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CURVATURE ESTIMATES IN DIMENSIONS 2 AND 3

FOR THE LEVEL SETS OF p-HARMONIC FUNCTIONS

IN CONVEX RINGS

JÜRGEN JOST, XI-NAN MA, AND QIANZHONG OU

Abstract. Sharp curvature estimates are given for the level sets of a class of
p-harmonic functions in two and three dimensional convex rings.

1. Introduction

The geometry of the solutions of a partial differential equation is an important
issue. The convexity of the level sets of the solutions of elliptic partial differential
equations has been studied for a long time. For instance, Ahlfors [1] contains the
well-known result that the level curves of the Green function on a simply connected
convex domain in the plane are the convex Jordan curves. In 1956, Shiffman [20]
proved several beautiful theorems concerning the geometry of a minimal annulus
whose boundary consists of two closed convex curves in parallel planes P1, P2. One
of his theorems stated that the intersection of the surface with any plane P , between
P1 and P2, is a convex Jordan curve; in particular, it follows that this surface is
embedded. For elliptic partial differential equations on domains in R

n, the problem
of level set convexity was first considered by Gabriel. In 1957, Gabriel [9] proved
that the level sets of the Green function on a three dimensional convex domain are
strictly convex. Later, in 1977, Lewis [14] extended Gabriel’s result to p-harmonic
functions in higher dimensions and obtained the following theorem.

Theorem 1.1 (Gabriel [9] and Lewis [14]). Let u satisfy

(1.1)

⎧⎨
⎩

div(|Du|p−2Du) = 0 in Ω = Ω0\Ω̄1,
u = 0 on ∂Ω0,
u = 1 on ∂Ω1,

where 1 < p < +∞, Ω0 and Ω1 are smooth bounded convex domains in R
n, n ≥ 2,

Ω̄1 ⊂ Ω0. (We say that u satisfies the homogeneous Dirichlet boundary conditions
in the convex ring Ω = Ω0\Ω̄1.) Then all the level sets of u are strictly convex in
Ω.

In 1982, Caffarelli-Spruck [5] generalized the Lewis [14] results to a class of
semilinear elliptic partial differential equations. A survey of this subject is given
by Kawohl [13]. For more recent extensions, see Greco [12] and Cuoghi-Salani [6].
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The aforementioned results are of a qualitative nature. This naturally leads us
to the question of quantitative results, that is, estimates for the curvature of the
level sets of the solutions of such elliptic problems. This is the topic of the present
paper.

For a two dimensional harmonic function defined on a convex ring with homoge-
neous Dirichlet boundary conditions, by the theorem of Lewis [14], as explained, the
level set of this function is strictly convex. Ortel-Schneider [18] and Longinetti [16]
proved that the curvature of the level curves attains its minimum on the boundary
(see Talenti [21] for related results). Later, in 1987, Longinetti [17] used the same
technique to obtain a similar theorem for minimal surfaces, where the convexity of
the level sets follows from the theorem of Shiffman [20].

On the other hand, in 1989, Rosay-Rudin [19] proposed a new measure for the
convexity of the level sets, and showed that with regard to this measure, the level
sets of the harmonic functions on a convex ring in any dimension with homoge-
neous Dirichlet boundary conditions are “more convex” in the interior than on the
boundaries.

In this paper, we study the level sets of p-harmonic functions in two and three
dimensions, and we obtain quantitative estimates for the convexity of the level sets.
Our main results are as follows. We first state the two dimensional case.

Theorem 1.2. Let Ω be a smooth bounded domain in R
2, and u be a smooth

p-harmonic function in Ω, i.e.

(1.2) div(|Du|p−2Du) = 0 in Ω.

Assume |Du| �= 0 in Ω. If 3
2 ≤ p ≤ 3 and the level lines of u are convex with respect

to the normal Du, then the curvature of the level lines of u attains its minimum on
∂Ω.

In three dimensions, we have the following result.

Theorem 1.3. Let Ω be a smooth bounded domain in R
3 and u be a smooth p-

harmonic function in Ω, which satisfies (1.2). Assume |Du| �= 0 in Ω. If 2 ≤ p <
+∞ and the level sets of u are all strictly convex with respect to the normal Du,
then the Gaussian curvature of the level sets of u attains its minimum on ∂Ω.

We can apply Theorem 1.2 and Theorem 1.3 to obtain the following version of
Lewis’s theorem [14].

Corollary 1.4. Let u be the solution of the following boundary value problem,

(1.3)

⎧⎨
⎩

div(|Du|p−2Du) = 0 in Ω = Ω0\Ω̄1,
u = 0 on ∂Ω0,
u = 1 on ∂Ω1,

where Ω is a smooth convex ring as in Theorem 1.1. If n = 2 and 3
2 ≤ p ≤ 3,

then the curvature of the level lines of u attains its minimum on ∂Ω. If n = 3
and 2 ≤ p < +∞, then the Gaussian curvature of the level sets of u attains its
minimum on ∂Ω.

Rosay-Rudin [19] apply the maximum principle directly to quantities formed by
the solution u to obtain their results. This works because convexity of a function
can be expressed in terms of this function itself without involving derivatives. Our
method is different and depends on new curvature inequalities. This is in line
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with general strategies for understanding solutions of elliptic partial differential
equations from a deeper geometric perspective. These inequalities represent the
main achievement of the present paper. More precisely, we show that the Gaussian
curvature K of the level sets satisfies the following p-Laplacian inequality:

(1.4) aij(Du)Kij + biKi ≤ 0 in Ω,

where

(1.5) aij(Du) := |Du|2δij + (p− 2)uiuj

with bi being locally bounded. Then we can apply the strong maximum principle
[10] to obtain our results.

The results obtained here are for dimensions 2 and 3. In this regard, we note that
sometimes lower dimensional harmonic functions display certain phenomena that
are not present in the higher dimensional case. For example in three dimensions,
the famous theorem of Lewy [15] states that if u is a harmonic function on a
domain in R

3 and the map x −→ Du(x) is a homeomorphism, then x −→ Du(x)
is a diffeomorphism. In 1991, Gleason-Wolff [11] extended this results to higher
dimensions, but needed some extra conditions, and gave a counterexample in the
higher dimensional case without these additional conditions.

Nevertheless, it seems that, in principle, our method is of a general nature and
that, therefore, some extension of it should also give some results in higher dimen-
sional cases.

From the standard theory of elliptic partial differential equations, we know that
the (unique) solution of equation (1.2) is smooth in any domain Ω in R

n, n ≥ 2
when |Du| �= 0 in Ω. This is verified in detail by Lewis [14].

In section 2, we first give a detailed definition of the convexity of the level
sets which appeared in [2], then obtain the curvature formulas for the Gaussian
curvature of the level sets of a function. The proofs of our theorems, as given in the
sequel, depend on difficult calculations. The main technique consists in rearranging
third derivative terms using the equation and the first derivatives condition for the
Gaussian curvature. In dimensions 2 and 3, we get “good” signs for the second and
third derivative terms, which allows us to reach our conclusions.

2. The curvature formulas of level sets

In this section, we first recall some fundamental notation in classical surfaces
theory and provide the definitions for the convexity of surfaces in Euclidean space
with respect to the upward normal. Then we introduce the level sets of a function
u, and we derive the curvature formulas of the level sets of u, which appeared in [2].
For convenience, we will adapt the following convention for indices in this section:

1 ≤ i, j, ... ≤ n− 1; 1 ≤ α, β, ... ≤ n,

and the repeated indices are summed unless stated otherwise.

