirichlet boundary condition (1.1) is quasiconcave,
provided |Du| ≠ 0. Theorem 1.1 implies the strict convexity of the level-sets in
Theorem 1.1 in [2]. Also, Theorem 1.1 may yield macroscopic level-set convexity
results if there is a homotopic path. As discussed in [2], condition (1.5) is satisfied
by a class of elliptic operators, including Laplace operator, p-Laplace operators
and Pucci’s operator.
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The proof of Theorem 1.1 uses the techniques developed in Bian-Guan [1] for
the convexity of solutions of nonlinear partial differential equations. The convex-
ity of level-sets is much more involved due to the distinguished gradient direction
of the set {u = c}. This is also the main fact that makes the structural condition
(1.5) different from the structural condition considered in [1].

The organization of the paper is as follows. In Section 2, we list some useful
formulas for the second fundamental forms of level sets in terms of u, Du, D2u.
Main technique lemmas will be proved in Section 3. The proof of Theorem 1.1 is
given in Section 4.

2. PRELIMINARIES

We recall some basic notation of differential geometry of hypersurfaces in Rn. For
a hypersurface Σ given by a graph in a domain in Rn−1,

xn = v(x
′), x′ = (x1, x2, . . . , xn−1) ∈ R

n−1,

one may express the first fundamental form as

(2.1) gij = δij + vxivxj , ∀ i, j ≤ n− 1.

The upward normal direction ~n and the second fundamental form II for a
graph xn = v(x′) are respectively given by

~n =
1√

1+ |∇x′v|2
(−v1,−v2, . . . ,−vn−1,1),(2.2)

hij =
vxixj
W

, ∀ i, j ≤ n− 1(2.3)

where W = (1+ |∇x′v|2)1/2.

Definition 2.1. The graph of function xn = v(x′) is convex with respect to
the upward normal

~n =
1√

1+ |∇x′v|2
(−v1,−v2, . . . ,−vn−1,1)

if the second fundamental form II := (hij) defined in (2.3) is nonnegative defi-
nite.

The principal curvature κ = (κ1, . . . , κn−1) of the graph satisfies

det(hij − κgij) = 0.

Equivalently, that κ satisfies

det(aij − κδij) = 0,
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where aij is the symmetric Weingarten tensor defined as

{aij} = {g
ij}1/2{hij}{g

ij}1/2, ∀ i, j ≤ n− 1;

here {gij} is the inverse matrix to {gij}, and {gij}1/2 is its positive square root.
They are given explicitly by

(2.4) {gij} =

{
δij −

vxivxj
W 2

}
, {gij}1/2 =

{
δij −

vxivxj
W(1+W)

}
.

The Weingarten tensor of the hypersurface can be expressed as (e.g., see [5]),

(2.5) aiℓ =
n−1∑

j,k=1

1
W

(
viℓ −

vivjvjℓ
W(1+W)

−
vℓvkvki
W(1+W)

+
vivℓvjvkvjk
W 2(1+W)2

)
,

∀ i, ℓ ≤ n− 1.

Let Ω be a domain in Rn and u ∈ C2(Ω), such that |Du| ≠ 0 in Ω. Denote
the level surface of u passing through the point x0 ∈ Ω as

Σu(x0) := {x ∈ Ω | u(x) = u(x0)}.

We wish to express the Weingarten tensor of the level surface in terms of u, Du,
D2u.

At x0, after proper rotation, we may assumeDu = (u1, . . . , un) with un ≠ 0.
By Implicity Function Theorem, the level set Σu(x0) can be locally represented as
a graph

xn = v(x
′), x′ = (x1, x2, . . . , xn−1) ∈ R

n−1.

For u(x1, . . . , xn−1, xn) ∈ C2(Ω), and the function v(x′) satisfies the following
equation

(2.6) u(x1, x2, . . . , xn−1, v(x1, x2, . . . , xn−1)) = c.

Differentiate equation (2.6),

ui +unvi = 0, vi = −
ui
un
, W = (1+ |∇x′v|

2)1/2 =
|Du|

|un|
.

