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In this paper, for the solutions of two elliptic equations we find the auxiliary
curvature functions which attain respective minimum on the boundary. These results
are the generalization of the classical ones in Makar-Limanov [17] for the torsion
equation and Acker et al. [1] for the first eigenfunction of the Laplacian in convex
domains of dimension 2. Then we get the new proof of the specific convexity of
the solutions of the above two elliptic equations. As a consequence, for the elliptic
equation v�v = −�1+ ��v�2� in a smooth, bounded and strictly convex domain �
in �n with homogeneous Dirichlet boundary value condition, we also get a sharply
lower bound estimate of the Gaussian curvature for the solution surface by the
curvature of the boundary of the domain.

Keywords Convex domain; Convexity estimates; First eigenvalue problem;
Torsion problem.

Mathematics Subject Classification 35B30; 35J25; 35E10.

1. Introduction and Results

Let � be a bounded convex domain in �n. In this paper, we will consider the
convexity estimates for the homogeneous Dirichlet problems of two elliptic partial
differential equations. The first one is the torsion problem:{

�u = −2 in ��

u = 0 on ���
(1.1)

And the second one is the first eigenvalue problem of the Laplace operator:{
�u+ 	u = 0 in ��

u = 0 on ���
(1.2)
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Convexity Estimates 2117

In 1971, Makar-Limanov [17] considered the boundary value problem (1.1) in
a bounded plane convex domain �. He introduced the function

P1 = 2u detD2u+ 2u1u2u12 − u11u
2
2 − u22u

2
1

and proved that P1 is a superharmonic function. Then he could obtain that u
1
2 is

strictly concave.
In 1976, Brascamp and Lieb [4] established the log-concavity of the first

eigenfunction of the Laplace operator for the problem (1.2) in convex domains. For
the case of dimension two, Acker et al. [1] utilized the idea of Makar-Limanov [17]
to find the following function

P2 =
1
u

[
u detD2u+ 2u1u2u12 − u11u

2
2 − u22u

2
1

]
�

which satisfies the following elliptic differential equality:

�P2 = 0� mod��P2� in �\
x ∈ ����x� = 0��

where we have suppressed the terms containing the gradient of P2 with locally
bounded coefficients, and ��x� = 4v212 + �v11 − v22�

2 for v = − log u. Then they
obtained a new proof for the Brascamp-Lieb’s result in two dimensional case.

Now we state a brief history on the convexity of elliptic PDE. In 1983, Korevaar
[11] introduced a very useful technique to study the convexity of the solution
for a class of elliptic equations. The new proofs of the log-concavity of the first
eigenfunction of convex domains were given respectively by Korevaar [12] and
Caffarelli and Spruck [6]. In different extent, Kawohl [9] and Kennington [10]
improved Korevaar’s methods, which enabled them to give a higher dimensional
generalization of the result of Makar-Limanov [17]. In particular, Kennington
pointed out that the concavity number 1

2 of u is sharp in the problem (1.1) in higher
dimensional case. Singer et al. [18] and Caffarelli and Friedman [5] introduced
a new deformation technique to deal with the convexity, and Caffarelli and
Friedman [5] established the strict convexity of the solution for some equations in 2-
dimensional convex domains. Korevaar and Lewis [13] generalized the deformation
method to higher dimensions, and obtained the strict concavity of u

1
2 in (1.1)

in higher dimensional case. A survey of this subject is given by Kawohl [8] and
Guan and Ma [7].

In this paper, we generalize the technique of Makar-Limanov [17] and Acker
et al. [1] to the higher dimensional case. We also find new corresponding auxiliary
functions, and modulo the gradient terms we prove that they are superharmonic
under the strict convexity assumption of the solutions. So from the minimum
principle we get the convexity estimates for the solutions of (1.1) and (1.2) via
boundary data. Combining the deformation methods we can give the new proof of
the specific convexity of the solutions of the above two elliptic equations, and we
obtain the Gaussian curvature estimate for the graph of v = −√

u in the problem
(1.1) using the curvature of the boundary of domain.

In order to state our results, we need the standard curvature formula of the level
sets of a function (see Trudinger [20]). Since the level sets of the solutions in the
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2118 Ma et al.

problems (1.1) and (1.2) are convex with respect to the normal direction �u, we get

K�x� = �−1�n−1
n∑

i�j=1

� detD2u

�uij

uiuj��u�−�n+1�� (1.3)

where K�x� is the Gaussian curvature of the level sets of the solution u at x ∈ �.
Now we state our main results. (A function v is called strictly convex here if

D2v > 0. Similarly a domain � is called strictly convex if at every point of �� all
principal curvatures are strictly positive.)

Theorem 1.1. Let � be a smooth, bounded convex domain in �n, n ≥ 2, and u the
solution for the problem (1.1). If v = −√

u is a strictly convex function, then the function


1 = �−v�n+2 detD2v = �−2�−nu detD2u+ �−2�−n−1
n∑

i�j=1

� detD2u

�uij

uiuj

satisfies the following elliptic differential inequality:

�
1 ≤ 0 mod��
1� in �� (1.4)

where we have suppressed the terms containing the gradient of 
1 with locally bounded
coefficients. Moreover, the function 
1 attains its minimum on the boundary. So from
(1.4), we have the following estimate for the solution of the problem (1.1)


1 = �−v�n+2 detD2v ≥ 2−�n+1� min
��

Kmin
��

��u�n+1� (1.5)

where K is the Gaussian curvature of ��. Finally, the function 
1 attains its minimum
in � if and only if � is an ellipsoid (ellipse).