2.1. Classical differential geometry of graph and its convexity. First we
recall some fundamental notation in classical surface theory as in [7]. Assume a
surface Σ ⊂ R

n is given by the graph of a C2 function v in a domain in R
n−1:

xn = v(x′), x′ = (x1, x2, ..., xn−1) ∈ R
n−1.(2.1)
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The first fundamental form for the graph of xn = v(x′) is given by

gij = δij + vivj .(2.2)

The upward normal direction �n and the second fundamental form II w.r.t. �n for
the graph xn = v(x′) are respectively given by

�n =
1√

1 + |Dv|2
(−v1,−v2, ...,−vn−1, 1),(2.3)

II = (bij) =
(vij
W

)
,(2.4)

where 1 ≤ i, j, k, l ≤ n− 1 and W = (1 + |Dv|2) 1
2 .

Now we recall the definition of a convex surface in classical differential geometry
[7].

Definition 2.1. The graph of a function xn = v(x′) is convex with respect to the

upward normal �n as in (2.3) if the second fundamental form II := (bij) =
(vij
W

)

of the graph xn = v(x′) is nonnegative definite.

The principal curvatures κ = (κ1, κ2, ..., κn−1) of the graph of v, being the
eigenvalues of the second fundamental form relative to the first fundamental form,
satisfy

det(bij − κkgij) = 0,

or equivalently,

det(aij − κkδij) = 0,

with

(aij) = (gij)
1
2 (bij)(g

ij)
1
2 ,

where (gij) is the inverse matrix to (gij) and (gij)
1
2 is its positive square root, and

there is no sum for i, j. They are given explicitly by

(gij) =
(
δij −

vivj
W 2

)
,(2.5)

(gij)
1
2 =

(
δij −

vivj
W (1 +W )

)
.(2.6)

Then we have the following well-known formulas.

Lemma 2.2 ([4]). The principal curvatures of the graph xn = v(x′) with respect to
the upward unit normal (2.3) are the eigenvalues of the symmetric curvature matrix

(2.7) (ail) =
1

W

(
vil −

vivjvjl
W (1 +W )

− vlvkvki
W (1 +W )

+
vivlvjvkvjk
W 2(1 +W )2

)
.

2.2. The convexity of the level sets of a function. Now we give the definition
of the level sets of the function u.

For a domain Ω ⊂ R
n and u ∈ C2(Ω), we shall use the following notation.

Definition 2.3. Assuming |Du| �= 0 in Ω, we denote the level set of u through a
point xo ∈ Ω by Σu(xo) := {x ∈ Ω|u(x) = u(xo)}.

Now we shall locally work near such a point xo, where |Du(xo)| �= 0. We first
state the definition of the convexity for the level sets Σu(xo) in this special case.
Without loss of generality we assume un(xo) �= 0 and work on a small neighborhood
of xo.
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By the implicit function theorem, locally the level set Σu(xo) can be represented
as (2.1), where the function v(x′) satisfies the following equation:

(2.8) u(x1, x2, ..., xn−1, v(x1, x2, ..., xn−1)) = u(xo).

It follows that

(2.9) ui + unvi = 0,

and hence

(2.10) vi = − ui

un
.

From (2.10), we have

(2.11) W = (1 + |Dv|2) 1
2 =

|Du|
|un|

.

Using (2.3) and (2.11), it follows that the upward normal direction of the level sets
is

�n =
|un|

|Du|un
(u1, u2, ..., un−1, un).(2.12)

Now differentiating (2.9) again, we have

(2.13) uij + uinvj + unjvi + unnvivj + unvij = 0.

Then

vij = − 1

un
[uij + uinvj + unjvi + unnvivj ](2.14)

= − 1

un
3
[u2

nuij + unnuiuj − unujuin − unuiujn].

If we let

(2.15) hij = u2
nuij + unnuiuj − unujuin − unuiujn,

it follows that

(2.16) vij = −hij

u3
n

.

From (2.11) and (2.16), with respect to the upward normal direction (2.12), the
second fundamental form II of the level surface of the function u is

(2.17) (bij) =
(vij
W

)
=

(
− |un|hij

|Du|u3
n

)
.

From Definition 2.1, we give the definition of the convexity for the level sets
Σu(xo) = {x ∈ Ω|u(x) = u(xo)} of the function u(x), where |Du|(xo) �= 0 in Ω.

Definition 2.4. For the function u(x) ∈ C2(Ω) we assume |Du| �= 0 in Ω, and
locally we can let un(xo) �= 0 for xo ∈ Ω. We define locally that the level set
Σu(xo) = {x ∈ Ω|u(x) = u(xo)} is convex if the second fundamental form (2.17) is
nonnegative definitive with respect to the upward normal direction (2.12).

Remark 2.5. At xo ∈ Ω, with |Du|(xo) �= 0, without loss of generality we may then
assume un(xo) �= 0.

By choosing the coordinate system suitably, we may assume
Du

|Du| to be the

upward normal of the level set Σu(xo) at xo. Then un(xo) > 0 by (2.12), and from
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Definition 2.4, if the level set Σu(xo) at xo is convex with respect to the normal
Du

|Du| , then the matrix (hij(xo)) is nonpositive definite.

On the other hand, if we choose − Du

|Du| to be the upward normal of the level

set Σu(xo) at xo, then un(xo) < 0 by (2.12), and from Definition 2.4, if the level

set Σu(xo) at xo is convex with respect to the normal − Du

|Du| , the matrix hij(xo) is

nonnegative definite.

In the remainder of this paper, we always choose
Du

|Du| to be the upward normal

of the level sets of u.

2.3. The curvature formulas of level sets of functions. Now we obtain the
representation of the curvature matrix (aij) of the level sets of the function u by
the derivatives of u, and deduce the curvature formulas for the level sets of u. We
work locally near x0 ∈ Ω with un(x0) > 0.

From (2.7), (2.11) and (2.17) it follows that the entries of the symmetric curva-
ture matrix (aij) become

(2.18) aij =
1

|Du|u2
n

{−hij +
uiulhjl

W (1 +W )u2
n

+
ujulhil

W (1 +W )u2
n

− uiujukulhkl

W 2(1 +W )2u4
n

}.

We put

Bij : =
uiulhjl

W (1 +W )u2
n

+
ujulhil

W (1 +W )u2
n

,(2.19)

Cij : =
uiujukulhkl

W 2(1 +W )2u4
n

,

and

Aij := −hij +Bij − Cij .(2.20)

Thus,

aij = 1
|Du|u2

n
Aij .(2.21)

For the C2 hypersurface Σc in R
n, we let κ = (κ1, ..., κn−1) be its principal

curvatures. For m = 1, ..., n− 1, the m-th curvature of Σc is defined by

σm[Σc] = σm(κ1, ..., κn−1),

where σm is the m-th elementary symmetric function; that is, for 1 ≤ m ≤ n − 1
and λ = (λ1, ..., λn−1) ∈ R

n−1,

σm(λ) =
∑

1≤i1<...<im≤n−1

λi1 · · ·λim .

For an (n− 1)× (n− 1) symmetric matrix V = (Vij), we define

σm(V ) =
∑

1≤i1<...<im≤n−1

sgn(σ)Vi1iσ(1)
· · ·Vimiσ(m)

.

Obviously

σm(V ) = σm(λ)
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with λ = λ(V ) being the eigenvalues of V . By the way, let F = F (M) be a C2

function of the entries of an m×m matrix M = (Mij). Then the following notation
may also be used in the next two sections:

(2.22) F ij :=
∂F

∂Mij
, F ij,rs :=

∂2F

∂Mij∂Mrs
.

The principal curvatures of the level set Σu(xo) of the function u ∈ C2(Ω) then
are the eigenvalues of the (n− 1)× (n− 1) symmetric matrix

(aij) =
( 1

|Du|u2
n

Aij

)
.

The m-th curvatures are given by

σm[Σc] = σm(κ1, ..., κn−1) = (
1

|Du|u2
n

)mσm(Aij),(2.23)

where there is no sum for 1 ≤ m ≤ n− 1.

Proposition 2.6. Let u(x) ∈ C2(Ω) for Ω ⊂ R
n and |Du| �= 0 in Ω. Then the

k-th curvature of the level set Σc, w.r.t. the normal Du, is

(2.24) σk[Σ
c] = (−1)k

∂σk+1(D
2u)

∂uαβ
uαuβ |Du|−(k+2),

where 1 ≤ k ≤ n− 1 and there is no sum for k on the right of (2.24).

