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Abstract For the p-harmonic function with strictly convex level sets, we find an
auxiliary function which comes from the combination of the norm of gradient of
the p-harmonic function and the Gaussian curvature of the level sets of p-harmonic
function. We prove that this curvature function is concave with respect to the height
of the p-harmonic function. This auxiliary function is an affine function of the height
when the p-harmonic function is the p-Green function on ball.
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1 Introduction

In this paper, for the p-harmonic function with strictly convex level sets, we shall
explore the relation between the Gaussian curvature of its level sets and the height of
the function.

The convexity of the level sets of the solutions of elliptic partial differential equa-
tions has been studied for a long time. For instance, Ahlfors [1] contains the well-
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466 X.-N. Ma , W. Zhang

known result that level curves of Green function on convex domain in the plane are
the convex Jordan curves. In 1956, Shiffman [23] studied the minimal annulus in R

3

whose boundary consists of two closed convex curves in parallel planes P1, P2. He
proved that the intersection of the surface with any parallel plane P , between P1 and
P2, is a convex Jordan curve. In 1957, Gabriel [9] proved that the level sets of the
Green function of a 3-dimensional bounded convex domain are strictly convex. In
1977, Lewis [14] extended Gabriel’s result to p-harmonic functions in higher dimen-
sions. Caffarelli-Spruck [5] generalized Lewis’ [14] results to a class of semilinear
elliptic partial differential equations. Motivated by the result of Caffarelli-Friedman
[4], Korevaar [13] gave a new proof on the results of Gabriel and Lewis by applying
the deformation process and the constant rank theorem of the second fundamental
form of the convex level sets of p-harmonic function. A survey of this subject is
given by Kawohl [12]. For more recent related extensions, please see the papers by
Bian-Guan-Ma-Xu [2] and Bianchini-Longinetti-Salani [3].

Now, we turn to the curvature estimates of level sets of the solutions of elliptic par-
tial differential equations. For 2-dimensional harmonic function and minimal surface
with convex level curves, Ortel-Schneider [21], Longinetti [15], and [16] proved that
the curvature of the level curves attains its minimum on the boundary (see also Talenti
[24] for related results). Longinetti also studied the relation between the curvature of
the convex level curves and the height of harmonic function in [16]. Jost-Ma-Ou [11]
and Ma-Ye-Ye [20] proved that the Gaussian curvature and the principal curvature of
the convex level sets of 3-dimensional harmonic function attain its minimum on the
boundary. Then, Ma-Ou-Zhang [19] and Chang-Ma-Yang [6] got the Gaussian curva-
ture and principal curvature estimates of the convex level sets of higher-dimensional
harmonic function (in [6], they also treated a class of semilinear elliptic equations) in
terms of the Gaussian curvature or principal curvature of the boundary and the norm
of the gradient on the boundary. For more recent results on curvature estimates, please
see the papers [7,10,25–27] and the references therein.

In this paper, utilizing the support function of the strictly convex level sets and the
maximum principle, we obtain the concavity of the Gaussian curvature of the convex
level sets with respect to the height of the p-harmonic function.

First, we state the following convexity theorem.

Theorem 1.1 (Gabriel [9] and Lewis [14]). Let u satisfy

⎧
⎨

⎩

div(|∇u|p−2∇u) = 0 in � = �0\�̄1,

u = 0 on ∂�0,

u = 1 on ∂�1,

where 1 < p < +∞,�0, and �1 are bounded smooth convex domains in R
n, n ≥

2, �̄1 ⊂ �0. Then, all the level sets of u are strictly convex.

Now, we state our main theorem.
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Concavity of the Gaussian Curvature of Level Sets 467

Theorem 1.2 Let u satisfy

⎧
⎨

⎩

div(|∇u|p−2∇u) = 0 in � = �0\�̄1,

u = 0 on ∂�0,

u = 1 on ∂�1,

where 1 < p < +∞,�0, and �1 are bounded smooth convex domains in R
n, n ≥

2, �̄1 ⊂ �0. Let

�t = {x ∈ �|u(x) = t} for 0 < t < 1,

and K be the Gaussian curvature of the level sets. Then, the function

f (t) = min
x∈�t

(|∇u|n+1−2p K )
1

n−1 (x)

is a concave function for t ∈ (0, 1).

Under the same assumptions of Theorem 1.2, Ma-Ou-Zhang [19] proved the fol-
lowing statement:

f or n ≥ 2 and 1 < p < +∞, the function |∇u|n+1−2p K attains its minimum
on the boundary.

From this fact, they got the positive lower bound estimates for the Gaussian curvature
of the level sets.

The following corollary is straightforward.

Corollary 1.3 Under the conditions of Theorem 1.2, for any point x ∈ �t , 0 < t < 1,
we have the following estimates.

(1) For p = 2, we have

(|∇u|n−3 K )
1

n−1 (x) ≥ (1 − t) min
∂�0

(|∇u|n−3 K )
1

n−1 + t min
∂�1

(|∇u|n−3 K )
1

n−1 .

