A Constant Rank Theorem for Quasiconcave
Solutions of Fully Nonlinear Partial Differential
Equations

BAOJUN BIAN, PENGFEI GUAN, XI-NAN MA, ¢ LU XU

ABSTRACT. We prove a constant rank theorem for the second
fundamental form of the convex level surfaces of solutions to
equations F(D?u,Du,u,x) = 0 under a structural condition
introduced by Bianchini-Longinetti-Salani in [2].

1. INTRODUCTION

A function u is called quasiconcave if its level set {x | u(x) = c} is convex for
each constant ¢. The convexity of level-sets of solutions for partial differential
equations was first studied by Gabriel [9] for harmonic functions u in convex ring
domains of the form

(I.1)  Q=Qy\Qy, withboundary condition u |4, = 0and ulyq = 1.

Lewis [15] extended the results in [9] to p-harmonic functions. Caffarelli-Spruck
treated this problem for general inhomogeneous Laplace equation in [6] with
the same boundary condition (1.1) in connection to a free boundary problem.
Kawhol [12] proposed an approach of using quasi-concave envelop to study the
level-set convexity of solutions to PDEs. Colesanti-Salani [/] carried out this ap-
proach for a class of elliptic equations. The technique was extended by Greco [10],
Cuoghi-Salani [8] and Longinetti-Salani [16] for equations of type

(1.2) F(D*u,Du,u,x) =0

in convex ring under various structure conditions. General structure conditions
on F in equation (1.2) with Dirichlet condition (1.1) have been obtained in a
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recent paper [2] by Bianchini-Longinetti-Salani. All these type of results are of
macroscopic nature. A different direction in the study of the convexity is the
microscopic convexity principles. The constant rank theorem for the second funda-
mental forms of level sets of solutions to certain type of quasilinear equations was
established by Korevaar [13], see also Xu [17] for recent generalization of results
in [13].

Our interest is the microscopic counterpart of Theorem 1.1 in [2] by Bianchini-
Longinetti-Salani. Let Q be a domain in R"; $" denotes the space of real sym-
metric 1 X 1 matrices and A C S™ is an open set, and F = F(¥,p,u,x) isa Cc21!
function in A X R™ X R x Q. For each (8,u) € S" ! x R fixed, set

(1.3) Ir = {(A,t,x) € AX (0,400) x Q| F(t3A,t7'0,u, x) > 0}.

We will assume that F satisfies the following conditions: there is yo > 0 and
¢ € R,

(1.4) F"‘B::< oF

3rg (T,p,u,x)) >0,

V(r,p,u,x) € AXR" X (=yo + Co, Yo + Co) X Q,

and
(1.5) I is locally convex for each (6, u) € S"™! X (—yo + co, Yo + Co)-

Theorem 1.1. Suppose w € C>1(Q) is a solution of fully nonlinear equation
(1.2) such that

(D*u(x),Du(x),u(x)) € A X R" X (—yo + Co, Yo + Co)

Jor each x € Q. Suppose that F satisfies conditions (1.4) and (1.5), Du + 0, and
the level sets {x € Q | u(x) = c} of w are connected and locally convex for all
¢ € (=Yo+co, Yo+ Co) forsome yo > 0. Then it follows that the second fundamental
Jform of level surfaces {x € Q | u(x) = c} has the same constant rank for all c €
(=Yo + o, Yo + Co).

Remark 1.2. The structural condition (1.5) is a localized version of a con-
dition introduced by Bianchini-Longinetti-Salani (condition (1.2) in [2]). Un-
der that condition and a weaker ellipticity condition, Bianchini-Longinetti-Salani
proved (Theorem 1.1 in [2]) that any solution u of equation (1.2) on convex
ring QO = Qp \ Q; with the Dirichlet boundary condition (1.1) is quasiconcave,
provided [Du| # 0. Theorem 1.1 implies the strict convexity of the level-sets in
Theorem 1.1 in [2]. Also, Theorem 1.1 may yield macroscopic level-set convexity
results if there is a homotopic path. As discussed in [2], condition (1.5) is satisfied
by a class of elliptic operators, including Laplace operator, p-Laplace operators
and Pucci’s operator.
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The proof of Theorem 1.1 uses the techniques developed in Bian-Guan [1] for
the convexity of solutions of nonlinear partial differential equations. The convex-
ity of level-sets is much more involved due to the distinguished gradient direction
of the set {u = ¢}. This is also the main fact that makes the structural condition
(1.5) different from the structural condition considered in [1].

