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ABSTRACT. We give a sharp lower bound for the principal curvature of the
level sets of harmonic functions and minimal graphs defined on convex rings in
R3 with homogeneous Dirichlet boundary conditions.

1. Introduction. The convexity of the level sets of the solutions of elliptic partial
differential equations has been studied for a long time. For instance, Ahlfors [1] con-
tains the well-known result that level curves of Green function on simply connected
convex domain in the plane are the convex Jordan curves. In 1931, Gergen [10]
proved the star-shapeness of the level sets of Green function on 3-dimensional star-
shaped domain. For the minimal annulus whose boundary consists of two closed
convex curves in parallel planes P; and P, in 1956 Shiffman [22] proved that the
intersection of the surface with any plane P, between P; and Ps, is a convex Jordan
curve. For elliptic partial differential equations on domains in R”, the convexity of
level set was first considered by Gabriel [9] in 1957. He proved that the level sets
of the Green function on a 3-dimensional convex domain are strictly convex. Later,
in 1977, Lewis [15] extended Gabriel’s result to p-harmonic functions in higher di-
mensions and obtained the following theorem.

Theorem 1.1 (Gabriel [9], Lewis [15]). Let u satisfy

div(|VulP~2Vu) =0 in Q= Q\Q,
u=0 on 09, (1.1)
u=1 on 00,

where 1 < p < 400, Qo and Q1 are bounded conver domains in R™,n > 2, Q1 C Q.
Then all the level sets of u are strictly convex.

For the minimal graphs, Korevaar (see Remark 13 in [14]) proved the following
result.
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Theorem 1.2 (Korevaar [14]). Let u satisfy

div(%) =0 in Q=Q\Q,

V14|Vl (1.2)
u=20 on 00,
u=1 on 0,

where Qo and Q1 are bounded convex domains in R™,n > 2, Q1 C Qo. Then all the
level sets of u are strictly convex.

In 1982, Caffarelli-Spruck [6] generalized the Lewis [15] results to a class of semi-
linear elliptic partial differential equations. A good survey of this subject is given by
Kawohl [13]. For more recent related extensions, please see the papers by Bianchini-
Longinetti-Salani [3] and Bian-Guan-Ma-Xu [2].

Now we turn to the curvature estimates of the level sets of the solutions of elliptic
partial differential equations. For 2-dimensional harmonic functions and minimal
surfaces with convex level curves, Ortel-Schneider [20], Longinetti [17] and [18§]
proved that the curvature of the level curves attains its minimum on the boundary
(see also Talenti [23] for related results). Jost-Ma-Ou [12] proved that the Gaussian
curvature of the convex level sets of 3-dimensional harmonic function attains its
minimum on the boundary. For the other related results and their application
to free boundary problem, please see the papers by Rosay-Rudin [21], Dolbeault-
Monneau [8].

In this paper, using the strong maximum principle, we obtain a sharp principal
curvature estimates for the level set of lower dimensional p-harmonic functions and
minimal graphs defined on convex ring. Our theorems are the principal curvature
counterpart of the Gaussian curvature estimates in [12].

Now we state our theorems.

Theorem 1.3. Let  be a bounded domain in R™, 3 <n <5,1<p<+o0 and u
be a p-harmonic function in §2, i.e.

div(|VulP2Vu) =0 in Q. (1.3)

Assume |Vu| > 0 in Q. If ”TH < p < 3 and the level sets of u are strictly convex
with respect to normal Vu, then the smallest principal curvature of the level sets of
u cannot attain its minimum in ), unless it is constant.

Using Theorem 1.1 and Theorem 1.3, we have the following corollary.

Corollary 1.4. Let u be the solution of the following boundary value problem
div(|VulP~2Vu) =0 in Q= Q\Q,
u=0 on 09, (1.4)
u=1 on 00,

where Qo and 1 are smooth bounded convexr domains in R3, Q1 C Q. If3<n <5
and ”TH < p < 3, then the principal curvature of the level sets of u attains its
minimum on OS).

Now we turn on the 3-dimensional minimal graphs.

Theorem 1.5. Let Q be a bounded domain in R® and u be a minimal graph over
Q, i.e., u satisfy the minimal surface equation

Vu

V14 |Vul?

div( )=0 in Q. (1.5)
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Assume |Vu| > 0 in Q. If the level sets of u are strictly convex with respect to
normal Vu, then the smallest principal curvature of the level sets of u cannot attain
its minimum in ), unless it is constant.

Similarly, we have the following corollary.

Corollary 1.6. Let u satisfy

Vu _
div(————=) =0 in Q=Q\Q,
V14 |Vul? (1.6)
u=0 on 08,
u=1 on 00,

where Qy and Q1 are smooth bounded convex domains in R3, Q1 C Qo. Then the
principal curvature of the level sets of u attains its minimum on OS2.