For the eigenvalue problem (1.2), we give a similar result as Theorem 1.1, that is

Theorem 1.2. Let � be a smooth, bounded convex domain in �n, n ≥ 2, and u > 0 the
first eigenfunction for the eigenvalue problem (1.2). If v = − log u is a strictly convex
function, then the function


2 = e−�n+1�v detD2v = �−1�nu detD2u+ �−1�n−1
n∑

i�j=1

� detD2u

�uij

uiuj

satisfies the following elliptic differential inequality:

�
2 ≤ 0 mod��
2� in �� (1.6)

where we have suppressed the terms containing the gradient of 
2 with locally bounded
coefficients. Moreover, the function 
2 attains its minimum on the boundary. So from
(1.6), we have the following estimate for the solution of the problem (1.2)


2 = e−�n+1�v detD2v ≥ min
��

Kmin
��

��u�n+1� (1.7)

where K is the Gaussian curvature of ��.
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Convexity Estimates 2119

From the results in Theorem 1.1, we further give the Gaussian curvature
estimate for the graph of v = −√

u in the problem (1.1) via the boundary geometry
of the domain.

Corollary 1.3. Let � be a smooth, bounded and strictly convex domain in �n, �min,
�max and Kmin the minimal principal curvature, maximal principal curvature and the
minimal Gaussian curvature of the boundary �� respectively. If u is the solution
for (1.1) and v = −√

u, then Gaussian curvature KG for the graph of v satisfies the
following sharp estimate

KG = detD2v

�1+ ��v�2� n+2
2

≥ Kmin�
n+2
min

n
n
2 �n+1

max

in �� (1.8)

When we take � being the unit ball B1�0� of dimension n centering at 0, the equality in
(1.8) holds at the origin 0.

For the Gauss curvature estimates of the solution surface to elliptic partial
differential equations, Corollary 1.3 is few example which generalize the two
dimensional result by Ma [14] for the problem (1.1).

In a different situation, Andrews and Clutterbuck [2] obtained another type
convexity estimates for the eigenvalue problem (1.2) and found a beautiful
application on the proof of the fundamental gap conjecture.

This paper is organized as follows. In Section 2, we prove Theorem 1.1 through
establishing a differential inequality for the given function. Then, we give some
estimates on the solution in (1.1) and its gradient on the boundary. Combining these
estimates with Theorem 1.1, we obtain the proof of Corollary 1.3. In Section 3, using
the same process as the proof of Theorem 1.1, we prove Theorem 1.2.

2. Convexity Estimates for the Torsion Problem

In this section, through establishing a differential inequality for the given function
and applying minimum principle, we first prove Theorem 1.1. In order to prove
Corollary 1.3, we give two lemmas which involve the estimates of the solution u and
the modulus of its gradient ��u� on the boundary ��. Then Corollary 1.3 is proved
by applying Theorem 1.1.

Now, we begin to prove Theorem 1.1

Proof. Let u be the solution for the problem (1.1) and v = −√
u. Then v is strictly

convex from our assumption and satisfies the following problem{
�v = − 1+��v�2

v
in ��

v = 0 on ���
(2.1)

For


1 = �−v�n+2 detD2v = �−2�−nu detD2u+ �−2�−n−1
n∑

i�j=1

� detD2u

�uij

uiuj�
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2120 Ma et al.

we shall show that

� = log
1 = �n+ 2� log�−v�+ log detD2v

satisfies the following elliptic differential inequality:

�� ≤ 0 mod���� in �� (2.2)

which implies the inequality (1.4). Moreover, we obtain that the function 
1 attains
its minimum on the boundary by the standard minimum principle. Therefore, from
(1.3), we have


1 = �−v�n+2 detD2v ≥ min
��


1

= 2−�n+1� min
��


K��u�n+1�

≥ 2−�n+1� min
��

Kmin
��

��u�n+1�

which is the estimate (1.5).
In order to prove (2.2) at an arbitrary point xo, we can choose the coordinates at

xo such that the matrix �vij�xo���1 ≤ i� j ≤ n� is diagonal. If we can establish (2.2) at
xo under the above coordinates assumption, then go back to the original coordinates
we find that (2.2) remain valid with new locally bounded coefficients on �� in (2.2),
depending smoothly on the independent variables. Thus it remains to establish (2.2)
under the above assumption that the matrix �vij�xo���1 ≤ i� j ≤ n� is diagonal. From
now on, all the calculation will be done at the fixed point xo.

Because v is strictly convex, the Hessian matrix �vij� is positive definite. Let
	i = vii� 	 = �	1� 	2� � � � � 	n� and �1�	�i� =

∑n
k=1�k �=i 	k� i = 1� 2� � � � � n� Let �vij� be the

inverse matrix of �vij�. Taking the first derivative of �, we have

�i =
�n+ 2�vi

v
+

n∑
k�l=1

vklvkli� (2.3)

and it follows that

n∑
k=1

vkkvkki = − �n+ 2�vi
v

+ �i� (2.4)

Taking the second derivative of �, we get

�ii =
�n+ 2��vvii − v2i �

v2
+

n∑
k�l=1

vklvklii −
n∑

k�l�p�q=1

vkqvplvklivpqi� (2.5)

Then

�� = �n+ 2��v�v− ��v�2�
v2

+
n∑

k=1

vkk��vkk�−
n∑

k�l�i=1

vkkvllv2kli � A+ B + C� (2.6)
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Convexity Estimates 2121

where

A = �n+ 2��v�v− ��v�2�
v2

�

B =
n∑

k=1

vkk��vkk��

C = −
n∑

k�l�i=1

vkkvllv2kli�

We will deal with the three terms above respectively. For the term A, we have

A = �n+ 2��v
v

− �n+ 2���v�2
v2

� (2.7)