Remark 2.7. In [22], Trudinger obtained a similar formula for the k-th curvature
of the level set Σc.

Proof. We first prove that the formula (2.24) is independent of the choice of the
coordinate system {xα} of Rn. Then we calculate (2.24) for a special coordinate
system.

Step 1. Let P = (pαβ) be an orthogonal transformation between two coordinate
systems, i.e. (x̄1, · · · , x̄n) = (x1, · · · , xn)P . Define ū(x̄) = u(x̄PT ). Denote by
Dū = (ū1, · · · , ūn) and D2ū = (ūαβ) the gradient and the Hessian respectively of
ū w.r.t. (x̄1, · · · , x̄n). Then we have

(ū1, · · · , ūn) = (u1, · · · , un)P,

(ūαβ) = PT (uαβ)P = P−1(uαβ)P,

(uαβ) = P (ūαβ)P
T ⇒ ∂uγδ

∂ūαβ
= pγαpδβ .
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Clearly |Du| and σk(D
2u) are the invariants of P ; i.e., |D̄u| = |Du| and σk(D

2ū)
= σk(D

2u) for 1 ≤ k ≤ n− 1. Therefore we can derive

∂σk+1(D
2ū)

∂ūαβ
ūαūβ =

∂σk+1(D
2u)

∂uγδ

∂uγδ

∂ūαβ
(uλpλα)(uμpμβ)

=
∂σk+1(D

2u)

∂uγδ
pγαpδβuλpλαuμpμβ

=
∂σk+1(D

2u)

∂uγδ
uλuμ(pγαpλα)(pδβpμβ)

=
∂σk+1(D

2u)

∂uγδ
uλuμδγλδδμ · · · · · · for P an orthogonal matrix

=
∂σk+1(D

2u)

∂uγδ
uγuδ.

The above calculations show that the right side of (2.24) is invariant under orthog-
onal transformations.

Step 2. For any point x0 ∈ Ω, we choose a special coordinate systerm such that
|Du| = un > 0 and (uij) (and hence Aij by (2.20)) is diagonal. Therefore the σk

curvature of the level sets is

σk[Σ
u(x0)] = σk(κ1, ..., κn−1) = (

1

|Du|u2
n

)kσk(Aij)

=
(−1)k

|Du|k
∂σk+1(D

2u)

∂unn

= (−1)k
∂σk+1(D

2u)

∂unn
unun|Du|−(k+2)

.

Note that there is no sum for 1 ≤ k ≤ n− 1.
From Step 1 and Step 2, we get the proof of the curvature formula (2.24). �

3. Proof of Theorem 1.2

Let u be a solution of (1.2) and |Du| �= 0 in Ω. Assume the level lines of u are
convex with respect to the normal Du. Then, by (2.24), the curvature of the level
lines of u is

(3.1) K = −F ijuiuj | Du |−3,

where F ij is as in (2.22) with F := det(D2u). In this section, the repeated indices
are summed from 1 to 2, unless stated otherwise.

By (1.5), (1.2) is equivalent to

(3.2) aijuij = 0 in Ω.

At any fixed point x ∈ Ω, we will prove the following elliptic inequality:

(3.3) aijKij + biKi ≤ 0,

with bi locally bounded. Then by the strong maximum principle [10], we can get
our result, Theorem 1.2, immediately.

Differentiating both sides of (3.1), we deduce:
(3.4)
Kα = −F ij,rsursαuiuj | Du |−3 −2F ijuiαuj | Du |−3 +3F ijuiujukukα | Du |−5 .
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Next, all the calculations will be done at the fixed point x. In order to prove (3.3)
at an arbitrary point x ∈ Ω, as in Caffarelli-Friedman [3], we choose the normal
coordinate at x. By rotating the coordinate system suitably by Tx, we may assume
that u1(x) = 0 and u2(x) = |∇u| > 0. We can further assume that u11(x) < 0. We
also choose Tx to vary smoothly with x. If we can establish (3.3) at x under the
above assumptions, then going back to the original coordinate we find that (3.3)
remains valid with new locally bounded coefficients on ∇K in (3.3), depending
smoothly on the independent variables. Thus it suffices to establish (3.3) under the
above assumptions.

From now on, all the calculations will be done at the fixed point x. So we can
get by (3.4):

(3.5) Kα = −F 22,rsursαu2
2 | Du |−3 −2F i2uiαu2 | Du |−3 +3F 22u2

3u2α | Du |−5

and

|Du|3Kαβ = −F 22,rsursαβu2
2 − 2F i2uiαβu2 + 3F 22u2u2αβ

− 4F i2,rsursαuiβu2 + 3F 22,rsursαu2u2β + 3F 22,rsursβu2u2α

− 2F ijuiαujβ + 6F i2uiαu2β + 6F i2uiβu2α

+ 3F 22ukαukβ − 15F 22u2αu2β.

(3.6)

Multiplying by aαβ on both sides of the above equality, we have

|Du|3aαβKαβ = −u2
2F 22,rsursαβa

αβ − 2u2F
i2uiαβa

αβ + 3u2F
22u2αβa

αβ

− 4u2F
i2,rsursαuiβa

αβ + 6u2F
22,rsursαu2βa

αβ

− 2F ijuiαujβa
αβ + 12F i2uiαu2βa

αβ

+ 3F 22ukαukβa
αβ − 15F 22u2αu2βa

αβ .

(3.7)

By the equation (3.2), we can see

(3.8) urαβa
αβ = −uαβ(a

αβ)r + (uαβa
αβ)r = −uαβ(a

αβ)r

and

(3.9)
ursαβa

αβ = −urαβ(a
αβ)s − usαβ(a

αβ)r − uαβ(a
αβ)rs + (uαβa

αβ)rs
= −urαβ(a

αβ)s − usαβ(a
αβ)r − uαβ(a

αβ)rs.

Hence

(3.10)
u2
2F 22,rsursαβa

αβ = u2
2F 22,11u11αβa

αβ

= −2u2
2F 22,11u1αβ(a

αβ)1 − u2
2F 22,11uαβ(a

αβ)11

and

(3.11) u2F
i2uiαβa

αβ = −u2F
i2uαβ(a

αβ)i.

Substituting the above two equalities into (3.7) shows

|Du|3aαβKαβ = 2u2
2F 22,11u1αβ(a

αβ)1 + u2
2F 22,11uαβ(a

αβ)11

+ 2u2F
i2uαβ(a

αβ)i − 3u2F
22uαβ(a

αβ)2

− 4u2F
i2,rsursαuiβa

αβ + 6u2F
22,rsursαu2βa

αβ

− 2F ijuiαujβa
αβ + 12F i2uiαu2βa

αβ

+ 3F 22ukαukβa
αβ − 15F 22u2αu2βa

αβ.

(3.12)
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More precisely we have

(3.13) |Du|3aαβKαβ := −[I + II + III],

where

I := −2u2
2F 22,11u1αβ(a

αβ)1 − u2
2F 22,11uαβ(a

αβ)11

− 2u2F
12uαβ(a

αβ)1 + u2F
22uαβ(a

αβ)2,

II := 4u2F
12,rsursαu1βa

αβ − 2u2F
22,rsursαu2βa

αβ ,

III := 2F i1uiαu1βa
αβ − 10F i2uiαu2βa

αβ

− 3F 22u1αu1βa
αβ + 12F 22u2αu2βa

αβ .