Let (a;;) be the symmetry curvature matrix on the strictly convex level sets
defined in (2.4), and let (a) be its inverse matrix. We consider the auxiliary
function

o(z,8) = a”(2)&&;, where &= (&1, 6n1) €R™H €] =1,
We shall derive the following differential inequality
Z FPoa5 >0 mod Ve in Q, (1.7)
a,f=1
where
FP(Vu) = [Vul*das + (p — 2)uqug,
or
FoP(Vu) = (1 + |Vul?)dap — taus,

is the associated elliptic operator in (1.1) or (1.2). In (1.7), we have suppressed
the terms containing the gradient of V¢ with locally bounded coefficients, then we
apply the strong maximum principle to obtain the results.

Now let us mention that three dimensional harmonic function always has very
special properties. The famous theorem of Lewy [16] states that if u is a harmonic
function on a domain in R3 and the map # — Vu(z) is a homeomorphism, then
x — Vu(z) is a diffeomorphism. In 1991, Gleason-Wolff [11] extended this results
to higher dimensions, but needed some extra conditions, and gave a counterexample
in the higher dimensional case without these additional conditions.

In section 2, we first give brief definition on the convexity of the level sets, then
obtain the curvature matrix a,; of the level sets of a function, which appeared in [2].
The main technique in the proof of theorems consists in rearranging the second and
third derivatives terms using the equation and the first derivatives condition for ¢.
In the 3-dimensional case, we get “good” sign for the second and third derivatives
terms, which allows us to reach our conclusions.

2. The curvature formulas of level sets. In this section, we shall give the brief
definition on the convexity of the level sets, then introduce the curvature matrix
(ai;) of the level sets of a function, which appeared in [2]. Firstly, we recall some
fundamental notations in classical surface theory. Assume a surface > C R is given
by the graph of a function v in a domain in R?~:

z, =v(x'), 2’ = (21,29, ,xn_1) € R
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Definition 2.1. We define the graph of function z,, = v(z’) is convex with re-

spect to the upward normal 7/ = %(—vl, —vg, -+ ,—Up_1,1) if the second fun-
damental form b;; = U# of the graph x,, = v(z') is nonnegative definite, where
W =/1+|Vu|2.

The principal curvature K = (K1, ,kn—1) of the graph of v, being the eigen-

values of the second fundamental form relative to the first fundamental form. We
have the following well-known formula.

Lemma 2.2 ([5]). The principal curvature of the graph x, = v(z') with respect to
the upward normal U are the eigenvalues of the symmetric curvature matriz

aqp =

1 ViUV VUL Vki ViUV Uk Vjk
Vil y (21)

w1 WA+WwW) WQA+W) W21+ W)?

where the summation convention over repeated indices is employed.

Now we give the definition of the convex level sets of the function u. Let Q be a
domain in R™ and u € C?(Q), its level sets can be usually defined in the following
sense.

Definition 2.3. Assume |Vu| > 0 in 2, we define the level set of u passing through
the point z, € Q as ¥%) = {x € Qu(z) = u(z,)}.

Now we shall locally work near the point z, where |Vu(x,)| > 0. Without loss
of generality, we assume u, (z,) # 0. By implicit function theorem, locally the level
set X%o) could be represented as a graph

Tn = ’U(I/)7I/ = (xla MO P 7In—1) S Rnila
and v(z’) satisfies the following equation
(T, T, Tne1,0(T1, @2, Tp1)) = u(To).

Then the first fundamental form of the level set is g;; = d;; + =%, and W =

(1+|Vol?)2 = %. The upward normal direction of the level set is
V= |V|1:LT|L1|Ln (w1, ug, s Up_1,Up)- (2.2)
Let
hij = uiuij + U Ui — UpUjUip — UnUiUjp, (2.3)
then the second fundamental form of the level set of function u is
by — U — |unlhij
w |Vulu?

Definition 2.4. For the function u € C?(Q) we assume [Vu| > 0 in Q. Without
loss of generality we can let w,(x,) # 0 for z, € Q. We define locally the level
set Yo) = {r € Qlu(x) = u(x,)} is convex with respect to the upward normal
direction 7 if the second fundamental form b;; is nonnegative definite.