For the term B, taking derivative of the equation in (2.1), it follows that

��v�k =
�1+ ��v�2�vk

v2
− 2

∑n
i=1 vivik
v

�

��v�kk = −2
�1+ ��v�2�v2k

v3
+ �1+ ��v�2�vkk + 2

∑n
i=1 vivikvk

v2

+ 2
∑n

i=1 vivikvk
v2

− 2
∑n

i=1�v
2
ik + vivikk�

v

= −2
�1+ ��v�2�v2k

v3
+ �1+ ��v�2�vkk + 4v2kvkk

v2
− 2

v2kk +
∑n

i=1�vivikk�

v
�

Thus,

B =
n∑
k

vkk��vkk� =
n∑
k

vkk��v�kk

= −2
n∑

k=1

�1+ ��v�2�v2k
	kv

3
+ n+ �n+ 4���v�2

v2
− 2

�v+∑n
i=1 vi�− �n+2�vi

v
+ �i�

v

= 2
�v

v2

n∑
k=1

v2k
	k

− �n+ 2��v
v

+ �2n+ 8���v�2
v2

− 2
n∑

i=1

vi�i

v
� (2.8)

where we have used (2.4) and (2.1) in the last two equalities. Therefore, combining
(2.7) with (2.8), we yield that

A+ B = �n+ 6���v�2
v2

+ 2
�v

v2

n∑
k=1

v2k
	k

− 2
n∑

i=1

vi�i

v

=
n∑

k=1

[
�n+ 8�+ 2

�1�	�k�
	k

]
v2k
v2

− 2
n∑

i=1

vi�i

v

=
n∑

k=1

[
�n+ 8�+ 2

�1�	�k�
	k

]
v2k
v2

mod����� (2.9)
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2122 Ma et al.

Next, we treat the term C and have

−C =
n∑

k�l�i=1

v2kli
	k	l

=
[

n∑
k=l=i=1

+
n∑

k�l�i=1
k=l�k �=i

+
n∑

k�l�i=1
k=i�k �=l

+
n∑

k�l�i=1
l=i�k �=l

+
n∑

k�l�i=1
k �=l�l �=i�k �=i

]
v2kli
	k	l

=
n∑

i=1

v2iii
	2i

+
n∑

k�l=1
k �=l

(
1

	2k
+ 2

	k	l

)
v2kkl +

n∑
k�l�i=1

k �=l�l �=i�k �=i

v2kli
	k	l

≥
n∑

i=1

v2iii
	2i

+
n∑

k�l=1
k �=l

(
1

	2k
+ 2

	k	l

)
v2kkl

=
n∑

l=1

(
v2lll
	2l

+
n∑

k=1�k �=l

(
1

	2k
+ 2

	k	l

)
v2kkl

)

�

n∑
l=1

Cl�

where

Cl =
v2lll
	2l

+
n∑

k=1�k �=l

(
1

	2k
+ 2

	k	l

)
v2kkl� l = 1� � � � � n�

We claim that

Cl ≥
[
�n+ 8�+ 2

�1�	�l�
	l

]
v2l
v2

mod����� l = 1� 2� � � � � n� (2.10)

From this claim, we have

C ≤ −
n∑

l=1

Cl ≤ −
n∑

l=1

[
�n+ 8�+ 2

�1�	�l�
	l

]
v2l
v2

mod����� (2.11)

Consequently, (2.6), (2.9) and (2.11) yields

�� ≤ 0 mod�����

which is exactly (2.2).
Now, we prove the claim for l = 1 and others are the same completely. Taking

derivative of the equation in (2.1) with respect to x1, we get the equality

��v�1 =
�1+ ��v�2�v1

v2
− 2

∑n
i=1 vivi1
v

= −�3	1 + �1�	 � 1��
v1
v
�
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Convexity Estimates 2123

that is

v111 = −
n∑

k=2

vkk1 − �3	1 + �1�	 � 1��
v1
v
� (2.12)

From (2.4), we have

n∑
k=1

vkk1
	k

= − �n+ 2�v1
v

+ �1� (2.13)

That (2.13) subtracts (2.12) multiplied by 1
	1

yields that

n∑
k=2

(
1
	k

− 1
	1

)
vkk1 = −

(
n− 1− �1�	 � 1�

	1

)
v1
v

+ �1� (2.14)

Applying (2.12) to C1, we have

C1 =
1

	21

[ n∑
k=2

vkk1 + �3	1 + �1�	 � 1��
v1
v

]2

+
n∑

k=2

(
1

	2k
+ 2

	k	1

)
v2kk1

= 1

	21

( n∑
k=2

vkk1

)2

+
n∑

k=2

(
1

	2k
+ 2

	k	1

)
v2kk1

+ 2

	21
�3	1 + �1�	 � 1��

v1
v

( n∑
k=2

vkk1

)
+ 1

	21
�3	1 + �1�	 � 1��2

(
v1
v

)2

� (2.15)

Under the condition (2.14), we will compute the minimum of C1. Let

f�y2� y3� � � � � yn� =
1

	21

( n∑
k=2

yk

)2

+
n∑

k=2

(
1

	2k
+ 2

	k	1

)
y2k

+ 2

	21
�3	1 + �1�	 � 1��

v1
v

( n∑
k=2

yk

)

+ 1

	21
�3	1 + �1�	 � 1��2

(
v1
v

)2

and

g�y2� y3� � � � � yn� =
n∑

k=2

(
1
	k

− 1
	1

)
yk +

(
n− 1− �1�	 � 1�

	1

)
v1
v
�

where we have omitted the gradient term ��. We compute the least value of f under
the condition g = 0.