(3.14)

Next, we will calculate the above terms step by step.
Clearly

(3.15) (aαβ)1 = 2ukuk1δαβ + (p− 2)u1αuβ + (p− 2)uαu1β

and

(aαβ)11 = 2ukuk11δαβ + 2uk1uk1δαβ

+ (p− 2)u11αuβ + 2(p− 2)u1αu1β + (p− 2)uαu11β .
(3.16)

Hence we get

I1 := − 2u2
2F 22,11u1αβ(a

αβ)1
= − 4u2

3u1ααu12 − 4(p− 2)u2
3u12αu1α,

(3.17)

I2 := −u2
2F 22,11uαβ(a

αβ)11
= − 2u2

3u112�u− 2u2
2uk1uk1�u

− 2(p− 2)u2
3u2αu11α − 2(p− 2)u2

2uαβu1αu1β ,
(3.18)

I3 := − 2u2F
12uαβ(a

αβ)1
= 4u2

2u12
2 �u+ 4(p− 2)u2

2u12u2αu1α,
(3.19)

and

(3.20)
I4 := u2F

22uαβ(a
αβ)2

= u2u11uαβ(2ukuk2δαβ + (p− 2)u2αuβ + (p− 2)uαu2β)
= 2u2

2u11u22�u+ 2(p− 2)u2
2u11u2αu2α.

Substituting (3.17)-(3.20) into the first term in (3.14), we can see that

(3.21)

I := I1 + I2 + I3 + I4
= − 2pu2

3u12u111 − u2
3[(4p− 6)u11 + 2(p− 1)u22]u112

− 4(p− 1)u2
3u12u122 − 2(p− 1)u2

2u11
3

+2(p− 1)u2
2u11u12

2 + 2(p− 1)u2
2u11u22

2 + 2(p− 1)u2
2u12

2 u22.

For the second term in (3.14):

(3.22)
II1 := 4u2F

12,rsursαu1βa
αβ

= −4u2
3u11u112 − 4(p− 1)u2

3u12u122

and

(3.23)
II2 := −2u2F

22,rsursαu2βa
αβ

= −2u2
3u12u111 − 2(p− 1)u2

3u22u112;
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i.e.

(3.24)
II := II1 + II2

= − 2u2
3u12u111 − u2

3[4u11 + 2(p− 1)u22]u112

− 4(p− 1)u2
3u12u122.

By (3.21) and (3.24) we have

I + II := − 2(p+ 1)u2
3u12u111 − u2

3[(4p− 2)u11 + 4(p− 1)u22]u112

− 8(p− 1)u2
3u12u122

− 2(p− 1)u2
2u11

3 + 2(p− 1)u2
2u11u12

2

+ 2(p− 1)u2
2u11u22

2 + 2(p− 1)u2
2u12

2 u22.

(3.25)

Next we deal with the last term in (3.14):

III1 := 2F i1uiαu1βa
αβ

= 2u22u1αu1βa
αβ − 2u12u2αu1βa

αβ

= 2u2
2u11

2 u22 − 2u2
2u11u12

2 ,
(3.26)

III2 := −10F i2uiαu2βa
αβ

= 10u12u1αu2βa
αβ − 10u11u2αu2βa

αβ

= −10(p− 1)u2
2u11u22

2 + 10(p− 1)u2
2u12

2 u22,
(3.27)

III3 := −3F 22u1αu1βa
αβ

= −3u2
2u11

3 − 3(p− 1)u2
2u11u12

2 ,
(3.28)

and

(3.29)
III4 := 12F 22u2αu2βa

αβ

= 12u2
2u11u12

2 + 12(p− 1)u2
2u11u22

2 .

By (3.26)-(3.29) we have

(3.30)
III := III1 + III2 + III3 + III4

= − 3u2
2u11

3 + 2u2
2u11

2 u22 − (3p− 13)u2
2u11u12

2

+2(p− 1)u2
2u11u22

2 + 10(p− 1)u2
2u12

2 u22.

Substituting (3.25) and (3.30) into (3.13), it follows that:
(3.31)

|Du|3aαβKαβ := −[I + II + III]
= 2(p+ 1)u2

3u12u111 + u2
3[(4p− 2)u11 + 4(p− 1)u22]u112

+8(p− 1)u2
3u12u122

+(2p+ 1)u2
2u11

3 − 2u2
2u11

2 u22 + (p− 11)u2
2u11u12

2

− 4(p− 1)u2
2u11u22

2 − 12(p− 1)u2
2u12

2 u22.

To get (3.3) from (3.31), we must deal with the third derivatives of u. Now, by
(3.5) we can see

(3.32)
| Du |3 Kα = −F 22,rsursαu2

2 − 2F i2uiαu2 + 3F 22u2u2α

= −u11αu2
2 + 2u12u1αu2 − 2u11u2αu2 + 3u11u2u2α.

By taking α = 1, 2 in (3.32) we can get respectively:

(3.33) u2u111 = 3u11u12 − u2
2K1

and

(3.34) u2u112 = u11u22 + 2u12
2 − u2

2K2.
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On the other hand, differentiating the equation (3.2) shows

(3.35)
0 = (aijuij)α = uijαa

ij + uij(a
ij)α

= u2
2u11α + (p− 1)u2

2u22α + 2u2u11u2α

+2(p− 1)u2u22u2α + 2(p− 2)u2u12u1α.

Taking α = 1 in (3.35), we have, together with (3.33):

(3.36) (p− 1)u2u122 = −(2p+ 1)u11u12 − 2(p− 1)u12u22 + u2
2K2.

Substituting (3.33), (3.34) and (3.36) into (3.31) to cancel the third derivative
of u, we have

(3.37)
|Du|3aαβKαβ +G(DK) = (2p+ 1)u2

2u11
3 + 4(p− 1)u2

2u11
2 u22

− (p+ 17)u2
2u11u12

2 − 20(p− 1)u2
2u12

2 u22,

where G(DK) = 2(p− 3)u2
4u12K1 + [(4p− 2)u11 + 4(p− 1)u22]u2

4K2.
By equation (3.2) we also have:

(3.38)
0 = aijuij = uij [u2

2δij + (p− 2)uiuj ]
= u2

2u11 + (p− 1)u2
2u22;

i.e.

(3.39) u11 = −(p− 1)u22.

Combining this with (3.37), we finally get:

(3.40) |Du|aαβKαβ + bαKα = −u11[(3− 2p)u2
11 + (p− 3)u2

12],

where b1 = 2(p− 3)u2
2u12, b2 = 2(2p− 3)u2

2u11.
Since the level lines of u are all convex with respect to the normal Du, and

K = −u11u
2
2

|Du|3 at the fixed point x, we know that u11 ≤ 0. Hence, when 3
2 ≤ p ≤ 3 ,

(3.40) implies (3.3), and the proof of Theorem 1.2 is complete. �

4. Proof of Theorem 1.3

We follow the same idea as in the proof of Theorem 1.2 in this section; i.e.,
we deduce a similar p-Laplacian inequality. The only difference between two and
three dimensions is in the third derivative terms. Of course, this time the terms
with third derivatives of u are more complicated than in the two dimensional case,
where only linear terms containing third derivatives of u appear. Now in the three
dimensional case, we have to treat the whole expression as a quadratic polynomial
in the third derivatives of u. Since, in the three dimensional case, we have ten
third derivative terms, using the equation and the first derivatives of the Gaussian
curvature we can get six conditions on the third derivative terms. So at the end, we
shall leave four third derivative terms {u111, u112, u113, u123} in the last formulas
(4.76) in this section. In the three dimensional case, these third derivative terms
as well as the second derivative terms in the formulas (4.76) carry “good” signs.
From this we obtain the key inequality (1.4).

Let u be a p-harmonic function as in Theorem 1.3; in particular, its level sets are
strictly convex with respect to the normal Du. By (2.24), the Gaussian curvature
of the level sets of u is

(4.1) K = F ijuiuj |Du|−4,
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where we have used the notation as in the last section, in addition that

(4.2) F ij,rs,pq :=
∂3F

∂uij∂urs∂upq
.

However, in this section, the repeated indices are summed from 1 to 3, unless stated
otherwise. Now our equation can also be written as:

(4.3) aijuij = 0 in Ω.