Remark 2.5. If we let Vu be the upward normal of the level set ©%(%e) at z,, then
un(,) > 0 by (2.2). And from the definition 2.4, if the level set X%(%<) is convex
with respect to the normal direction Vu, then the matrix (h;;(z,)) is nonpositive
definite.
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Now we obtain the representation of the curvature matrix (a;;) of the level sets
of the function u with the derivative of the function wu,

1 uiulhﬂ ujulhil
;i = ———=2 — h;;
T Vulug TOWAA W)y W+ W)u

(2.4)
_ uujupuhg
W2(1+W)2ud |-
From now on we denote
uiulhjl ujulhil uiujukulhkl
Bij = , Oy = Rl 2.5
ITWaL W WAL w2 0T W+ W)l (2:5)
and
then the symmetric curvature matrix of the level sets of u could be represented as
1 1

Qi [* hij + Bij — C; } (2.7)

~ Va2 T Va2

3. Principal curvature estimates of level set of p-harmonic function. In
this section, we prove the Theorem 1.3. We study the following equation

div(|Vu|P"2Vu) =0 in Q, (3.1)
and we shall prove this theorem using strong minimum principle.

In the following proof, the Greek indices («, 8,7, d, ...) run from 1 to n, the Roman
indices (4, j, k,1,...) run from 1 to n — 1.

Denote
FoP (V) = [Vul2as + (p — 2)uaus. (3.2)
Then equation (3.1) is equivalent to
n
> FPugs =0. (3.3)
a,B=1

Proof of Theorem 1.3:

Since the level sets of u are strictly convex with respect to normal Vu, then the
curvature matrix (a;;) of the level sets is positive definitive in Q. Let (a/) be the
inverse matrix of (a;;). We consider the auxiliary function

@(l‘?f) = a/”(x)gl§]7 where g = (517 "'761’7,—1) S Rn_la ‘5' =1
We shall derive the following differential inequality
n
Z FPoa5 >0 mod Ve in (3.4)
a,B=1
where we modify the terms of the gradient of ¢ with locally bounded coefficients.
Then by the standard strong maximum principle, we get the result immediately.
In order to prove (3.4) at an arbitrary point z, € Q, as in Caffarelli-Friedman [4],
we choose the normal coordinate at z,. We have mentioned in Remark 2.5, since
the level sets of u are strictly convex with respect to normal Vu, by rotating the
coordinate system suitably by T, , we may assume that u;(z,) =0,1<i<n-—1
and u,(z,) = |Vu| > 0. And we can further assume & = e;, the matrix (u;;(z,))
(1 <i,j <n-—1)is diagonal and w;;(z,) < 0. Consequently we can choose Ty, to
vary smoothly with z,. If we can establish (3.4) at x, under the above assumption,
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then go back to the original coordinates we find that (3.4) remain valid with new
locally bounded coefficients on Vy in (3.4), depending smoothly on the independent
variable. Thus it remains to establish (3.4) under the above assumptions.

Now we write ¢(z) = a'l. From now on, all the calculations will be done at the
fixed point x,.

Taking the first derivative of p, we get

n—1
Po = — Z a*aay o, (3.5)
k=1
it follows that
a11,0 = —a2, Qa- (3.6)

Taking derivative of equation (3.5) once more, we have

n—1 n—1
1p kq 11 1k 1p 1
Yap = Y aPdalapaap s+ D a*a'Paay aaps
k,l,p,q=1 k,l,p,q=1
n—1
1k 11
- E a - a GklaB,
k=1
therefore
n n n—1
1142 kk
E Fo‘ﬁ@a/@ =(a") E FoB (2 E a"a1g,a1k,8 —all,ag). (3.7)
a,B=1 a,B=1 k=1

In order to get (3.4), we only need to prove

n
3 2
Up @1 Z Faﬁ@aﬁ

a,B=1
ol n (3.8)
k=1 a,f=1 a,f=1

>0 mod Ve,

where we modify the terms of the gradient of ¢ with locally bounded coefficients.
We shall prove (3.8) in two steps.
Step 1: We first calculate the term u3 22,5:1 F*Bayy 4p, it will be completed
in (3.35).
By (2.7), it follows that
A11 = |V’UJ‘U%CL11. (39)
Let E = |Vu|u?. Then at z, we have
E, = 3uiuna,

- (3.10)
Eop = duptnatng + 3ufluagn + Uy, Z Uy UGy -

~y=1
Taking derivative of equation (3.9), we get

Ai1,0 = Eqa11 + Fa1,a = 3ulupearr + uain o (3.11)
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By (2.3), it follows that

hll,a - 2ununau11 + uiulla + unnau? + 2unnu1u1a (3 12)
— 2UpaU1 Uty — 2UpUiaUln — 2UpU1 Ulne- ’
Then at x,, we have
A1 o =—h1,a+Bi1,a — Ciia = —hi1,a
= — ulUt1a — 2UnUnalil] + 2UnUia Uiy