The organization of the paper is as follows. In Section 2, we list some useful
formulas for the second fundamental forms of level sets in terms of u, Du, D*u.
Main technique lemmas will be proved in Section 3. The proof of Theorem 1.1 is
given in Section 4.

2. PRELIMINARIES

We recall some basic notation of differential geometry of hypersurfaces in R™. For
a hypersurface X given by a graph in a domain in R""1,

Xn =V(X"), X' = (x1,%2,...,Xn-1) €R",
one may express the first fundamental form as
(2.1) gij=5ij+vxivxj, Vi,jﬁ?’l—l.

The upward normal direction 7 and the second fundamental form IT for a
graph x,, = v(x") are respectively given by

. 1
2.2) n= W(—Ul,—vz,---,_vn—lyl),
v,‘, i ..
(2.3) hij = );VXJ, v Lj=<n- 1

where W = (1 + |V v|?)1/2,
Definition 2.1. The graph of function xy, = v(x’) is convex with respect to
the upward normal

- 1
n= 7(_1}11_1}2!"'1_1}%*11 1)

\/1 + |VX/U|2

if the second fundamental form IT := (h;j) defined in (2.3) is nonnegative defi-
nite.

The principal curvature k = (Ki,..., Kn—1) of the graph satisfies
det(hij — Kgij) = 0.
Equivalently, that  satisfies

det(aij - K(Sij) =0,
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where a;j is the symmetric Weingarten tensor defined as
layh = {g"} 2 {hiHg}' 2, Vi j<n—1;

here {g%/} is the inverse matrix to {g;;}, and {g*/}'/? is its positive square root.
They are given explicitly by

. Ux, Ux;, ” VxiVx;
R R a S L LR ey

The Weingarten tensor of the hypersurface can be expressed as (e.g., see [5]),

n-1
1 ViV;jVjyp VpVrVki Uivé’vjvkvjk>
25) ay = —( 0= - ’
23 au jkz=lw VETWEew) T W w) WL+ W)?

Vi, d<n-1.

Let Q be a domain in R” and u € C2(Q), such that |[Du| # 0 in Q. Denote
the level surface of u passing through the point xo € Q as

suxo) .= {x e Q| u(x) = ulxg)}.

We wish to express the Weingarten tensor of the level surface in terms of u, Du,
D?u.

At x, after proper rotation, we may assume Du = (uy, ..., Uyn) with u, # 0.
By Implicity Function Theorem, the level set Z*(*0) can be locally represented as

a graph

Xn=v(x"), x" = (x1,X2,...,Xn-1) € R,
For u(x1,...,Xn-1,xn) € C*(Q), and the function v (x’) satisfies the following
equation
(2.6) U(X1, X250 ey X1, V(X1, X250, Xn1)) = C.

Differentiate equation (2.6),

- Du
Ui+ UV =0, V;j=-—o, W:(1+|erv|2)”2:u.

It follows that the upward outer normal direction of the level sets is

[Unl
[Duluy

(27) ﬁ: (u11u21---1un—1,un)-
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Differentiating (2.6) one more time,

Uij + UinVj + UnjVi + UnnViVj + UnVij = 0.
In turn,

1o,
2.8) Vij = ——5 [UpUij + UnnUilj — UpUjUin — UnUiUjn].
us

The second fundamental form IT of the level surface of function u with respect to
the upward normal direction (2.7) is

[Un | (UAUGj + UnnUilj — UnUjUin — UnUill jn)

2.9 hij=—
( ) ij IDulu%

Note that expression (2.9) is valid locally near xy € Q, independent of constant ¢
in (2.6).

Definition 2.2. For a function u € C*(Q) with [Du| # 0 in Q, for each
v € Q, the level surface

SU — ix e Q| u(x) = u(y)}

is called locally convex with respect to Du near xo € Z*©) if there is a local
coordinate chart near x¢ (probably after some rotation) such that u,(x) > 0 and
the second fundamental form h;;j defined in (2.9) is nonnegative definite near x
with respect to the upward normal direction 7 defined in (2.7) for x € =#©)
close to xj.

Remark 2.3. If {x € Q | u(x) = c} is locally convex, then by Definition 2.2
the second fundamental form of ¢ is nonnegative definite with respect to Du. For
any xo € Q, if un(x9) = [Du(xo)| and the level set {x € Q| u(x) = u(xp)} is
locally convex near xp, then (2.9) implies that the matrix (1;;(x0)) is nonpositive
definite.