Case 1: 	1 = 	2 = · · · = 	n. In this case, g ≡ 0 and only need to compute the
minimum of

f = 1

	21

( n∑
k=2

yk

)2

+ 3

	21

n∑
k=2

y2k +
2�n+ 2�

	1

v1
v

( n∑
k=2

yk

)
+ �n+ 2�2

(
v1
v

)2

�
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2124 Ma et al.

Because f is a quadratic polynomial and is strictly convex, f has a unique critical
point and must take the least value at this point. We only need to compute critical
value of f . Taking partial derivatives for f with respect to yk� k = 2� � � � � n, we
obtain

�f

�yk
= 2

	21

( n∑
i=2

yi

)
+ 6

	21
yk +

2�n+ 2�
	1

v1
v
�

Let �f

�yk
= 0� k = 2� � � � � n� Solving this system, we get

y2 = y3 = · · · = yn = −	1v1
v

�

At this unique critical point, f takes the least value �3n+ 6� v
2
1
v2
� Therefore,

f�y2� � � � � yn� ≥ �3n+ 6�
v21
v2

=
(
n+ 8+ 2�1�	 � 1�

	1

)
v21
v2
�

Case 2: There exists 2 ≤ i ≤ n such that 	i �= 	1. In this case, we use the
Lagrange method of multipliers to calculate the minimum. Let

L�y2� y3� � � � � yn� ��

= f�y2� y3� � � � � yn�+ �g�y2� y3� � � � � yn�

= 1

	21

( n∑
k=2

yk

)2

+
n∑

k=2

(
1

	2k
+ 2

	k	1

)
y2k +

2

	21
�3	1 + �1�	 � 1��

v1
v

( n∑
k=2

yk

)

+ 1

	21
�3	1 + �1�	 � 1��2

(
v1
v

)2

+ �

[ n∑
k=2

(
1
	k

− 1
	1

)
yk +

(
n− 1− �1�	 � 1�

	1

)
v1
v

]
�

Taking partial derivatives for L, we have, for k = 2� � � � � n,

�L

�yk
= 2

(
1
	1

+ 1
	k

)2

yk +
2

	21

n∑
i=2�i �=k

yi +
2

	21
�3	1 + �1�	 � 1��

v1
v

+
(
1
	k

− 1
	1

)
��

�L

��
=

n∑
i=2

(
1
	i

− 1
	1

)
yi +

(
n− 1− �1�	 � 1�

	1

)
v1
v
�

Let

�L

�yk
= 0� k = 2� � � � � n� and

�L

��
= 0�
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Convexity Estimates 2125

we have




2
(

1
	1

+ 1
	2

)2
2
	21

� � � 2
	21

1
	2

− 1
	1

2
	21

2
(

1
	1

+ 1
	3

)2
� � � 2

	21

1
	3

− 1
	1

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

2
	21

2
	21

� � � 2
(

1
	1

+ 1
	n

)2
1
	n

− 1
	1

1
	2

− 1
	1

1
	3

− 1
	1

� � � 1
	n

− 1
	1

0




︸ ︷︷ ︸
U




y2

y3

���

yn

�




=




− 2
	21
�3	1 + �1�	 � 1�� v1v

− 2
	21
�3	1 + �1�	 � 1�� v1v

���

− 2
	21
�3	1 + �1�	 � 1�� v1v

−
(
n− 1− �1�	 � 1�

	1

)
v1
v



�

Because of the positive definiteness of the matrix

V =




2
(

1
	1
+ 1

	2

)2
2
	21

� � � 2
	21

2
	21

2
(

1
	1
+ 1

	3

)2

� � � 2
	21

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

2
	21

2
	21

� � � 2
(

1
	1
+ 1

	n

)2




and w =




1
	2
− 1

	1

1
	3
− 1

	1
���

1
	n
− 1

	1


 �= 0�

det�U� = �−wTV−1w� det V < 0 and so the coefficient matrix U is nonsingular. We
can solve the linear system above and obtain the unique minimal value point

�y2� y3� � � � � yn� = −
(
	2v1
v

�
	3v1
v

� � � � �
	nv1
v

)
�

At this point,

f =
(
n+ 8+ 2�1�	 � 1�

	1

)
v21
v2

must be the least value. Consequently,

f�y2� � � � � yn� ≥
(
n+ 8+ 2�1�	 � 1�

	1

)
v21
v2

under the condition g�y2� � � � � yn� = 0.
From the two cases above, we get

C1 ≥
(
n+ 8+ 2�1�	 � 1�

	1

)
v21
v2

mod����

and complete the claim (2.10).
Finally, we prove that the function 
1 attains its minimum in � if and only if

� is an ellipsoid (ellipse). In fact, from the above process of the proof, we can see
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2126 Ma et al.