Since at z,, a1 = —%, by (3.11) we have the following important relation for

n

the third derivative of wu,
UnUita = 2U10Uty + U1 Una — Up011q- (3.13)
Taking derivatives twice of equation (3.9), we have
n
Z uiFaBalLa/g

a,f=1

n n n

= Z FaﬁAlLaﬂ— Z FO‘ﬁEa,@an -2 Z FaﬁEaanwg
a,B=1 a,B=1 a,B=1

n n
= Z FaﬁAlLa@ — 6’LL$L Z Faﬁunaan,g
a,B=1 a,B=1

n n
+ u11 Z FoB < Z UyaUng + DlUpalng + 3ununa5>.
a,f=1 =1

(3.14)

In the following calculation, we mainly treat the last two lines of (3.14). By
(2.6),

Ai1,08 = —h11,08 + Bi1,08 — Ci1,08-

Taking the first and second derivatives of equation (2.5), we have

n—1
2uiqwighy + 2uguiahyg
Bui,ap = ; W(L+W)u2 ’
hence
n n—1 n n
o 4FPuy quighy o
2 B =0, 2 Tpia g © 2 2o P (319
a,B=1 =1 a,p=1 n a,B=1
Similarly, we have
> FPCyap =0. (3.16)

a,f=1
By (3.12), it follows that
hll,aﬁ = 2ullunﬁuna + 2ununaﬁull + 2ununo¢u115 + uiulla,ﬁ

+ 2UpUngUila + 2UnpUigUla — 2UnaU1gUln — 2UngUlaUln (3.17)

- 2'lj/7z’llllt)¢l3ul'rL - 2'U/nulozulnﬁ - 2unu15ulno¢-
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From (3.14)—(3.17), it follows that

n n n
ud Z FPayy op = —u2 Z FPunpii + 2upting Z F*Pugp
a,f=1 a,f=1 a,f=1

n n
+ 4un Z Faﬁulauln,@ - 2unull Z Faﬁunaﬂ

a,B=1 a,f=1
n n
— 4u,, Z F“ﬁunau115—2unn Z Faﬁulaum
a,f=1 a,B=1

n n
+ duy, Z FoPupaurp + 2u1y Z FoPyyqug
a,B=1 a,B=1

n n
— 2u11 Z F“Bunaungfﬁui Z F"‘ﬁunaanﬁ
a,f=1 a,f=1

n n
+ u1 Z FoB ( Z UyaUyg + DUnaling + 3Unlnag

a,pf=1 v=1

=T+ T+ T+ Ty —6ul Y FPuqa1p,

a,f=1

where

n n
T1 B 3’[1,11 Z Fo‘ﬁunaung + U1y Z Faﬁuq,au,yg,
a,B=1 a,B,y=1

n n
Ty = 4u, Z Faﬂumulng — 4u,, Z Fo‘ﬁunaung,
a,B=1 a,B=1

n n
T5 = 2uqq Z F""Bulau15+4u1n Z Fo"Bumulg

a,f=1 a,f=1
n
— 2Upyp Z Faﬂulaulﬂ;
a,B=1
n n
Ty = upu Z F“’Bunag + 2unpuin Z F“Buam
a,f=1 a,f=1
n
—ui Z F“’Buaml.
a,B=1

We first treat the term 73. From (3.2), we have

n n
T, = 3up; Z Faﬁunaun,g + g Z F“ﬁuvauw
a,B=1 a,B,y=1

n—1 n—1
= uy, [Zuz )Y A 1>ufm}

i=1 i=1

)

(3.18)

(3.19)



PRINCIPAL CURVATURE ESTIMATES FOR CONVEX LEVEL SETS

For the term T3, by (3.13) we have

n n
Ty = 4u,, Z Fa’@ulaulng — 4u, Z F“'Bumulm
a,B=1 a,B=1

2 2 2 4
= 4u; {2u11u1n + U Unn + (P — 1)unu1nu1nn} —du, w1011 0

n—1

—4u? [3u11ufn + u1g Z ud 4 (p— 1)(2ud, Upp + unufm)]
i=2

n
2
+ 4un Z Faaunaall,ow

a=1

For the term T3,

n n
Ts5 = 2uqq Z FoPuyouig — 2y, Z FoPyyqug
a,f=1 a,f=1

n
+ 41y, Z Faﬁumulﬁ
a,B=1

= 202 1) + (p = Dud, | — 2u2unn [y + (0~ 1),
+ duZuyy, [umuu +(p— 1)U1nunn:| :

It follows that

Ty + Ty = 2u2ud, + 2(p — Dulupul, + 20202 tuny
n—1

22 2 2
—6(p — Dujui,Unn — 4uiugg E U
i=2

—4(p — 1)uiu11ufm +4(p — 1)uiu1num1

n
4 2 ao
— duj uiiar , + 4uy, E F*upaa1i o

a=1
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(3.20)

(3.21)

(3.22)

Now we work on the term Ty, we will first calculate u,uqq ZZ a1 Faﬁunag in

Ty. At the fixed point z,, equation (3.1) becomes
FPUpp = w2 Au+ (p — 2)utin, =0,
ie.
n—1
(p — 1)unn = — Z Wi -
i=1
By (3.2), we have

(Fo‘ﬁ)n = 2UnUnndag + (P — 2)Unaug + (P — 2)UaUng.

