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CURVATURE ESTIMATES IN DIMENSIONS 2 AND 3
FOR THE LEVEL SETS OF p-HARMONIC FUNCTIONS
IN CONVEX RINGS

JURGEN JOST, XI-NAN MA, AND QIANZHONG OU

ABSTRACT. Sharp curvature estimates are given for the level sets of a class of
p-harmonic functions in two and three dimensional convex rings.

1. INTRODUCTION

The geometry of the solutions of a partial differential equation is an important
issue. The convexity of the level sets of the solutions of elliptic partial differential
equations has been studied for a long time. For instance, Ahlfors [I] contains the
well-known result that the level curves of the Green function on a simply connected
convex domain in the plane are the convex Jordan curves. In 1956, Shiffman [20]
proved several beautiful theorems concerning the geometry of a minimal annulus
whose boundary consists of two closed convex curves in parallel planes P;, P,. One
of his theorems stated that the intersection of the surface with any plane P, between
P, and Py, is a convex Jordan curve; in particular, it follows that this surface is
embedded. For elliptic partial differential equations on domains in R™, the problem
of level set convexity was first considered by Gabriel. In 1957, Gabriel [9] proved
that the level sets of the Green function on a three dimensional convex domain are
strictly convex. Later, in 1977, Lewis [I4] extended Gabriel’s result to p-harmonic
functions in higher dimensions and obtained the following theorem.

Theorem 1.1 (Gabriel [9] and Lewis [14]). Let u satisfy

div(|DulP~2Du) =0 in Q= Q\Q,
(1.1) u=0 on 09,
u=1 on 09,

where 1 < p < 400, Qo and Q1 are smooth bounded convexr domains in R™, n > 2,
0 C Q. (We say that u satisfies the homogeneous Dirichlet boundary conditions
in the convex ring Q = Qo\Q1.) Then all the level sets of u are strictly convex in

Q.

In 1982, Caffarelli-Spruck [5] generalized the Lewis [14] results to a class of
semilinear elliptic partial differential equations. A survey of this subject is given
by Kawohl [I3]. For more recent extensions, see Greco [I2] and Cuoghi-Salani [0].
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The aforementioned results are of a qualitative nature. This naturally leads us
to the question of quantitative results, that is, estimates for the curvature of the
level sets of the solutions of such elliptic problems. This is the topic of the present
paper.

For a two dimensional harmonic function defined on a convex ring with homoge-
neous Dirichlet boundary conditions, by the theorem of Lewis [14], as explained, the
level set of this function is strictly convex. Ortel-Schneider [I8] and Longinetti [16]
proved that the curvature of the level curves attains its minimum on the boundary
(see Talenti [21] for related results). Later, in 1987, Longinetti [I7] used the same
technique to obtain a similar theorem for minimal surfaces, where the convexity of
the level sets follows from the theorem of Shiffman [20].

On the other hand, in 1989, Rosay-Rudin [I9] proposed a new measure for the
convexity of the level sets, and showed that with regard to this measure, the level
sets of the harmonic functions on a convex ring in any dimension with homoge-
neous Dirichlet boundary conditions are “more convex” in the interior than on the
boundaries.

In this paper, we study the level sets of p-harmonic functions in two and three
dimensions, and we obtain quantitative estimates for the convexity of the level sets.
Our main results are as follows. We first state the two dimensional case.

Theorem 1.2. Let Q be a smooth bounded domain in R%, and u be a smooth
p-harmonic function in €, i.e.

(1.2) div(|DulP~2Du) =0 in Q.

Assume |Du| # 0 in Q. If% < p < 3 and the level lines of u are convex with respect
to the normal Du, then the curvature of the level lines of u attains its minimum on

on.
In three dimensions, we have the following result.

Theorem 1.3. Let Q be a smooth bounded domain in R® and u be a smooth p-
harmonic function in Q, which satisfies (L2). Assume |[Du| #0 in Q. If2 <p <
400 and the level sets of u are all strictly convex with respect to the normal Du,
then the Gaussian curvature of the level sets of u attains its minimum on Of).

We can apply Theorem and Theorem [[.3] to obtain the following version of
Lewis’s theorem [14].

Corollary 1.4. Let u be the solution of the following boundary value problem,

div(|DulP~2Du) =0 in Q= Q\Q,
(1.3) u=0 on 08,
u=1 on 08,

where Q is a smooth convex ring as in Theorem [Tl If n = 2 and % <p <3,
then the curvature of the level lines of u attains its minimum on Q. Ifn = 3
and 2 < p < 400, then the Gaussian curvature of the level sets of u attains its
mansmum on OS).

Rosay-Rudin [I9] apply the maximum principle directly to quantities formed by
the solution u to obtain their results. This works because convexity of a function
can be expressed in terms of this function itself without involving derivatives. Our
method is different and depends on new curvature inequalities. This is in line
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with general strategies for understanding solutions of elliptic partial differential
equations from a deeper geometric perspective. These inequalities represent the
main achievement of the present paper. More precisely, we show that the Gaussian
curvature K of the level sets satisfies the following p-Laplacian inequality:

(1.4) a¥(Du)K;j +b'K; <0 in Q,
where
(1.5) a"(Du) = |Dul?6;; + (p — 2)uu;

with b° being locally bounded. Then we can apply the strong maximum principle
[10] to obtain our results.

The results obtained here are for dimensions 2 and 3. In this regard, we note that
sometimes lower dimensional harmonic functions display certain phenomena that
are not present in the higher dimensional case. For example in three dimensions,
the famous theorem of Lewy [I5] states that if w is a harmonic function on a
domain in R? and the map # — Du(z) is a homeomorphism, then z — Du(z)
is a diffeomorphism. In 1991, Gleason-Wolff [I1] extended this results to higher
dimensions, but needed some extra conditions, and gave a counterexample in the
higher dimensional case without these additional conditions.

Nevertheless, it seems that, in principle, our method is of a general nature and
that, therefore, some extension of it should also give some results in higher dimen-
sional cases.

From the standard theory of elliptic partial differential equations, we know that
the (unique) solution of equation (2] is smooth in any domain  in R™ n > 2
when |Du| # 0 in Q. This is verified in detail by Lewis [14].

In section 2, we first give a detailed definition of the convexity of the level
sets which appeared in [2], then obtain the curvature formulas for the Gaussian
curvature of the level sets of a function. The proofs of our theorems, as given in the
sequel, depend on difficult calculations. The main technique consists in rearranging
third derivative terms using the equation and the first derivatives condition for the
Gaussian curvature. In dimensions 2 and 3, we get “good” signs for the second and
third derivative terms, which allows us to reach our conclusions.

2. THE CURVATURE FORMULAS OF LEVEL SETS

In this section, we first recall some fundamental notation in classical surfaces
theory and provide the definitions for the convexity of surfaces in Euclidean space
with respect to the upward normal. Then we introduce the level sets of a function
u, and we derive the curvature formulas of the level sets of u, which appeared in [2].
For convenience, we will adapt the following convention for indices in this section:

1<4,5,...<n—1; 1<aq,8,...<n,
and the repeated indices are summed unless stated otherwise.
2.1. Classical differential geometry of graph and its convexity. First we

recall some fundamental notation in classical surface theory as in [7]. Assume a
surface ¥ C R” is given by the graph of a C? function v in a domain in R"~!:

(2.1) r, =v(z), ' = (21,22, ...,0p_1) € R"L
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The first fundamental form for the graph of x,, = v(z’) is given by
(2.2) Gij = (Sij + v;0;.

The upward normal direction 77 and the second fundamental form T w.r.t. 7 for
the graph z,, = v(x’) are respectively given by

1
2.3 i o= = (—vy,—v2y e —n_1,1),
(23) T TEA td)
Viq
(2.4) I = (biy)=(52)

w
Where 1 S i7jak,l S n — 1 and W = (1 —+ |D’U‘2)%
Now we recall the definition of a convex surface in classical differential geometry
7.