It follows that the upward outer normal direction of the level sets is

(2.7) ~n =
|un|

|Du|un
(u1, u2, . . . , un−1, un).
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Differentiating (2.6) one more time,

uij +uinvj +unjvi +unnvivj +unvij = 0.
In turn,

(2.8) vij = −
1

u3
n
[u2

nuij +unnuiuj −unujuin −unuiujn].

The second fundamental form II of the level surface of function u with respect to
the upward normal direction (2.7) is

(2.9) hij = −
|un|(u2

nuij +unnuiuj −unujuin −unuiujn)

|Du|u3
n

.

Note that expression (2.9) is valid locally near x0 ∈ Ω, independent of constant c
in (2.6).

Definition 2.2. For a function u ∈ C2(Ω) with |Du| ≠ 0 in Ω, for each
y ∈ Ω, the level surface

Σu(y) = {x ∈ Ω | u(x) = u(y)}

is called locally convex with respect to Du near x0 ∈ Σu(y) if there is a local
coordinate chart near x0 (probably after some rotation) such that un(x) > 0 and
the second fundamental form hij defined in (2.9) is nonnegative definite near x0

with respect to the upward normal direction ~n defined in (2.7) for x ∈ Σu(y)
close to x0.

Remark 2.3. If {x ∈ Ω | u(x) ≥ c} is locally convex, then by Definition 2.2
the second fundamental form of Σc is nonnegative definite with respect toDu. For
any x0 ∈ Ω, if un(x0) = |Du(x0)| and the level set {x ∈ Ω | u(x) = u(x0)} is
locally convex near x0, then (2.9) implies that the matrix (uij(x0)) is nonpositive
definite.

From (2.5) and (2.9),

(2.10) aij =
n−1∑

k,ℓ=1

(
hij −

uiuℓhjℓ

W(1+W)u2
n
−

ujuℓhiℓ
W(1+W)u2

n
+
uiujukuℓhkℓ

W 2(1+W)2u4
n

)
.

With the above notation, at the point x where un(x) = |∇u(x)| > 0, ui(x) =
0, aij,k is commutative. That is, they satisfy the Codazzi property aij,k = aik,j,
∀ i, j, k ≤ n− 1.

3. ESTIMATES

Since Theorem 1.1 is of local feature, we may assume that the level surface Σc =
{x ∈ Ω | u(x) = c} is connected for each c ∈ (c0 − γ0, c0 + γ0). Let ℓ(x) be
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the rank of the second fundamental form of Σu(x) at x. Denote

(3.1) ℓ = inf
x∈Ω

ℓ(x).

Since the values of ℓ(x) are in Z, there is x0 ∈ Ω such that ℓ(x0) = ℓ. We will
concentrate in a neighborhood of some point x0 ∈ Ω such that ℓ(x0) = ℓ. We
may assume ℓ ≤ n− 2. We will assume u ∈ C3,1(Ω), un > 0 and the level surface
Σc is convex with respect to normal Du for each c in a small neighborhood of u(x0)
in the rest of the paper.

Let O be a small open neighborhood of x0 such that for each x ∈ O, there
are ℓ “good” eigenvalues of (aij) which are bounded below by a positive constant,
and the other n− 1 − ℓ “bad” eigenvalues of (aij) are very small. Denote G the
index set of these “good” eigenvalues and B the index set of “bad” eigenvalues.
For each x ∈ O fixed, we may express (aij) in a form of (2.10), by choosing
e1, . . . , en−1, en such that

(3.2) |Du|(x) = un(x) > 0, matrix (uij), i, j = 1, . . . , n−1 is diagonal at x.

From (2.10), the matrix (aij), i, j = 1, . . . , n−1 is also diagonal at x, and without
loss of generality we may assume a11 ≤ a22 ≤ · · · ≤ an−1,n−1. There is a positive
constant Co > 0 such that

an−1,n−1 ≥ an−2,n−2 ≥ · · · ≥ an−ℓ,n−ℓ > Co, ∀x ∈ O,

G = {n− ℓ,n− ℓ + 1, . . . , n− 1}, B = {1,2, . . . , n− ℓ− 1}.