(3.23)
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Together with (3.23), it follows that

n n
UnU11 Z Faﬁuna,ﬁ’ = —UpUil Z (Faﬁ)nuaﬁ

a,B=1 a,f=1
= — UpU1l Z |:2ununn§aﬁ + (p - 2)uno¢uﬁ + (p - Q)Uozunﬁ Uap (324)
a,B=1

=—2(p— 2)u unuln 2(p— 2ununzu

For the term 2u,u1iy, Zz,ﬁﬂ F*uqp1 in Ty, by (3.13) we have

n

n
Uy Ui Z Faﬂua/gl = U, Uin Z [|Vu|25a,g +(p— 2)uaulg} Ua Bl

a,f=1 a,f=1
n—1
= 2unu n[uiu —&—ui Uil +(p—1 uiu nn}
1 111 1:22 1+ (p ) 1 (3.25)
n—1
= 6uiu11u%n + QU;O’LUM Z U1
i=2
+2(p — Dud urptinng — 2uptiinain, 1.
For the term —u? Y0 5 F*Puap11 in Ty. By (3.2), we have
(Fo‘ﬂ)l = 2UpUn10ag + (P — 2)ur0us + (p — 2)uquip (3.26)
and
(Faﬁ)ll =2 Z U%,Y(Sa@ + 2unu11n5a5 4+ (p — 2)U11QU[—}
ot (3.27)

+ (p — 2)uquiig + 2(p — 2)urauig.

Taking derivatives of equation (3.3) twice, we can get

[(F(w)waﬁ + F*Puqp | =0,
1

[(Faﬁ)lluaﬁ + 2(F*)1uap + F(Xﬁuaﬁll} =0.
1

° °
#0= 7 0=

Then we have

—’LL2 Z F Uap11 —’LL Z FQB 11ua5+2u2 Z Fe ﬁ 1ua51 (328)
a,f=1 a,Bf=1 a,f=1
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By (3.13) and (3.26), it follows that

n
202 Y (F)rttapn = (8p — Apudunuly +4(p — 2wl ey
a,f=1
n-1 (3.29)
+Aubuny Y it +A(p — 1)U tn1 U
=2

4 4
—dupupiarr 1 — 4(p — 2)upu11011,50-

By (3.13), (3.23) and (3.27), we obtain

n n—1
u? Z A rtias = 2(p — Dulud, 4+ 202 u? jup, + 2ulu?, Z Uj;
a,B=1 =2
n—1
+10(p — 2)uduriuz, + 2(p — 2)uiun Z u?; (3.30)
i=2
n—1
)Uﬁ Z UniA11,i-
i=1
Combining (3.28)—(3.30), we get
u? Z Fob Uapir = 2(p — Dudud, + (4p — 6)uZul unn
a,f=1
n—1
+ 2u2u?, Z ug + (18p — 24)u?uy u?,
i=2
n-1 n-1 (3.31)
+2(p — 2)uZun, Z Uz + Aud Z Uji1
i=2 i=2
+4(p — Dudupitnn — dupupian 1
n—1

—4(p— Q)Uiunan,n —2(p — 2)ul Z Upi@11,;-

By (3.24), (3.25) and (3.31), we obtain

n n

Ty = tnur Y F*PUnag+ 2untnn Y FPuas —ul Z F*ugpi

a,B=1 a,f=1 a,B=1
n—1
= 2(p — DuZud, + (4p — 6)uul un, + 2uZu?, Z Ugs
o =2 (3.32)
+ (16p — 14)ului u?, + 6uduy, Z w1 + 6(p — Duduintinn
i=2

— 4(p — 2)upunainy, — bupuizan — 2(p — 2)u Z UniG11,i-
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Noticed that (3.23), by (3.19), (3.22) and (3.32), we have

n n—1

ud Z FPayy 0p = (2p — 3)ulu?, — 2uud, Z wii + (19p — Tudugiui,
a,B=1 =2
n—1 n—1 n—1
+(p— Dupurr Y gy +ujunn yuf+6uiul, Y ug
=2 =2 i=2
n—1
+10(p — Dubvantinn + 6uurn Y wiin + G(Vary),
=2