Definition 2.1. The graph of a function z,, = v(z’') is convex with respect to the
)

upward normal 77 as in (Z3)) if the second fundamental form I := (b;;) = (W

of the graph z,, = v(z’) is nonnegative definite.

The principal curvatures k = (k1,Ka,...,kn—1) of the graph of v, being the
eigenvalues of the second fundamental form relative to the first fundamental form,
satisfy

det(bij — Hk:gij) = 0,
or equivalently,
det(aij — /ﬁ]d%j) = O7
with
(ai5) = (9)2 (bij)(9")*,
where (g%) is the inverse matrix to (g;;) and (g")2 is its positive square root, and
there is no sum for 4, j. They are given explicitly by

(2:5) (67) = (0= T):
(2.6) G = Ga- )

Then we have the following well-known formulas.

Lemma 2.2 ([]). The principal curvatures of the graph x,, = v(z') with respect to
the upward unit normal (2.3) are the eigenvalues of the symmetric curvature matriz

1 ViV V51 VIVEVki VUV VRV k
2.7 i = — il — 777 _ J J .
27) (ait) = 377 (v WA+ W) W(I+W) W2(1+W)2)

2.2. The convexity of the level sets of a function. Now we give the definition
of the level sets of the function wu.
For a domain Q C R™ and u € C?(£2), we shall use the following notation.

Definition 2.3. Assuming |Du| # 0 in 2, we denote the level set of u through a
point x, € Q by %) .= {z € Qlu(x) = u(w,)}.

Now we shall locally work near such a point z,, where |Du(z,)| # 0. We first
state the definition of the convexity for the level sets X%(®°) in this special case.
Without loss of generality we assume u., (x,) # 0 and work on a small neighborhood
of x,.
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By the implicit function theorem, locally the level set £*(¥¢) can be represented
as ([2I)), where the function v(z’) satisfies the following equation:

(2.8) WL, Ty ey T—1, V(T1, T, ooy 1)) = u(X0).
It follows that
(2.9) u; + upv; =0,
and hence

Uy
(2.10) vi=t

From (ZI0), we have
D
(2.11) W= (14 |Doft)b = 24
Up
Using (Z3)) and @2I1)), it follows that the upward normal direction of the level sets
is
N Unp
(212) n= |Du| (u17u2,"',un717un)'
Now differentiating (2Z.9)) again, we have
(213) uij + umvj + unjvi + unnvivj + unvij = O
Then
(2.14) Vij = —u—[uij + UinVj + Un;jv; + u,mvivj]
Loy
= _F[unuij + UnpUiUj — UpUjlUip — UpUiUjp ).
n
If we let
2.15 hii = U2 Ui + Uit — UpUilin — Unlilin,
J nWij j j j

it follows that

R s
2.16 L
( ) v J u%

From (ZTII) and (ZI6]), with respect to the upward normal direction (ZI2), the
second fundamental form I of the level surface of the function u is
Vij |un|hij
2.17 bi) = (YY) = (- .
(247) ) = () = (= (pod)
From Definition 2.1l we give the definition of the convexity for the level sets
Yul@o) = L € Qu(z) = u(z,)} of the function u(x), where |Du|(x,) # 0 in Q.

Definition 2.4. For the function u(z) € C?(Q) we assume |Du| # 0 in €, and
locally we can let u,(z,) # 0 for z, € Q. We define locally that the level set
yu@o) = g € Qu(z) = u(x,)} is convex if the second fundamental form @I7) is
nonnegative definitive with respect to the upward normal direction (Z12I).

Remark 2.5. At z, € Q, with |Dul(x,) # 0, without loss of generality we may then
assume up (z,) # 0.

Du
to be th
Dl o be the

upward normal of the level set ¥%(%°) at z,,. Then u,(z,) > 0 by (ZI2), and from

By choosing the coordinate system suitably, we may assume
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Definition 4], if the level set X%(e) at z, is convex with respect to the normal

D
ﬁ, then the matrix (h;;(x,)) is nonpositive definite.

On the other hand, if we choose — to be the upward normal of the level

Du
|Dul
set ¥%(o) at z,, then u,(z,) < 0 by [I2), and from Definition 4 if the level

u
set Lu(To) at z, is convex with respect to the normal —m, the matrix h;;(z,) is
U
nonnegative definite.
Du
In the remainder of this paper, we always choose m to be the upward normal
U

of the level sets of wu.

2.3. The curvature formulas of level sets of functions. Now we obtain the
representation of the curvature matrix (a;;) of the level sets of the function u by
the derivatives of u, and deduce the curvature formulas for the level sets of u. We
work locally near zg €  with wu,(z¢) > 0.

From (Z7), (ZI1) and ZI7) it follows that the entries of the symmetric curva-
ture matrix (a;;) become

u»ulhll u-ulhil uiu-ukulhkl
2.18) ajj = ———{—hij - ! - = :
@18 0 = B UM T W W T WA s Wl WR G WRa
We put
uiulhjl ujulhig
2.19 Bij: = )
(2.19) ’ WA+ W)uz W+ W)u2
C... = uiujukulhkl
v W2(1+W)2ud’
and
(2.20) Aij = —hij + Bij — Cij-
Thus,
(2.21) aij = oz Aij-

For the C? hypersurface X¢ in R", we let x = (ki,...,k,_1) be its principal

curvatures. For m = 1,...,n — 1, the m-th curvature of X¢ is defined by
Um[EC] = O—m(ﬁl, (XX} "{nfl);
where oy, is the m-th elementary symmetric function; that is, for 1 <m <n —1
and \ = ()\1, ey )\nfl) € Rnil,
om(A) = > Ayt iy
1<i1<...<im<n—1
For an (n — 1) x (n — 1) symmetric matrix V' = (V;;), we define
om(V) = Z Sgn(a)viﬂ'au) T Vimia(m)'
1<i1 << <n—1

Obviously
om(V) = om(N)
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with A = A(V) being the eigenvalues of V. By the way, let F = F(M) be a C?
function of the entries of an m x m matrix M = (M;;). Then the following notation
may also be used in the next two sections:

g OF - 0’F
2.22 Fi .= Fars . — ~ -~
(2.22) oMy’ OM;0M,

The principal curvatures of the level set $%(%°) of the function u € C?(£2) then
are the eigenvalues of the (n — 1) x (n — 1) symmetric matrix

1
(aij) = (WAU)-

The m-th curvatures are given by

1

(223) O'm[EC] = O'm(lil, ceey Kn_l) = (m

)" o (Aij),

where there is no sum for 1 <m <n — 1.

Proposition 2.6. Let u(x) € C?(Q2) for @ C R™ and |Du| # 0 in Q. Then the
k-th curvature of the level set 3¢, w.r.t. the normal Du, is

k 80k+1 (D2u)

| 7(k+2)
6ua/3

(2.24) o2 = (-1) uqug|Du

b

where 1 <k <n —1 and there is no sum for k on the right of (Z24]).

Remark 2.7. In [22], Trudinger obtained a similar formula for the k-th curvature
of the level set X°.

Proof. We first prove that the formula ([Z24]) is independent of the choice of the
coordinate system {z,} of R”. Then we calculate ([Z24]) for a special coordinate
system.

Step 1. Let P = (pag) be an orthogonal transformation between two coordinate

systems, i.e. (%1, -+ ,Zn) = (z1, -+ ,2,)P. Define @(z) = u(zPT). Denote by
Du = (a1, ,,) and D*u = (Uap) the gradient and the Hessian respectively of
u w.r.t. (Z1, -+ ,Zn). Then we have

(alv"' 71]”) = (ula"' aun)Pa
(Uap) = PT(“(NB)P = Pil(uaB)Pa

- Oy
(tap) = P(iag) P = 8@7 = DyaPsp-
aB
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Clearly |Du| and oy (D?u) are the invariants of P; i.e., |Du| = |Du| and oy (D*a)
= o (D%u) for 1 <k <n — 1. Therefore we can derive
80k+1(D2ﬂ) o 80k+1(D2u) 8uwg
—— gl = -
8“75 aU(yB
Ooky1(D?u)
- aip'yapéﬁu)\p/\auupuﬁ
U~y s
30k+1(D2u)
= o ua(Prapra) (Psspus)
U~y s
0 D?
= MUAUM(S,Y)\(SC;“ ------ for P an orthogonal matrix
5u75
doy41(D%u)

8u75

Dites (U,\Pm)(uupuﬂ)

UnU§ -

The above calculations show that the right side of ([2:24)) is invariant under orthog-
onal transformations.

