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Abstract. We prove a constant rank theorem for the spacetime Hessian of the spacetime
convex solutions of standard heat equation. Moreover, we apply this technique to get a con-
stant rank theorem for the spacetime hessian of a spacetime convex solution of a nonlinear
heat equation.

1. Introduction

Heat equation is a basic partial differential equation. It appears in index theorem
[2], Brownian motion [11] and geometry analysis [30], etc. It is important to under-
stand the geometric and analysis properties of the solutions for heat equation. In this
paper we concentrate on the spacetime convexity of the solutions of heat equation.
We first state some related developments on this subject.

In 1976, Brascamp and Lieb [8] used the Brownian motion to study the heat
equation and proved the log-concavity of the first eigenfunction and the Brunn—Min-
kowski inequality for the first eigenvalue of Laplacian equation in convex domains.
In 1986, Li and Yau [26] proved a gradient estimate and a Harnack inequality for
parabolic equations with Schrodinger potential on Riemannian manifolds. And
Hamilton [16] gave a matrix version of Li and Yau Harnack inequality, in which
he proved that the Hessian matrix of the logarithmic function of solutions to heat
equation is positive definite under certain curvature condition.

Now we turn into the spacetime convexity for the solutions of heat equation. In
a series of papers by Borell [5—7], he studied certain spacetime convexities of the
solution or the level sets of the solution for heat equation with Schrodinger potential.
As a consequence, he gave a new proof of the Brascamp and Lieb’s [8] theorem
and the Brownian motion proof of the classical Brunn—Minkowski inequality.

In this paper we establish a constant rank theorem for spacetime convex solu-
tions of heat equation. Using similar calculations, we obtain a constant rank theorem
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for solutions of a nonlinear parabolic equation, whose spacetime convexity was
obtained by Borell [6].

First, we give the definition of the spacetime convexity of a function u(x, t).
We denote by Du and D?u the spatial gradient and the spatial Hessian matrix
respectively.

Definition 1.1. Suppose u € C21(Q x (0, T)), where € is a domain in R”, then u
is spacetime convex if u is convex for every (x, ) € (2 x (0, 7)), i.e

=~ (D?*u (Duy)T
2. t
D2y = (Du, o > 0. (1.1)

Our main results is the following theorem.

Theorem 1.2 Let Q2 be a domain in R", and u € C3'(2 x (0, T)) be a spacetime
convex solution of the heat equation
ou
5= Au, (x,1) € Qx(0,T). (1.2)
If D2y attains its minimum rank | (0 < 1 < n) at some point (x,,t,) € Q x (0, T),
then the rank of D?u is constant on Q x (0, t,]. Moreover, let L(t) be the minimum
rank of D?u in Q2 for fixed t, then I(t}) < I(t2) forall0 <t <t < T.

Now we give an application of Theorem 1.2 to the result by Borell [6]. Let

<I>(x):/x exp(—A2/2)dr /27, x € (—o0, +00)

be the distribution function of a N (0; 1)-distributed random variable and ®~! :
[0,1] — (—o00,400) be its inverse function. Moreover, we define a bijection
(y,s) =¥ (x,t) of R” x R} onto R” x R by setting

y = ﬁ,
1
§=—,
Jt
then v(y, s) := —dlouo w_l(y, s) satisfies the equation
sv5+2Av+y~vv—2v|vv|2:0, (1.3)

where u satisfies the Eq. 1.2.

For the spacetime convex solutions of the Eq. 1.3, we also have the following
constant rank theorem.
Theorem 1.3 Let Q2 be a domain in R", and v € C31(Q2 x (0, T)) be a spacetime
convex solution of the Eq. 1.3. If Ez\v attains the minimum rank [l (0 <1 < n) at
some point (yo, s9) € Q x (0, T), then the rank of ﬁ takes the constant | on

Q x (0, sg]. Moreover, let I(s) be the minimum rank ofgz\v in Q for fixed s, then
I(s1) <I(s2) forall0 <s1 <sp <T.



Constant rank theorem 91

Remark 1.4. In 1996, Borell [6] proved that if D™ = D x {t > 0} and A C R"
satisfies some convexity conditions, and

M(§)=/AP(C,(J€,0))dx, ¢ eD,

where D C R” x R, and p : D x D — [0, +00) is the Green function of the
heat operator in D equipped with zero Dirichlet boundary condition (see Watson
[32]), then —®~! o u o ¢! is spacetime convex in ¥ (D).

Combining this result of Borell [6] and Theorem 1.3, we conclude that —®~! o
uo1 ! not only be a spacetime convex solution of the Eq. 1.3, but also has constant
rank property.

We shall give a short review on the history of the convexity for the solution of
elliptic partial differential equations. So far as we know, there are two important
methods to approach this problem, which are the macroscopic and microscopic
methods. The former is based on a weak maximum principle, while the latter uses
the strong maximum principle coupled with a continuity argument. For the mac-
roscopic convexity argument, Korevaar made breakthroughs in [24], in which he
introduced a concavity maximum principles for a class of quasilinear elliptic equa-
tions. Later it was improved by Kennington [22] and Kawhol [21]. The theory was
further developed to its great generality by Alvarez et al. [1].

The key of the study of microscopic convexity is a method called constant
rank theorem which was discovered in 2 dimension by Caffarelli and Friedman
[9] (a similar result was also discovered by Singer et al. [31] at the same time).
Later the result in [9] was generalized to R" by Korevaar and Lewis [25]. Recently
the constant rank theorem was generalized to fully nonlinear elliptic and parabolic
equations in [10] and [3,4], where the elliptic result in [3] is the microscopic version
of the macroscopic convexity principle in [1]. For parabolic equations, the constant
rank theorem in [10,3] has been proved with respect to the space variable only.

Constant rank theorem is a very useful tool to produce convex solutions in
geometric analysis. By the corresponding homotopic deformation, the existence of
convex solution comes from the constant rank theorem. For the geometric appli-
cation of the constant rank theorem, the Christoffel-Minkowski problem and the
related prescribing Weingarten curvature problems were studied in [15,14,18].
The preservation of convexity for the general geometric flows of hypersurfaces
was given in [3]. The Brunn—Minkowski inequality for the first eigenvalue of some
elliptic operators are studied in [27].

There are some related results on the spacetime convexity of the solutions of
parabolic equation in [19,20,23,29] using the similar elliptic macroscopic convex-
ity technique in Kennington [22] and Kawhol [21]. In fact Ishige and Salani [19,20]
studied the spacetime convexity of the level sets of the solution for a class parabolic
equation.