(3.33)

where

n—1
G(Vall) = — 2(p — Q)Ui Z umvalu — 4(p — 1)uiu11a117n
=1

n
4 2 [e%eY
— 6u, unai1,1 — 2u;, E F*Upaaiq-

a=1
Let us use the equation (3.1) to substitute the term uy,,; in (3.33). We take
derivative of (3.1) with respect to z; to get

n—1 n
(p - 1)uiunn1 = _UEL Z U431 — 2unun1Au - 2(17 - 2)un Z UlaUnea,
=1 a=1
by (3.13), it follows that
n—1
(p— Dt upn = —u? Z w1 + (1 — 2p)upuiitiy, + Uian,l- (3.34)
i=2

Hence, by (3.33)—(3.34) we have

n n—1
ub Y a1 0p = (20 = 3upudy — 2ulul; Y w4+ (3 - plujund,
a,f=1 =2
n—1 n—1
4 (p— Du? 2 2 2 (3.35)
p— Du;uig Z un; + U Ul Z us; .
i=2 i=2
n—1 n—1
+ 6ului, Z wii — 4uduy, Z w1 + H(Vayy),
i=2 i=2

where

n—1
H(Vay) =—2(p—2)up ¥ tniarri — 4(p — Dupurian
=l (3.36)

n
4 2 oo
+4du,uipay,r — 2u;, E F*Upqara-

a=1

Step 2: The end of the theorem.
Now we calculate the following term in (3.8)

n—1 n
Qui E g Fo‘ﬁakkalkﬂalkﬁ.
k=1 a,p=1
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By (2.3) and (2.6), we get for 2 <i<n—1,

2
Una”’i = —UnpUj;1 + Ui Wi (337)

Since agy = —* 5= > 0, by (3.37)

2u3 Z Z FoBgkk 1k,a01k,8 > 2u3 Z F”a”ai ;

k=1 a,f=1

(3.38)
= 2 —UpUii1 + Uil )>.
By (3.35) and (3.38), we obtain
upaiy Y FPpug
a,B=1
> — (3 —pludunul, — (p— Dudug Zum (2p — 3)uZu?,
n—1 —
— uiull Z u?i + 2u,21u%1 Z ui; — 6u> U1n Z Uig
i i=2
n—1
2 mn (2 n Wig 4 n T H v 3.39
+ ;—u” —UnUi; + Urnts)? + dudug ;ul (Vaiq) (3.39)

|
—

n

= — uiull [(3 - p)u%n +(-1) 3”}

||
)

i

n—1 n—1
—u?uy, {(2]) —3)u? —2 Z U11Uii + Z Ufz]

i=2 i=2
+2 Z

— upu1i)® — H(Vai)

where H(Vaj1) is the term involving V¢ with locally bounded coefficients.
Recall that the level sets are strictly convex with respect to the normal direction
Vu, we have u;; <0 for 1 <i <mn — 1. Hence, for p > %, we have

n—1 n—1
—uZug, [(Zp —3)ul —2 Z U1l Ugq + Z ui]
i=2 i=2

> —ulugy Z(Uu — )2 > 0.

We alsoneedp—1>0and 3—p>0,ie. 1 <p<3.

Hence, for

"T“ < p < 3 we obtain

Z FPpa5 >0 mod V. (3.40)
a,B=1

We complete the proof of the Theorem 1.3. O
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4. Principal curvature estimates of level set of minimal graphs. In this
section, we study the following equation

div(L
V14 |Vul?
and prove the Theorem 1.5.

We prove this theorem as in the last section. In the following proof, the Greek
indices («, 3,7, 0, ...) run from 1 to 3, the Roman indices (i, j, k, [, ...) run from 1 to
2. Denote

)=0 in QcCR? (4.1)

FOP(Vu) = (1 + |Vul?)bap — uaus. (4.2)
Then equation (4.1) is equivalent to
3
> FPugs =0. (4.3)
a,B=1

Proof of Theorem 1.5:

Since the level sets of u are strictly convex with respect to the normal direction
Vu, the curvature matrix (a;;) of the level sets is positive definite in Q. Let (a™)
be the inverse matrix of (a;;). As in the last section, Let ¢ = a''. We will derive
the following differential inequality

3
> Fpas>0  mod Ve in Q (4.4)
a,B=1
here and in the following we modify the terms involving V¢ with locally bounded
coefficients. Then by the standard strong maximum principle, we get the result
immediately.