Step 2. For any point zg € 2, we choose a special coordinate systerm such that
|Du| = u,, > 0 and (u;;) (and hence A;; by [220)) is diagonal. Therefore the oy
curvature of the level sets is

1

ak[E“(ZO)] = o’k(lil, ey ’in—l) = (W)kak(/lij)
(—1)k 5Jk+1(D2u)
| Du|* OUpn
2
= (—1)k—8ak+1(D u)unun|Du|_(k+2).

Ouny,
Note that there is no sum for 1 < k <n — 1.
From Step 1 and Step 2, we get the proof of the curvature formula [224). O

3. PROOF OF THEOREM

Let u be a solution of (I2) and |Du| # 0 in Q. Assume the level lines of u are
convex with respect to the normal Du. Then, by (Z24)), the curvature of the level
lines of u is
(3.1) K = —FYuu; | Du |73,

where F' is as in (Z22) with F := det(D?u). In this section, the repeated indices
are summed from 1 to 2, unless stated otherwise.

By (1), (I2) is equivalent to
(3.2) au;; =0 in Q.
At any fixed point x € 2, we will prove the following elliptic inequality:
(33) ainij + biKi <0,
with b’ locally bounded. Then by the strong maximum principle [10], we can get
our result, Theorem [[.2] immediately.
Differentiating both sides of [B.1]), we deduce:
(3.4) N N N
Ko = —F9" 5y, squu; | Du |7 —2FYu;pu; | Du |7® +3FYwujupug, | Du |72 .
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Next, all the calculations will be done at the fixed point . In order to prove ([3.3))
at an arbitrary point z € Q, as in Caffarelli-Friedman [3], we choose the normal
coordinate at z. By rotating the coordinate system suitably by T, we may assume
that uq(z) = 0 and ug(z) = |Vu| > 0. We can further assume that u;(x) < 0. We
also choose T to vary smoothly with z. If we can establish (B3)) at  under the
above assumptions, then going back to the original coordinate we find that (33)
remains valid with new locally bounded coefficients on VK in ([B3]), depending
smoothly on the independent variables. Thus it suffices to establish ([B3]) under the
above assumptions.

From now on, all the calculations will be done at the fixed point x. So we can

get by (B4):
(3.5) K, = —F27sy, s ou3 | Du |_3 —2F2y,0u0 | Du |_3 +3F2u3ug, | Du |_5
and
|Du|3Ka5 = —F22’”uma5u% — 2Fi2um5uQ + 3F22uQu2a5
(3.6) — 4F%%’T5ursaui5uQ ‘—1— 3F22’”umay2uw + 3F22’”ursﬁuQuza
—2FYu;qu;8 + 6F12umu2g + 6F’2ui5uQa
+ 3F22ukauk5 — 15F22u2au25.
Multiplying by a®? on both sides of the above equality, we have
|Du|3ao‘ﬂKa[3 = —U§F22’T5U7ﬂsa5aaﬁ - 2u2Fi2umﬁaaﬁ + 3u2F22u2a[3a°‘6
(3.7) — 4u2-Fi2’TSuTsauwaaﬁ —|— 6u2F22’”ursau25ao‘ﬂ
- 2F”uiauj5aa5 + 12F’2umu25aaﬁ
+ 3F22umuk5ao‘ﬁ — 15F22umuz5aaﬁ.

By the equation [32), we can see

(3.8) Urapa®” = —uas(a®), + (uapa™), = —uap(a®?),
and
(3.9) u”aﬁaaﬁ = —Urap (GZZ)S — Usap (GZZ)T — Uap (azg)rs + (uaﬁaaﬁ)rs
= —Uraﬁ(a )s — usa,@‘(a )r— uaﬁ(a Jrs-
Hence
= —2u3F?*YMuy,5(a%f); — ud F?2 My, 5(a%f) 1y
and
(3.11) UQFiQUia,[—}aaﬁ = —u2Fi2ua5(aaﬁ)i.

Substituting the above two equalities into (B1) shows
\Du|3aa5Ka5 = 2u%F22’11u1a5(aaﬁ)1 + u%F”’uuag(aaﬁ)n
+ 2uQFi2ua5(aaﬂ)i — 3uQF22uaﬁ (ao‘ﬁ)g
(3.12) — 4uQFi2’TSuTmui5aO‘ﬁ + 6u2F22’TSuTmuQ5aO"B
- 2Fijuiauj5a“ﬁ + 12Fi2umu25aa6
+ 3F22ukauk5aa5 — 15F22uQauzgaO‘ﬁ.
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More precisely we have

(3.13) |Dul?a®P K o5 := —[I + 11T + I11],
where
I:= —2u§F22’11u1a5(a0‘/3)1 — u%F”’uuag(aaﬁ)n
— 2up F%u05(a%?), + uQquaﬁ(ao‘ﬁ)g,
(3.14) II := 4uQF12’TSuTmu15aaB - 2uzF22’”umauQﬁaaB,

111 := 2F“umu15ao‘ﬂ — 10Fi2umu25a0‘ﬁ
- 3F22u1au15a0‘ﬁ + 12F22u2au25aa5.

Next, we will calculate the above terms step by step.

Clearly
(3.15) (ao‘ﬁ)l = 2upUk1008 + (P — 2)ur0ug + (P — 2)uguip
and
(3.16) (a®P)11 = 2upup110ap + 2uk1Uk10as

+ (p — 2)ur1aup + 2(p — 2)uratip + (p — 2)UaU115-

Hence we get

I, = —2u§F22’11u1a[3(aa5)1
(3.17) ol T
U2UI U2 (P 2)U2U12au1m
L = —udF2My,5(a%f)yy
(3.18) = —2uduiioAu — 2udup up Au
—2(p — 2)udusaUiie — 2(p — 2)uduasuiauig,

(3.19) Iy = —2usF?u,p(a*?);

= dudud Au+4(p — 2)udui2usn iy,
and

Iy = u2F22ua[3(aa5)2

(3.20) = UU11UaB(2UupUk200s + (P — 2)u20ug + (P — 2)uqu2g)

= 2u3upugAu+ 2(p — 2)uduii tsaUza-
Substituting BI7)-(B20) into the first term in ([BI4]), we can see that

I = h+L+1s+1
= —2puduiguiny —ud[(4p — 6)u11 + 2(p — Duga]urrs
—4(p — Dudurauize — 2(p — Dudufy
+2(p — Duduiute +2(p — Duduiiud + 2(p — Duduss uss.

For the second term in (BI4)):

I, = 4usF'27"u,g,u15a"

(3.21)

3.22

(3.22) = —duduiiuiie — 4(p — Duduiouin
and

(3.23) I, = —2u2F22’rSuTsau25aaﬁ

_ 3 3 }
=  —2usuisuiir — 2(p — 1)uduaouiie;
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i.e.
I = IL+11,
(324) = - 2u§’u12u111 - uﬁ [4U11 + 2(p - 1)u22]u112
—4(p - 1)U§U12U122-
By 321 and ([3:24) we have
I + II .= — 2(p + 1)U§U12U111 — ug’[(llp — 2)U11 + 4(p — 1)U22]U112
—8(p — Dudurauios

(3.25) p=D) . .
— 2(p — 1)U2’LL11 + 2(]) — I)UQ’U,ll’U,lg
+2(p — Duguyiuzs + 2(p — Dudufs uss.