(2) For p = n+1
2 , we have

K
1

n−1 (x) ≥ (1 − t) min
∂�0

K
1

n−1 + t min
∂�1

K
1

n−1 .

The estimates above contain the norm of the gradient, i.e., |∇u|, but it is well-known
that |∇u| attains its maximum and minimum on the boundary [18,19].

Remark 1.4 Related to the case n = 2 in above corollary, Longinetti [16] proved that
the function f (t) = minx∈�t log K (x) is a concave function with respect to t . More
precisely, for any point x ∈ �t , 0 < t < 1, he got the following inequality

log K (x) ≥ (1 − t) min
∂�0

log K + t min
∂�1

log K .

123

Author's personal copy



468 X.-N. Ma , W. Zhang

Now, we give an example which shows that our estimates are sharp.

Remark 1.5 Let u be the standard p-Green function of the ball BR(0) ⊂ R
n , i.e.,

u(x) =
{

|x | p−n
p−1 − R

p−n
p−1 , for 1 < p < n;

− log |x | + log R, for p = n.

Then,

|∇u|(x) =
{

n−p
p−1 |x | 1−n

p−1 , for 1 < p < n,
1
|x | , for p = n,

and the Gaussian curvature of the level set through x is

K (x) = |x |1−n .

Hence, for t = u(x) and 1 < p < n,

(
|∇u|n+1−2p K

) 1
n−1

(x) =
(

n − p

p − 1

) n+1−2p
n−1 |x | p−n

p−1

=
(

n − p

p − 1

) n+1−2p
n−1 [

u(x) + R
p−n
p−1

]

=
(

n − p

p − 1

) n+1−2p
n−1

t +
(

n − p

p − 1

) n+1−2p
n−1

R
p−n
p−1 .

For p = n, we have

|∇u|1−n K (x) = 1.

From the above calculation, we know that (|∇u|n+1−2p K )
1

n−1 is an affine function on
the height of the p-Green function.

To prove the theorem, let K be the Gaussian curvature of the convex level sets, and
set

ϕ = −α log |∇u| − log K .

For suitable choice of α and β, in Sect. 3 we will derive the following differential
inequality (in the sense modulo the terms involving ∇θϕ with locally bounded coeffi-
cients)

L(eβϕ) ≤ 0 mod ∇θϕ in �,

where L is an elliptic operator associated to the p-Laplace operator. The operator L
is a linearized operator for the p-Laplace operator which is defined in (2.8), and ∇θϕ
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Concavity of the Gaussian Curvature of Level Sets 469

is defined in Sect. 2 as θ = (θ1, · · · , θn−1) is a local orthogonal coordinate system on
S

n−1. Then, by a maximum principle argument, we can obtain the desired result.
The organization of this paper is as follows. In Sect. 2, we first give a brief definition

of the support function of the convex level sets and then obtain a useful representation
of the p-Laplace equation with support function. We prove Theorem 1.2 in Sect. 3.
The main technique in the proof of the theorem consists of rearranging the second and
third derivative terms using the equation and the first derivative condition for ϕ. The
key idea is the Pogorelov’s method in a priori estimates for fully nonlinear elliptic
equations.

2 Support Function

We start by introducing some basic notations, which appeared in [8,18].
Let �0 and �1 be two bounded smooth convex domains in R

n such that �̄1 ⊂ �0
and let � = �0 \ �̄1. Let u : �̄ → R be a smooth function such that

u = 0 on ∂�0, u = 1 on �̄1.

Furthermore, we assume that |∇u| > 0 in � and the level sets of u are strictly convex
with respect to the normal direction ∇u. For 0 < t < 1, we set

�̄t = {x ∈ �̄0|u ≥ t}.

Then, each point x ∈ � belongs to the boundary of �̄u(x). Under these assumptions, it
is possible to define a function H : R

n × [0, 1] → R, (X, t) 	→ H(X, t) as follows.
For each t ∈ [0, 1], H(·, t) is the support function of the convex body �̄t . Denote by
h the restriction of H to S

n−1 × [0, 1].
In the rest of this section, we will derive the p-Laplace equation by means of h.

Before doing that, we should reformulate the first and second derivatives of u using h
and its derivatives (see [8,18,22]). For convenience of reader, we sketch out the main
steps here.

Note that h is the restriction of H to S
n−1 × [0, 1]. It follows that h(θ, t) =

H(Y (θ), t), where Y ∈ S
n−1 and θ = (θ1, · · · , θn−1) is a local orthogonal coordinate

system on S
n−1. Since the level sets of u are strictly convex, we can define the map

x(X, t) = x�̄t
(X),

which for every (X, t) ∈ R
n \ {0}× (0, 1) assigns the unique point x ∈ � on the level

set {u = t} where the gradient of u is parallel to X (and orientation reversed).
If we define

Ti = ∂Y

∂θi
,
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470 X.-N. Ma , W. Zhang

then {T1, · · · , Tn−1} is a tangent frame field on S
n−1. Furthermore, we assume that

{T1, · · · , Tn−1, Y } is an orthogonal frame positively oriented. It is easy to see that

∂Ti

∂θ j
= −δi j Y, (2.1)

where δi j is the standard Kronecker delta symbol.
We denote

x(θ, t) = x�̄t
(Y (θ)).