The rest of the paper is organized as follows. In Sect. 2, we give some prelim-
inaries. In Sect. 3, we prove the constant rank theorem of heat equation. Then in
Sect. 4, we prove Theorem 1.3.
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2. Notations and preliminaries

In this section, we shall collect some basic properties of elementary symmetric
functions, which could be found in [28].

Definition 2.1. Forany k = 1,2, ..., n, we set

Sp(0) = > MijAiy - hiy,  forany A= (A1, ..., Ay) € R"
1<iy<iz<--<iy<n

We also set So = 1 and Sy = 0 for k > n.

For 1 <k < n, I'k is a cone in R" determined by
Fy={ArxeR": S1(A) >0,...,and S(1) > 0},

and Iy contains the positive cone I', = {A € R*;A; > 0,1 <i < n}. Tk is
symmetric, namely, if A € 'k, then any permutation of X lies in [y too. In fact, I'x
1S a convex cone.

Definition 2.2. Let W = (W;;) be an n x n symmetry matrix, for 1 < k < n we
define

Sk(W) = St(M(Wi))) = > Ai ki - higs

1<ij<ip<--<ix<n

where A = (A1, ..., A,;) € R" denote the eigenvalues of the matrix (W;;). Equiv-
alently, Sx (W) can be defined as the sum of the k x k principal minors of W.

We define Sp(W1i) = Sp(L(W|i)) where (W|i) means that the matrix W exclude
the i-column and i-row, and Sg(W|ij) = Skx(A(W|ij)) where (W]ij) means that
the matrix W exclude the i, j columns and i, j rows. Then we have the following
well-known identities.

Proposition 2.3 Suppose n x n matrix W = (W;;) is diagonal and 1 < k < n,

then
OSKW) _ [ Sici(W i), ifi = j.
oW;; |0, ifi#j,
and
Sk (W lir), ifi=j,r=s,i #r,
825 w k—2
T A SaW i), i =5, =i #
WijoWrs 0, otherwise .

Let’s denote by S (A|i) the sum of the terms in S (1) not containing the factor A;,
and denote by Sk (X1]ij) the sum of the terms in Si(A) not containing the factors
Ai, Aj. Now we state some basic formulas of the elementary symmetric functions.
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Proposition 2.4 Let A = (A, ..., Ay) € R"andk =0, 1,...,n, then
Se(h) = Sk i) + AiSe—1 (Wi, Y1 <i<n, @.1)
D hiSk-1 (i) = kSp (), (2.2)
i
DSkl = (n = k) Sk (2.3)
i

From the definition of S (W), it follows that for

— 2 T
Dl — (D u (Dur) )
Du;  uy

we have the following relation.

Lemma 2.5 VO <[ <n,

S1(D2u) = Sp11(D?u) + u Si(D*u) =~ S (D?uliyuj,

1

+ > Sa(DPulipuguguiy — D sS-3 (D ulijh)ugugjuiug
i#] i# ] i#k, jFk
+T, 2.4)

where the terms which contains at least three u;;(i # j) consist of T.

3. The proof of Theorem 1.2

In order to prove the Theorem 1.2, we first prove the following differential inequal-
ity locally on spacetime.

Lemma 3.1 Let Q be a domain in R", and u € C31(Q x (0, T)) be a spacetime
convex solution of the heat equation

d
a_b; = Au, (x,1) € Qx(0,7). 3.1)

Suppose there are a point (xg, ty) € Q x (0, T) and a positive constant Cy, such
that for a fixed integern > 1 > 1, S (D%u)(xg, 1) > Co. Then there are positive
constants C1 and Cy depending only on ||u||c3.2,n and Co, O C Q which is a small
neighborhood of xo and § is a small positive constant, such that

Ap(x, )= (x, ) =C1p(x, N+ C2 V| (x,1), V(x,1) € Ox(t9—6,10+9),
(3.2)

where ¢ = S;+1(52\u).
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Proof. We divide into two steps to prove this lemma.
Step 1: First we give the routine calculations for

AP — ¢

at some fixed point (x, 7).
For each fixed (x,7) € Q x (0,T), we choose a local orthonormal frame
{e1, en, ..., e,} so that D%u is diagonal. All the calculations will be at the point

(x,1).
At (x, t), by Lemma 2.5

Sit1(D2u) = S41(D%u) + uy S;(D%u) — >, Si—1(D*uliyu?,  (3.3)
and T satisfy

T 92T

T = 07 = ’
8x,~ Bxiaxj

=0, VI<ij<n.

Taking the first derivatives of ¢ with respect to ¢, we have

¢ = D SIDuliyusii + e S(D*u) + s Y Sj-1(D>uliyuyii

i i

—2251 (D2uliyugiuy; — D Sp-a (D ulijyug;ui (34)
i#]j
+25172(D Wlij)usithejugij.
i#]

Computing the first and second derivatives of ¢ in the direction e, we have

bp =D SD uli)uiip + uypSI(D*u) + uy Y Sy (D*uli)uiip
i i
_ZZSI l(D M|l)utlutl[7 ZSI 2(D MllJ)uUuup (3.5)
i#]j
+ZSI—2(D wlij)usiugjuijp,
i#]j
and
bpp = ZSI I(D u|lj)utzp jip ZSZ 1(D ullj)uljp+ZSI(D u|l)utzpp
i#] i#]
+S1(D u)uthp+ZZSl 1(D u|l)uttpuzzp+”ttzsl Z(D '4|1J)”zlp Jjir
i i#j
—urr Y S (Dulijug;, + sy Sio1(D2uliduiipy —2 > S 1(D?uliug,
i#j i i
_ZZSI I(D ”‘l)ununpp 4251 2(D ”|l/)”tj”tjp”up
i i#]j
2,1ii e
— z S;—3(D u|l]k)utku”pu”p+ Z Si— 3(D ”|Uk)"‘zk”sz
i#],i7#k, j#k i#],i#k, j#k
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- Z Sl*Z(Dzulij)utzjuiipp +4 Z S172(D2M|ij)utiutjp”ijp

i#] i#]
+ZSlfz(Dzuﬁj)”tiutj”ijpp +2 Z Si—3(D*ulijhyugiugjugjpikkp
i#] i# )17k, jFk
-2 > Si—3(Dulijkyugiugjug; pigjp. (3.6)
i#]i#k, j#k