At any fixed point x ∈ Ω, we will deduce the following elliptic inequality:

(4.4) aαβKαβ + bαKα ≤ 0,

with bα locally bounded. Then by the strong maximum principle [10], we can get
our result immediately.

To simplify the calculations, we first rewrite (4.1) as:

(4.5) |Du|4K = F ijuiuj .

Now we begin the proof of Theorem 1.3.
Differentiating both sides of (4.5), we get respectively:

(4.6) (|Du|4K)α = |Du|4Kα + (|Du|4)αK
and

(4.7) (F ijuiuj)α = F ij,rsursαuiuj + 2F ijuiαuj .

Differentiating respectively once again,

(4.8) (|Du|4K)αβ = |Du|4Kαβ + (|Du|4)αKβ + (|Du|4)βKα + (|Du|4)αβK
and
(4.9)

(F ijuiuj)αβ = F ij,rs,pqupqβursαuiuj + F ij,rsursαβuiuj + 2F ij,rsursαuiβuj

+2F ij,rsursβuiαuj + 2F ijuiαβuj + 2F ijuiαujβ.

These mean:

(4.10)

|Du|4Kαβ = F ij,rs,pqupqβursαuiuj + F ij,rsursαβuiuj

+2F ij,rsursαuiβuj + 2F ij,rsursβuiαuj

+2F ijuiαβuj + 2F ijuiαujβ

− (|Du|4)αKβ − (|Du|4)βKα − (|Du|4)αβK.

Clearly

(4.11)
(|Du|4)αβ = (4|Du|2ukukα)β

= 8ukukαululβ + 4|Du|2ukαukβ + 4|Du|2ukukαβ.

Substitute (4.11) into (4.10) and multiply both sides by aαβ to derive:

(4.12)

|Du|4aαβKαβ = F ij,rs,pqupqβursαuiuja
αβ + F ij,rsursαβuiuja

αβ

+4F ij,rsursαuiβuja
αβ + 2F ijuiαβuja

αβ

+2F ijuiαujβa
αβ

− 8Kukukαululβa
αβ − 4K|Du|2ukαukβa

αβ

− 4K|Du|2ukukαβa
αβ − 2Kα(|Du|4)βaαβ .

In order to prove (4.4) at an arbitrary point x ∈ Ω, as in Caffarelli-Friedman
[3], we choose the normal coordinate at x. By rotating the coordinate system
suitably by Tx, we may assume that ui(x) = 0 , 1 ≤ i ≤ 2 and u3(x) = |∇u| > 0.
We can further assume that the matrix (uij(x)) (1 ≤ i, j ≤ 2) is diagonal and
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uii(x) < 0, 1 ≤ i ≤ 2. We also choose Tx to vary smoothly with x. If we can
establish (4.4) at x under the above assumptions, then going back to the original
coordinate, we find that (4.4) remains valid with new locally bounded coefficients
on ∇K in (4.4), depending smoothly on the independent variables. Thus it suffices
to establish (4.4) under the above assumptions.

From now on, all the calculations will be done at the fixed point x; we have
K = F 33u3u3|Du|−4 = u11u22|Du|−2 > 0. Now (4.12) can be rewritten as:

|Du|4aαβKαβ +G1(DK) = u3
2F 33,rs,pqupqβursαa

αβ + u3
2F 33,rsursαβa

αβ

+ 4u3F
i3,rsursαuiβa

αβ + 2u3F
i3uiαβa

αβ

+ 2F ijuiαujβa
αβ − 8F 33u3αu3βa

αβ

− 4F 33ukαukβa
αβ − 4u3F

33u3αβa
αβ ,

(4.13)

where G1(DK) = 2(|Du|4)βaαβKα.
Inserting (3.8)-(3.9) into (4.13), it follows that

|Du|4aαβKαβ +G1(DK) = u3
2F 33,rs,pqupqβursαa

αβ

− 2u3
2F 33,rsurαβ(a

αβ)s − u3
2F 33,rsuαβ(a

αβ)rs

+ 4u3F
i3,rsursαuiβa

αβ − 2u3F
i3uαβ(a

αβ)i

+ 2F ijuiαujβa
αβ − 8F 33u3αu3βa

αβ

− 4F 33ukαukβa
αβ + 4u3F

33uαβ(a
αβ)3.

(4.14)

The following calculations are easy:

(4.15) (aαβ)r = 2ukukrδαβ + (p− 2)urαuβ + (p− 2)uαurβ

and

(aαβ)rs = 2ukukrsδαβ + 2ukruksδαβ + (p− 2)ursαuβ

+ (p− 2)urαusβ + (p− 2)usαurβ + (p− 2)uαursβ.
(4.16)

Substituting (4.16) into (4.14) we have:

|Du|4aαβKαβ +G1(Dk) = u3
2F 33,rs,pqupqβursαa

αβ − 2u3
2F 33,rsurαβ(a

αβ)s

− 2u3
3F 33,rsu3rsΔu− 2(p− 2)u3

3F 33,rsursαu3α

+ 4u3F
i3,rsursαuiβa

αβ − 2(p− 2)u3
2F 33,rsurαusβuαβ

− 2u3
2F 33,rsukruksΔu− 2u3F

i3uαβ(a
αβ)i

+ 2F ijuiαujβa
αβ − 8F 33u3αu3βa

αβ

− 4F 33ukαukβa
αβ + 4u3F

33uαβ(a
αβ)3

:= u3
2(I + II + III),

(4.17)

where

I := F 33,rs,pqupqβursαa
αβ ,(4.18)

II := −2F 33,rsurαβ(a
αβ)s − 2u3F

33,rsu3rsΔu

− 2(p− 2)u3F
33,rsursαu3α +

4

u3
F i3,rsursαuiβa

αβ,
(4.19)
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and

III := −2(p− 2)F 33,rsurαusβuαβ − 2F 33,rsukruksΔu

− 2

u3
F i3uαβ(a

αβ)i +
4

u3
F 33uαβ(a

αβ)3

+
2

u3
2
F ijuiαujβa

αβ − 8

u3
2
F 33u3αu3βa

αβ − 4

u3
2
F 33ukαukβa

αβ.

(4.20)

Here we consider the expression as a quadratic polynomial in the third derivatives
of u and we group all terms according to the degrees of the third derivatives of u.

Next, we calculate all the terms on the right of (4.17) in more detail.
To deal with the third derivatives of u, we need some preparations to find the

relationship between them.
By (4.6) and (4.7) we have:

(4.21)

|Du|4Kα = − (|Du|4)αK + F ij,rsursαuiuj + 2F ijuiαuj

= − 4|Du|2ukukαK + F ij,rsursαuiuj + 2F ijuiαuj

= − 4u3F
33u3α + u3

2F 33,rsursα + 2u3F
i3uiα

= u3
2u22u11α + u3

2u11u22α

− 2u3u11u22u3α − 2u3u11u32u2α − 2u3u22u31u1α;

i.e.

(4.22)
u3
2u11u22α = −u3

2u22u11α + 2u3u11u22u3α

+2u3u11u32u2α + 2u3u22u31u1α + |Du|4Kα.

Taking α = 1, 2, 3 in (4.22) respectively, we can get:

(4.23)

⎧⎪⎨
⎪⎩

u3u122 = −u22

u11
u3u111 + 4u13u22 +

u3
3

u11
K1,

u3u222 = −u22

u11
u3u112 + 4u22u23 +

u3
3

u11
K2,

u3u223 = −u22

u11
u3u113 + 2u22

u11
u13
2 + 2u22u33 + 2u23

2 + u3
3

u11
K3.

We have, moreover, by differentiating equation (4.3):

(4.24)
0 = (aijuij)α = u3

2u11α + u3
2u22α + (p− 1)u3

2u33α

+2u3u3αΔu+ 2(p− 2)u3ui3uiα;

i.e.

(4.25) (1− p)u3u33α = u3u11α + u3u22α + 2u3αΔu+ 2(p− 2)ui3uiα.