Since Y is orthogonal to ∂�̄t at x(θ, t), by differentiating the equality

h(θ, t) = 〈x(θ, t), Y (θ)〉, (2.2)

we obtain

hi = 〈x, Ti 〉. (2.3)

Here, 〈·, ·〉 is the usual inner product on R
n . By (2.2) and (2.3), we have

x = hY +
n−1∑

i=1

hi Ti . (2.4)

Henceforth, we will omit the range of the summation indices if they run from 1 to
n − 1. With (2.1) in hand, by differentiating (2.4), we obtain

∂x

∂t
= ht Y +

∑

i

hti Ti ;

∂x

∂θ j
= hTj +

∑

i

hi j Ti , j = 1, · · · , n − 1.

The inverse of the above Jacobian matrix is

∂t

∂xα

= h−1
t [Y ]α, α = 1, · · · , n;

∂θi

∂xα

=
∑

j

bi j [Tj − h−1
t ht j Y ]α, α = 1, · · · , n, (2.5)

where [·]α denotes the α-coordinate of the vector in the bracket and (bi j ) denotes the
inverse matrix of the inverse second fundamental form

bi j =
〈
∂x

∂θi
,

∂Y

∂θ j

〉

= hδi j + hi j (2.6)
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Concavity of the Gaussian Curvature of Level Sets 471

of the level set ∂�̄t at x(θ, t). The eigenvalues of (bi j ) are the principal curvatures
k1, · · · , kn−1 of ∂�̄t at x(θ, t) (see Schneider [22]).

The first equation of (2.5) can be rewritten as

∇u = Y

ht
,

where the left hand side is computed at x(θ, t) and the right hand side is computed at
(θ, t). It follows that

|∇u| = − 1

ht
.

By chain rule and (2.5), the second derivatives of u in terms of h and its derivatives
can be computed as

uαβ =
∑

i, j

[−h−2
t hti Y + h−1

t Ti ]αbi j [Tj − h−1
t ht j Y ]β − h−3

t htt [Y ]α[Y ]β,

for α, β = 1, · · · , n.

Thus, the p-Laplace equation becomes

htt =
∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bi j . (2.7)

The associated linear elliptic operator is

L =
∑

i, j,p,q

(
1

p − 1
h2

t δpq + htphtq

)

bipb jq ∂2

∂θi∂θ j
− 2

∑

i, j

ht j b
i j ∂2

∂θi∂t
+ ∂2

∂t2 ,

(2.8)

which is a linearized operator for the p-Laplace operator.
Let u ∈ C4(Sn−1). The following commutation formulas for covariant deriva-

tives of u are well-known

ui jk − uik j = −ukδi j + u jδik,

ui jkl − ui jlk = uikδ jl − uilδ jk + ukjδil − ul jδik . (2.9)

3 Concavity of the Gaussian Curvature of Level Sets

For a continuous function f (t) on [0, 1], we define its generalized second order deriv-
ative at any point t in (0, 1) as

D2 f (t) = lim sup
h→0

f (t + h) + f (t − h) − 2 f (t)

h2 .
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472 X.-N. Ma , W. Zhang

The following lemma was first proved by Longinetti for the case n = 2 in the appendix
of [16]. Here, we will need its general form.

Lemma 3.1 Let Q ≡ S
n−1 × (0, 1) and G(θ, t) be a smooth function in Q such that

L (G(θ, t)) ≥ 0 for (θ, t) ∈ Q,

where L is an elliptic operator of the form

L =
∑

i, j

ai j ∂2

∂θi∂θ j
+

∑

i

bi ∂2

∂θi∂t
+ ∂2

∂t2 +
∑

i

ci ∂

∂θi

with smooth coefficients ai j , bi , ci . Set

φ(t) = max{G(θ, t)|θ ∈ S
n−1}.

Then, φ satisfies the following differential inequality

D2φ(t) ≥ 0.

Moreover, φ(t) is a convex function with respect to t .

Proof of the Theorem 1.2 Since the level sets of u are strictly convex, the inverse
second fundamental form (bi j ) is positive definite in �. Set

ϕ = α log(−ht ) − log K ,

where K = det(bi j ) is the Gaussian curvature of the level sets. For α = n + 1 − 2p
and β = − 1

n−1 , it follows that

eβϕ = (|∇u|n+1−2p K )
1

n−1 .

We will derive the following differential inequality (in the sense modulo the terms
involving ∇θϕ with locally bounded coefficients)

L(eβϕ) ≤ 0 mod ∇θϕ in �, (3.1)

where the elliptic operator L is given in (2.8). By Lemma 3.1, we obtain the desired
result.