Combining (3.4) and (3.6) yield that
Ap—¢y=1+11+111+1V+V,
where

I=>" Si(D*uli)(Au — ;)i + Sy (D*u)(Au — u;)y

1

g D S (D2uli)(Au —up)ii — 2D S (D uliug (Au — up)si
i i
= Sia(DPulijyu;(Au — u)ii + D Sia (D ulijugu (Au — u,)ij
i#] i#]
=0,

since u is the solution of heat equation u#;, = Au; the second term is

11==3" s1(D2ulijyul, -2 S (D2uliy?,

Poi#j iLp
+4 DD S a (D ulijyusiugpiijp
poi#j
=22 > Sia(Dulijkuijuripusjp: (3.7)

Poitjitk, j#k
the third term is

= Z Z Si—1(D*ulipuiipujjp —4 Z Z Si—2(D*ulijyusjuspuiip

P i) poi#]
420 D> Sa(DPulijk)uiuijpuky: (3.8)
P oi#jik, j#k
the fourth term is
1V =23 Si1(D2uliuspuiip; (3.9)
iLp

and the fifth term is
Vo= 0 > Sia(D2ulijuiipujjp — i D Sia(D?ulij)uj,

pi#) b iz
=> D Sa(Dlulijlouuipup

P itjistk,jEk
+>0 > Ss(DRulijkubul,. (3.10)

Poitjizk, j#k
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Step 2: Under the assumption S (D%u)(xg, 1) > Co > 0, there exist a small
neighborhood O C Q of x( and a small positive constant § such that

C
S (D*u) (xo, to) > 70 >0, Y(x,1) €O x(tg—8,10+38).
In this step, we prove the following important inequality

Ap—¢; <0, V(x,1) € Ox (tg— 8, tg+9), @3.11)

where we follow the notations in [9,15], let 4 and g are two function defined in
O x (to — 8,10 + 8), we say h < g if there are positive constants C; and Cp
depending only on ||u||c2.1, n (independent of (x, 1)), such that (h — g)(x, ) <
(C1IVp| + Cap)(x,1),V(x,1) € O x (tg — 8, to + 8). We also write

h~g if hSg gxh

For each fixed (x, 1) € O x (t)—8, to+6), we choose a local orthonormal frame

e, ..., e, sothat D%u is diagonal and let u;; = A;,i =1, ..., n. We arrange A >
Ay > - > A, >0, where A = (A1, A2, ..., A,) are the eigenvalues of D%y at
(x,1).

Since S;(D*u) > Co/2 and u € C31, for any (x,1) € O x (tg — 8, 19 + §),
there is constant C > 0 depending only on ||u||-2.1, 1, and Co, such that A} > Ay >
->M>C>0.LetG={l,...,l}andB = {l + 1, ..., n} be the “good” and
“bad” sets of indices respectively. All the calculations will be at the point (x, ¢) in
this step.
At (x, t), by Lemma 2.5 we have

0~ ¢ = 5141(D%u) = Sp41(D*u) + u SD*u) = " Si—1(Duliyu;

1

2
us.
> SI(G)S1(B) + S1(G) (s — 3 =), (3.12)
ieG "t
SO
Ai~0, i€B; (3.13)
2
1
wi =y L ~0, (3.14)

ieG !
where we used D2u is positive semi-definite, and we have chosen only the two
[ + 1 order principal minors of all in (3.12). This relation yield that, for 1| <k <1/

Sk(Gli), ifi € G,

Sk (G), ifi € B,
Sk(Glij), ifi, j € G, i # j,

Se(D?ulij) ~ { Sk(Gli), ifi € G, j € B,
Sk (G), ifi,jeB,i#]j.

Sk(D*u) ~ SK(G),  Sp(D?uli) ~ [
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Actually, we also yield S;42 (52\u) = 0(¢?) from Sl+1(52\u) = ¢. Expending

S;+2(D2u) and reserving only three [ + 2 order principal minors of all, it follows
that

0@ = Si2(Du) = Sp42(D2u) + ty Sper (D2u) — > Si(Duliyuc
= S1(G)S2(B) + uis Si(G)S1(B) — D S 1(Gli)Si(B)us;
ieG
—S1(G) D ug+unS1(G)S2(B)— D Si-2(Gli)S2(B)ug,
ieB ieG
—S$1-1(G) D_ Si(Bli)uj; + 0(¢*)

ieB

= 51(G)$2(B) + Si1(G)S1(B) (usyr — Z ”)

ieG
+S2(B) i Si-1(G) = D Si-2(Gliyug]
ieG
= D IS1(G) + S 1(G)S1 (Bl lug; + O,
ieB
so we have
u; ~0, i€B. (3.15)
For 1 < p < n, we introduce the following notations:
Uypj .
Cp= Zu“,,; Bip = Z T;u,/p, for i €G. (3.16)
ieB jeG

Inserting (3.13)—(3.15) into (3.5), we get

0~ ¢p ~SIG) D witp+S1(Gusp+ts D Si-1(Gliduiip+ity Si-1(G) D uiip

ieB ieG ieB
=2 S (Gliugiuiip — Y Si-2(Glij)ug;uiip
ieG i,jeG
i#]
- Z SI—Q(G|j)ut2j Z”iip + Z S1—2(Glij)usjusjuijp
jeG ieB i,jeG
i#]
~Sz(G>Zu”p+sz(6)un,,+sl(G>Z u”,,+sz(G> 2. i > wiip
ieB tEG jeG ] ieB
Uy U
—285/(G) Z _utzp + 85(G) Z L tj Uijp,
ieG i,jeG
i#j

using (3.16), it follows that



98 B. Hu, X. Ma

Uy ~ — [ 1+ Z C,— Z —B,,, 22 —ut,,, (3.17)

jEG e icc M

Now we will use the relations (3.13)—(3.17) to treat the terms I1; I11;1V;V
in (3.7)—(3.10). We shall divide all the terms in I/ + I11 4+ IV + V again into
four classes. The first class is of the quadratic terms of Cf,; the second class is
of the terms who contain C; the third class consists of the terms like u,;, and
ugp (Yi, j, k, 1 € G); the other terms become the last class.