In order to prove (4.4) at an arbitrary point z, € €, as in last section we choose
the normal coordinate at z,. We may assume u;(x,) =0, 1 < i < 2 and uz(z,) =
|[Vu| > 0. We can further assume the matrix (u;;(z,)) (1 <4,j < 2) is diagonal
and u;(x,) < 0. It remains to establish (4.4) under the above assumptions.

From now on, all the calculation will be done at the fixed point x,.

Similar to the proof of Theorem 1.3 in the last section, we have

3

3
usal, Z Faﬁapag > 2u§F22a22a%2’2 —ul Z FaBalLag.

a,f=1 a,Bf=1
Since a?? = — 2 we have
22
3 3
u§a22a%1 Z Faﬁ(pag Z 2F22(u§a1272)2 + U§UQ2 Z FaﬁalL(X,@. (45)
a,B=1 a,f=1
In the following, we shall prove
3
2F22(u§a1272)2 + Uz, Z F“5a117a3 >0 mod Ve in €, (4.6)
a,f=1

Let us prove (4.6) in two steps.

Step 1: We first calculate the term u3 Zi 5=1 FBay; op, it will be completed
in (4.25). ’

As in the proof of (3.13), we can obtain

2
U3UI e = 2U10UI3 + UI1U3G — UZA11,q- (4.7)
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Similar to (3.18), we have

3 3
ug Z Faﬁall,ag =T +To+ T35+ Ty — 6u§ Z Fo‘auko,aauﬁa, (48)
a,f=1 a=1

where the terms Ty, Ts, T3, Ty are the same as in (3.18) for n = 3.
For the term Ty, by (4.2), we have

3 3
Ty = 3uiy Z FPusqusg + un Z FPu, g
a,B=1 a,B,y=1 (49)
=5+ 4u§)u11u%3 + 5B+ 4u§)u11u§3 + 4u11u§3

+ (L4 ug)uly + (14 ud)urrudy.
For the term T%, by (4.7) we have

3 3
TQ = 4U3 Z Faﬁulaulg,g — 4U3 Z FaﬁU3QU115
a,f=1 a,f=1
= 4(1 + ud)ufyuzs — 4(1 + ud)uriuts — 41+ ud)uiiuzs (4.10)
— dupiu3y — Suszuls + duzuizurss
3
+ 4u? Z Fugna11 .0 — 4u3(1 + u3)uiiary 3.
a=1
For the term T3,
3 3 3
T3 = 211,11 Z Fo‘ﬁulaum + 4U13 Z FO‘BU3au15 - 2U33 Z F“Bulaum
a,B=1 a,B=1 a,B=1
= 2un [(1 4 u3)ufy + uis] — 2uz3[(1 + w3)uf; + ui;]
+ dufy [(1 4 u3)ury + uss].
(4.11)
By (4.10)—(4.11), we obtain
Ty +Ts = 2(1 +ud)uiy +2(1 + ud)ud usz + 2upuly
— 4(1 + u%)u11u§3 — 4U11U§3 — 6’(1,331133
3 (4.12)
+ duzuisuss + 4u3 Y F*uzaan o
a=1
— 4’LL§(]. + ug)uuauvg.
Now we work on the term Ty, by (4.7) we get
3
2u3u13 Z Fo‘ﬁuam = QU3U13[(1 =+ u%)ulu + (1 + u%)ulgg =+ U133]
*p=1 (4.13)

= 6(1 4+ ud)uyuis + 2us(1 + ud)uizuion
+ 2ugzui3u133z — 2’UJ§(1 + u%)ulgan,l.
Since

(FP)3 = 2u3u3300p — Uaslip — Uatps,
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we have

3 3
uguny > F*Puaps = —uzury Y (F*%)suap
a,B=1 a,B=1

2 2 2 2 2,2
= 2uzu11uls + 2u3ui1uss — 2uzUTU33

— 2u§u11u22u?,3.
For the term —u2 Zi 5=1 Faﬁuagll in Ty, by (4.2) we have

(FP)) = 2u3u1360p — Ua1p — Ualpt,
3
(FeF)y =2 Z u315a,3 + 2u3u113003
y=1
— Ua11Ug — UqUBL1 — 2Ua1UB]-

Taking derivative of equation (4.3) twice, we get

3 3
> (FPtas + Y FPuap =0,

a,f=1 a,f=1

3 3 3
Z (F) 111105 +2 Z (F*P)1uqp + Z FPuqp1y = 0.
a,pf=1 a,p=1 a,p=1

By (4.7) and (4.16), we have

3
Z (F)11uap = (Buge — duyy)uly — 2uiiudg + 2ul; (ugs + 2uz3)
a,B=1
3

2 2
+ 2uq1u92u33 — 2u3Aua11,3 + 2’LL3 E U3 011, -

a=1
Similarly, by (4.7) and (4.15), we have
3
2 Z (FP)1unp = duiiuiy — du?iugs + duguizuss
a,f=1

2 2
—4uzuizair,r +4uzuiiai, .