further that

−�� = −�A+ B + C�

=
n∑

i=1

1

	2i

(
viii +

3	ivi
v

)2

+
n∑

i�k=1
i �=k

(
1

	2i
+ 2

	i	k

)(
viik +

	ivk
v

)2

+
n∑

i�j�k=1
i �=j�j �=k�k �=i

v2ijk

	j	k
�

If 
1 attains its minimum in �, then 
1 is constant from the strong minimum
principle. Therefore, �� = � log
1 = 0 and

vijk =




−3	ivi
v

� i = j = k�

−	ivk
v

� i = j� i �= k�

0� i �= j� j �= k� k �= i�

(2.16)

where i� j� k = 1� 2� � � � � n. Because of u = v2,

uijk = 2�vivjk + vjvki + vkvij + vvijk��

Note that the matrix �vij� is diagonal by the choice of the coordinates, from (2.16),
we have

uijk = 0� i� j� k = 1� 2� � � � � n�

that is, all the third derivatives of u are vanish. Since � = 
x ∈ �n�u�x� > 0� is
convex, � must be an ellipsoid. On the contrary, if � is an ellipsoid, then, up to a
translation,

� =
{
�x1� x2� � � � � xn� ∈ �n

∣∣∣∣ x21a2
1

+ x22
a2
2

+ · · · + x2n
a2
n

< 1� ai > 0� i = 1� 2� � � � � n
}
�

At this time, for the problem (1.1), the solution

u = −b

(
x21
a2
1

+ x22
a2
2

+ · · · + x2n
a2
n

− 1
)
�

where b = (
1
a21

+ 1
a22

+ · · · + 1
a2n

)−1
� and the function 
1 ≡ bn+1

a21a
2
2···a2n

is constant.
Naturally, 
1 attains its minimum in �. �

Lemma 2.1 ([19]). If u is a smooth positive solution of the problem (1.1), then the
function ��u�2 + 4u

n
attains its maximum on the boundary �� and satisfies

max
�

{
��u�2 + 4u

n

}
≤ max

��
��u�2� (2.17)
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Convexity Estimates 2127

Lemma 2.2 ([3]). Let � be a smooth, bounded, and strictly convex domain in �n,
x ∈ ��, and �i�x�� i = 1� 2� � � � � n− 1� all principal curvatures of �� at x. Let

�m�x� = min
�i�x��i = 1� 2� � � � � n− 1�� �M�x� = max
�i�x��i = 1� 2� � � � � n− 1��

�min = min
�m�x��x ∈ ��� and �max = max
�M�x��x ∈ ����

If u is a smooth positive solution of the problem (1.1), then, on the boundary ��, the
modulus of its gradient ��u��� satisfies the following estimate

2
n�max

≤ ��u��� ≤ 2
n�min

� (2.18)

Proof. For the completion of the paper, we give the proof here. For any boundary
point x, let � ⊆ �0 and �1 ⊆ � be two balls of radius R = �−1

min and r = �−1
max

with the property that x ∈ �̄ ∩ �̄j� j = 0� 1. Let u�j
� j = 0� 1� be the solution to the

problem {
�u = −2 in �j�

u = 0 on ��j�

Since u vanishes on ��, it follows immediately that

��u�1
�x�� ≤ ��u�x�� ≤ ��u�0

�x���

An explicit calculation yields

��u�1
�x�� = 2r

n
� ��u�0

�x�� = 2R
n

and so

2r
n

≤ ��u�x�� ≤ 2R
n
�

Therefore,

2
n�max

≤ ��u��� ≤ 2
n�min

�
�

Next, we start the proof of Corollary 1.3.

Proof. Since v = −√
u, we have ��v�2 = ��u�2

4u and

detD2v = �−2�−nu− n
2 detD2u+ �−2�−n−1u− n+2

2

n∑
i�j=1

� detD2u

�uij

uiuj�

So

KG = detD2v

�1+ ��v�2� n+2
2
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2128 Ma et al.

= 2n+2�−v�n+2 detD2v

2n+2�−v�n+2�1+ ��v�2� n+2
2

= 2n+2
1

�4u+ ��u�2� n+2
2

� (2.19)

By the estimate (1.5) in Theorem 1.1 and (2.18) in Lemma 2.2, we have

min
�̄


1 ≥ 2−n−1
(
min
��

K
)( 2

n�max

)n+1

= Kmin

nn+1�n+1
max

� (2.20)

For the term �4u+ ��u�2� n+2
2 in �, by the (2.17) and (2.18), we have

4u+ ��u�2 = n

( ��u�2
n

+ 4u
n

)

≤ nmax
�

{
��u�2 + 4u

n

}
≤ nmax

��
��u�2

≤ 4

n�2
min

� (2.21)

Therefore, applying (2.20) and (2.21) to (2.19), we obtain

KG�x� ≥
2n+2 Kmin

nn+1�n+1
max(

4
n�2min

) n+2
2

= Kmin�
n+2
min

n
n
2 �n+1

max

x ∈ �� (2.22)

which is exactly (1.8). If � is the unit ball B1�0� = 
x ∈ �n��x�2 < 1�, then u = 1−�x�2
n

is the solution to the problem (1.1), v = −√
u = −

√
1−�x�2

n
and �max = �min = Kmin =

1. By the direct calculations, we get

KG�x� =
detD2v�x�

�1+ ��v�x��2� n+2
2

= n− n
2

(
1− �x�2 + �x�2

n

)− n+2
2

�

KG�0� = n− n
2 , and the equality holds at the origin 0 in (2.22). We have completed

the proof of Corollary 1.3. �

Remark 2.3. When n = 2, Corollary 1.3 is exactly Theorem 3.4 in [14].