First we use (3.13) and (3.15) to simply 11,

”N_Z Z+Z+Z+z Slfl(D2“|ij)"‘i2jp

P z_‘eG feB i,jeG i,jeB
JEB jeG i#j i#]

= (Z + Z) Si-1(D*uliyug;,

P ieG i€eB

+4ZZ Z+Z Si—a(D*ulijyusiugjpuijp
P ieG \ jeB  jeG
J#i
—22 Z Z—i— z S1—3(D%ulijk)uiujukiptijp
P ijeG \ keB keG
i#j ki k#]
~ 11+ 11,
where
Il = —22251_1(G|i)ul2ip + 42 Z S1—2(Glij)uriusjpuijp,
p ieG poijeG
i#j
—22 Z S1-3(Glijk)usiusjugipusjp,
P i.jkeG
i )ik, j
Ih= 233" S 1(Glpu, - 16 Y > u,
p i€B jeG poijeB
i#j
—281(G) DD g, +4 DD S (Gl ugjunipuip
p i€eB P i€eB jeG
=222 > Si-3(Glijusitjukipitcjp-
P keBi,jeG

i#j
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Also by (3.13) and (3.15), we yield that

I~ 43+ >+ | wiipujip
P

l:EG ieB i,jeG i,jeB
JEB  j€G i#j i#j

2535 3] b5 3 R
p jeG | ieB  ieG
i#j
2" D0+ D | Sa(DPulijh)uiusjuijpuip
p i.jeG \ keB keG
i#j ki k#
~ S-1(G) DD i ip 42> D S (Glugip D uiip
P i.jeB P jeG ieB
i#]
4D S Glipugugpuiy =4 Y Si-2Gl iy Y wiip
P ijeG P jeG ieB
i#
+23° > Sia(Glipuginigigy D ukkp
P i,jeG keB
i#]
42> D Si3(Glijkuiuguijpurkp.
)4 i,j.keG
i) ik,

Since

Zui,-pujjp :Zu,-,-p Zujjp — Uijip ICIZJ—ZMI-ZI-F, (3.18)
i,jeB ieB jeB ieB
i#]
it follows that
I ~I1ILH+11L+ 1113+ 1114,

where

111 = 51-1(G) 3 C}.

r
11 =273 Cpl Y Sim1(Gliujip =2 3, Si-2(Glusjusjp
P jeG Jj€G
+ 2 S (Glipuriujuijp),

i,jeG

i#]
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1I3==4%" > Sia(Glijujusjpuiip
P i.jeG

i#]
4220 D Sia(GlijRuiuguijpurp,

i,j.keG

p
i# ], i#k, j#k

Iy = —8_1(G) Zzuizip'

P i€B
We apply (3.16) and (3.17) to IV and obtain that,

1V = ZZ(Z‘FZ)S[ I(D uli)uspliip

ieG ieB
~2811(G) DD wipttiip +2 D S 1(Gli)uspuiip
P i€eB P ieG

~2Z[Sz 1(G)Cp+ D Si-1(Gliuiipll— 1+Z Cp

ieG /EG
u
—Z “Bip+2 St
ieG l ieG l
=1Vi+1Vy, +1V3,
where
1Vi = =28_1(G) 1+Z ] Zcz,
]EG
m-zzc [25;- 1<G>Z—un,7—sl 1(G>Z—B,p
ieG Ai e Ai
- 1+Z i > S (Gliyuiip],
jEG ieG
IV;=4>">"5_ 1(G|J)u,,pz iy =2 D S 1(G|J)M]]pz Bip.
p jeG ieG l P jeG ieG

Again by (3.13) and (3.15), we have

Vomun 2D+ D> | S (D ulijuiipuyjp

14 ieG ieB i,jeG i,jeB
JEB  JEG %] i#j

—u D | DA DA DD | S (DPuliu,

P ieG ieB  i,jeG  i,jeB
JEB  JEG  i#j i#]
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2202 2+ Z > Si—3(D?ulijR)uguiiph jjp

P keG \ i.jeB ieB i.jeG
i#j JEG.jFk zeG:;sk l;ﬁ/l;ﬁk/;tk

+Zz Z+ Z + Z + Z 8- 3(D M|l]k)utkul]p’

P keG \ijeB _ ieB jeB i,jeG
i#j Je€G.j#k ieG,i#k i#j,iFk, j#k

it follows that

Vo~ unSi2(G) DD wiipjip i D D Si-a(Glijuiipujp

p ijeB p ijeG
i#j i#]j
+2uy Z Z S1—2(Glj)ujjp Z ujip — ur S—2(G) Z Z Misz
P jeG ieB P i, jeB
i#]
—ti DD SI2(Glijud, = 2u > DD S (Gljud,
P ,,ec P ieB jeG
_ZZZ Si— S(le)utkuupu/jp z Z Sl—3(G|ijk)u;2kuiipujjp
P keGi,jeB i,j.keG
i#] I#J i#k, j#k
EDIDILIITTIN SIS 3 3 JLMTIEIE
P jkeG ieB P keGi, jeB
Jj#k i#j
+Z > SisaGlijhukul, +2> 3> S3(Glikukud,.
i,j.keG P I€B jkeG
i#ji#k, j#k J#k

(3.19)

In order to simplify the above expression, we still need to use Proposition 2.4,
(3.14) and (3.18). By the first term and seventh term in (3.19), we get

unSi2(G) D D wiipjip— DD D Sa(Gluguipujjp

P i jeB.i#j p keGi jeB.i#j
Sl 3(G|k) 2 2 2
= 52(G) |:Mn - Zk: m tk Zp: Cp— iezl;,“iip

keG ieB

~> S 2(G|k) (C,% - Zuzp)
p
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Coupling the second term and the eight term, we have

U z Z Si—2(Glij)uiipujjp — z z Si—3(Glijkyubuiipu jjp

p i,jeQ 14 . 'i,'j.kEGl
i#] i#] 17k, jFk
szzsl Z(Gll])_uupu//p
P i,jeG
i#]

Combining the third term and the ninth term, we obtain

2uy, Z Z Si— 2(G|])u//p zuup - 22 Z Si— 3(G|]k)utk”//p zuup

P jeG ieB j.keG ieB
J#k
2
_2ZC [ZS; 2(G|]) u,,p+ ZSI 2(G|Jk) ijp]-
jeG Jj.keG
J#k

By the fourth term and the tenth term, it follows that

—uySi2(G) D D> i, + DD S 3(Glougu,

P ijeB P keGijeB

i#] i#]
== > S2(Gll Sk ZZMW
keG P i,jeB
i#]

Using the fifth term and the eleventh term we get

—un Yy S z<G|u)u,,p+Z > Ss(Glijugud,

P i jeG i,j.keG
i#] t;ﬁjl#k Jj#k
=22 2 8- 2<G|U>_u,”,
P i,jeG
i#]