From (2.5) and (2.9),

n-1
uiuphip ujuph; uujurugh
(2.10) aij:Z(hij_Wl - ngz ;Jkgzki).
Kl=1 (1+W)un WA+W)un W21+ W)2uy

With the above notation, at the point x where u, (x) = [Vu(x)| > 0, u;(x) =
0, aijk is commutative. That is, they satisfy the Codazzi property aijx = aik,j
Vi jk<n-1.

3. ESTIMATES

Since Theorem 1.1 is of local feature, we may assume that the level surface =¢ =
{x € Q| u(x) = ¢} is connected for each ¢ € (cg — yo,co + yo). Let £(x) be
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the rank of the second fundamental form of Z**) at x. Denote

(3.1) { = inf f(x).
xeQ

Since the values of £(x) are in Z, there is x¢o € Q such that £(x) = £. We will
concentrate in a neighborhood of some point xo € Q such that £(xy) = €. We
may assume ¢ < n — 2. We will assume u € C31(Q), un > 0 and the level surface
€ is convex with respect to normal D for each ¢ in a small neighborhood of u(x)
in the rest of the paper.

Let O be a small open neighborhood of x¢ such that for each x € O, there
are £ “good” eigenvalues of (a;j) which are bounded below by a positive constant,
and the other n — 1 — £ “bad” eigenvalues of (a;;) are very small. Denote G the
index set of these “good” eigenvalues and B the index set of “bad” eigenvalues.
For each x € O fixed, we may express (a;;) in a form of (2.10), by choosing
e1,...,en—1,en such that

(3.2) [Dul(x) = un(x) >0, matrix (u;;), i,j =1,...,n—1 is diagonal at x.
From (2.10), the matrix (a;;), i,j = 1,...,n—1 is also diagonal at x, and without
loss of generality we may assume @11 < a2 < -+ < dn-1,n-1. There is a positive

constant C, > 0 such that

An-1n-1ZAn2n22 " 2apngn-t>Co, VX€EO,

G=in-¥4n-L+1,....n-1}, B={1,2,....n—+¥—1}.
So that there is no confusion, we also denote
(33) B = {an,...,an,g,lln,y,l} and G = {an,g,n,y,...,an,l,n,l}.

Note that for any 6 > 0, we may choose O small enough such that aj;(x) < 6
forall j € B and x € O. For two functions f, h in O, we write h = O(f) if
h(x)| = Cf(x) for x € O with positive constant C under control.

For each ¢ close to u(xo), let a = (a;;) be the symmetric Weingarten tensor
of =¢. Set

Opp(agg) .

N fo_ aii) > 0,
(3.4) p(a) = opsi(aij), qla) = o1 (aij) if opyq(aij)

0, otherwise.

Theorem 1.1 is equivalent to saying p(a) = 0 (defined in (3.4)) in O. For general
fully nonlinear equation (1.2), as in the case for the convexity of solutions in [1],
there are some technical difficulties to deal with p(a) alone. A key idea introduced
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in [1] is to use some crucial concavity properties of function q defined in (3.4).

Set
(3.5) p(a) =p(a)+aq(a)

where p and g are as in (3.4). Theorem 1.1 is equivalent to saying @ (a) = 0.
To get around p = 0, for € > 0 sufficiently small, consider

(3.6) @s(a) = p(ay),

where as = a + €I. Denote Gs = {ajj + £ |i € G}, Be = {ai; + £ | i € B}.

To simplify the notation, we will drop subindex & with the understanding that
all the estimates will be independent of €. In this setting, if O is small enough, there
is C > 0 independent of € such that

(3.7) @(a(z)) = Cs, 01(B(z)) = Ce, forallze€ O.
In what follows, we will use i, j, ... as indices running from 1 to n — 1 and

«, B, ... as indices running from 1 to n. Denote

_op _%p wp _ OF

pD( - ax(x’ pD(B - axaaxﬁ, F - au(xﬁ, 1 = O(JB = n!
and set
(38) 5‘[(,; = Z IVaijl + @.
i,jEB

Lemma 3.1. For any fixed x € O, with the coordinate chart chosen as in (3.2)
and (3.3),