In order to prove (3.1) at an arbitrary point x0 ∈ �, we may assume the matrix
(bi j (x0)) is diagonal by choosing suitable orthonormal frame. From now on, all the
calculation will be done at the fixed point x0. In the following, we shall prove the
theorem in three steps.
Step1. we first compute L(ϕ) in refLvarphi2.

123

Author's personal copy



Concavity of the Gaussian Curvature of Level Sets 473

Since

ϕ = α log(−ht ) + log det(bi j ),

taking first derivatives of ϕ, we get

∂ϕ

∂θ j
= αh−1

t ht j +
∑

k,l

bklbkl, j , (3.2)

∂ϕ

∂t
= αh−1

t htt +
∑

k,l

bklbkl,t . (3.3)

Taking derivatives of equations (3.2) and (3.3), we have

∂2ϕ

∂θi∂θ j
= −αh−2

t hti ht j + αh−1
t ht j i −

∑

k,l,r,s

bkr brs,i b
slbkl, j +

∑

k,l

bklbkl, j i ,

∂2ϕ

∂θi∂t
= −αh−2

t hti htt + αh−1
t htti −

∑

k,l,r,s

bkr brs,i b
slbkl,t +

∑

k,l

bklbkl,ti ,

∂2ϕ

∂t2 = −αh−2
t h2

t t + αh−1
t httt −

∑

k,l,r,s

bkr brs,t b
slbkl,t +

∑

k,l

bklbkl,t t ,

and hence

L(ϕ) = −αh−2
t

[ ∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j hti ht j − 2
∑

i

h2
ti b

ii htt + h2
t t

]

+αh−1
t

[ ∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j ht j i − 2
∑

i

hti b
ii htti + httt

]

−
∑

k,l

bkkbll
[ ∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j bkl,i bkl, j

−2
∑

i

hti b
ii bkl,i bkl,t + b2

kl,t

]

+
∑

k

bkk L(bkk)

� I1 + I2 + I3 + I4. (3.4)

In the following, we will deal with the four terms above, respectively. By recalling our
equation, i.e.,

htt =
∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bi j , (3.5)
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at the point x0, we have

htt = 1

p − 1
h2

t σ1 +
∑

i

h2
ti b

ii , (3.6)

where σ1 = ∑
i bii is the mean curvature of the level sets.

For the term I1, we have

I1 = −αh−2
t

[ ∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j hti ht j − 2
∑

i

h2
ti b

ii htt + h2
t t

]

= −αh−2
t

[
1

p − 1
h2

t

∑

i

(hti b
ii )2 +

( ∑

i

h2
ti b

ii − htt

)2]

= − α

p − 1

∑

i

(hti b
ii )2 − α

(p − 1)2 h2
t σ

2
1 . (3.7)

Now, we treat the term I2. Differentiating (3.5) with respect to t , we have

httt = 2

p − 1
ht httσ1 + 2

∑

i

htti hti b
ii −

∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j bi j,t .

(3.8)

By inserting (3.8) into I2, we can get

I2 = αh−1
t

[ ∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j ht j i − 2
∑

i

hti b
ii htti + httt

]

= αh−1
t

[ ∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j (ht ji − bi j,t ) + 2

p − 1
ht httσ1

]

.

Recalling the definition of the inverse second fundamental form, i.e., (2.6), together
with the Eq. (3.6), we obtain

I2 = αh−1
t

[ ∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j (−htδi j ) + 2

p − 1
ht httσ1

]

= − α

p − 1
h2

t

∑

i

(bii )2 − α
∑

i

(hti b
ii )2 + 2α

(p − 1)2 h2
t σ

2
1

+ 2α

p − 1
σ1

∑

i

h2
ti b

ii . (3.9)
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Concavity of the Gaussian Curvature of Level Sets 475

Combining (3.7) and (3.9), we have

I1 + I2 = − pα

p − 1

∑

i

(hti b
ii )2 + α

(p − 1)2 h2
t σ

2
1 − α

p − 1
h2

t

∑

i

(bii )2

+ 2α

p − 1
σ1

∑

i

h2
ti b

ii . (3.10)

In order to deal with the last two terms, we shall compute L(bkk) in advance. By
differentiating (3.5) twice with respect to θk , we have

httk =
∑

i, j

(
1

p − 1
h2

t δi j + hti ht j )kbi j +
∑

i j,p,q

(
1

p − 1
h2

t δi j+hti ht j )(−bipbpq,kbq j )

and

httkk =
∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

kk
bi j

+2
∑

i j,p,q

(
1

p − 1
h2

t δi j + hti ht j

)

k

(
−bipbpq,kbq j

)

+
∑

i j,p,q,r,s

(
1

p − 1
h2

t δi j + hti ht j

)

(2bir brs,kbspbpq,kbq j )

+
∑

i j,p,q

(
1

p − 1
h2

t δi j + hti ht j

)

(−bipbpq,kkbq j )

� J1 + J2 + J3 + J4. (3.11)

For the term J1, we have

J1 =
∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

kk
bi j

=
∑

i, j

(
2

p − 1
ht htkδi j + htikht j + hti ht jk

)

k
bi j

= 2

p − 1
h2

tkσ1 + 2

p − 1
ht htkkσ1 + 2

∑

i

htikkhti b
ii + 2

∑

i

h2
tikbii .