At last, by the sixth term and the twelfth term, we have

—2u D> S (Glpug, +2 DD > Si3(Glikugug,

P ieB jeG D i€B jkeG
J#k
=-22.2> > 526Gl ‘s Ty = 22,2, 2 Sa(GlikSE i,
P ieB jeG P ieB jkeG

J#k
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So we can write
VaVi+Vo+ V34V,
where
w2,
Vi = S1_»(G|j)—LC?
1 ZZ 1—2( lj)kj »
P jeG

2

Va=2>Cp| DS 2(G|J) uj,,,+Zsz 2(G|Jk) u,-,-p :

JjeG j.keG
J#k
i= 2> 3" s 2(G|z]) u”,,u,,p 2> > 8- 2(G|U) ul,.
P ijeG P i jeG
i#] i£]
Vi= =D S 2<G|k> Z St 2> 3 > s 2<G|,)
keG p 1]€B P i€eB jeG
4222%%%*%
P i€B jkeG
J#k

Nowwelet I + 111+ 1V +V =T + T + T3 + T4. Making use of some
basic formulas of elementary symmetric function in Proposition 2.4, we have

Ty:=11LH+1Vi+V;

2 2
= Zc2 —S1-1(G) — 25— 1<G>Z 2 L+ S 2(G|J)—
jeG jeG
2 2
= —|SG) + > 8- z(GIJ)— ZCZ—ZZSZ 1(G1)) —;Z
jeG jeG l 14

(3.20)
Similarly, we have

= I1IL+1V,+ Vs

= 2Zcp DS 1(Glpugip — 2D Si-2(Glujugy

JjeG JjeG

+ZSI 3(G|l])ulluljul]p+2sl I(G)Z Mllp
i,jeG ieG l

i#]
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2
s
=S1-1(G) D 5~ Bip — § —’2’ > Si1(Gli)uiip
eG J

ieG ! ieG
2 2
+2 Si2(Gl)* u,,p+ > s 2(G|Jk) uj,,, . G2
jeG J.keG
J#k

then we use Proposition 2.4 to simplify (3.21). First

— 2> Si-2(Gljujujp + 25 I(G)Z iy =2 81 1<G|z) ut,p,

jeG ieG Ai ieG
(3.22)
and
> Si1(Gljujjp — 1+Z i > Si-1(Gliuiip
jeG /eG ieG
2
+ Z —Sz 2(Gljlu jjp = —SI(G)Z Luiip. (323)
Ak A
Jj.keG ieG
J#k

From (2.1), it is easy to check that
S1-1(G) = §;—1(Gi) + Si—1(Glj) + AirjSi—3(Glij), Vi, jeG, i#].

Coupling the above relation and the definition of B;,, we have

u
> Si-a(Glijusiusjuijp — Si- 1<G)Z ‘B

i,jeG ieG
i#]
Ui U
= —8-1(G) Z d t] uup + Z Si— 3(G|l])u[lutjuljp
l/EG i,jeG
i#]
S1-1(G)
= =8 1(G)Z 2 —5 Uiip + Z |:Sl 3(Glij) — Y i|utiutjuijp
ieG i,jeG
i#]
— 516 - 2u,,,, 2516) > X ;_f iip
ieG i,jeG l J

i#j
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it follows that

o
> S (Glijuijuijp = S-1(G) Y B
i jeG ieG
i#]
u
=—8-1(G) z uup 2851(G) Z )L”)fj M,][]+2S[(G) Z )L3 Uiip

zeG leG i ieG

——2SI<G)Z B p+2sz(G>Z Fuiip = S > = 2uup (3.24)

zeG lEG lEG
Note that
2
SI(G)Z ” Mup S I(G)Z Mtzp+le 2(G|]) M]jp =0.
teG leG jeG
(3.25)
Inserting (3.22)—(3.25) to (3.21), we can reduce 75 to
= I1IL+1V,+ Vs
~ 22 2> s {(GI)S iy = S1(G) Z s
ieG lEG
uz
—25/(G) Z Bip +28(G) Y X—{;ui,-,,
zeG ieG
u
—SG) > i fuip+ Y5 8 2G|
A7 Aj
ieG ]EG
= 4 Z Cp > S 1(G|z) (ut,p Bip). (3.26)
ieG

For T3, we have

=11+ I1IL+1Vz+ V3

= 2> > S 1(Gliug, +4 D" S o (Glijyusijpuijp

p ieG P i.jeG
i#]
—22 Z Si-3(Glijl)usiugjugipup
i,j,keG
t#/t#k JF#k
=4 S a(Glij)ugujpuiip
P ljeG
+2Z > S3(GlijRuiuguijpuiky
i,j,keG

i#],i#k, j#k
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+4> > 8- 1<G|]>u,,p2 uz,p 23> 85 1<G|J)u,,p2

P jeG ieG p jeG ieG
+2> > 5 2(G|u> u,,,,u,,,, 237> 8- 2(G|u) uj,. (3.27)
P i jeG P ijeG
i#j i#j

Combining the second term, the fourth term and the sixth term in (3.27), we get

A" S a(Glijwingpuizp —4 D D Sia(Glijyusjusjpuiip

P i jeG P ijeG

i#]j i#]j

43 sG> ~urip
l

P jeG ieG

4’2 Z Si— 2(G|l])utlul/put/p +485(G) Z Z 2 ullpullp

P i.jeG P zeG
i#]

45(6) > Z u,j,,ul,,,
l

p i,jeG

43" S1-1(Gli)usip Bip- (3.28)

P ieG

By using the relation
PIEDILD IR LI NN I
gk i=j=k i=jiFk  i=kitj  j=kit]  i#jitk jEk

it follows that

-2 Z Z Si—3(Glijk)usiusj (Ukiplkjp — WijpUkkp)

p i,jkeG
i# )7k, jFk
+22 Z Si— 2(G|l]) (ullpujjp ,'2jp)
P i,jeG
i#]j
= 25/(G) Z Z M(l"ljpukkp - uklpuk]p)
AidjAk
i,j,keG
i#],i#k, J#k
+25,/(G) Z Z (ullpuj]p %/'p)
P ijeG l /
i#]
= 256> > Y wurky — uipinsp)
= Aikjhg '
P i,jkeG J

=2> >"5- 1(G|])Mj/pz Y By —2>" 3 S_1(Gli)BY,. (3.29)