So that there is no confusion, we also denote

(3.3) B = {a11, . . . , an−ℓ−1,n−ℓ−1} and G = {an−ℓ,n−ℓ, . . . , an−1,n−1}.

Note that for any δ > 0, we may choose O small enough such that ajj(x) < δ
for all j ∈ B and x ∈ O. For two functions f , h in O, we write h = O(f) if
|h(x)| ≤ Cf(x) for x ∈ O with positive constant C under control.

For each c close to u(x0), let a = (aij) be the symmetric Weingarten tensor
of Σc . Set

(3.4) p(a) = σℓ+1(aij), q(a) =





σℓ+2(aij)

σℓ+1(aij)
, if σℓ+1(aij) > 0,

0, otherwise.

Theorem 1.1 is equivalent to saying p(a) ≡ 0 (defined in (3.4)) in O. For general
fully nonlinear equation (1.2), as in the case for the convexity of solutions in [1],
there are some technical difficulties to deal with p(a) alone. A key idea introduced
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in [1] is to use some crucial concavity properties of function q defined in (3.4).
Set

(3.5) ϕ(a) = p(a)+ q(a)

where p and q are as in (3.4). Theorem 1.1 is equivalent to saying ϕ(a) ≡ 0.
To get around p = 0, for ε > 0 sufficiently small, consider

(3.6) ϕε(a) =ϕ(aε),

where aε = a+ εI. Denote Gε = {aii + ε | i ∈ G}, Bε = {aii + ε | i ∈ B}.
To simplify the notation, we will drop subindex ε with the understanding that

all the estimates will be independent of ε. In this setting, if O is small enough, there
is C > 0 independent of ε such that

(3.7) ϕ(a(z)) ≥ Cε, σ1(B(z)) ≥ Cε, for all z ∈ O.

In what follows, we will use i, j, . . . as indices running from 1 to n − 1 and
α,β, . . . as indices running from 1 to n. Denote

pα =
∂p

∂xα
, pαβ =

∂2p

∂xα∂xβ
, Fαβ =

∂F

∂uαβ
, 1 ≤ α,β ≤ n,

and set

(3.8) Hϕ =
∑

i,j∈B

|∇aij| +ϕ.

Lemma 3.1. For any fixed x ∈ O, with the coordinate chart chosen as in (3.2)
and (3.3),

(3.9) pα = σℓ(G)
∑

j∈B

ajj,α +O(Hϕ)

and
n∑

α,β=1

Fαβpαβ ≤ −u
−3
n σℓ(G)

∑

j∈B

[ n∑

α,β=1

Fαβuαβjju
2
n − 6

n∑

α,β=1

Fαβuαβjunjun(3.10)

+ 6
n∑

α,β=1

Fαβuαβu
2
nj

]
+O(Hϕ).

Proof. For each fixed point x ∈ O, in a coordinate system as in (3.2),

(3.11) −
ujj
un

= ajj = O(Hϕ), ∀ j ∈ B; pα = σℓ(G)
∑

j∈B

ajj,α +O(Hϕ).
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By (3.11),

(3.12) pαβ = σℓ(G)

[ ∑

j∈B

ajj,αβ − 2
∑

i∈G, j∈B

aij,αaij,β
aii

]
+O(Hϕ).

We now need to figure in the distinguished gradient direction Du in the
symmetric tensor (aij). Since uk = 0 at x for k = 1, . . . , n− 1, from (2.10),

(3.13) unuijα = −u
2
naij,α +unjuiα +uniujα +unαuij , ∀ i, j ≤ n− 1,

and for each j ∈ B,

u3
najj,αβ = 2unujαunjβ + 2unujβunjα + 2ununjuαβj −u2

nuαβjj

− 2unαunjujβ − 2unβunjujα − 2unnujαujβ +O(Hϕ).

Hence, for j ∈ B,

n∑

α,β=1

Fαβajj,αβ =
n∑

α,β=1

Fαβ

u3
n

[
−u2

nuαβjj − 4unαunjujβ(3.14)

+ 4unujαunjβ + 2ununjuαβj

− 2unnujαujβ
]
+O(Hϕ).