Remark 2.4. From the Theorem 1.1, we can combine the deformation process to
give a new proof of strict 1

2 -concavity of the solution u for (1.1), i.e., v = −√
u

is strictly convex when � is a smooth, bounded and strictly convex domain.
The deformation process is well-known and can be found in Ma and Xu [16] or
Ma et al. [15].
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Convexity Estimates 2129

Suppose 0 ∈ �. At the initial time, let the domain be the standard unit ball
B1�0� and

�t = �1− t�B1�0�+ t�� 0 ≤ t ≤ 1�

where the sum is the Minkowski vector sum. So the domain �t is a family of smooth
and strictly convex domains. We assume the function vt satisfies the problem (2.1)
in the domain �t, that is 

�vt = −1+ ��vt�2
vt

in �t�

vt = 0 on ��t�

Now we prove the strict convexity of v. Because �t� 0 ≤ t ≤ 1, are all strictly convex,
the Gauss curvature of ��t have an uniformly positive lower bound. Suppose that
v is not strictly convex in �. Then there exists the first time 0 < to ≤ 1 such that
the determinant detD2vto for the Hessian of vto becomes zero at some point xto ∈
�to

. Taking a sequence 
tk� such that 0 < tk < to and tk → to� k → �, then from
the estimate (1.5) in Theorem 1.1 and the Hopf’s Lemma, we get an uniformly
positive lower bound for the function sequence �−vtk�

n+2 detD2vtk � k = 1� 2� � � � . By
the Schauder estimates and taking limit for k, we get a positive lower bound on the
function �−vto �

n+2 detD2vto . This is a contradiction. Then we complete the proof of
the strict convexity of v on the strictly convex domain case.

For the general convex domain, we can first use the approximation with strictly
convex domain to get the convexity of v and then obtain its strict convexity through
using the constant rank theorem of the Hessian of vt by Korevaar and Lewis [13].

3. Convexity Estimates for the Eigenvalue Problem

We now give the proof of Theorem 1.2.

Proof. The process of the proof is similar to that of Theorem 1.1.
Suppose that u > 0 is the first eigenfunction of Laplace operator, i.e., u is the

solution for the eigenvalue problem (1.2) with 	 > 0 being the first eigenvalue. From
the assumption, v = − log u is strictly convex and satisfies the following Dirichlet
problem {

�v = 	+ ��v�2 in ��

v�x� → +� as x → ���
(3.1)

For


2 = e−�n+1�v detD2v = �−1�nu detD2u+ �−1�n−1
n∑

i�j=1

� detD2u

�uij

uiuj�

we shall show that

� = log
2 = −�n+ 1�v+ log detD2v

satisfies the following elliptic differential inequality:

�� ≤ 0 mod���� in �� (3.2)
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2130 Ma et al.

which implies the inequality (1.6). Moreover, we obtain that the function 
2 attains
its minimum on the boundary by the standard minimum principle. Therefore, by
(1.3), we have


2 = e−�n+1�v detD2v

≥ min
��


2 = min
��

{
K��u�n+1

}
≥ min

��
Kmin

��
��u�n+1�

which is the estimate (1.7).
As in the proof of Theorem 1.1, in order to prove (3.2) at an arbitrary point xo,

we only need to establish (3.2) under the assumption that the matrix �vij�xo���1 ≤
i, j ≤ n� is diagonal. From now on, all the calculation will be done at the fixed
point xo.

Because v is strictly convex, the Hessian matrix �vij� is positive definite. Let 	i =
vii > 0 and �vij� the inverse matrix of �vij�. Taking the first derivative of �, we have

�i = −�n+ 1�vi +
n∑

k�l=1

vklvkli� (3.3)

and it follows that

n∑
k=1

vkkvkki = �n+ 1�vi + �i� (3.4)

Taking the second derivative of �, we get

�ii = −�n+ 1�vii +
n∑

k�l=1

vklvklii −
n∑

k�l�p�q=1

vkqvplvklivpqi� (3.5)

Then

�� = −�n+ 1��v+
n∑
k

vkk��vkk�−
n∑

k�l�i=1

vkkvllv2kli � E + F +G� (3.6)

where

E = −�n+ 1��v�

F =
n∑

k=1

vkk��vkk��

G = −
n∑

k�l�i=1

vkkvllv2kli�

For the term F , taking derivative of the equation in (3.1), it follows that

��v�k = 2
n∑

i=1

vivik�
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Convexity Estimates 2131

��v�kk = 2
n∑

i=1

�v2ik + vivikk�

= 2
[
v2kk +

n∑
i=1

vivikk

]
�

Thus,

F =
n∑
k

vkk��vkk� =
n∑
k

vkk��v�kk

= 2�v+ 2
n∑

i�k=1

�vivikkv
kk�

= 2�v+ 2�n+ 1���v�2 + 2
n∑

i=1

vi�i� (3.7)

where we have used (3.4) in the last equality. Therefore, using (3.7), we yield that

E + F = �1− n��v+ 2�n+ 1���v�2 + 2
n∑

i=1

vi�i

= �1− n�	+ �n+ 3���v�2 + 2
n∑

i=1

vi�i

< �n+ 3���v�2 mod����� (3.8)

where we have used the equation in (3.1) and 	 > 0. Next, we treat the term G as
C in the proof of Theorem 1.1, we have

−G ≥
n∑

l=1

(
v2lll
	2l

+
n∑

k=1�k �=l

(
1

	2k
+ 2

	k	l

)
v2kkl

)
�

n∑
l=1

Gl�

where

Gl =
v2lll
	2l

+
n∑

k=1�k �=l

(
1

	2k
+ 2

	k	l

)
v2kkl� l = 1� � � � � n�

We claim that

Gl ≥ �n+ 3�v2l mod����� l = 1� 2� � � � � n� (3.9)

From this claim, we have

G ≤ −
n∑

l=1

Gl ≤ −�n+ 3���v�2 mod����� (3.10)

Consequently, (3.6), (3.8) and (3.10) yield

�� ≤ 0 mod�����

which is exactly (3.2) and we have completed the proof.
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2132 Ma et al.