P jeG ieG P ieG
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Inserting (3.28) and (3.29) to (3.27), we obtain

T3=1Lh+11L+1V3+ V3

= =23 > S 1(Gliuf, +4 D> S 1(Gli)uyBip

P ieG p ieG
—23" > Si-1GlD B},
P ieG
= 22> > S-1(GlD)(wip — Bip)*. (3.30)
P ieG

The last class is

Ty =1L+ 1114+ Vy

==2> > > S(Gluf,=S-1(G) D D uiy, —28-1(G) D> uiy,

P ieB jeG P i.jeB p i€eB
i#]
+4ZZZSI—2(G|j)utjutipuijp_2ZZZSZ—3(G|ij)utiutjukipukjp
P ieBjeG P keBi,jeG
i#]
=51-16) 3 D iy ZSz 2(Glo) ”‘Z 2 i
P ieB keG P i,jeB
E)IPIPITMINEL up—ZZZZSz 2(Gljk) S & iy
p ieB jeG P i€B jkeG
J#k
(3.31)

Subsequently, we state the following two claims:
Claim 1: 71 + T + T3 < 0;

Claim 2: T, < 0.

If Claim 1 and Claim 2 are true, it follows that

Ap—¢y=11+1IT+IVH+V~T1+Th+T3+T4 <O0. (3.32)

Then we complete the proof of the Lemma 3.1 follows from (3.32).
Now we prove Claim 1 and Claim 2.
Proof of the Claim 1.
Taking the terms in (3.20), (3.26) and (3.30) together, we have

W+ T+ T3

== S1G) + DS 2(G|J) 202—22& 1<G|z> ZCZ

jeG ieG

+4ZC > s 1<G|z) (unp ip>—2225171<G|i)(uﬁp—3,-p)2

ieG P ieG
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2
=—|SG) + DS 2(G|J)— 262
jeG
. Uy 2
2> > 51(Gli) uiip = 5-Cp = Bip

P ieG
<0.

Then we finish the proof of Claim 1.
Proof of the Claim 2.
At first, we throw some useless negative terms yield that

Ty < =281(G) D D> ul, + 4> > S 5(Gljusjusiptijp

p ieB p ieB jeG
=222 2 S-2(Gl) ’? up =22, 2 2 S-2(Glik) S s,
P ieB jeG P ie€B jkeG
J#k
=2 "> Si3(Glij)uniusjuripuijp
P keBi,jeG
i#]
2
S1—2(G1j)
= =2851(G) DD | wiip — D, iy
P i€B jeG S1-1(G)
2
+2 S (G)ZZ ZSI 2(G|])u11u11p
=1 P ieB | jeG
Y3 5261
p ieB jeG
=233 > Sa(GlikSE i ?,p—zzzZSz_z(G|ij)u,iu,,,uki,,ukjp
D i€BjkeG P keBi,jeG
J#k i#]
= Ty + Ty,
where

Ty = S 1(G) ZZ ZSI 2(G|J)ut]usz

p ieB | jeG
22225 2<G|J> p
P ieB jeG
=2 3> S 3(Glijusittsjuripusjp,
p keBijeG

i#]
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T42=—2ZZZSI 2(G|.]k) tk l2jp

P i€B jkeG
J#k

P i€B jkeG /

J#k

By Proposition 2.4, it is easy to check that for i, j € G,i # j,
Si—2(Gli)Si1—2(G)) = Si—1(G)Si—3(Gli}) + S}, (Glij),

it follows that

2
Si— 1(G)§%;' ]ZE(;SI —2(Gljurjuijp
e 1(G)§£ZB]EZGSI 2(G|])”U ijp
5 I(G) ;%’;%& —2(G))Si—2(Glk)ujugkcuijpitixp
J#k
R 1(G)§§jezc"sl Z(G”)”U ijp

3 (G)ZZZ [51-1(6)S1-3(G ki) + 575Gk | wsspaijpui.
=1 P i€B jkeG

J#k

So we get

_ 256 o
Tn = 5250 2p 2ieh Z’,’-’;Z;f S1-2(Gjk) 5% 30 uijptiky

S2Glj)  SELGID | 2 o
_ZZP ZieB ZjeG|: : ZA- L Alsl,zl(G) ]utjuijp' (3.33)

J

Since

kU
2 Sia(Glik = e ul,,,ulk,,

Jj.keG
J#k
2 2
I3
<33 s z(Glm( iz, + i )
/keG J
J#k
=2 Si-2(Gljib Sy ”‘ %,p
Jj.keG

J#k
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2
_ Uik 2
= S1(G) Z E Uijp
jkec 1Tk
J#k
”2k 2
= S-1(0) 2 5 (3.34)
jkea 1Tk
Jj#k
in last inequality we have used the observation $;(G) < ArS;—1(G) fork € G, we
insert (3.34) to (3.33) obtain that

u? Si-1(G[/)Si1-2(Gl))
AERIONIDIPICT NS I I I L T
AjAx AjS1-1(G)

P i€B jkeG P i€B jeG
J#k
(3.35)
That is to say
Ty <Ty + Ty <0.
The Claim 2 is verified.
The proof of the lemma is complete. O

We give a remark on the proof of the above lemma.

Remark 3.2. In the proof of Step 2, we can use the Lemma 2.5 in Bian and Guan

[3] to treat the terms > ul.z/. - In our case the calculations is simple, so we contain
i,jeB
all these terms.
Now it is standard to give the proof of Theorem 1.2.
The proof of Theorem 1.2: Suppose D?u attains the minimum rank 1 (0 <[ < n)

at (xo, to), since D?u is positive semi-define, we get

S((D2u)(x.1) >0,  V(x.1) € Qx (0,T), (3.36)

= O, (x, 1) = (-x01 tO)v

>0, Qx(0,7T)\ (xo, t0). (3.37)

Si41(D2u)(x. 1) {

Notice that the matrix D?u is also positive semi-define, by the relation between

Si(D2u) and S (D*u) (1 < k < n), we claim that S;_(D%*u) > 0on Q2 x (0, T).
Otherwise, if there is a point (x1, #1) such that S;_ (D2u)(x1, t1) = 0, we choose a
local orthonomal frame {eq, e3, ..., e,} at (x1, t1) so that the D%u is diagonal. By
Lemma 2.5, at (x1, #1)

Si(D2u) = Si(D*u) + w1 (D*u) = D Sj_1(D*uli)uf;

1
== > S 1(D*uliyu;;
i
S O’

this is contract to (3.36).
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We will divide the proof into two cases.
Casel: S;(D?u)(xo, t9) = 0. Since S;_;(D*u) > 0 on Q x (0, T), the matrix
D?u must attain the minimum rank [ — 1 at (xo, fo). Let ¢ = S;(D?u), then
Ap —gr = Cil v ¢l + Cap

holds on O x (g — §, to + &), where § > 0 is a small positive constant, O C Q is
a small neighborhood of xg, such that Sl_l(Dzu) > Coon O x (tg — 8,19 + §),
and C1, C; depending only on ||u||c2.1, and n, Cyp (see the proof of Lemma 4.6 in
Sect. 4 or [15]).