Using the fact that
∑n
α=1 F

αnunα = (
∑n
α,β=1−

∑n−1
β=1

∑n
α=1)F

αβuαβ, ∀ j ∈
B, we have

n∑

α,β=1

Fαβunαujβ = unj

( n∑

α,β=1

−

n−1∑

β=1

n∑

α=1

)
Fαβuαβ +O(Hϕ),

n∑

α,β=1

Fαβujαunjβ = unj

( n∑

α,β=1

−

n−1∑

α=1

n∑

β=1

)
Fαβuαβj +O(Hϕ),

and

−2unn
n∑

α,β=1

Fαβujαujβ = −2unnFnnu
2
nj +O(Hϕ)

= −2u2
nj

n∑

α,β=1

Fαβuαβ + 4u2
nj

n−1∑

α=1

Fαnunα

+ 2u2
nj

n−1∑

α,β=1

Fαβuαβ +O(Hϕ).
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Put above to (3.14),

∑

j∈B

n∑

α,β=1

Fαβu3
najj,αβ(3.15)

= −u2
n

∑

j∈B

n∑

α,β=1

Fαβuαβjj + 6un
∑

j∈B

unj

n∑

α,β=1

Fαβuαβj

− 6
∑

j∈B

u2
nj

n∑

α,β=1

Fαβuαβ − 4un
∑

j∈B

unj

n−1∑

α=1

n∑

β=1

Fαβuαβj

+ 8
∑

j∈B

u2
nj

n−1∑

α=1

Fαnunα + 6
∑

j∈B

u2
nj

n−1∑

α,β=1

Fαβuαβ +O(Hϕ).

By (3.13), for j ∈ B,

un

n−1∑

α=1

n∑

β=1

Fαβuαβj = un

n∑

α=1

( ∑

i∈B

Fαiuijα +
∑

i∈G

Fαiuijα
)

(3.16)

=

n∑

α=1

∑

i∈G

Fαi
(
−u2

naij,α +uiαujn +ujαuin
)

+

n∑

α=1

∑

i∈B

Fαi
(
uiαujn +ujαuin

)
+O(Hϕ)

= −u2
n

n∑

α=1

∑

i∈G

Fαiaij,α +unj
∑

i∈G

F iiuii

+ 2unj
( n−1∑

i=1

Fniuni
)
+O(Hϕ).

Equations (3.15) and (3.16) yield that, ∀ j ∈ B,

n∑

α,β=1

Fαβu3
najj,αβ = −u

2
n

n∑

α,β=1

Fαβuαβjj(3.17)

+ 6ununj
n∑

α,β=1

Fαβuαβj − 6u2
nj

n∑

α,β=1

Fαβuαβ

+ 4u2
nunj

n∑

α=1

∑

i∈G

Fαiaij,α + 2u2
nj

∑

i∈G

F iiuii +O(Hϕ).
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From (3.17), ∀ j ∈ B,

n∑

α,β=1

Fαβ
[
ajj,αβ − 2

∑

i∈G

aij,αaij,β
aii

]
(3.18)

= −u−3
n

[ n∑

α,β=1

Fαβu2
nuαβjj − 6un

n∑

α,β=1

Fαβujnuαβj

+ 6u2
jn

n∑

α,β=1

Fαβuαβ

]
− 2

∑

i∈G

1
aii

n∑

α,β=1

Fαβaij,αaij,β

+ 4u−1
n unj

n∑

α=1

∑

i∈G

Fαiaij,α + 2u−3
n u

2
nj

∑

i∈G

F iiuii +O(Hϕ).

Claim 3.2.

∀ i, j,
−1
aii

n∑

α,β=1

Fαβaij,αaij,β +
2unj
un

n∑

α=1

Fαiaij,α +
u2
njF

iiuii

u3
n

≤ 0.

Assuming Claim 3.2, by (3.12)

∑n

α,β=1
Fαβpαβ

σℓ(G)
≤ −u−3

n

∑

j∈B

n∑

α,β=1

[
Fαβu2

nujjαβ − 6unFαβujnujαβ(3.19)

+ 6u2
jnF

αβuαβ
]
+O(Hϕ).