Next we deal with the last term in (314):

I, = 2F%u,uipa™?
(3.26) = 2u22u1au15a°‘6 — 2u12u2au15a°‘6
= 2udufi uz — 2ulunuts,
IIIQ = —10Fi2umu2ﬁaa5
(327) = 1OU121L1QUQ/3(LQ5 - 10u11u2au25a°‘ﬁ
= —10(p — Luduiiuzs + 10(p — usufs ugs,
IIIg = —3F22u1au15a0‘[3
3.28
(3.28) = —3uduf — 3(p — Dujunutz,
and
(3.20) Iy = 12F%uy,uspa®?
’ = 12udupuds + 12(p — Duduiuss .
By (326)-([329) we have
111 = 11+ 11, + 1115+ 111,
(330) = — 3U%U1% + 2“%11121 U2 — (3p — 13)’11%’(1,11’11122

+2(p — Duduiiuds + 10(p — Duduts ugs.

Substituting B25]) and B30) into FI3), it follows that:
(3.31)
|DulPa*¥K,5 = —[I+II+1II]
= 2(p+ Duduspuiry + u3[(4p — 2)urr + 4(p — 1)ugs]uire
+8(p — uduiguiz:
+(2p + Dusuiy — 2ududi ugs + (p — 1) udurudy
—4(p — Dudunuds — 12(p — Dudufs uss.

To get (B3) from B3T]), we must deal with the third derivatives of u. Now, by
B3) we can see

| Du P Ko = —F?"u,saud — 2F2u;qus + 3F?ugusg,

(3.32) = —Upaud + 2U1aUiats — 2U1 Usa Uy + U1 UnUog .
By taking a = 1,2 in ([832]) we can get respectively:

(3.33) upui1y = uriuir — ui Ky

and

(3.34) Uslig1e = UiiUas + 2uie— ud Ko.
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On the other hand, differentiating the equation (2] shows
0=(aYuij)a = uijaa®” +ui(a”)a
(3.35) = u3uiia + (p — 1)udugaa + 2ugti1tisg
+2(p — Dugugzuza + 2(p — 2)ugui2tia-
Taking o = 1 in ([B.38]), we have, together with ([B.33]):
(336) (p — 1)U2U122 = —(2p + 1)U11U12 — 2(p — 1)U12U22 —|— U%Kg.

Substituting 3.33), B34) and [B36) into B31) to cancel the third derivative

of u, we have
|DulPa®® K.+ G(DK) = (2p+ Luduil + 4(p — 1)ududi us,
—(p+ 17 uduruds —20(p — 1ududs uss,

where G(DK) = 2(p — 3)usuio K1 + [(4p — 2)u11 + 4(p — 1ugs]ui Ko.
By equation ([3:2)) we also have:

(3.37)

(3.38) 0=a%uy; = wui[uddy; + (p — 2)usu]
. = wudupr + (p— Dudug;

ie.

(8:39) ury = —(p = Duaa.
Combining this with (837), we finally get:

where bt = 2(p — 3)usdui2, b> = 2(2p — 3)uius;.
Since the level lines of u are all convex with respect to the normal Du, and

2
K= —Tf,fl'g’ at the fixed point x, we know that u;; < 0. Hence, when % <p<3,

B40) implies 33]), and the proof of Theorem is complete. O

4. PROOF OF THEOREM [[.J]

We follow the same idea as in the proof of Theorem in this section; i.e.,
we deduce a similar p-Laplacian inequality. The only difference between two and
three dimensions is in the third derivative terms. Of course, this time the terms
with third derivatives of u are more complicated than in the two dimensional case,
where only linear terms containing third derivatives of u appear. Now in the three
dimensional case, we have to treat the whole expression as a quadratic polynomial
in the third derivatives of uw. Since, in the three dimensional case, we have ten
third derivative terms, using the equation and the first derivatives of the Gaussian
curvature we can get six conditions on the third derivative terms. So at the end, we
shall leave four third derivative terms {u111, U112, %113, 123} in the last formulas
(£70) in this section. In the three dimensional case, these third derivative terms
as well as the second derivative terms in the formulas ([@L70) carry “good” signs.
From this we obtain the key inequality (L4]).

Let u be a p-harmonic function as in Theorem [[.3} in particular, its level sets are
strictly convex with respect to the normal Du. By (224)), the Gaussian curvature
of the level sets of u is

(4.1) K = Fuu;|Du| ™,
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where we have used the notation as in the last section, in addition that
3

(4.2) piirame - OF

6’UJZ‘j 8ursaupq

However, in this section, the repeated indices are summed from 1 to 3, unless stated
otherwise. Now our equation can also be written as:

(4.3) au;; =0 in Q.
At any fixed point z € €2, we will deduce the following elliptic inequality:
(4.4) a*PKop + 0K, <0,

with b locally bounded. Then by the strong maximum principle [10], we can get
our result immediately.

To simplify the calculations, we first rewrite ([@I)) as:
(4.5) |Dul*K = Fuu;.

Now we begin the proof of Theorem
Differentiating both sides of [@H]), we get respectively:

(4.6) (|Dul*K)q = |Dul* Ko + (|Dul*) o K
and
(4.7) (Fijuiuj)a = Fij7TsUrsanUj + 2Fijuiauj.

Differentiating respectively once again,
(48)  (|Dul'K)ap = |Dul*Kag + (|IDul*)a K5 + (IDul*)s Ko + (|Dul*)ap K

and
(4.9)
(F”uiu]‘)ag = F””f?qupqgurmuiuj + E”’”umaﬂumi + 2F”7”umaui5uj
—|—2F”’7"suT53umuj + 2F”um5uj + 2F% Ui Ujg-

These mean:

|Dul*Kapg = F9rsPly, su.squiug + F975ug05uu;
(410) + QF’_J_’TsuTsaui,guj —|- ZFZJ’TS’U,TSﬂuiQUj
+2F" UiapU; + 2F% Ui Ui
— (|Dul*) oK — (|Dul*) s Ko — (| Dul*)ap K.
Clearly
(4.11) (I1DulY)ag = (4DulPurura)s

= Bugupawiwis + 4| DulPuraurs + 4| Dul?ugugas.
Substitute (@I) into (@I0) and multiply both sides by a®® to derive:

|Du|4a""8Ka5 = Fij7”7pqupqgursauiujaa5 + Fij’”urmguiujaaﬁ
+ 4Fij7rsurmumujao‘ﬁ + 2Fijum5ujao‘3
(4.12) +2Fu;0u 50"
— 8Kuku;mululﬁa°‘5 — 4K|Du\2ukaukﬁa°‘ﬁ
— 4K | Duugugasa®® — 2K, (|Dul*)ga?.

In order to prove [@4) at an arbitrary point = € Q, as in Caffarelli-Friedman
[B], we choose the normal coordinate at xz. By rotating the coordinate system
suitably by T, we may assume that u;(x) =0, 1 <14 < 2 and us(z) = |Vu| > 0.
We can further assume that the matrix (u;;(z)) (1 < 4,j < 2) is diagonal and
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ui(z) < 0,1 <4 < 2. We also choose T, to vary smoothly with x. If we can
establish (£4]) at = under the above assumptions, then going back to the original
coordinate, we find that (£4) remains valid with new locally bounded coefficients
on VK in (£4), depending smoothly on the independent variables. Thus it suffices
to establish (£4) under the above assumptions.

From now on, all the calculations will be done at the fixed point z; we have
K = F33uzus|Du|™* = ujugz|Du| =2 > 0. Now ([EIZ) can be rewritten as:

|Du|4a0‘ﬁKa5 +G1(DK) = u§F33’T5’pqupq5uTmaa5 + u%F?’?”TsumagaaB
+ 4u3Fi3’TSursaui5aa5 + 2u3Fi3um3aa5
+ 2Fijuiauj5aa6 — 8F33u3au3/3a°"6
— 4F33ukauwaaﬁ — 4u3F33u3a5a°‘6,
where G1(DK) = 2(|Dul*)ga*° K,,.
Inserting (B.8)-(39) into (£I3)), it follows that
|Du|4a0‘ﬁKa5 +G1(DK) = ugF?’?’”’pqumgurmaaB
— 2u§F33’Tsumg (ao"B)S — u32,F33’”ua/3(aa5)Ts
(4.14) + 4U3Fi3’Tsursaui5aa5 — 2u3Fi3ua5 (a”‘ﬁ)i
+ 2Fijuiauj5aa6 — 8F33u3au3/3a°"6
— 4F33ukauwaaﬁ + 4u3F33uag (aaﬁ)g.