Taking α = 1, 2 in (4.25), respectively, and combining (4.23), we can get:

(4.26)

(1− p)u3u133 = u3u111 + u3u221 + 2u31Δu+ 2(p− 2)ui3ui1

= (1− u22

u11
)u3u111 + 2(p− 1)u11u13 + 6u13u22

+2(p− 1)u13u33 +
u3
3

u11
K1,

and

(4.27)

(1− p)u3u233 = u3u112 + u3u222 + 2u32Δu+ 2(p− 2)ui3ui2

= (1− u22

u11
)u3u112 + 2u11u23

+2(p+ 1)u22u23 + 2(p− 1)u23u33 +
u3
3

u11
K2.

Now we are at the position to calculate (4.17) in more detail. First we have:

(4.28)

I := F 33,rs,pqupqβursαa
αβ

= 2F 33,22,11u11βu22αa
αβ + 2F 33,12,21u12βu21αa

αβ

= 2u3
2u111u122 + 2u3

2u112u222 + 2(p− 1)u3
2u113u223

− 2u3
2u112

2 − 2u3
2u122

2 − 2(p− 1)u3
2u123.

2
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Using (4.23) we get:

2u3
2u111u122 − 2u3

2u122
2 = −2u22

u11
(1 + u22

u11
)u3

2u111
2 + 8(1 + 2u22

u11
)u13u22u3u111

−32u13
2 u22

2

+(2u3
4 u11+2u22

u11
2 u111 − 16u3

3 u13u22

u11
)K1 − 2( u3

3

u11
K1)

2,

(4.29)

2u3
2u112u222 − 2u3

2u112
2 = −2(1 + u22

u11
)u3

2u112
2 + 8u22u23u3u112 + 2u3

4 u112

u11
K2,

(4.30)

and

(4.31)

2(p− 1)u3
2u113u223 = − 2(p− 1)u22

u11
u3
2u113

2

+4(p− 1)u3u113(
u22

u11
u13

2 + u22u33 + u23
2 )

+ 2(p− 1)u3
4 u113

u11
K3.

Substituting (4.29)-(4.31) into (4.28), it follows that

(4.32)

I := F 33,rs,pqupqβursαa
αβ

= − 2u22

u11
(1 + u22

u11
)u3

2u111
2 − 2(1 + u22

u11
)u3

2u112
2

− 2(p− 1)u22

u11
u3
2u113

2 − 2(p− 1)u3
2u123

2

+8(1 + 2u22

u11
)u13u22u3u111 + 8u22u23u3u112

+4(p− 1)u3u113(
u22

u11
u13

2 + u22u33 + u23
2)− 32u13

2 u22
2 +G2(DK)

with

G2(DK) = −2(
u3
3

u11
K1)

2 + (2u3
4u11 + 2u22

u11
2

u111 − 16u3
3u13u22

u11
)K1

+ 2u3
4u112

u11
K2 + 2(p− 1)u3

4u113

u11
K3.

(4.33)

Next we calculate (4.19):

(4.34)

II1 := − 2F 33,rsurαβ(a
αβ)s

= − 2F 33,11u1αβ(a
αβ)1 − 2F 33,22u2αβ(a

αβ)2
= − 4u3u13u22u111 − 4u3u11u23u112 − 4(p− 2)u3u22u11u113

− 4u3u13u22u122 − 4u3u11u23u222 − 4(p− 2)u3u11u22u223

− 4(p− 1)u3u13u22u133 − 4(p− 1)u3u11u23u233.

For the terms in the last step of (4.34), we have, by using (4.23):

II11 := −4u3u13u22u111 − 4u3u13u22u122

= −4(1− u22

u11
)u13u22u3u111 − 16u13

2 u22
2 − 4u3

3 u13u22

u11
K1,

(4.35)

II12 := −4u3u11u23u112 − 4u3u11u23u222

= −4(1− u22

u11
)u11u23u3u112 − 16u11u22u23

2 − 4u3
3u23K2,

(4.36)

and
(4.37)

II13 := − 4(p− 2)u3u11u22u113 − 4(p− 2)u3u11u22u223

= − 4(p− 2)(u11u22 − u22
2 )u3u113

− 8(p− 2)(u11u22
2 u33 + u11u22u23

2 + u13
2 u22

2 )− 4(p− 2)u3
3u22K3.

By (4.26) we also have:

(4.38)

II14 := − 4(p− 1)u3u13u22u133

= 4(1− u22

u11
)u13u22u3u111 + 8(p− 1)u11u13

2 u22

+24u13
2 u22

2 + 8(p− 1)u13
2 u22u33 + 4u3

3 u13u22

u11
K1.
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Similarly we have, by (4.27):

(4.39)

II15 := − 4(p− 1)u3u11u23u233

= 4(1− u22

u11
)u11u23u3u112 + 8u11

2 u23
2

+8(p+ 1)u11u22u23
2 + 8(p− 1)u11u23

2 u33 + 4u3
3u23K2.

Substituting (4.35)-(4.39) into (4.34) we have

(4.40)

II1 := − 2F 33,rsurαβ(a
αβ)s

:= II11 + II12 + II13 + II14 + II15
= − 4(p− 2)(u11u22 − u22

2 )u3u113

+8u11
2 u23

2 + 8(p− 1)u11u13
2 u22 − 8(p− 2)u11u22

2 u33

+8u11u22u23
2 + 8(p− 1)u11u23

2 u33 − 8(p− 3)u13
2 u22

2

+8(p− 1)u13
2 u22u33 − 4(p− 2)u3

3u22K3.

For the second term on the right-hand side of (4.19), again using (4.23) we have:

(4.41)

II2 := − 2u3F
33,rsu3rsΔu

= − 2u3u22u311Δu− 2u3u11u322Δu
= − 4u11

2 u22u33 − 4u11
2 u23

2 − 4u11u13
2 u22

− 4u11u22
2 u33 − 4u11u22u23

2 − 4u13
2 u22

2

− 4u11u22u33
2 − 4u11u23

2 u33 − 4u13
2 u22u33 − 2u3

3ΔuK3.

For the third term on the right-hand side of (4.19), using (4.22) we similarly
deduce:
(4.42)

II3 := − 2(p− 2)u3F
33,rsursαu3α

= − 2(p− 2)u3u22u11αu3α − 2(p− 2)u3u11u22αu3α

= − 8(p− 2)u11u13
2 u22 − 8(p− 2)u11u22u23

2

− 4(p− 2)u13
2 u22u33 − 4(p− 2)u11u22u33

2 − 4(p− 2)u11u23
2 u33

− 2(p− 2)u3
3u3αKα.

The fourth term on the right-hand side of (4.19) is:

(4.43)

II4 := 4
u3
F i3,rsursαuiβa

αβ

= 4
u3
F 13,rsursαu1βa

αβ + 4
u3
F 23,rsursαu2βa

αβ

+ 4
u3
F 33,rsursαu3βa

αβ .

We will calculate the three terms on the right-hand side of (4.43) respectively:

(4.44)

II41 := 4
u3
F 13,rsursαu1βa

αβ

= 4
u3
F 13,31u31αu1βa

αβ + 4
u3
F 13,22u22αu1βa

αβ

+ 4
u3
F 13,21u21αu1βa

αβ

= 4u11u23u3u112 − 4u11u13u3u122 − 4u11u22u3u113

− 4(p− 1)u13
2 u3u223 − 4(p− 1)u13u22u3u133

+4(p− 1)u13u23u3u123.

By (4.23) we have:

(4.45) −4u11u13u3u122 = 4u13u22u3u111 − 16u11u13
2 u22 − 4u3

3u13K1,
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and

− 4u11u22u3u113 − 4(p− 1)u13
2 u3u223

= [−4u11u22 + 4(p− 1)
u22

u11
u13
2 ]u3u113

− 8(p− 1)(
u22

u11
u13
4 + u13

2 u22u33 + u13
2 u23

2 )

− 4(p− 1)u3
3 u13

2

u11
K3.