Applying (2.9) for the support function h, we can get

bi j,k = bik, j ,

htik = hkit = bki,t − htδki ,

htikk = hikkt = bik,kt − hktδik = bkk,i t − hktδik,
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and hence we obtain

J1 = 2

p − 1
h2

tkσ1 + 2

p − 1
ht bkk,tσ1 − 2

p − 1
h2

t σ1 + 2
∑

i

bkk,i t hti b
ii

−2h2
tkbkk + 2

∑

l

b2
kl,t b

ll − 4ht bkk,t b
kk + 2h2

t bkk . (3.12)

For the term J2, we have

J2 = 2
∑

i, j

(
2

p − 1
ht htkδi j + htikht j + hti ht jk

)

(−bii bi j,kb j j )

= − 4

p − 1
ht htk

∑

i

(bii )2bii,k − 4
∑

i, j

htikht j b
ii b j j bi j,k

= − 4

p − 1
ht htk

∑

i

(bii )2bii,k − 4
∑

i,l

hti b
ii bllbkl,i bkl,t + 4ht

∑

i

hti b
ii bkkbkk,i .

(3.13)

Also, we have

J3 = 2
∑

i, j,l

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j bllbkl,i bkl, j . (3.14)

Again by (2.9), we have the following commutation rule

bi j,kl − bi j,lk = b jkδil − b jlδik + bikδ jl − bilδ jk,

and hence

bi j,kk = bki, jk = bkk,i j + bi j − bkkδi j + bkjδik − bikδ jk .

For the term J4, we have

J4 = −
∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j bi j,kk

= −
∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j (bkk,i j + bi j − bkkδi j + bkjδik − bikδ jk)

= −
∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j (bkk,i j + bi j − bkkδi j )

= −
∑

i, j

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j bkk,i j − htt + bkk

[
1

p − 1
h2

t

∑

i

(bii )2

+
∑

i

(hti b
ii )2

]

. (3.15)
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On the other hand, one has

bkk,t t = hkktt + htt = httkk + htt . (3.16)

By putting (3.12)–(3.16) into (3.11), recalling the definition of the operator L , we
obtain

L(bkk) =
∑

i, j,p,q

(
1

p − 1
h2

t δpq + htphtq

)

bipb jqbkk,i j − 2
∑

i, j

ht j b
i j bkk,i t + bkk,t t

= 2

p − 1
h2

tkσ1 + 2

p − 1
htσ1bkk,t − 2

p − 1
h2

t σ1 − 2h2
tkbkk

+ 2
∑

l

b2
kl,t b

ll − 4ht b
kkbkk,t + 2h2

t bkk − 4

p − 1
ht htk

∑

i

(bii )2bii,k

− 4
∑

i,l

hti b
ii bllbkl,i bkl,t + 2

∑

i, j,l

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j bllbkl,i bkl, j

+ 4ht

∑

i

hti b
ii bkkbkk,i + bkk

[
1

p − 1
h2

t

∑

i

(bii )2 +
∑

i

(hti b
ii )2

]

.

Therefore,

I4 =
∑

k

bkk L(bkk)

= 2
∑

i, j,k,l

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j bkkbllbkl,i bkl, j

− 4
∑

i,k,l

hti b
ii bkkbllbkl,i bkl,t + 2

∑

k,l

bkkbllb2
kl,t

+ 2

p − 1
htσ1

∑

k

bkkbkk,t − 4ht

∑

k

(bkk)2bkk,t

+ 4p − 8

p − 1
ht

∑

i,k

hti b
ii (bkk)2bkk,i

+ 2p + n − 3

p − 1
h2

t

∑

i

(bii )2 − 2

p − 1
h2

t σ
2
1 + 2

p − 1
σ1

∑

i

h2
ti b

ii

+ (n − 3)
∑

i

(hti b
ii )2. (3.17)

By substituting (3.10) and (3.17) in (3.4), we obtain

L(ϕ) =
∑

i, j,k,l

(
1

p − 1
h2

t δi j + hti ht j

)

bii b j j bkkbllbkl,i bkl, j

−2
∑

i,k,l

hti b
ii bkkbllbkl,i bkl,t +

∑

k,l

bkkbllb2
kl,t
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+ 2

p − 1
htσ1

∑

k

bkkbkk,t − 4ht

∑

k

(bkk)2bkk,t

+4p − 8

p − 1
ht

∑

i,k

hti b
ii (bkk)2bkk,i

+2p + n − 3 − α

p − 1
h2

t

∑

i

(bii )2 + α − 2p + 2

(p − 1)2 h2
t σ

2
1 + 2α + 2

p − 1
σ1

∑

i

h2
ti b

ii

+
(

n − 3 − pα

p − 1

) ∑

i

(hti b
ii )2. (3.18)