(4.13)

The following calculations are easy:
(4.15) (ao‘ﬁ)r = 2upUkr008 + (P — 2)Urqus + (P — 2)ualrg
and
(aaﬁ)rs - 2ukukr55aﬁ + 2ukruks§a5 + (p - Q)UTsauB
+(p— 2urausp + (p— 2)usalirg + (p— 2)uqrsp-
Substituting ([@I6]) into ([@I4]) we have:
(4.17)
\Du|4aa5Ka3 + G1(Dk) = u§F33’”’pqupq/3uTsaao‘ﬁ — 2u§F33’”umﬂ(a°‘5)s

— U3 F3 S ug s Au — 2(p— 2)u§’F33’Tsurmu;;a

(4.16)

+ 4U3Fi37”urmuigaa6 —2(p-— 2)u§F33’”umu35ua5
— QU F33 T e up s A — 2u3Fi3ua/3(aa5)i

+ 2Fijumuj5ao‘6 - 8F33u3au35a°‘5

— 4F33ukauk5a°‘ﬁ + 4u3F33ua5(a°‘6)3

= uf(I+ 11+ II1),
where
(4.18) [ i= F337sPly, su,0a®”,
II = —2F33’”um5 (ao‘ﬁ)S — 2us 337 S5, Au
(4.19)

4 .
- 2(p - Z)USFS&TSursauBa + U_Fzg’rsursauiﬁaaﬁv
3
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and
III = _2(p - 2)F337rsuro¢usﬁuaﬁ - 2F337TSU]W’U/]CSAU
2 i3 af 4 33 af
(4.20) - u_3F uap(a®”)i + U—3F Uap(a™”)3
+ 3Fiju- wiga®™® — iF33u uzga™® — iF?’?’uk upza™”?
u§ iallyps u?, 3aU38 u§ allkp

Here we consider the expression as a quadratic polynomial in the third derivatives
of u and we group all terms according to the degrees of the third derivatives of w.
Next, we calculate all the terms on the right of (ZI7) in more detail.
To deal with the third derivatives of u, we need some preparations to find the
relationship between them.

By ([6) and [@7) we have:
|Du|*K, — (|IDu|*)o K 4+ F" S, squiug + 2F T u;qu;
— 4| DulPupura K + F9 5 upsquing + 2F9u;0u;
(4.21) = —4dusF3Busy + ud F337 U, g0 + 2usFBu,q
= UBU2UI1a + UFUII U224
— 2U3U11U22U3y — 2U3UI1 U2 UL, — 2U3U22U31 Ulx;

i.e.

2 _ 2
(4.22) USUIIU20 = — USURUIIe T 2U3UT1U2U30
. 4
+ 2u3U11U32U20 + 2U3U2UZLI UL + |Du| K,.

Taking o = 1,2, 3 in [@22)) respectively, we can get:

u
uguize = —22uguiny + duiguse + ud Ky,
(4.23) uglizze = — 22 uzuie + duguss + ufl Ko,
U U u
uzupez = —22usuiiz +2 22Ula + 2ugouzs + 2uds + 5 K.

We have, moreover, by dlﬁerentlatlng equation ([@3)):

(4.24) 0= (auj)a = uduila + udusn + (p — 1)uiussa
’ + 2uzuga Au + 2(p — 2)uztizlin;
i.e.
(4.25) (1 — p)U3’U,33a = U3UI1a + U3U224 + 2U3a AU + 2(]) — 2)ui3uia.
Taking a = 1,2 in ([{28), respectively, and combining (£23]), we can get:
(1 —pluguizs = wusuiir + usuger + 2uzi Au + 2(p — 2)uizui
(4.26) = (1= )usuinn +2(p — Durruiz + 6uizugs
+2(p — 1)uiguss + 13 K,
and
(1 —pluguazs = usui1z + ustaze + 2uzsAu + 2(p — 2)uizuse
(4.27) = (1—-32)uguiiz + 2uriugs

+2(p + 1)UQ2’IL23 + 2( — 1)U23U33 + f KQ.
Now we are at the position to calculate [@I7) in more detail. First we have:
I = F33’T5’pqupq5uTsaaaﬁ
— 2F33,22,11ullﬁu22aa’aﬁ 4 2F33’12’21u125u21aaa5
= 2U3ul1lu122 + 2U3u112U222 +2(p — Nu3uiizugss

2, 2
—2u ’lL112 — 2U ’LL122 - 2( — 1)U3U123.

(4.28)
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Using ([{23]) we get:

(4.29)
2ufuiniuize — 2uiutes = —2%(1 + Z—ff)ugu%n +8(1+ 2%)“13“22“3%11
—32ufsuds )
+(2u§ uu;rlglun U111 — 16u§’ ulsluln )Kl _ 2(5_131[(1)2’
(4.30)
2uFuiigugze — 2uiutiy = —2(1+ 2 )ufufiz + Sugsuzszuzuiis + 2ui G2 Ko,
and
2(p — Lufuriguges = —2(p— 1)Z—ffu§u%13
(4.31) +4(p - 1)“3“113(%”1?2, + ugouss + uds )

4u
—|—2(p - 1)U3 ﬁKg

Substituting ([@29)- @31 into [@28)), it follows that

I = F3B7rsPiy, su,,a®?
. U u 2,,2 U 2,,2
— — Qu—rﬁ(l —l—uu—?flu%ulu — 2(1 —+ u—Tf)Q’U,gullg
(4.32) —2(p — 1)32uzufiz —2(p — Dusutas

+8(1 + 2422 Jurzuouzuinn + Busauzzusuiiz
+4(p — Duguiiz (23 + uszuss + u23) — 32ufzudat Go(DK)

with
u3 9 4U11 + 2ug2 3U13U22
GQ(DK) = —2(—K1) + (2U3—U111 — 16U3 )Kl
(4.33) U11 uA U1
U m
+ 2u§ﬁK2 +2(p— 1)u§ﬁf<3.
Next we calculate [@I9):
I, = —2F37u,,5(aP),
— _ 2F33,11ula6 (aaﬁ)l _ 2F33,22u2aﬁ (aa5)2
(4.34) = —duguizugeuin — duguiiugguriz — 4(p — 2)usugeuii s

— duszuizugauize — duguiiuaztiazs — 4(p — 2)usur1 uzauos
—4(p — 1)uguizuzuizz — 4(p — 1)uzui1ua3uoss.

For the terms in the last step of ([{34]), we have, by using ([£.23):

(4.35) 1l = —4uguizuguiir — 4usui3ugatiio
. _ 5 9 3
= —4(1 - )uizusouzuinn — 16ufsuzs — duz 22 K,
(4.36) Iy = —4usuiiugzuiiz — 4usui1U23Uz2
. _ 2 3
= —4(1 — 2 )unuszuzuinz — 16uriuzuss — dusugs Ko,
and
(4.37)
ILsz = —4(p—2)usunuzuiiz — 4(p — 2)uguriuzua2s

= - 4(27 - 2)(“11“22 - U%z )U3U113
—8(p — 2)(“11“%2 U3z + u1U20uds + ufs uds ) —4(p — 2)U§U22K3~

By ([@.28) we also have:

Iy = —4(p— 1)uguizussuiss
(4.38) = 41 - 2 )uizugauzuin +8(p — 1)uriuts ug
+24ufs udr + 8(p — 1)uts usouss + 4“§MS—EEK1'
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Similarly we have, by (£27):

Iy = —4(p— 1)uguiruasuass
(4.39) = 41— §2)uiugzuzuniz + Sufy uds
+8(p + 1)U11u22u23 + 8(p — 1uriuds ugs + duiuss Ko.