Therefore combining (4.17)—(4.19), we have

3 3 3
— Z F"‘Buaml = Z (Faﬁ)lluaﬁ +2 Z (Fa'@)lu&ﬂl
a,B=1 a,B=1 a,B=1

2 2
= GUQQU13 =+ 2U11U22U33 + 2U11U22

2 2
— 2u1qUs3 + dusuisuio — 2uzAuars 3
3

2 E 2 2
+ 2U3 U3aA11,00 — 4U3U13a1171 + 4U37.L11(11173.

a=1

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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By (4.13), (4.14) and (4.20), we have

3 3
T4 = U3U11 Z Faﬁuaﬁg — ug Z Faﬂuagll
a,f=1 a,f=1
3

+2uzurs Y F*Puap
a,f=1

2 2 2 2 2,2 2.2
= (6 + 8uz)uriuis + 6uzusauis — 2uzul uss + 2usui Use

+ (ZU3 + 6u§)u13u122 + 2uzui3u133 — 2u§Aua11,3 (421)
3
+ 2u§1 Z U3 11,0 — (2u§ + 6u§)u13a11’1 + 4u§u11a11,3.
a=1

Collecting (4.9), (4.12) and (4.21), we can obtain

3 3
’U,g Z Faﬁan,a/g =T\ +To+T5+ T, — 6u§ Z F‘muwan,a
a,f=1 a=1

= 3(1 + ud)u?, + 2ut uss + 2uiul ugy
+ (13 4+ 12u2)uriuls + upuds + (1 + ud)ug uiy
+ 6u§u22u§3 — 6U33u%3 + (2’&3 + 6U§)U13U122

i , (4.22)
+ 6U3U13U133 — 2u3Aua1173 — 4u3u11a1173

3
4 2 4
+ 2us g Uga 11,0 — (2u3 + 6uz)uizai 1
a=1

3
2 ao
— 2u3 E F U311, 0~

a=1

To simplify the above formula, we use the equation (4.1) to substitute the terms
uzz and w33 in (4.22). From the equation (4.1), we have

uzz = —(]. + u%)(uu + UQQ). (423)
Taking derivative of equation (4.3) with respect to z1, we get
U133 = —2uzu1zuoy — (1 +u3)uiry — (14 ud)uze.

By (4.7) and (4.23), we have

ugtguiss = — 2uzuisugy — ug(l + uf)uizuns: (4.24)
—3(1 4+ u3)urruis + (1 + u3)ujuizary 1. .
Inserting (4.23) and (4.24) into (4.22), it follows that
3
uj > F%a110p =(1 4 u3)uf; — 2uf uss + uniufs + urruds
a,f=1 (4.25)

+(1+ ug)uuugz + 6u%3u22 — duguiguize + L(Vaq),
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where

4 2 2
L(Vall) = — 2u3Aua1173 — 4USU11G11)3 + 4u3u13a11’1

3 3
4 2 ao
+ 2us E U3 011,0 — 2U3 g F*uzqai1,q
a=1 a=1

is the term involving V¢ with locally bounded coefficients.
Step 2: The end of the theorem.
Similar to (3.37) in the last section, we have
u?2,G12,2 = —U3Ui22 + U13U22. (4.26)
By (4.25) and (4.26), we have

3
2F?2 (u§a1272)2 + UQQU% Z Faﬁa117a5
a,Bf=1

= 2(1 + u3)(—uguioe + urzuan)? — duzuizussuion

2 2, 3 2 2
+urrugauys + (14 uz)ujjuge + 6uizus,

2 2 3 2 .2 (4'27)
+ uriugauys + (1 + u3)uriusy — 2ug sy
= 2u3(—uguize + urztan)? + 2(2uizusn — uzUizg)?
+ ufuriugs (ufy + udy)
+ uprugsf(u11 — 'LL22)2 + u% + ugg] mod V.
Since u11 < 0 and ugy < 0, we have
3
2F22(u§a1272)2 + UQQ’U% Z Faﬁall@,@ >0 mod V.
a,B=1
From the observation in (4.5), it follows that
3
Z F”"@goag >0 mod V.
a,B=1
We complete the proof of Theorem 1.5. O

Remark 4.1. Using another auxiliary function, recently Chang-Ma-Yang [7] and
Ma-Ou-Zhang [19] got the lower bound estimates of the principal curvature and
the Gaussian curvature for the convex level sets of higher-dimensional harmonic
functions in convex rings.
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