By the maximum principle and continuity method, it follows that

p(x,t) = Sl(Dzu)(x, t)=0, V(x,1) e Qx(,1l],
so we have

Si (D) (x, 1) =0, Y(x,1) € Q x (0, 1o]. (3.38)

Coupling (3.36) and (3.38), we obtain that the rank of the matrix D?u takes the
constant / on © x (0, rp].

Case2: S;(D%u)(xo, to) > 0.

As S;(D?u)(xg, 1) > 0, there exist a small positive constant § > 0 and a
small neighborhood @ C € of x, such that S;(D%u)(x,t) > Co,V(x,t) € O x
(to— 98,1+ 5). By the LEHEna 3.1, combine the maximum principle and continuity

method, we yield ;1 1(D?u) = 0 on 2 x (0, o] at once. So the rank of the matrix
D2y always be [ on the 2 x (0, fp]. ]

4. Constant rank theorem of nonlinear heat equation

In this section, we give an application on the calculus in the proof of Theorem 1.2
to the result by Borell [6]. From now on, the function

CI>(x):/x exp(—=A2/2)dr /2w, x € (—o0, +00)

denote the distribution function of a A (0; 1)-distributed random variable and we
let &1 :[0,1] — (—o00, +00) be its inverse function. We study the standard
parabolic equation

u; = Au.
Define a new function v as
v(y,s) = —o l'ouo w_l(y, ),

where ¥ : (x,1) — (v, s) satisfy

then v is the solution of the equation
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svg +2Av + y - vv — 20| v v|> = 0. (4.1

Definition 4.1. [6] Let H, = R" x R, and E C H,, then we say the domain E is
parabolically convex if ¥ (E) is convex.

Lemma 4.2 [6] Let Q be a domain in R", then the set Q x Ry is parabolically
convex if and only if Q is convex.

Using the Ehrhard inequality [12], Borell proved the following theorem in [6].

Theorem 4.3 [6] Let D be a domain in R* x R such that the set D¥ = DN {t > 0}
is parabolically convex. Moreover, assume A € R" is a non-empty domain such
that A x {0} € D x {t = 0} and define

u(¢) Z/AP(;’ (x,0)dx, ¢ e DT, (4.2)

where p : D x D — [0, +00) is the Green function of the heat operator in D
equipped with the Dirichlet boundary condition zero.

Then the function ® ' ou oy~ is concave in (D), and especially the level
sets {u > r},r > 0, are parabolically convex.

Remark 4.4. Borell [6] gave the following example: if D = R" xR, A = {x,, > 0},
and

u(x, 1) = / exp(—x — 2P2/20)dz /N30T = ®(x/D), (x.1) € D*,
A

thus the function ® ! o u o ¥ ~!(y, 5) = y, is a linear in this particular case.

By Theorem 4.3 [6], we know that there exist a spacetime convex solution for the
Eq. 4.1. In the rest of this section, We will prove a constant rank theorem for the
spacetime hessian of the spacetime convex solution v(y, s) of the Eq. 4.1. First
we prove a similar conclusion of Lemma 3.1 is also true for the spacetime convex
solution v(y, s) of the Eq. 4.1.

Lemma 4.5 Let Q be adomaininR", v € C31(Qx (0, T)) be a spacetime convex
solution of the nonlinear heat Eq. 4. 1. Suppose there is a positive constant Cy, such
that for a fixed integern > 1 > 1, Sl(Dzv)(yo, s0) = Co for (yo, s0) € L x (0, 7).
Then there is a small neighborhood O x (so — 8, so + &) of (yo, So), where O C 2
be a small open subset, and a positive constant C (independent of ¢) depending
only on ||v||c3.2, n, Co, such that

$hs (v, $)+20¢(y, ) =C(P(y.5)+IVPI (y.5), V(y,s)€Ox(s0—8,50+3),
(4.3)

where ¢ = S;.H(Ez\v).
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Proof. We divide three steps to prove this lemma.

Step 1: We calculate the expression of s¢; + 2A¢. Under the conditions of the
lemma, there is a small neighborhood O x (so — 8, s9 + ) C 2 x (0, T), such
that the number of the eigenvalue of D?v which more than Cy/2 at least I at each
point. For each fixed (y, s) € O x (so — 8, so + 8), we choose a local orthonormal
frame {eq, e2, ..., e,} such that D?v is diagonal, and let v;; = A; for 1 <i < n.
All the calculations will be at the point (y, s).

Similar to (3.4) and (3.6), if we take v and (y,s) instead of u and (x,t)
inthe I1,111,1V,V (defined in (3.7)-(3.10)) respectively, and denote them by
11 i 11 i NV, 1% correspondingly, then it is easy to check that

sy +20p =J + 2T+ 111+ 1V + V),
where

T =" SiD*i)(sv; + 2A0)i; + S (D) (505 + 2A0s)

1

s D, Si-1(DP0li)(svs + 280)ii = 2 3 Si-1(D?0]i)vyi (svssi + 2A057)

1 l
=D S1a(DPlij)vd (svs+2A0)ii+ D S 2 (D?vij)vsitgj (svs+2A0);;.
i#] i#]
(4.4)
Step 2: In this step we shall prove the terms
I[T+I11+1V+V <0.

Let G ={1,...,l}and B = {/ + 1, ..., n} be the “good” and “bad” sets of
indices respectively. All the calculations will be at the point (y, s) using the notation
“<”. By step 2 in Lemma 3.1, we could obtain

vii ~0, i€B;
2.
Vs = Dieg p ~ 0 (4.5)
v5i ~0, i€B.