Substituting (@35)-@39) into [@34) we have

I = —2F3375y,,5(a%f),

I+ 1o+ 113+ 1114+ 115

= —4(p—2)(ur1u2 — ud> Juzuis
+8ufy uds +8(p — 1uriufs uss — 8(p — 2)ur1uds uss
+ 8ut1ugouds + 8(p — 1)uiiuds uss — 8(p — 3)uis u3;
+ 8(p — 1)U%3 U22U33 — 4(p — 2)“%11,22[(3.

(4.40)

For the second term on the right-hand side of ([@I9)), again using [£23]) we have:

I, = —2u3F37 Sus.,Au
= —2ugugusii Au — 2uzuyuzAu
_ 2 2 9 2
(4.41) = —4uf; uzousz — 4ufy usz — duriufs ugs

2 2 2" 9
—4ui1uzz ugz — 4uri1uuis — 4ufz ui
2 2 2 3
—4duiiuusz — 4duiiuss uss — 4ufs usousz — 2usAuks.

For the third term on the right-hand side of [{@I9)), using [@22]) we similarly
deduce:
(4.42)

II; = —2(p—2)uzF33 " u.squs3a
—2(p— 2)U3U22U11au3a —2(p — 2)uzur1 U220 U3a
= —8(p—2)uriufs uzs — 8(p — 2)ur1uzouds
—4(p—-2)
-2(p—2)

’U
l\D

1
—2)ufs U22U33 —4(p — 2)urruzuis —4(p — 2)ur1ud;s uss
p — 2)udusa

The fourth term on the right-hand side of ([@I9) is

I, := }F’?’ " Uy saiga af
(4.43) = Fl3 " Uyl ga*P + - F23 TS U salizga®’
+ F33 TS, U3,@aaﬁ

We will calculate the three terms on the right-hand side of ([@.43]) respectively:

Iy = 2FB7uqupa™?
_ 43F13 31u31 w1500 + F13 220000150
+ F13 21’&21 uwa ﬁ
= 4U11U23U3U112 —4duriuizuzurze — 4ur1uz2uzull3
—4(p — 1)ufs uguzzs — 4(p — 1)urzuoguzuszs
+4(p — 1)uizuz3usu23.

(4.44)

By ([#23) we have:

_ 2 3
(4.45) —4upuizuzuige =  4uizugausuiry — 16ugiufs use — dusuiz Ky,
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and
— duriuuguiis —4(p — 1)u%3 Uz U223
= [—4ug uge + 4(p — 1)3—??@3 Jusui1s
(4.46) —8(p— 1)(Z—jju‘f3 + uf3 uguss + ufs uds )
~Alp ~ Dt K

By ([£26) we see:
(4.47)
—4(p — Duizuszuzuiss
= 4(1 — 2 )uizuzusuin
+8(p — Duriufs ugs + 24ufs udy + 8(p — 1)ufs ugpuzs + duf 22 K.

Substituting (£45)-@47) into (@44, it follows that

ILy = o FP7 w0
= 4(2 - 2)ursuzousuint + duriuzszuzune
(4.48) —4u2luty — (p— 1)ufs Juzuns ,
+4(p — 1)uiguzusuies + 8(p — 3)ur1uts uss
— 8(p — 1)2—??1&13 + 24u%3 U%g — 8(p — 1)u%3 u§3
— 2
+ 4U§M271ILHU13K1 — 4(]9 — 1)u§’ Ullef’Kg

For the second term on the right-hand side of (£43]):

11, = uiF%’”uTsauQﬁao‘ﬁ
§F23’32u32au25a0‘/3 i
+ %F23’12U12QU,25GO¢6
= —4duiiuzusugrs — 4(p — 1)uiiusguguass
— dugouszusuirs — 4(p — 1)uds usuirs
+4uigugausuize + 4(p — 1)uizugsusugos.

Also using (£23)) yields:

4 p23a

ap
w3 U1 U280

(4.49)

— u 2 2 3uizu
(4.50) durzugauzuize = —4p2uizugouguiny + 16ufs ugy + duy =2 Ky
and

—4(p — 1)uds uzuirs — dugiusoususas
(451) = [4’&%2 — 4(p — 1)7.14%3 }U3U113
—8ufs uds — Suyiudz ugz — Buiiusuds — duFusn Ks.

By [@.27):
(4.52)
— dugougzuzuiry — 4(p — 1)uruzsusuoss
= 41— 2%)“11“23“3“112
+8ufy uss + 8(p + Durruzuds + 8(p — 1)uriuds uss + 4uiugs Ko.
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Substituting ([@50)-[@52) into [@A9) yields:

Il = %FQB’TSuTsauglgao‘ﬁ

= —4Puizuznuzuin +4(1 — 282 )unuszuzune

(4.53) + [4uzz — 4(p — 1)u3s Juguiiz + 4(p — 1)urzuggustiog
+ 8ufy uds — Buiuds usz + 8puiiusuis

+8(p — 1)ug1uds uss + 8ufs uds

+ 4u§’“17j—1“12‘2K1 + 4U§UQ3K2 — 4u§’u22K3.

For the third term on the right-hand side of (£43)), using [@22]) we have:

(4.54)
I3 = %F‘%’”umauwaaﬁ
u—sumuuaugﬁaaﬂ + %Uuuzmusﬁaaﬁ

= 16ujiuoufs + 16uijusouds
+8(p — 1) (ur1ug2uds + ui1uds uss + ufs usouss) + 4uza®Puzg K,.

Substituting ([@.48)) and [@53)-[@54) into ([@43) yields:

(4.55)
u u
II, =8(1- u—22)u13U22U3U111 +8(1 - u—22)U11U23U3U112 + 8(p — 1ur3u3zusui2s
11 11
u
+ [Au3y — dujiuge — 4(p — V)uds +4(p — 1)u—22u%3 Jusuq13
11

+ 8ufy u3s + 8(p — Vusiuis use — Surjuds uzs + 8(p + 2)uyiusauis

4
13

+8(p — Duriugauds + 16(p — 1)uy1uds uss — 8(p — 1)u—22U
1

+ 32uf3 udy + 8(p — 1)uis usguzs — 8(p — 1)ufs uds
2

U13U u
13722 K+ 8u§u23K2 — 4u§’u22K3 — 4(p — 1)u§(u— — ’U,33)K3.
11

+ 8ui ——=
Uil

Substituting ([@40)- [@42) and @5A) into @IT), it follows that

(4.56)
II:= —2F33’T5um5(aaﬂ)s — 2uz 33755,  Au

4 .
_ 2(}? _ 2)u3F33,rsumau3a + U_FzS,rsumauiBaaB
3

= III —|—112 +113 —|—II4
(2

u
=8(1— ﬂ)uwuzzu:ﬂhn +8(1 — ﬂ)ullu23u3U112 + 8(p — Dursuazusuiog

Uil Uil

U
+ [4(p — Dudy —4(p — Durguge — 4(p — Vuis +4(p — 1)U—Z2U%3 lusuiis
11
— 4ufy upouss + 12ufr uds + (8p — 4)uriufs usz — (8p — 4)ur1uss uss

+ 36ur1uguds + 4(p — VDugruseuis + 20(p — Vugiuds uss

— (8p — 52)ufz uiy + 12(p — 1)uis usguss — 8(p — 1)uis ud;

—8(p—1)~2uty + G3(DK)
U1
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with
u
Gs(DK) = (8u—22 — 2p + Duduis Ky — 2(p — 6)ufuss Ko + (6p — 8)ufuss Ks
11
2
—4(p— 1)u§ U11U22 + U13K3,

U1

where we have used Au = —(p — 2)uss by equation (£3).
Next we calculate the third term (£20):