Step 2. In this step, we shall calculate L(eβϕ) and then obtain the formula 3.24.
Note that

L(eβϕ) = βeβϕ{L(ϕ) + βϕ2
t } + β2eβϕ

∑

i, j

(
1

p − 1
h2

t δi j + hti ht j )b
ii b j j ∂ϕ

∂θi

∂ϕ

∂θ j

−2β2eβϕ
∑

i

hti b
ii ∂ϕ

∂θi

∂ϕ

∂t
. (3.19)

For β = − 1
n−1 , in order to prove

L(eβϕ) ≤ 0 mod ∇θϕ in �,

it suffices to prove

L(ϕ) + βϕ2
t ≥ 0 mod ∇θϕ in �. (3.20)

Now, we compute βϕ2
t . By (3.3) and the Eq. (3.6), we have

βϕ2
t = βα2h−2

t h2
t t + 2βαh−1

t htt

∑

k

bkkbkk,t + β

(
∑

k

bkkbkk,t

)2

= 1

(p − 1)2 βα2h2
t σ

2
1 + 2

p − 1
βα2σ1

∑

i

h2
ti b

ii + βα2h−2
t

(
∑

i

h2
ti b

ii

)2

+ 2

p − 1
βαhtσ1

∑

k

bkkbkk,t + 2βαh−1
t

(
∑

i

h2
ti b

ii

) (
∑

k

bkkbkk,t

)

+β

(
∑

k

bkkbkk,t

)2

. (3.21)

Jointing (3.18) with (3.21), we regroup the terms in L(ϕ) + βϕ2
t as follows

L(ϕ) + βϕ2
t � P1 + P2 + P3, (3.22)
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where

P1 =
∑

k 
=l

( ∑

i, j

hti ht j b
ii b j j bkkbllbkl,i bkl, j − 2

∑

i

hti b
ii bkkbllbkl,i bkl,t

+bkkbllb2
kl,t

)

≥ 0,

P2 =
∑

k

(bkkbkk,t )
2 + β

(
∑

k

bkkbkk,t

)2

+ 2
∑

k

(
βα + 1

p − 1
htσ1 + βαh−1

t

∑

i

h2
ti b

ii

−
∑

i

hti b
ii bkkbkk,i − 2ht b

kk
)

· (bkkbkk,t )

and

P3 = 1

p − 1
h2

t

∑

i,k,l

(bii )2bkkbllb2
kl,i +

∑

i, j,k

hti ht j b
ii b j j bkkbkk,i b

kkbkk, j

+4p − 8

p − 1
ht

∑

i,k

hti b
ii (bkk)2bkk,i

+2p + n − 3 − α

p − 1
h2

t

∑

i

(bii )2 + βα2 + α − 2p + 2

(p − 1)2 h2
t σ

2
1

+2βα2 + 2α + 2

p − 1
σ1

∑

i

h2
ti b

ii

+
(

n − 3 − pα

p − 1

)∑

i

(hti b
ii )2 + βα2h−2

t

(
∑

i

h2
ti b

ii

)2

.

In the rest of this step, we will deal with the term P2. Let Xk = bkkbkk,t (k =
1, 2, · · · , n − 1), then, P2 can be rewritten as

P2(X1, X2, · · · , Xn−1) =
∑

k

X2
k + β

(
∑

k

Xk

)2

+ 2
∑

k

ck Xk,

where

ck = βα + 1

p − 1
htσ1 + βαh−1

t

∑

i

h2
ti b

ii −
∑

i

hti b
ii bkkbkk,i − 2ht b

kk .

For α = n + 1 − 2p and β = − 1
n−1 , by (3.2) we can obtain

∑

k

ck = −
∑

i

hti b
ii ∂ϕ

∂θi
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and

∑

k

c2
k =

∑

i, j,k

hti ht j b
ii b j j bkkbkk,i b

kkbkk, j + 4ht

∑

i,k

hti b
ii (bkk)2bkk,i

+4h2
t

∑

k

(bkk)2 − 2(1 + αβ)

p − 1
h2

t σ
2
1 − 4βασ1

∑

i

h2
ti b

ii

+βα2h−2
t

(
∑

i

h2
ti b

ii

)2

−2

(
βα + 1

p − 1
htσ1 + βαh−1

t

∑

j

h2
t j b

j j
) ∑

i

hti b
ii ∂ϕ

∂θi
.