Now, we prove the claim for l = 1 and others are the same completely. Taking
derivative of the equation in (3.1) with respect to x1, we get the equality

��v�1 = 2
n∑

i=1

vivi1 = 2	1v1�

that is

v111 = −
n∑

k=2

vkk1 + 2	1v1� (3.11)

From (3.4), we have

n∑
k=1

vkk1
	k

= �n+ 1�v1 + �1� (3.12)

That (3.12) subtracts (3.11) multiplied by 1
	1

yields that

n∑
k=2

(
1
	k

− 1
	1

)
vkk1 = �n− 1�v1 + �1 (3.13)

and

v1 =
1

n− 1

n∑
k=2

	1 − 	k
	1	k

vkk1 mod����� (3.14)

Applying (3.11) to G1, we have

G1 =
1

	21

( n∑
k=2

vkk1 − 2	1v1

)2

+
n∑

k=2

(
1

	2k
+ 2

	k	1

)
v2kk1

= 1

	21

( n∑
k=2

vkk1

)2

+
n∑

k=2

(
1

	2k
+ 2

	k	1

)
v2kk1 −

4
	1
v1

( n∑
k=2

vkk1

)
+ 4v21� (3.15)

From (3.14) and (3.15), we get that

G1 − �n+ 3�v21

= 1

	21

( n∑
k=2

vkk1

)2

+
n∑

k=2

(
1

	2k
+ 2

	k	1

)
v2kk1

− 4

�n− 1�	21

( n∑
k=2

	1 − 	k
	k

vkk1

)( n∑
l=2

vll1

)
− 1

�n− 1�	21

( n∑
k=2

	1 − 	k
	k

vkk1

)2

= 1

	21

( n∑
k=2

vkk1

)2

+
n∑

k=2

(
1

	2k
+ 2

	k	1

)
v2kk1

− 1

�n− 1�	21

( n∑
k=2

	1 − 	k
	k

vkk1

)( n∑
l=2

	1 + 3	l
	l

vll1

)
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Convexity Estimates 2133

= 1

�n− 1�	21

[ n∑
k=2

(
4+ �n− 2�

(
1+ 	1

	k

)2)
v2kk1

+ 2
n∑

k�l=2�k<l

(
n+ 3−

(
1+ 	1

	k

)(
1+ 	1

	l

))
vkk1vll1

]
mod����� (3.16)

By the Lemma 3.1, the matrix




4+ �n− 2�
(
1+ 	1

	2

)2
n+ 3−

(
1+ 	1

	2

)(
1+ 	1

	3

)
� � � n+ 3−

(
1+ 	1

	2

)(
1+ 	1

	n

)

n+ 3−
(
1+ 	1

	3

)(
1+ 	1

	2

)
4+ �n− 2�

(
1+ 	1

	3

)2
� � � n+ 3−

(
1+ 	1

	3

)(
1+ 	1

	n

)
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

n+ 3−
(
1+ 	1

	n

)(
1+ 	1

	2

)
n+ 3−

(
1+ 	1

	n

)(
1+ 	1

	3

)
� � � 4+ �n− 2�

(
1+ 	1

	n

)2




is semi-positive definite for ai = 1+ 	1
	i+1

and m = n− 1. Therefore, by (3.16),
we obtain

G1 − �n+ 3�v21 ≥ 0 mod�����

The claim (3.9) is true. �

Now, we give the following lemma for the semi-positive definiteness of a class
of matrices.

Lemma 3.1. Let m ≥ 1 be an integer, ai ≥ 1� i = 1� � � � � m, and

M =



4+ �m− 1�a2

1 m+ 4− a1a2 � � � m+ 4− a1am

m+ 4− a1a2 4+ �m− 1�a2
2 � � � m+ 4− a2am

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

m+ 4− ama1 m+ 4− ama2 � � � 4+ �m− 1�a2
m


 �

Then the matrix M is semi-positive definite.

Proof. The conclusion is trivial for m = 1 and so we only consider m ≥ 2. Let

M
�1�
i =



m+ 4− aia1

m+ 4− aia2

���

m+ 4− aiam


 � M

�2�
i =




0

���

0

m�a2
i − 1�

0

���

0




← ith row�
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2134 Ma et al.

Then,

M =
(
M

�1�
1 +M

�2�
1 � M

�1�
2 +M

�2�
2 � � � � �M�1�

m +M�2�
m

)
and we have

detM =
2∑

i1�i2�����im=1

det�M�i1�
1 �M

�i2�
2 � � � � �M�im�

m ��

Because

�M
�1�
1 �M

�1�
2 � � � � �M�1�

m � = �m+ 4��1�m×m − �aiaj�m×m

and the rank of both matrices �m+ 4��1�m×m and �aiaj�m×m is 1, we know that the
rank of �M�1�

1 �M
�1�
2 � � � � �M�1�

m � is less than or equal to 2. Therefore,

detM =
2∑

i1�i2�����im=1

det�M�i1�
1 �M

�i2�
2 � � � � �M�im�

m �

=
m∑

i�j=1
i<j

det�M�2�
1 � � � � �M

�2�
i−1�M

�1�
i �M

�2�
i+1� � � � �M

�2�
j−1�M

�1�
j �M

�2�
j+1� � � � �M

�2�
m �

+
m∑
i=1

det�M�2�
1 � � � � �M

�2�
i−1�M

�1�
i �M

�2�
i+1� � � � �M

�2�
m �

+ det�M�2�
1 � � � � �M�2�

m �� (3.17)

We will compute the three terms respectively in the last equality above.