IIT:=—-2(p— 2)F33’”umu35ua5 — OF TS s A

2 2 2
— u—3F13uaﬁ(aa5)1 — u—3F23ua5(aaﬁ)2 + u—3F33ua[3(a°‘5)3
(4.57)
2 . 8 4
+ EF”umujgaaﬁ — U—§F33U3auwaaﬁ — u—gFSBukauwaaﬁ

=110+ 1115+ I113.
We shall deal with 111y, I11s and 1113 respectively as follows:

(4.58)
1L = -2(p— 2)F33"’Sumu55ua5 — 233 TSy g s A

= —2(p — 2)u11U2aU28Uap — 2(P — 2)U22U10 U1 3USB
— 2u11 Uk Uk AU — 2Uz2Up Uk AU

3 2 9 2 2 2
= —2(p — 1)uiy ug2 — 4ufs uzs — 2uii ugousz — 2uii ud3
2 2 3 2
+ (6 — 4p) (ur1ufs vz + ur1u22uds ) — 2(p — Durruss — 2ur1uds uss

—2(p — V)ugquds uzz — 2ufz uds — 2(p — 1)uis uuss,

2 2 2
I11 := ——FBu,5(a®?); — = FBu,5(a*?)s + = F33uyp(a®?);
us U3 Uus3
(4.59) = dufy uguss + (8p — 12)uriufs uy + 4ufy uds

+ duryuds uzz + (8p — 12)urusnuis +4(p — L)urusouds

+4(p — Duriuds uzs + 4(p — Vuis usougs + 4ufs uds ,

2 8 4
115 := u—gF”uiaujﬁao‘ﬁ — @F%umuggao‘ﬁ — EFg?’ukauwao‘ﬁ
2 ..
= = Fuqujza®?
(4.60) u3 i
12 4 4
— u—§F33U3QU3Ba°‘6 — EF%ulauwao‘ﬁ — EF%ugauwaaﬁ
= 11137+ I1135 4+ I1133,
where
Il = 2 F af
31 - E Ui Ujpa
(4.61) = lFuul u13a®? + 3}7‘22u2 usga®? + i173‘0’113 usza®?
. u§ allp U% a2 u§ al3p
+ iF12u1 usga®’ + iF13u1 uzga®? + iFQ?’UQ usza®?
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The six terms in ([£GI]) are precisely:

(4.62)
%Fllumuwaaﬁ - u%(uggug;; — U3z ) urau15[Uddas + (p — 2)uaus)
= 2u%1 U22U33 — 2“%1 'UJ%S + 2(p — 1)(U%3 U20U33 — u%3 u%3 )7
(4.63)
%F22u2auz,@ao‘ﬁ = %(uuu:;g — U%3 )u2au25[u§5a6 + (p — 2)”04“6]
2u11uds uss + 2(p — 1) (ur1uds uss — ufs uds ) — 2ufs us
(4.64) %F33“3a“36aaﬁ = %U11U22U3w35[u§6a5 + (p — 2)uqug]
= 2upufs ugz + 2uriuguds + 2(p — 1)uiiuuss
(4.65) ui%Fm“la“waaB = %u31u23%1au226 [u36ap + (p — 2)uqug]
= 4A(p— ufs uss,
(4.66) %Flsula“%aaﬁ = %(—u22U31)u1aU3ﬁ [u36ap + (p — 2)uqug]
= —dujyufs ug — 4(p — 1)ufs uxuss,
and
(4.67) g FPuauzsa®” = g (—unnuse)usatiss[uidas + (p — 2)uaug

_ 2 2
= —dunuguzz —4(p — 1)ui1uss uss.

Substituting ([@62))-[@67) into @6, it follows that
1113, = %F”umuﬂgaaﬁ
= 2ufj usouzs — 2ufy udz — 2uiiufs ugs + 2ur1ude uss
—2upusouds + 2(p — Durjueuds — 2(p — )uiiuds uss
—2(p — 1)ufs uoussz — 2ufs uds .
For the second term in (4.60):

III32 = —%F%uwuwaaﬁ
= —12ujiufs ugs — 12usiuseuds — 12(p — 1)ujiuguis .

For the last term in (Z60):

IIl33 = — %F?’?’ulauwaaﬁ — %F?’?’uzauzgao‘ﬁ
(4~70) = - 4Ui)’1 U22 — 4(}7 - 1)1&11U%3 U22
—4uiudy — 4(p — Vuriusouds .

Combining (L6])-(70) with (EG60) yields:

IIT; = —4ufy ugs + 2ufy ugouzs — 2ufy uds — (4p + 10)usiufs uge
—4duiudy + 2uiiuds uzs — (4p + 10)ugiuzouds
—10(p — Durrugouds — 2(p — L)uiiuds uss
—2(p — 1)ufs usouss — 2ufs uis .

Substituting ([@E)-@E9) and (7)) into (A5T), we have
(4.72)
171 = —-2(p- 2)F33’”umu55ua5 — 2FB33 sy uks Au

— B Fuap(a®?)1 — ZFPuap(a®?)s + 2usF P uap(a)s
+ f—gFijumujgaaﬂ — %F‘B?’u;;auwao‘ﬁ — %F%umuwao‘ﬁ

= IIL + 111, + 111,

= —2(p+ D)uy ugx — 4u?y uds + 4ufy usauzs — 16urufs uss
—2(p+ Durruds + duiiuds ugs — 16uriusouds — 6(p — 1)uriusouds .

(4.68)

(4.69)

(4.71)

Licensed to University of Science & Technology of China. Prepared on Thu Sep 27 23:04:10 EDT 2012 for download from IP 218.104.71.162.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4626 JURGEN JOST, XI-NAN MA, AND QIANZHONG OU

Finally, substituting (£32), [@56]) and (@72) into (@IT), we get:
|Du|?a®$ K5 + G(DK)
=1+11+1I1
= — 23—??(1 + Z—fflu%u%n — 2(1 + Z—Qi)zu?%u%lg
— 2( 1)”?2 uszuUi1s — 2( — 1)U3U123

+8(2 + 22 )urzuzouzuin + 8u11u23u3U112
(4.73) +4(p — 1)u3u113(2u22 u?s — upiuge + uds + usouzs)
(p )U13U23U3u123
—2(p+ Vufy uge — 4ufy udy + 12u?y uds + (8p — 20)us u?s uss
—2(p+ Duuds — 8(p — 1)urruds ugs + 20us1usouds
—2(p— 1)U11U22U33 +20(p — 1)u1uds uss — 8(p — 1)%“%3
(8p — 20)U13 U22 —+ 12( — 1)’&%3 U22U33 — 8(]9 — 1)u%3 U%g
with
(4.74)
G(DK) = %Gi(DK) = Go(DK) — Go(DK)

( u31 K1)? = 2uif (ug 220y — 418422 — (p — 6)urg) K,
— 2U3 (’LL3 7;11112 — (p 2)’(,&23)[(2 )
_ 2”3 (( _ 1)U3 U113 _ 2(]) _ 1) U1 U2+ UT3_ pu33)K3.

Uil Uil
Now, at the point z, by equation ([£3]) we have:
U1 + U2
4.75 Uz = ——————
(4.75) 33 1

Inserting this into [@73)), we deduce:

|Dul?a*’ K .5 + G(DK)
—  _9oux (1 + u22)[u3u111 2u11(2u11+u22)u13}2

Uil 002 u11+71222
(4‘76) B 2(1 + )[u?’ullz - u11-‘:11t22 u23] 2 2 2
—2(p 1)u22 [uuiis — 2ufs + Pyutt — Pquiiuzs]
—2(p— 1)[U3U123 — 2uy3uz3)?
a ulfiqil;m ’U,%Q u%3 o u1817jr2§22 U’%l u%3 - 4(p - 2)”%1 U%z .

Since the level sets of u are strictly convex with respect to the normal Du, we
have K > 0. But now K = F®3uzug|Du|™* = uy1uge|Du|~?; hence uijuze > 0. So
@) yields (@A) for 2 < p < +oo. This completes the proof of Theorem [[31 O

ACKNOWLEDGMENT

Part of the work was done while the second author was visiting the Max Planck
Institute for Mathematics in the Sciences in January 2008, and he would like to
thank this institute for warm hospitality. The second author would also like to
thank Professor P. Guan for useful discussions on this subject. The authors would
like to thank the referee for his (her) very careful reading and many good suggestions
on this paper.