(4.46)

By (4.26) we see:
(4.47)

− 4(p− 1)u13u22u3u133

= 4(1− u22

u11
)u13u22u3u111

+8(p− 1)u11u13
2 u22 + 24u13

2 u22
2 + 8(p− 1)u13

2 u22u33 + 4u3
3 u13u22

u11
K1.

Substituting (4.45)-(4.47) into (4.44), it follows that

(4.48)

II41 := 4
u3
F 13,rsursαu1βa

αβ

= 4(2− u22

u11
)u13u22u3u111 + 4u11u23u3u112

− 4u22

u11
[u11

2 − (p− 1)u13
2 ]u3u113

+4(p− 1)u13u23u3u123 + 8(p− 3)u11u13
2 u22

− 8(p− 1)u22

u11
u13
4 + 24u13

2 u22
2 − 8(p− 1)u13

2 u23
2

+4u3
3 u22−u11

u11
u13K1 − 4(p− 1)u3

3 u13
2

u11
K3.

For the second term on the right-hand side of (4.43):

(4.49)

II42 := 4
u3
F 23,rsursαu2βa

αβ

= 4
u3
F 23,32u32αu2βa

αβ + 4
u3
F 23,11u11αu2βa

αβ

+ 4
u3
F 23,12u12αu2βa

αβ

= − 4u11u22u3u223 − 4(p− 1)u11u23u3u233

− 4u22u23u3u112 − 4(p− 1)u23
2 u3u113

+4u13u22u3u122 + 4(p− 1)u13u23u3u123.

Also using (4.23) yields:

(4.50) 4u13u22u3u122 = −4u22

u11
u13u22u3u111 + 16u13

2 u22
2 + 4u3

3 u13u22

u11
K1

and

(4.51)
− 4(p− 1)u23

2 u3u113 − 4u11u22u3u223

= [4u22
2 − 4(p− 1)u23

2 ]u3u113

− 8u13
2 u22

2 − 8u11u22
2 u33 − 8u11u22u23

2 − 4u3
3u22K3.

By (4.27):
(4.52)

− 4u22u23u3u112 − 4(p− 1)u11u23u3u233

= 4(1− 2u22

u11
)u11u23u3u112

+8u11
2 u23

2 + 8(p+ 1)u11u22u23
2 + 8(p− 1)u11u23

2 u33 + 4u3
3u23K2.
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Substituting (4.50)-(4.52) into (4.49) yields:

(4.53)

II42 := 4
u3
F 23,rsursαu2βa

αβ

= − 4u22

u11
u13u22u3u111 + 4(1− 2u22

u11
)u11u23u3u112

+ [4u22
2 − 4(p− 1)u23

2 ]u3u113 + 4(p− 1)u13u23u3u123

+8u11
2 u23

2 − 8u11u22
2 u33 + 8pu11u22u23

2

+8(p− 1)u11u23
2 u33 + 8u13

2 u22
2

+4u3
3 u13u22

u11
K1 + 4u3

3u23K2 − 4u3
3u22K3.

For the third term on the right-hand side of (4.43), using (4.22) we have:
(4.54)

II43 := 4
u3
F 33,rsursαu3βa

αβ

= 4
u3
u22u11αu3βa

αβ + 4
u3
u11u22αu3βa

αβ

= 16u11u22u13
2 + 16u11u22u23

2

+8(p− 1)(u11u22u33
2 + u11u23

2 u33 + u13
2 u22u33) + 4u3a

αβu3βKα.

Substituting (4.48) and (4.53)-(4.54) into (4.43) yields:

II4 = 8(1− u22

u11
)u13u22u3u111 + 8(1− u22

u11
)u11u23u3u112 + 8(p− 1)u13u23u3u123

+ [4u22
2 − 4u11u22 − 4(p− 1)u23

2 + 4(p− 1)
u22

u11
u13
2 ]u3u113

+ 8u11
2 u23

2 + 8(p− 1)u11u13
2 u22 − 8u11u22

2 u33 + 8(p+ 2)u11u22u23
2

+ 8(p− 1)u11u22u33
2 + 16(p− 1)u11u23

2 u33 − 8(p− 1)
u22

u11
u13
4

+ 32u13
2 u22

2 + 8(p− 1)u13
2 u22u33 − 8(p− 1)u13

2 u23
2

+ 8u3
3 u13u22

u11
K1 + 8u3

3u23K2 − 4u3
3u22K3 − 4(p− 1)u3

3(
u13
2

u11
− u33)K3.

(4.55)

Substituting (4.40)-(4.42) and (4.55) into (4.19), it follows that

II := −2F 33,rsurαβ(a
αβ)s − 2u3F

33,rsu3rsΔu

− 2(p− 2)u3F
33,rsursαu3α +

4

u3
F i3,rsursαuiβa

αβ

:= II1 + II2 + II3 + II4

= 8(1− u22

u11
)u13u22u3u111 + 8(1− u22

u11
)u11u23u3u112 + 8(p− 1)u13u23u3u123

+ [4(p− 1)u22
2 − 4(p− 1)u11u22 − 4(p− 1)u23

2 + 4(p− 1)
u22

u11
u13
2 ]u3u113

− 4u11
2 u22u33 + 12u11

2 u23
2 + (8p− 4)u11u13

2 u22 − (8p− 4)u11u22
2 u33

+ 36u11u22u23
2 + 4(p− 1)u11u22u33

2 + 20(p− 1)u11u23
2 u33

− (8p− 52)u13
2 u22

2 + 12(p− 1)u13
2 u22u33 − 8(p− 1)u13

2 u23
2

− 8(p− 1)
u22

u11
u13
4 +G3(DK)

(4.56)
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with

G3(DK) = (8
u22

u11
− 2p+ 4)u3

3u13K1 − 2(p− 6)u3
3u23K2 + (6p− 8)u3

3u33K3

− 4(p− 1)u3
3 u11u22 + u13

2

u11
K3,

where we have used Δu = −(p− 2)u33 by equation (4.3).
Next we calculate the third term (4.20):

III := −2(p− 2)F 33,rsurαusβuαβ − 2F 33,rsukruksΔu

− 2

u3
F 13uαβ(a

αβ)1 −
2

u3
F 23uαβ(a

αβ)2 +
2

u3
F 33uαβ(a

αβ)3

+
2

u3
2
F ijuiαujβa

αβ − 8

u3
2
F 33u3αu3βa

αβ − 4

u3
2
F 33ukαukβa

αβ

:= III1 + III2 + III3.

(4.57)

We shall deal with III1, III2 and III3 respectively as follows:

III1 := −2(p− 2)F 33,rsurαusβuαβ − 2F 33,rsukruksΔu

= −2(p− 2)u11u2αu2βuαβ − 2(p− 2)u22u1αu1βuαβ

− 2u11uk2uk2Δu− 2u22uk1uk1Δu

= −2(p− 1)u11
3 u22 − 4u11

2 u22
2 − 2u11

2 u22u33 − 2u11
2 u23

2

+ (6− 4p)(u11u13
2 u22 + u11u22u23

2 )− 2(p− 1)u11u22
3 − 2u11u22

2 u33

− 2(p− 1)u11u23
2 u33 − 2u13

2 u22
2 − 2(p− 1)u13

2 u22u33,

(4.58)

III2 := − 2

u3
F 13uαβ(a

αβ)1 −
2

u3
F 23uαβ(a

αβ)2 +
2

u3
F 33uαβ(a

αβ)3

= 4u11
2 u22u33 + (8p− 12)u11u13

2 u22 + 4u11
2 u23

2

+ 4u11u22
2 u33 + (8p− 12)u11u22u23

2 + 4(p− 1)u11u22u33
2

+ 4(p− 1)u11u23
2 u33 + 4(p− 1)u13

2 u22u33 + 4u13
2 u22

2 ,

(4.59)

III3 :=
2

u3
2
F ijuiαujβa

αβ − 8

u3
2
F 33u3αu3βa

αβ − 4

u3
2
F 33ukαukβa

αβ

=
2

u3
2
F ijuiαujβa

αβ

− 12

u3
2
F 33u3αu3βa

αβ − 4

u3
2
F 33u1αu1βa

αβ − 4

u3
2
F 33u2αu2βa

αβ

:= III31 + III32 + III33,

(4.60)

where

III31 :=
2

u3
2
F ijuiαujβa

αβ

=
2

u3
2
F 11u1αu1βa

αβ +
2

u3
2
F 22u2αu2βa

αβ +
2

u3
2
F 33u3αu3βa

αβ

+
4

u3
2
F 12u1αu2βa

αβ +
4

u3
2
F 13u1αu3βa

αβ +
4

u3
2
F 23u2αu3βa

αβ .