We need to check Claim 3.2. It is equivalent to the following inequality,

(3.20)
n∑

α,β=1

Fαβaij,αaij,β − 2u−1
n unjaii

n∑

α=1

Fαiaij,α +u
−2
n u

2
njF

iia2
ii ≥ 0.

We may assume i = 1 and j is fixed. Set X0 = u−1
n a11ujn and Xα = a1j,α

for 1 ≤ α ≤ n, (3.20) follows from the fact that (n+ 1)× (n+ 1) matrix




F11 −F11 −F12 · · · −F1n

−F11 F11 F12 · · · F1n

−F21 F21 F22 · · · F2n

...
−Fn1 Fn1 Fn2 · · · Fnn




is semi-positive definite. ❐
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Lemma 3.3. q ∈ C1,1(O) and for any fixed x ∈ O, with the coordinate chosen
as in (3.2) and (3.3),

(3.21) qα =
∂q

∂xα
=
∑

j∈B

σ 2
1 (B|j) − σ2(B|j)

σ 2
1 (B)

ajj,α +O(Hϕ),

and
n∑

α,β=1

Fαβqαβ = −u
−3
n

∑

j∈B

σ 2
1 (B|j) − σ2(B|j)

σ 2
1 (B)

(3.22)

×

n∑

α,β=1

[
Fαβuαβjju

2
n − 6Fαβuαβjujnun + 6Fαβuαβu

2
jn

]

−
1

σ 3
1 (B)

n∑

α,β=1

∑

i∈B

Fαβ
[
σ1(B)aii,α − aii

∑

j∈B

ajj,α
]

×
[
σ1(B)aii,β − aii

∑

j∈B

ajj,β
]

−
1

σ1(B)

n∑

α,β=1

∑

i≠j∈B

Fαβaij,αaij,β +O(Hϕ).

Proof. The fact q ∈ C1,1(O) follows Corollary 2.2 in [1]. Though it was
stated for nonnegative matrix function W = (uij) with u ∈ C3,1, the proof works
for any nonnegative matrix function W ∈ C1,1.

Identity (3.21) follows directly from Lemma 2.4 in [1]. Again, by Lemma 2.4
in [1],

qαβ =
∑

j∈B

σ 2
1 (B|j) − σ2(B|j)

σ 2
1 (B)

[
ajj,αβ − 2

∑

i∈G

aij,αaij,β
aii

]
(3.23)

−
1

σ 3
1 (B)

∑

i∈B

[
σ1(B)aii,α − aii

∑

j∈B

ajj,α
]

×
[
σ1(B)aii,β − aii

∑

j∈B

ajj,β
]

−
1

σ1(B)

∑

i≠j∈B

aij,αaij,β +O(Hϕ).

The lemma follows from (3.18) and Claim 3.2 in the proof of Lemma 3.1. ❐

4. A STRONG MAXIMUM PRINCIPLE

We start this section by discussing the structure condition imposed in Theorem
1.1. For any function F(r ,Du,u,x), write Fαβ = ∂F/∂rαβ , Fuℓ = ∂F/∂uℓ , . . .
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as derivatives of F with respect to corresponding arguments. For ΓF defined in
(1.3), denote

T ΓF =
{
V = ((Xαβ), Y , (Zi)) ∈ S

n ×R×Rn

: 〈V,∇(A,t,x)F(t
−3A, t−1θ,u,x)〉 = 0

}
.

Lemma 4.1. If F satisfies condition (1.5), then

Q(V,V) = Fαβ,rsXαβXrs + 2Fαβ,uℓθℓXαβY + 2Fαβ,xkXαβZk(4.1)

+ Fuℓ ,usθℓθsY
2 + 2Fuℓ ,xkθℓYZk + F

xi,xjZiZj

+ 2tFuℓθℓY
2 + 6tFαβXαβY − 6t−1FαβAαβY

2

à 0,

for every

(
Xαβ, Y , (Zi)

)
=
(
(t−3X̃αβ − 3t−4AαβỸ ),−t

−2Ỹ , (Zi)
)
,

with Ṽ =
(
(X̃αβ), Ỹ , (Zi)

)
∈ T ΓF ,

where Fαβ,rs , Fαβ,uℓ , etc. are evaluated at (t−3A, t−1θ,u,x), and the Einstein
summation convention is used.