(3.9) Pa=0p(G) D ajju+ OHy)
jeB
and
n n n
(3.10) D F*¥pup < —uy20p(G)D [ > FPungjiul — 6> F¥uggiunjun
o,B=1 JjE€B ~,B=1 o,B=1

n
+6> Faﬁuagu;j] +0(Hyp).
o, =1

Proof. For each fixed point x € O, in a coordinate system as in (3.2),

(3.11) - % —aj;=0(Hp), ViEB;, pu=0uG) S ajja+0(Hy).
n jeB
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By (3.11),

P
(3.12) Pop = (T,g(G)[ > ajjep—2 M] +O(Hyp).
jEB ieG, jeB i

We now need to figure in the distinguished gradient direction Du in the
symmetric tensor (a;;). Since ux = 0 atx fork = 1,...,n — 1, from (2.10),

2 . .
(3.13) UnUiju = ~UpQija + UnjUia T Uniljo + UnaUij, Vi, j=n-—1,
and for each j € B,

3 _ 2
UnAjjap = 2UnUjaUnjg + 2UnUjgUnja + 2UnUnjUapj — Uy Uapjj

= 2UnaUnjUjg — 2UnpUnjUjx — 2UnnUjcUjg + O(Hep).

Hence, for j € B,

n n
F(X
(3.14) D Fajiup= 3 5| - uhttagj — 4unatinjup
«,B=1 o,B=1 Un

- 2unnujaujﬁ] +O0(Hyp).

Using the fact that 3o_; F*una = (X p-1 - Zg;ll Su_)FBuag, Vije
B, we have

n n n-1 n
SRR ) P
o,B=1 o,f=1 B=1a«a=1
n n n-1 n
>, FPujaunjp = u"j( 2.~ 2 )FO{Bquﬁj +0(Hp),
«,B=1 o,B=1 o=1B=1
and
n
“2Unn Y. F¥ujcup = —2unnF""u,2U. +0(Hyp)
o,Bf=1
n n-1
= —2uflj > FPuyg +4u$£j > F¥M Yy
o,B=1 =1

n-1
> Fung + O(Hyp).

o,B=1
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Put above to (3.14),

n
(3.15) Z Z F“ﬁu%aﬂ,aﬁ
JjEB ,B=1

n n
=—up X X F%Pugjj+6un 3 unj X F*Puag

JjeB =1 JjEB o, =1
n n-1 n
—6 > up; > F%uap —dun 3 unj X, D) FPucg;
JjEB o,f=1 JjEB a=1B=1
n-1 n-1
+8 D up; > F™una +6 X un; > FPugs + 0(Hyp).
JjEB ox=1 JjEB o,f=1
By (3.13), for j € B,
n-1 n n ) )
(3.16) Un Z ZF‘XB‘I/LD(BJ' =Un Z (ZF“luijo(-i- Zquijo()
a=1B=1 x=1 ieB ieG

n
i 2
Z Z F (_”naij.tx + UigUjn + uja”l’ﬂ)
a=1ieG

n
+ Z Z F&i <ui(xujn + uj(xuin) + O(j{(P)

x=11ieB

n
—u% Z Z F“iaij,a + Unj Z Fiiuii

x=1ieG ieG

+ 2unj(nilF"iuni> + O(j{(p)

i=1

Equations (3.15) and (3.16) yield that, V j € B,

n n
(3.17) > Fulajiepg = —uh > F*Pugg;
o,Bf=1 o, =1

n n
+ 6UnUn; . F“Buaﬁj—6u$¢j > FPuyg
o,B=1 o,B=1

n
+ 4u%lunj z Z F"‘iaij,(x + Zu%j Z Fiiuii + O(}[(p)

a=1ieG ieG
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From (3.17), V j € B,

618) D F|ayep -2 3 ML

«,B=1 ieG Aii
n n
= —uf[ > FPusuagjj — 6un X F¥ujnuap;
o, =1 o,B=1

n n
1
+ GLL?"ZF(XBM(XB] -2 Z 2. Z F"‘Baij,o(aij,,g
o,f=1 ieG MU x,p=1

n
+ 4u;1unj Z z F"”aij,a + ZM;RLL%U- z F”uii + O(j‘[cp).

x=1ieG ieG
Claim 3.2.
2 il
.. -1 & 2Unpj n . unjF Ui
Vi,j, — Z F‘X‘B(lij,cx(lij,ﬁ + Z F(Xl(lij,o( + — 3 <0
il o g1 Un 21 Un

Assuming Claim 3.2, by (3.12)

n
th,ﬁ=l Faﬁp‘xﬁ

n
-3 B2, .. B, . .
<-u F¥Pusu — 6un F*uinu
a7 (G) n 2 Z [ nWjjap n Jnjep

JjEB ,B=1

(3.19)
+ 6u§nF°‘5uaﬁ] +0(Hyp).