(4.61)
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The six terms in (4.61) are precisely:

2
u3
2F

11u1αu1βa
αβ = 2

u3
2 (u22u33 − u23u32)u1αu1β [u3

2δαβ + (p− 2)uαuβ]

= 2u11
2 u22u33 − 2u11

2 u23
2 + 2(p− 1)(u13

2 u22u33 − u13
2 u23

2 ),

(4.62)

2
u3
2F

22u2αu2βa
αβ = 2

u3
2 (u11u33 − u13

2 )u2αu2β [u3
2δαβ + (p− 2)uαuβ ]

= 2u11u22
2 u33 + 2(p− 1)(u11u23

2 u33 − u13
2 u23

2 )− 2u13
2 u22

2 ,

(4.63)

2
u3
2F

33u3αu3βa
αβ = 2

u3
2 u11u22u3αu3β [u3

2δαβ + (p− 2)uαuβ]

= 2u11u13
2 u22 + 2u11u22u23

2 + 2(p− 1)u11u22u33
2 ,

(4.64)

4
u3
2F

12u1αu2βa
αβ = 4

u3
2 u31u23u1αu2β [u3

2δαβ + (p− 2)uαuβ]

= 4(p− 1)u13
2 u23

2 ,
(4.65)

4
u3
2F

13u1αu3βa
αβ = 4

u3
2 (−u22u31)u1αu3β [u3

2δαβ + (p− 2)uαuβ ]

= −4u11u13
2 u22 − 4(p− 1)u13

2 u22u33,
(4.66)

and

(4.67)
4
u3
2F

23u2αu3βa
αβ = 4

u3
2 (−u11u32)u2αu3β [u3

2δαβ + (p− 2)uαuβ ]

= −4u11u22u23
2 − 4(p− 1)u11u23

2 u33.

Substituting (4.62)-(4.67) into (4.61), it follows that

(4.68)

III31 := 2
u3
2F

ijuiαujβa
αβ

= 2u11
2 u22u33 − 2u11

2 u23
2 − 2u11u13

2 u22 + 2u11u22
2 u33

− 2u11u22u23
2 + 2(p− 1)u11u22u33

2 − 2(p− 1)u11u23
2 u33

− 2(p− 1)u13
2 u22u33 − 2u13

2 u22
2 .

For the second term in (4.60):

(4.69)
III32 := − 12

u3
2F

33u3αu3βa
αβ

= −12u11u13
2 u22 − 12u11u22u23

2 − 12(p− 1)u11u22u33
2 .

For the last term in (4.60):

(4.70)
III33 := − 4

u3
2F

33u1αu1βa
αβ − 4

u3
2F

33u2αu2βa
αβ

= − 4u11
3 u22 − 4(p− 1)u11u13

2 u22

− 4u11u22
3 − 4(p− 1)u11u22u23

2 .

Combining (4.68)-(4.70) with (4.60) yields:

(4.71)

III3 = − 4u11
3 u22 + 2u11

2 u22u33 − 2u11
2 u23

2 − (4p+ 10)u11u13
2 u22

− 4u11u22
3 + 2u11u22

2 u33 − (4p+ 10)u11u22u23
2

− 10(p− 1)u11u22u33
2 − 2(p− 1)u11u23

2 u33

− 2(p− 1)u13
2 u22u33 − 2u13

2 u22
2 .

Substituting (4.58)-(4.59) and (4.71) into (4.57), we have
(4.72)
III := − 2(p− 2)F 33,rsurαusβuαβ − 2F 33,rsukruksΔu

− 2
u3
F 13uαβ(a

αβ)1 − 2
u3
F 23uαβ(a

αβ)2 + 2u3F
33uαβ(a

αβ)3
+ 2

u3
2F

ijuiαujβa
αβ − 8

u3
2F

33u3αu3βa
αβ − 4

u3
2F

33ukαukβa
αβ

:= III1 + III2 + III3
= − 2(p+ 1)u11

3 u22 − 4u11
2 u22

2 + 4u11
2 u22u33 − 16u11u13

2 u22

− 2(p+ 1)u11u22
3 + 4u11u22

2 u33 − 16u11u22u23
2 − 6(p− 1)u11u22u33

2 .
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Finally, substituting (4.32), (4.56) and (4.72) into (4.17), we get:

(4.73)

|Du|2aαβKαβ +G(DK)
:= I + II + III
= − 2u22

u11
(1 + u22

u11
)u3

2u111
2 − 2(1 + u22

u11
)u3

2u112
2

− 2(p− 1)u22

u11
u3
2u113

2 − 2(p− 1)u3
2u123

2

+8(2 + u22

u11
)u13u22u3u111 + 8u11u23u3u112

+4(p− 1)u3u113(2
u22

u11
u13
2 − u11u22 + u22

2 + u22u33)

+ 8(p− 1)u13u23u3u123

− 2(p+ 1)u11
3 u22 − 4u11

2 u22
2 + 12u11

2 u23
2 + (8p− 20)u11u13

2 u22

− 2(p+ 1)u11u22
3 − 8(p− 1)u11u22

2 u33 + 20u11u22u23
2

− 2(p− 1)u11u22u33
2 + 20(p− 1)u11u23

2 u33 − 8(p− 1)u22

u11
u13
4

− (8p− 20)u13
2 u22

2 + 12(p− 1)u13
2 u22u33 − 8(p− 1)u13

2 u23
2

with
(4.74)

G(DK) = 1
u3
2G1(DK)−G2(DK)−G3(DK)

= 2( u3
3

u11
K1)

2 − 2u3
3
(
u3

u11+2u22

u11
2 u111 − 4u13u22

u11
− (p− 6)u13

)
K1

− 2u3
3
(
u3

u112

u11
− (p− 2)u23

)
K2

− 2u3
3
(
(p− 1)u3

u113

u11
− 2(p− 1)u11u22+u13

2

u11
− pu33

)
K3.

Now, at the point x, by equation (4.3) we have:

(4.75) u33 = −u11 + u22

p− 1
.

Inserting this into (4.73), we deduce:

(4.76)

|Du|2aαβKαβ +G(DK)

= − 2u22

u11
(1 + u22

u11
)[u3u111 − 2u11(2u11+u22)

u11+u22
u13]

2

− 2(1 + u22

u11
)[u3u112 − 2u11

2

u11+u22
u23]

2

− 2(p− 1)u22

u11
[u3u113 − 2u13

2 + p
p−1u11

2 − p−2
p−1u11u22]

2

− 2(p− 1)[u3u123 − 2u13u23]
2

− 8u11

u11+u22
u22
2 u13

2 − 8u22

u11+u22
u11
2 u23

2 − 4(p− 2)u11
2 u22

2 .

Since the level sets of u are strictly convex with respect to the normal Du, we
have K > 0. But now K = F 33u3u3|Du|−4 = u11u22|Du|−2; hence u11u22 > 0. So
(4.76) yields (4.4) for 2 ≤ p < +∞. This completes the proof of Theorem 1.3. �
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