Proof. Denote F̃(A, t, x) = F(t−3A, t−1θ,u,x); Condition (1.5) implies that
F̃(A, t, x) is locally convex with respect to the normal ∇F̃ . That is, for each tan-
gential vector Ṽ = ((X̃ij), Ỹ , (Z̃i)):

F̃αβ,rsX̃αβX̃rs + 2F̃αβ,tX̃αβỸ + 2F̃αβ,xkX̃αβZ̃k(4.2)

+ F̃ t,tỸ 2 + 2F̃ t,xk Ỹ Z̃k + F̃xi,xj Z̃iZ̃j

≤ 0.

At (A, t, x),

F̃αβ = t−3Fαβ, F̃αβ,rs = t−6Fαβ,rs , F̃αβ,xk = t−3Fαβ,xk , F̃xi,xj = Fxi,xj ,

F̃αβ,t = −3t−4Fαβ − 3t−7Fαβ,rsArs − t
−5Fαβ,uℓθℓ,

F̃ t = −3t−4FαβAαβ − t
−2Fuℓθℓ,

F̃ t,xk = −3t−4Fαβ,xkAαβ − t
−2Fuℓ,xkθℓ,

F̃ t,t =
12FαβAαβ

t5
+

9Fαβ,rsAαβArs
t8

+
6Fαβ,uℓAαβθℓ

t6
+

2Fuℓθℓ
t3

+
Fuℓ ,usθsθℓ

t4
.
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Equation (4.2) is equivalent to

t−6Fαβ,rsX̃αβX̃rs − 2
[
3t−4Fαβ + 3t−7Fαβ,rsArs + t

−5Fαβ,uℓθℓ
]
X̃αβỸ(4.3)

+ 2t−3Fαβ,xkX̃αβZ̃k − 2
[
3t−4Fαβ,xkAαβ + t

−2Fuℓ,xkθℓ
]
Ỹ Z̃k

+ Fxi,xj Z̃iZ̃j +
[
12t−5FαβAαβ + 9t−8Fαβ,rsAαβArs

+ 6t−6Fαβ,uℓAαβθℓ + 2t−3Fuℓθℓ

+ t−4Fuℓ ,usθℓθs
]
Ỹ 2

≤ 0.

The left side of (4.3) can be written as

t−8Fαβ,rs
(
X̃αβX̃rst

2 − 6tX̃αβArs Ỹ + 9AαβArs Ỹ 2
)

(4.4)

− 2t−6Fαβ,uℓθℓ
[
tX̃αβ − 3AαβỸ

]
Ỹ + 2t−4Fαβ,xk

[
tX̃αβ − 3AαβỸ

]
Z̃k

+ t−4Fuℓ ,usθℓθs Ỹ
2 − 2t−2Fuℓ,xkθℓỸ Z̃k + F

xi,xj Z̃iZ̃j

+ 2t−3FuℓθℓỸ
2 − 6t−5Fαβ

[
tX̃αβ − 3AαβỸ

]
Ỹ − 6t−5FαβAαβỸ

2

= Fαβ,rsXαβXrs + 2Fαβ,uℓθℓXαβY + 2Fαβ,xkXαβZk

+ Fuℓ ,usθℓθsY
2 + 2Fuℓ ,xkθℓYZk + F

xi,xjZiZj

+ 2tFuℓθℓY
2 + 6tFαβXαβY − 6t−1FαβAαβY

2

where Xαβ = t−4[tX̃αβ − 3AαβỸ ], Y = −t−2Ỹ , and Zi = Z̃i. Equation (4.1)
follows from (4.3) and (4.4). ❐

Theorem 1.1 is a direct consequence of the following proposition and the strong
maximum principle.

Proposition 4.2. Suppose F , u are satisfying assumptions in Theorem 1.1. If
ℓ = ℓ(x0) (ℓ defined in (3.1))for some point x0 ∈ Ω, then there exist a neighborhood
O of x0 and a positive constant C independent of ϕ (defined in (3.5)), such that

(4.5)
n∑

α,β=1

Fαβϕαβ(x) ≤ C(ϕ(x)+ |∇ϕ(x)|), ∀x ∈ O.