We need to check Claim 3.2. It is equivalent to the following inequality,

n n
-1 i -2.,2 i 42
(3.20) Z F“‘B(/‘Lij,o((lij,ﬁ - 2un Unjaii Z F"”aij,o( + U, unjF”aii > 0.
x,B=1 o=1

We may assume i = 1 and j is fixed. Set Xo = u,'a1ujn and Xy = a1«
for 1 < & < n, (3.20) follows from the fact that (n + 1) X (1 + 1) matrix

Fll _Fll _F12 . _Fln
_Fll Fll F12 . Fln
_F21 F21 F22 . F2n
_I;nl Fnl Fnz ... Fnn

is semi-positive definite. O
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Lemma 3.3. q € CY1(O) and for any fixed x € O, with the coordinate chosen
as in (3.2) and (3.3),

oq ot (Blj) — 02(Blj)
3.21 = = Ajjoa+ O(Hy),
( ) dx OXo J%g O'IZ(B) Ji @
and
622 Y Fae=—uy Y LB 2Bl
«,f=1 jeB gy (B)
n
X > [FD(Buaﬁjju%l — 6F*Pu g iU jnity + GF“Buaguﬁn]
o,B=1
1 n
( ) Z zFaﬁ[al(B)alla allzajj(x]
o,f=1ieB JjEB

« [0'1 (B)aiig — aii . ajj,B]
jeB

Z > F*¥a;jsaijp+ O(Hgp).

o,f=1i+j€B

0'1(3)

Proof. The fact g € CH1(0O) follows Corollary 2.2 in [1]. Though it was
stated for nonnegative matrix function W = (u;) with u € C>!, the proof works
for any nonnegative matrix function W € C'I.

Identity (3.21) follows directly from Lemma 2.4 in [1]. Again, by Lemma 2.4
in [1],

o?(Blj) — 02(B|j) Aij,adij,p
3.23 _ z 1 [a,, ) #]
(3.23) Aof = o (B) Jiep iEZG aii
1
0'13(3) icB [Ul( asia a”jeB aJNX]

« [0'1 (B)aiig — aii . ajj,B]
jeB

Z aijalij,p+ O(}[ )

o1 ( ) i+jEB
The lemma follows from (3.18) and Claim 3.2 in the proof of Lemma 3.1. O

4. A STRONG MAXIMUM PRINCIPLE

We start this section by discussing the structure condition imposed in Theorem
1.1. For any function F(¥,Du,u, x), write FoB = OF |0vng, F*t = OF [ouy, ...
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as derivatives of F with respect to corresponding arguments. For Ir defined in

(1.3), denote

TTr = {V = (Xap), Y, (Zi)) € " x R X R"
HV, Via e FEPA 10,4, x)) = 0]

Lemma 4.1. IfF satisfies condition (1.5), then

(4.1) Q(V,V) = FBTSX s Xys + 2FPUWQ, X g Y + 2F*FXk X 5 7).
+ FUUs0)0,Y? + 2F"0X Q)Y Z) + F¥iXi 7,7 ;
+ 2LF™0,Y? + GLF*F X ogY — 6t 'FP AypY?

<0,
for every

(XO(,B! Y! (Zl)) = ((t73XD(B - 3t74AO(BY)! _t72Y! (Zl))!
with V = ((Xap), Y, (Zi)) € TTg,

where FOBVS FOBYUe  ore are evaluated ar (t73A,t710,u,x), and the Einstein
summation convention is used.