REFERENCES

[1] L.V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series
in Higher Mathematics. McGraw-Hill Book Co., New York-Desseldorf-Johannesburg, 1973
(pp. 5-6). MR0357743//(50:10211)

Licensed to University of Science & Technology of China. Prepared on Thu Sep 27 23:04:10 EDT 2012 for download from IP 218.104.71.162.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=0357743
http://www.ams.org/mathscinet-getitem?mr=0357743

CURVATURE ESTIMATES FOR THE LEVEL SETS 4627

[2] B.J. Bian, P. Guan, X.N. Ma and L. Xu, A microscopic convezity principle for the level sets
of solution for nonlinear elliptic partial differential equations, Indiana Univ. Math. J., vol.
60, no. 1, 2011, 101-119.

L. Caffarelli and A. Friedman, Convezity of solutions of some semilinear elliptic equations,

Duke Math. J., 52, (1985), 431-455. MR792181|/(87a:35028)

[4] L.A. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations
1V: Starshaped compact Weingarten hypersurfaces, Current topics in partial differential
equations, Y.Ohya, K.Kasahara and N.Shimakura (eds.), Kinokunize, Tokyo, 1985, 1-26.
MR1112140

[5] L. Caffarelli and J. Spruck,Convezity properties of solutions to some classical variational
problems, Comm. Partial Differ. Equations, 7, (1982), 1337-1379. MR678504]/(85{:49062)

[6] P. Cuoghi and P. Salani, Convezity of level sets for solutions to nonlinear elliptic problems in
convez rings, Electronic Jour. Diff. Equations, 124, (2006), 1-12. MR2255239//(2007d:35083)

[7] M. P. do Carmo, Differential geometry of curves and surfaces, Translated from the Por-
tuguese. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. MR0394451 |(52:15253)

[8] R. Gabriel, An extended principle of the mazimum for harmonic functions in 3 dimensions,
J. London Math. Soc. 30, (1955), 388-401. MR0072959|/(17:358c¢)

[9] R. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions,
J. London Math. Soc. 32, (1957), 286-294. MR0090662 |(19:848a)

[10] D. Gilbarg and N. S. Trudinger, FElliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, 2nd ed., 1998. MR 1814364 (2001k:35004)

[11] S. Gleason and T. Wolff, Lewy’s harmonic gradient maps in higher dimensions. Comm.
Partial Diff. Equations, 16, (1991), 1925-1968. MR1140779|/(92k:35062)

[12] A. Greco, Quasi-concavity for semalinear elliptic equations with non-monotone and
anisotropic mnonlinearities, Boundary Value Problems, 2006, Art. ID 80347, 15 pp.
MR2211400//(20061:35091)

[13] B. Kawohl, Rearrangements and convezity of level sets in PDE, Lectures Notes in Math.,
1150, Springer-Verlag, Berlin, 1985. MR810619 |(87a:35001)

[14] J.L. Lewis, Capacitary functions in convexr rings, Arch. Rational Mech. Anal. 66, (1977),
201-224. MR0477094/(57:16638)

[15] H. Lewy , On the non-vanishing of the Jacobian of a homeomorphism by harmonic gradients,
Annals of Math. (2), 88, (1968), 518-529. MR0232007|(38:333)

[16] M. Longinetti, Convexity of the level lines of harmonic functions, (Italian) Boll. Un. Mat.
Ital. A 6, (1983), 71-75. MR694746//(84e:31001)

[17] M. Longinetti, On minimal surfaces bounded by two convex curves in parallel planes, J. Diff.
Equations, 67, (1987), 344-358. MR884274]/(88m:58035)

[18] M. Ortel and M. Schneider, Curvature of level curves of harmonic functions, Canad. Math.
Bull. 26, (1983), no. 4, 399-405. MR716578|/(84m:31003)

[19] J.P. Rosay and W. Rudin, A mazimum principle for sums of subharmonic functions,and the
convezity of level sets, Michigan Math. J., 36, (1989), 95-111. MR989939 (90h:31006)

[20] M. Shiffman, On surfaces of stationary area bounded by two circles, or conver curves, in
parallel planes, Annals of Math. (2), 63, (1956), 77-90. MR0074695/|(17:632d)

[21] G. Talenti, On functions, whose lines of steepest descent bend proportionally to level lines,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10, (1983), no. 4, 587-605. MR753157(86b:35021)

[22] N.S. Trudinger, On new isoperimetric inequalities and symmetrization, J. Reine Angew.
Math. 488, (1997), 203-220. MR1465371(99a:35076)

3

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES, INSELSTR. 22, D-04103 LEIPZIG,
GERMANY
E-mail address: jjost@mis.mpg.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI,
230026, ANHUI PROVINCE, PEOPLE’S REPUBLIC OF CHINA
E-mail address: xinan@ustc.edu.cn

DEPARTMENT OF MATHEMATICS, HEZHOU UNIVERSITY, HEZHOU, 542800, GUANGXI PROVINCE,
PEOPLE’S REPUBLIC OF CHINA
E-mail address: ouqzh@163.com

Licensed to University of Science & Technology of China. Prepared on Thu Sep 27 23:04:10 EDT 2012 for download from IP 218.104.71.162.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=792181
http://www.ams.org/mathscinet-getitem?mr=792181
http://www.ams.org/mathscinet-getitem?mr=1112140
http://www.ams.org/mathscinet-getitem?mr=678504
http://www.ams.org/mathscinet-getitem?mr=678504
http://www.ams.org/mathscinet-getitem?mr=2255239
http://www.ams.org/mathscinet-getitem?mr=2255239
http://www.ams.org/mathscinet-getitem?mr=0394451
http://www.ams.org/mathscinet-getitem?mr=0394451
http://www.ams.org/mathscinet-getitem?mr=0072959
http://www.ams.org/mathscinet-getitem?mr=0072959
http://www.ams.org/mathscinet-getitem?mr=0090662
http://www.ams.org/mathscinet-getitem?mr=0090662
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=1140779
http://www.ams.org/mathscinet-getitem?mr=1140779
http://www.ams.org/mathscinet-getitem?mr=2211400
http://www.ams.org/mathscinet-getitem?mr=2211400
http://www.ams.org/mathscinet-getitem?mr=810619
http://www.ams.org/mathscinet-getitem?mr=810619
http://www.ams.org/mathscinet-getitem?mr=0477094
http://www.ams.org/mathscinet-getitem?mr=0477094
http://www.ams.org/mathscinet-getitem?mr=0232007
http://www.ams.org/mathscinet-getitem?mr=0232007
http://www.ams.org/mathscinet-getitem?mr=694746
http://www.ams.org/mathscinet-getitem?mr=694746
http://www.ams.org/mathscinet-getitem?mr=884274
http://www.ams.org/mathscinet-getitem?mr=884274
http://www.ams.org/mathscinet-getitem?mr=716578
http://www.ams.org/mathscinet-getitem?mr=716578
http://www.ams.org/mathscinet-getitem?mr=989939
http://www.ams.org/mathscinet-getitem?mr=989939
http://www.ams.org/mathscinet-getitem?mr=0074695
http://www.ams.org/mathscinet-getitem?mr=0074695
http://www.ams.org/mathscinet-getitem?mr=753157
http://www.ams.org/mathscinet-getitem?mr=753157
http://www.ams.org/mathscinet-getitem?mr=1465371
http://www.ams.org/mathscinet-getitem?mr=1465371

	1. Introduction
	2. The curvature formulas of level sets
	2.1. Classical differential geometry of graph and its convexity
	2.2. The convexity of the level sets of a function
	2.3. The curvature formulas of level sets of functions

	3. Proof of Theorem 1.2
	4. Proof of Theorem 1.3
	Acknowledgment
	References