Proof. Let u ∈ C3,1(Ω) be a solution of equation (1.2) and (uij) ∈ Sn.
Suppose ℓ(x0) = ℓ for some x0 ∈ Ω. We work on a small open neighborhood O
of x0. We may assume ℓ ≤ n− 2. Lemma 3.5 implies ϕ ∈ C1,1(O), ϕ(x) ≥ 0,
ϕ(x0) = 0. For ε > 0 sufficient small, let ϕε defined as in (3.5) and (3.6). For
each fixed x, choose a local coordinate chart e1, . . . , en−1, en so that (3.2) and
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(3.3) are satisfied. We want to establish differential inequality (4.5) forϕε defined
in (3.6) with constant C independent of ε. In what follows, we will omit the
subindex ε with the understanding that all the estimates are independent of ε.

By Lemma 3.1 and Lemma 3.3

n∑

α,β=1

Fαβϕαβ =

n∑

α,β=1

Fαβ(pαβ + qαβ)

(4.6)

≤ −u−3
n

∑

j∈B

[
σℓ(G)+

σ 2
1 (B|j) − σ2(B|j)

σ 2
1 (B)

]

×

[ n∑

α,β=1

Fαβu2
nujjαβ − 6un

n∑

α,β=1

Fαβujnujαβ + 6u2
jn

n∑

α,β=1

Fαβuαβ

]

−
1

σ 3
1 (B)

n∑

α,β=1

∑

i∈B

Fαβ
[
σ1(B)aii,α − aii

∑

j∈B

ajj,α
]

×
[
σ1(B)aii,β − aii

∑

j∈B

ajj,β
]

−
1

σ1(B)

n∑

α,β=1

∑

i≠j,
i,j∈B

Fαβaij,αaij,β +O(Hϕ).

For each j ∈ B, differentiating equation (1.2) in ej direction at x,

(4.7)
n∑

α,β=1

Fαβuαβj + F
unujn + F

ujujj + F
xj = 0,

n∑

α,β=1

Fαβuαβjj = −
n∑

α,β,r ,s=1

Fαβ,rsuαβjursj(4.8)

− 2
n∑

α,β,ℓ=1

Fαβ,uℓuαβjuℓj − 2
n∑

α,β=1

Fαβ,uujαβuj

− 2
n∑

α,β=1

Fαβ,xjuαβj −
n∑

ℓ,s=1

Fuℓ,usuℓjusj

− 2
n∑

ℓ=1

Fuℓ ,uuℓjuj −
n∑

ℓ=1

Fuℓ ,xjuℓj − F
u,uu2

j

− 2Fu,xjuj − Fxj ,xj −
n∑

ℓ=1

Fuℓuℓjj − F
uujj .



Constant Rank Theorem 115

It follows from (3.13) that, at x

n∑

α,β=1

Fαβuαβjj = −
n∑

α,β,r ,s=1

Fαβ,rsuαβjursj(4.9)

− 2
n∑

α,β=1

Fαβ,unujαβunj − 2
n∑

α,β=1

Fαβ,xjuαβj

− Fun,unu2
jn − 2Fun,xjujn − Fxj ,xj

− 2
Fun

un
u2
jn +O(Hϕ).

Since uαβjj = ujjαβ, (4.6) and (4.9) yield

Fαβϕαβ =
∑

j∈B

u−3
n

[
σℓ(G)+

σ 2
1 (B|j) − σ2(B|j)

σ 2
1 (B)

]
(4.10)

×

{[ n∑

α,β,r ,s=1

Fαβ,rsuαβjursj + 2
n∑

α,β=1

Fαβ,unujαβujn + 2
n∑

α,β=1

Fαβ,xjujαβ

+ Fun,unu2
jn + 2Fun,xjujn + Fxj ,xj + 2

Fun

un
u2
jn

]
u2
n

+ 6
n∑

α,β=1

Fαβujαβujnun − 6
n∑

α,β=1

Fαβuαβu
2
jn

}

−
1

σ 3
1 (B)

n∑

α,β=1

∑

i∈B

Fαβ
[
σ1(B)aii,α − aii

∑

j∈B

ajj,α
][
σ1(B)aii,β − aii

∑

j∈B

ajj,β
]

−
1

σ1(B)

n∑

α,β=1

∑

i≠j,
i,j∈B

Fαβaij,αaij,β +O(Hϕ).