By straightforward computation, we have

∑

k

(

Xk + β
∑

i

Xi + ck

)2

= P2(X1, X2, · · · , Xn−1) +
∑

k

c2
k

−2β

( ∑

k

bkkbkk,t

)∑

i

hti b
ii ∂ϕ

∂θi
,

therefore,

P2(X1, X2, · · · , Xn−1) ≥ −
∑

k

c2
k + 2β

( ∑

k

bkkbkk,t

) ∑

i

hti b
ii ∂ϕ

∂θi

= −
∑

i, j,k

hti ht j b
ii b j j bkkbkk,i b

kkbkk, j − 4ht

∑

i,k

hti b
ii (bkk)2bkk,i

−4h2
t

∑

k

(bkk)2+ 2(1 + αβ)

p − 1
h2

t σ
2
1 +4βασ1

∑

i

h2
ti b

ii − βα2h−2
t

(
∑

i

h2
ti b

ii

)2

+ 2

(
βα + 1

p − 1
htσ1 + βαh−1

t

∑

j

h2
t j b

j j + β
∑

k

bkkbkk,t

) ∑

i

hti b
ii ∂ϕ

∂θi
.

(3.23)

Putting (3.23) into (3.22), for α = n + 1 − 2p and β = − 1
n−1 , we obtain

L(ϕ) + βϕ2
t ≥ P2 + P3

≥ 1

p − 1
h2

t

∑

i,k,l

(bii )2bkkbllb2
kl,i − 4

p − 1
ht

∑

i,k

hti b
ii (bkk)2bkk,i

+ 2

p − 1
σ1

∑

i

h2
ti b

ii + (n − 3 − pα

p − 1
)
∑

i

(hti b
ii )2
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+ 2

(
βα + 1

p − 1
htσ1 + βαh−1

t

∑

j

h2
t j b

j j + β
∑

k

bkkbkk,t

)∑

i

hti b
ii ∂ϕ

∂θi
.

(3.24)

In the next step, we will concentrate on the following term

R = h2
t

∑

i,k,l

(bii )2bkkbllb2
kl,i − 4ht

∑

i,k

hti b
ii (bkk)2bkk,i . (3.25)

Step 3.In this step, we first obtain a sharp lower bound on R in 3.25 and then we
get 3.20 and complete the proof of 3.1.

Recalling our first derivative condition 3.2, without loss of generality, we shall
isolate the term b11b11, j . Then, we have

b11b11, j = ∂ϕ

∂θ j
−

∑

k≥2

bkkbkk, j − αh−1
t ht j , for j = 1, 2, · · · , n − 1. (3.26)

For the term R, we have

R = h2
t

∑

i

∑

k 
=l

(bii )2bkkbllb2
kl,i + h2

t

∑

i,k

(bii )2(bkkbkk,i )
2

−4ht

∑

i,k

hti b
ii (bkk)2bkk,i

= 2h2
t

∑

k≥2

(b11)2bkkb11b2
k1,1 + 2h2

t

∑

i,k≥2

(bii )2bkkb11b2
k1,i

+h2
t

∑

i

∑

k,l≥2
k 
=l

(bii )2bkkbllb2
kl,i

+h2
t

∑

i

(bii )2(b11b11,i )
2 + h2

t

∑

i

∑

k≥2

(bii )2(bkkbkk,i )
2 (3.27)

−4ht

∑

i

hti b
ii (b11)2b11,i − 4ht

∑

i

∑

k≥2

hti b
ii (bkk)2bkk,i

� R1 + R2 + R3,

where

R1 = 2h2
t

∑

k≥2

(b11)2bkkb11b2
k1,1 + h2

t

∑

i

(bii )2(b11b11,i )
2

−4ht

∑

i

hti b
ii (b11)2b11,i ,
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R2 = 2h2
t

∑

i,k≥2

(bii )2bkkb11b2
k1,i + h2

t

∑

i

∑

k,l≥2
k 
=l

(bii )2bkkbllb2
kl,i ,

R3 = h2
t

∑

i

∑

k≥2

(bii )2(bkkbkk,i )
2 − 4ht

∑

i

∑

k≥2

hti b
ii (bkk)2bkk,i .

By (3.26), one has

R1 = 2h2
t b11

∑

i,k,l≥2

bii bkkbllbkk,i bll,i + 4αht b
11

∑

i,k≥2

hti b
ii bkkbkk,i

+2α2b11
∑

i≥2

h2
ti b

ii + h2
t

∑

i

∑

k,l≥2

(bii )2bkkbllbkk,i bll,i

+2αht

∑

i

∑

k≥2

hti (b
ii )2bkkbkk,i

+α2
∑

i

(hti b
ii )2 + 4ht

∑

i

∑

k≥2

hti b
ii b11bkkbkk,i

+4αb11
∑

i

h2
ti b

ii + R(∇θϕ),

where

R(∇θϕ) = 2h2
t b11

∑

k≥2

bkk
(

∂ϕ

∂θk

)2

− 4h2
t b11

∑

k,l≥2

bkkbllbll,k
∂ϕ

∂θk

−4αht b
11

∑

k≥2

bkkhtk
∂ϕ

∂θk

+h2
t

∑

i

(bii )2
(

∂ϕ

∂θi

)2

− 2h2
t

∑

i

∑

k≥2

(bii )2bkkbkk,i
∂ϕ

∂θi

−2αht

∑

i

(bii )2hti
∂ϕ

∂θi
− 4ht b

11
∑

i

bii hti
∂ϕ

∂θi
. (3.28)