Proof Denote F(A, t,x) = F(t3A,t7'0,u, x); Condition (1.5) implies that
F(A,t,x) is locally convex with respect to the normal VF. That is, for each tan-
gential vector V= ((Xij),Y,(Z)):

(4.2) F“B’TSXO([;X” + ZF“B”:XM;Y + 2F°‘B'Xk)?a32k
4 FUT QRN T 7 4 PN 5,7,
<0.
At (A, t,x),

IE(XB — t—SF(xB, 150(6,1/5 — t—GF(X,B,TS, Faﬁ,xk — t_3F(xB‘Xk, Fxixi = FXiXj
Fobt = _3p~4F*B _ 3pTFoBrs A, o — tOF*Bg,
Ft' = -3t 4F*FAyp — t2F" 0y,
FtXx = _3t~4FBX Ay — t72F%0XKQ,,

~r 12FPAgg . 9F*BTS A g Ays . GF*Bue A g0, | 2FU00p | Frt0,0;
t> t8 to t3 t4 '
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Equation (4.2) is equivalent to

(4.3) tTOFPTs Rop Xy — 2[3t4FOP 4 3 TFOPTIA, 4 tOFBU0)| KoY
+ 2UTIFBX R g Zh — 2 BETAFOPN Ay + 1IN0, [T 2
+ PN 2,7+ [ 1265 FF Agg + 9t SFOPTS Agp A,
+ Gt_GF(xB‘u”AD(BQ,g + 2t 3F™g,

+ AR 9,0, |72
<0.

The left side of (4.3) can be written as
(4.4)
ESFOBTS (RypKrst? — 6t KapArs¥ + 9AupAr V?)
— 2t SFB 9y [t Rag — BAapY | ¥ + 204 FBN [ X0 — 3A0pY | Zi
+ t AU s 9,0,Y2 — 20 2FU0Nk 0, Y 7y + FXiXi 7,7
+ 27 3FU 0T — Gt OFP [t Xop — 3AnpY | ¥ — 61O FP A V2
= FOPTS X g Xys + 2FOPU QX g Y + 2FPXk X 5 7,
+ FU0ts0p0,Y? + 2FUXk QY 7y + FXXi Z, 7 ;
+ 2tFM0pY? + GLF*¥ XopY — 6t 'FB AL Y?

where Xxg = t‘4[tXO<5 - 3Ao<317], Y = —t72Y, and Z; = Z;. Equation (4.1)
follows from (4.3) and (4.4). O

Theorem 1.1 is a direct consequence of the following proposition and the strong
maximum principle.

Proposition 4.2. Suppose F, w are satisfying assumptions in Theorem 1.1. If
€ =L (x0) (L defined in (3.1))for some point xo € Q, then there exist a neighborhood
O of xo and a positive constant C independent of @ (defined in (3.5)), such that

n

(4.5) > F¥up(x) < C(@(x) + IVQ((x)), VxeO,
o,B=1

Proof Let u € C>1(Q) be a solution of equation (1.2) and (u;;) € S™.
Suppose £(xg) = £ for some xy € Q. We work on a small open neighborhood O
of x9. We may assume £ < n — 2. Lemma 3.5 implies ¢ € C'(0), (x) = 0,
@(xp) = 0. For € > 0 sufficient small, let @, defined as in (3.5) and (3.6). For
each fixed x, choose a local coordinate chart ey,...,e,_1,e, so that (3.2) and
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(3.3) are satisfied. We want to establish differential inequality (4.5) for @ defined

in (3.6) with constant C independent of €. In what follows, we will omit the

subindex & with the understanding that all the estimates are independent of €.
By Lemma 3.1 and Lemma 3.3

(4.6)
n n
>, F¥Ppup = 3 F¥(pap +aup)
&,B=1 o«,B=1
2 . .
3 oi (Blj) — 02(Blj)
<-u op(G) +
o | o8]
n n n
X [ > FPujujjop —6un > FPujnujep +6us, > F“Bualg]
o,B=1 o,B=1 «,B=1
1 n
= 38 > > F“B[Ul(B)aii,a -aii . ajj,o(]
1 «,f=1i€B jEB

X [UI(B)aii,g — aiji Z ajij]

jEB
1 n
- (B) z Z F“Baij,o(aij,,g + O(.’]‘[q;).
O1LB) (81 ixj,
i,jEB

For each j € B, differentiating equation (1.2) in e; direction at x,

n
(4.7) > F¥uggj + F'nujy + FUuj; + FXi =0,
o,B=1
n n
48) > Flusgj=- > FPuagiuyg
o,B=1 o, B,r,s=1

n n
=2 3 FPMuagiug -2 > FPMujapu;

«,B,0=1 o,f=1
n n
-2 Z F“B’Xju(xgj— Z F”f””fugjusj
o,B=1 {,s=1

n n

Up, U Y Up,X L FUuU,,2

=2 > F¥Muguj— > FU¥iug; — F'u’
£=1 £=1

n

UX i, . X 7,X u Uqgy ..