For each j ∈ B, set

Sj =

[ n∑

α,β,r ,s=1

Fαβ,rsujαβursj + 2
n∑

α,β=1

Fαβ,unujαβujn(4.11)

+ 2
n∑

α,β=1

Fαβ,xjujαβ + F
un,unu2

jn

+ 2Fun,xjujn + Fxj ,xj + 2
Fun

un
u2
jn

]
u2
n

+ 6
n∑

α,β=1

Fαβujαβujnun − 6
n∑

α,β=1

Fαβuαβu
2
jn
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and

Xnn = unnjun +
Fuj

Fnn
ujjun;

Xαβ = uαβjun, ∀ (α,β) ≠ (n,n);

Y = ujnun, and Zi = δijun.

In the coordinate system (3.2),

(D2u(x),Du(x),u(x),x) = (D2u, (0, . . . ,0, |Du(x)|),u,x)

= (t−3A, t−1θ,u,x).

Accordingly, the components of Ṽ defined in Lemma 4.1 are

X̃nn =
unnj

u2
n
−

3unnujn
u3
n

+
Fujujj

Fnnu2
n

;

X̃αβ =
uαβj

u2
n
−

3uαβujn
u3
n

, ∀ (α,β) ≠ (n,n);

Ỹ = −
ujn
un

, Z̃i = δijun.

At (t−3A, t−1θ,u,x),

∇(A,t,x)F =
(
(Fαβu3

n),−3
n∑

α,β=1

Fαβuαβun − F
unu2

n, (F
xi)
)
.

By (4.7),

〈Ṽ ,∇(A,t,x)F〉

un
= u2

n

n∑

α,β=1

Fαβ
(
uαβj

u2
n
−

3uαβujn
u3
n

)
+ Fujujj

+
ujn
un

(
3

n∑

α,β=1

Fαβuαβ + F
unun

)
+ Fxj

= 0.

That is Ṽ ∈ T ΓF . It follows from Lemma 4.1 and the fact ujj = O(ϕ) for j ∈ B,

(4.12) Sj ≤ C(ϕ).

Condition (1.4) implies

(4.13) (Fαβ) ≥ δ0I, for some δ0 > 0, and ∀x ∈ O.
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Set
Viα = σ1(B)aii,α − aii

∑

j∈B

ajj,α.

Combine (4.13), (4.12) and (4.10),
(4.14)

Fαβϕαβ ≤ C
(
ϕ +

∑

i,j∈B

|∇aij|
)
− δ0




∑n

i≠j∈B,α=1
a2
ijα

σ1(B)
+

∑n

i∈B,α=1
V 2
iα

σ 3
1 (B)


 .

By Lemma 3.3 in [1], for eachM ≥ 1, for anyM ≥ |γi| ≥ 1/M , there is a constant
C depending only on n and M such that, ∀α,

∑

i,j∈B

|aijα| ≤ C

(
1+

1

δ2
0

)(
σ1(B)+

∣∣∣
∑

i∈B

γiaiiα
∣∣∣
)

(4.15)

+
δ0

2




∑
i≠j∈B

|aijα|
2

σ1(B)
+

∑
i∈B

V 2
iα

σ 3
1 (B)


 .

Set

γj = σℓ(G)+
σ 2

1 (B|j) − σ2(B|j)

σ 2
1 (B)

, ∀ j ∈ B,

the Newton-MacLaurine inequality implies

σℓ(G)+ 1 ≥ γj ≥ σℓ(G), ∀ j ∈ B.

We conclude from Lemma 3.1, Lemma 3.3 and (4.15) that
∑
i,j∈B |∇aij| is con-

trolled by the rest terms on the right hand side in (4.14) together with ϕ+ |∇ϕ|.
The proof is complete. ❐
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