I �

m∑
i�j=1
i<j

det�M�2�
1 � � � � �M

�2�
i−1�M

�1�
i �M

�2�
i+1� � � � �M

�2�
j−1�M

�1�
j �M

�2�
j+1� � � � �M

�2�
m �

=
m∑

i�j=1
i<j

��m+ 4− a2
i ��m+ 4− a2

j �− �m+ 4− aiaj�
2�

m∏
k=1

k �=i�k �=j

m�a2
k − 1�

= −�m+ 4�mm−2
m∑

i�j=1
i<j

�ai − aj�
2

m∏
k=1

k �=i�k �=j

�a2
k − 1�� (3.18)

II �

m∑
i=1

det�M�2�
1 � � � � �M

�2�
i−1�M

�1�
i �M

�2�
i+1� � � � �M

�2�
m �

=
m∑
i=1

�m+ 4− a2
i �

m∏
k=1
k �=i

m�a2
k − 1�

= mm−1
m∑
i=1

�m+ 4− a2
i �

m∏
k=1
k �=i

�a2
k − 1�� (3.19)
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Convexity Estimates 2135

and

III � det�M�2�
1 � � � � �M�2�

m �

=
m∏

k=1

m�a2
k − 1� = mm−1

m∑
i=1

�a2
i − 1�

m∏
k=1
k �=i

�a2
k − 1�� (3.20)

Combining (3.19) with (3.20), we get

II + III = mm−1
m∑
i=1

�m+ 4− a2
i �

m∏
k=1
k �=i

�a2
k − 1�+mm−1

m∑
i=1

�a2
i − 1�

m∏
k=1
k �=i

�a2
k − 1�

= mm−1
m∑
i=1

�m+ 3�
m∏

k=1
k �=i

�a2
k − 1�

= �m+ 3�mm−1

m− 1

m∑
i�j=1
i �=j

�a2
j − 1�

m∏
k=1

k �=i�k �=j

�a2
k − 1�

= �m+ 3�mm−1

2�m− 1�

m∑
i�j=1
i �=j

��a2
i − 1�+ �a2

j − 1��
m∏

k=1
k �=i�k �=j

�a2
k − 1�

= �m+ 3�mm−1

m− 1

m∑
i�j=1
i<j

�a2
i + a2

j − 2�
m∏

k=1
k �=i�k �=j

�a2
k − 1�� (3.21)

Combining the above (3.21) with (3.18), we have

det�M� = I + II + III

= −�m+ 4�mm−2
m∑

i�j=1
i<j

�ai − aj�
2

m∏
k=1

k �=i�k �=j

�a2
k − 1�

+ �m+ 3�mm−1

m− 1

m∑
i�j=1
i<j

�a2
i + a2

j − 2�
m∏

k=1
k �=i�k �=j

�a2
k − 1�

= mm−2

m− 1

m∑
i�j=1
i<j

[
m�m+ 3��a2

i + a2
j − 2�

− �m+ 4��m− 1��ai − aj�
2

] m∏
k=1

k �=i�k �=j

�a2
k − 1�

= mm−2

m− 1

m∑
i�j=1
i<j

�4�ai − aj�
2 + 2m�m+ 3��aiaj − 1��

m∏
k=1

k �=i�k �=j

�a2
k − 1�

≥ 0

by ai ≥ 1� i = 1� 2� � � � � m.
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2136 Ma et al.

For the kth principal minor �M�k of M , k = 2� � � � � m, according to the same
method above, we can get that

�M�k = det



4+ �m− 1�a2

1 m+ 4− a1a2 � � � m+ 4− a1ak

m+ 4− a1a2 4+ �m− 1�a2
2 � � � m+ 4− a2ak

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

m+ 4− aka1 m+ 4− aka2 � � � 4+ �m− 1�a2
k




= −�m+ 4�mk−2
k∑

i�j=1
i<j

�ai − aj�
2

k∏
l=1

l �=i�l �=j

�a2
l − 1�

+mk−1
k∑

i=1

�m+ 4− a2
i �

k∏
l=1
l �=i

�a2
l − 1�+ mk

k

k∑
i=1

�a2
i − 1�

k∏
l=1
l �=i

�a2
l − 1�

≥ −�m+ 4�mk−2
k∑

i�j=1
i<j

�ai − aj�
2

k∏
l=1

l �=i�l �=j

�a2
l − 1�+ �m+ 3�mk−1

k∑
i=1

k∏
l=1
l �=i

�a2
l − 1�

≥ −�m+ 4�mk−2
k∑

i�j=1
i<j

�ai − aj�
2

k∏
l=1

l �=i�l �=j

�a2
l − 1�

+ �m+ 3�mk−1

m− 1

k∑
i�j=1
i<j

�a2
i + a2

j − 2�
k∏

l=1
l �=i�ł �=j

�a2
l − 1�

= mk−2

m− 1

k∑
i�j=1
i<j

�4�ai − aj�
2 + 2m�m+ 3��aiaj − 1��

k∏
l=1

l �=i�l �=j

�a2
l − 1�

≥ 0�

and �M�1 = 4+ �m− 1�a2
1 > 0. Up to now, we obtain that all principal minors of M

are nonnegative and so the matrix M is semi-positive definite. �

Remark 3.2. As the discussions in Remark 2.4, from the Theorem 1.2, we can
combine the deformation process to give a new proof of log-concavity of the first
eigenfunction u for the problem (1.2), i.e., v = − log u is strictly convex when � is
a smooth, bounded and convex domain.
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