Similarly, we can obtain the following relation from ¢, ~ 0,

2
V. Ve Vei
sJ Sip Si )
o~ =\ 1+ 25 ) G = 25 B 225
jeG " ieG ! ieG !

with
Usj .
Cp = Zviip, Bip = Z rv,-jp, for i € G.
ieB jec "/
By Claim 1 and Claim 2 in last section, we can conclude that

[T+111+1V+V <0.
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Step 3: we shall prove J ~ 0.
Differentiating Eq. 4.1 yield that

(svs + 2Av);; = 4vvgvijx — Yrvijk — 2vi; + 2vij|Vv|2
+4vivp v + 4vjvevg + 4vvg v,

2
SVssi + 2005 = dVVkUsik — YkUsik — 20si + 205 | VU]
+4v; v gk + 4ugvpvg + 4ovgg g,

SUsgs + 2AV55 = AUV Vsk — Yk Ussk — 2Uss + 2Uss|vv|2
+8vyvr vk + 4vvs2k.
Inserting (4.6)—(4.8) into (4.4), it follows from directly computation that
J=Ji+

where

Ji=4v > vigi — D yidi — 20+ D + 20 + D|Vu[’g ~ 0,

Ty =4 S(D*0]i) v vii + vv7) + 4851 (D*0) Qugvivgi + vv3)

1

(4.6)

4.7)

4.8)

+4vgg Z 51,1(D2v|i)(2vi2vi,- + vv,»zi) -8 Z S1,1(D2v|i)vivjvs,-vsj

i i,Jj

-8 Z S1—1(D*v]i) (vsv; vii + VU5 V)V

1
—4>" 81 2(D*]ij) v} vii + v}V
i#]
+8 Z Sl_z(Dzvlij)vivjvsivsjvjj.
i#]

Using (4.5) to simplify the above expression, we obtain

T~ 80sS1(G) D vivsi + 4vS(G) D vl + 8 S1(G) D v}
ieG ieG ieG

40U S (G) D i =8 D S 1(Gli)vivjvgivg — 8vsSi(G) D vivsi

ieG i,jeG

ieG

—8uSI(G) D 5 —8 D Si-i(Glpvivy; —4v D Simi (Gl

ieG i.jeG i.jeG
i#]j i#]
+8 E S1-1(Gli)vjvjvs vy

i,jeG
i#]
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2
V.
2 2 5j
~ —4v8/(G) Z v +85,(G) Z v? | vss — Z =
ieG ieG jeG 7]
J#
v2,
N .
H40SI(G) D vii (vss — D =) =8 S (Gl
ieG jeG 1/ ieG
J#
~ 0.
Then s¢s + 2A¢ < 0, and the proof is completed. O

Now we prove another lemma, it comes from the usual calculations as in [15].

Lemma 4.6 Let Q be a domain in R", v € C>1(Q x (0, +00)) be a space con-
vex solution of the nonlinear heat Eq. 4.1. IfSl_l(Dzv)(yo, s0) > Co > 0(0 <
l — 1 < n — Dfor some point (yo, so) € Q x (0, T), then there is a neighborhood
O x (so — 8, s0 + 8) of (o, s0), where O C Q be an open subset, and a positive
constant C (independent of ¢) depending only on ||v||c3.2, n, Co, such that

s@s(y, $)+200(y, s) <Cle(y, $)+IVel (y,5), Y(y,s)eOx(so—36,so+5),
4.9)

where ¢ = S;(D?v).

Proof. Since Sl_l(Dzv)(yo, s0) > Cp, there exist a small positive constant § > 0
and a small neighborhood © C € of yp, such that S;_; (D?v)(yo, so) > Co/2 for
all (y,s) € O x (so — 8,50 +9).

Fix (y,s) € O x (so — 8,50 + &), we choose a local orthonormal frame
{e1, e, ..., ey} such that D?v is diagonal. Let G = {1, ..., -1}, B={l,...,n}
be the “good” and “bad” set of indices respectively. All the calculations will be at
the point (y, s) using the relation “<”. By (4.6)—(4.8) in Guan and Ma [15], we
could obtain

0~ ¢~ S-1(G) D vii ~vii, i€B; (4.10)
ieB

0~ @ ~S-1(G) D Viia ~ D Vi, for 1<a<n. (411
ieB ieB

As the formula (4.15) in Guan and Ma [15], we have

Ap ~ S_1(G) Z(Av)ii—Sl—z(G)Z Z U?ja_zz Z SI—Z(G“)vizja‘

ieB a=li,jeB a=1ieG,jeB
Note that
o5 ~ D Si1(Gli)vsii ~ Si-1(G) D v,
i ieB

it follows that
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n
5@s + 200 ~ S1_1(G) D (svs + 2A0)5 — 25 2(G) D D" v7,
ieB a=1i,jeB

4> > S2(Gliv],.

a=1ieG,jeB

Using (4.6) and the formulas (4.10) and (4.11), we have fori € B

(svs + 2Av);; = 4v Z Vjvijj — Ziji,'j —2v;; + 21),‘,'|Vv|2 + SUiZU,',' + 4UUi2i
J J
N07

then

Z(svs +2A0);; ~ 0.

ieB
That is to say

S¢s + 2A¢ ,§ 0.

Similarly in last section, the constant rank theorem of matrix DZv will be as
the directly corollary of the above Lemmas 4.5 and 4.6.

Proof of Theorem 1.3: Suppose D2y attains the minimum rank /(0 < [ < n) at
(y0, S0), then as in the proof of Theorem 1.2, we will divide the proof into two
cases.

Casel: S;(D?v)(yo, so) = 0.

By usir&emma 4.6 and the maximum principle, we obtain that the rank of

the matrix DZv takes the constant / on  x (0, so].

Case2: S;(D?v)(yo, so) > 0.

As S;(D*v)(yo,s0) > O, there exist 8 > 0 and @ C € such that
S;(D*u)(y,s) = Co,Y(y,s) € O x (so — 8,50 + 8),%&: O is a neighbor-
hood of yg, Co depend on [|v]|¢2.1, and n. We yield S;4+1(D?v) = 0 on 2 x (0, so]
by the Lemma 4.5 and the maximum principle at once. So the rank of the matrix

Ez\valways be [ on the  x (0, sp]. O

Remark 4.7. We apply Theorem 1.3 to the function studied by Borell [6] , and yield
that the spacetime concave function ®~! o u o ¥ ~! u defined in (4.2) has constant
rank property on (D). Moreover, for generally parabolically convex domain D,
we can use the strong maximum principle (see in Friedman [13, p. 34]), and get a
similar statement.
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