— 2F"Xiyj — FXiXi — " F'ug;: — Flug;.
{=1
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It follows from (3.13) that, at x

n n
49 X Ffuugjj = = Y FP  uapiitys
o, B=1 o,B,r,s=1

n n
=2 > FPMnujepun =2 > F¥P%iuag;
o,B=1 «,f=1
_ Fun,unuin _ 2Fu",xjujn _ FXj,Xj

Fun 2
_ 2u—nan + O(j'[(p)

Since Ungjj = Ujjup, (4.6) and (4.9) yield
(4.10)

a?(Blj) — (Tz(Blj)]

op — -3
F@up = > uy, [O’g(G) + o7 ()

JjEB

n n n
X {[ Z F“B'”uaﬁju”j +2 Z F"‘B’”"uj‘xﬁujn +2 Z F“B’Xjujaﬁ
o,B,r,s=1 o, =1 o, =1

, s Fun
+ Fmtny? 4 2FUXiy iy + FX9%7 4+ 2—u?, lu;
jn U, In]om

n n
+6 > Fujsgujnun -6 > F“ﬁuaﬁuin}
o,B=1 «,f=1

1 n
- = > F‘xﬁ[(ﬁ (B)aii,« — Aii . ajj,o(] [(71 (B)aiig — aii . ajj,/s]
07 (B) g1 ich JjEB J€B
1 n
- FeBa;iwaiig+ O(Hy).
i,jEB

For each j € B, set
n n
(4.11) Sj= [ > Fujapuygi+2 Y F¥Mu 0,
«,B,7,s=1 o,B=1

n
+2 ) FP¥iujp + Fimtiny?
o,B=1
U,
2Ry, 4 P 4 2 T2
TUjn ‘ Un jn n

n n
+6 > FPujppujnun —6 > FPugpu?,
a,p=1 a,B=1
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and

Uuj
an
XD(B = uD(Bju‘VL) v (0(! B) + (n!n)>

Xnn = UnnjUn + ——UjjUn;

Y = UjnUn, and Zi = 5ijun.
In the coordinate system (3.2),

(D*u(x),Du(x),u(x),x) = (D*u,(0,...,0, | Du(x)|),u,x)
= (t73A,t710,u, x).

Accordingly, the components of V defined in Lemma 4.1 are

nn — 2 3 nn >
un un F u‘}’L
- Uxgj SUapUjn
Xap=—75 — =, V(o p)*(n,n);
Un n
~ Uu; ~
jn
Y =—"", Zi=6ijun.
Un

At (t73A,t710,u, x),

n
VaeoF = ((FPu3), -3 > FPugpu, — FUnul, (F)).
o,B=1

By (4.7),

Vs _ o Z Faﬁ(uam_3“0<B“J")+Fumjj

ujn

3 F®fuyg + Fnuy, ) + FYi

«,B=1
=0.
Thatis V € TTg. It follows from Lemma 4.1 and the fact ujj = O(p) for j € B,
(4.12) Sj < C().
Condition (1.4) implies

(4.13) (F*B) > §oI, for some &y > 0, and V x € O.
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Set
Via = 01(B)aii,x — aii Z Ajju-
jeB

Combine (4.13), (4.12) and (4.10),

(4.14)
n 5 n
) 5 [Zi¢jeB,a1ai1a ZieB,D(:lVizoc]
— 0o + .

F¥pup < Clp + |Vai;l
o = i’jZeB Y 71(B) o3 (B)

By Lemma 3.3 in [1], foreach M > 1, forany M > |y;| = 1/M, there is a constant
C depending only on n and M such that, V «,

1
(4.15) > laijul =C (1 + ?) (Ul(B) + ’ > Yiaiio(’)
i,jeB 0 ieB
+ % Zi*jEB [@ijal” + ZieB Vizcx
2 01(B) o?(B) |
Set

a?(Blj) — 02(Blj)
ot (B) ’

yj=0p(G) + V j € B,

the Newton-MacLaurine inequality implies
op(G)+1=zy;j=0p(G), VjeB.

We conclude from Lemma 3.1, Lemma 3.3 and (4.15) that >; jcg [Vaijl| is con-
trolled by the rest terms on the right hand side in (4.14) together with @ + |[V@|.
The proof is complete. O
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