We rewrite the term R1 as follows

R1 = h2
t

∑

k,l≥2

(b11)2bkkbllbkk,1bll,1 + 2αht

∑

k≥2

ht1(b
11)2bkkbkk,1

+4ht

∑

k≥2

ht1(b
11)2bkkbkk,1

+2h2
t b11

∑

i,k,l≥2

bii bkkbllbkk,i bll,i + h2
t

∑

i,k,l≥2

(bii )2bkkbllbkk,i bll,i

+4αht b
11

∑

i,k≥2

hti b
ii bkkbkk,i + 2αht

∑

i,k≥2

hti (b
ii )2bkkbkk,i
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+4ht b
11

∑

i,k≥2

hti b
ii bkkbkk,i

+2α2b11
∑

i≥2

h2
ti b

ii + α2
∑

i

(hti b
ii )2 + 4αb11

∑

i

h2
ti b

ii + R(∇θϕ).

(3.29)

On the other hand,

R2 = 2h2
t b11

∑

k≥2

(bkk)3b2
kk,1 + 2h2

t

∑

i,k≥2
i 
=k

bii (bkk)3b2
kk,i

+2h2
t

∑

i,k≥2
i 
=k

(bii )2bkkb11b2
k1,i + h2

t

∑

i

∑

k,l≥2
k 
=l,k 
=i,l 
=i

(bii )2bkkbllb2
kl,i . (3.30)

We rewrite R3 as

R3 = h2
t

∑

k≥2

(b11)2(bkkbkk,1)
2 − 4ht

∑

k≥2

ht1b11(bkk)2bkk,1

+h2
t

∑

i,k≥2

(bii )2(bkkbkk,i )
2 − 4ht

∑

i,k≥2

hti b
ii (bkk)2bkk,i . (3.31)

Now, we are at a stage to regroup the terms in R in a natural way by collecting (3.27)–
(3.31). Let

R � T1 + T2 + T3, (3.32)

where T1 are the terms involving bkk,1(k ≥ 2), T2 are the terms involving bkk,i (k, i ≥
2), and T3 are the rest terms. More precisely,

T1 =
∑

k≥2

(1 + 2b11bkk) · (ht b
11bkkbkk,1)

2 +
( ∑

k≥2

ht b
11bkkbkk,1

)2

+4ht1b11
∑

k≥2

(1 + α

2
− b11bkk) · (ht b

11bkkbkk,1),

T2 =
∑

i≥2

{

(1 + 2bii b
11) ·

(∑

k≥2

ht b
ii bkkbkk,i

)2

+
∑

k≥2
k 
=i

2bii b
kk · (ht b

ii bkkbkk,i )
2

+
∑

k≥2

(ht b
ii bkkbkk,i )

2 + 4hti b
ii

∑

k≥2

[
−bii b

kk + α

2

+(1 + α)bii b
11

]
· (ht b

ii bkkbkk,i )

}
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and

T3 = 2α2b11
∑

i≥2

h2
ti b

ii + α2
∑

i

(hti b
ii )2 + 4αb11

∑

i

h2
ti b

ii

+2h2
t

∑

i,k≥2
i 
=k

(bii )2bkkb11b2
k1,i + h2

t

∑

i

∑

k,l≥2
k 
=l,k 
=i,l 
=i

(bii )2bkkbllb2
kl,i + R(∇θϕ).

(3.33)

We shall maximize the terms T1 and T2 via Lemma 3.2 for different choice of
parameters.

At first, let us examine the term T1. Set Xk = ht b11bkkbkk,1, λ = 1, μ =
ht1b11, bk = 1 + 2b11bkk , and ck = b11bkk − (1 + α

2 ) where k ≥ 2. By Lemma 3.2,
which will be stated in the end of this section, we have

−T1 ≤ 4(ht1b11)2�1,

where

�1 =
∑

k≥2

c2
k

bk
−

(

1 +
∑

k≥2

1

bk

)−1(∑

k≥2

ck

bk

)2

.

Next, we shall simplify �1. By denoting βk = 1
bk

, we have

b11bkk = 1

2βk
− 1

2
, ck = 1

2βk
− 3 + α

2
.

Hence,

�1 =
∑

k≥2

βk
( 1

2βk
− 3 + α

2

)2 −
(

1 +
∑

k≥2

βk

)−1[ ∑

k≥2

βk
( 1

2βk
− 3 + α

2

)
]2

= 1

4

∑

k≥2

1

βk
−

(

1 +
∑

k≥2

βk

)−1
(n + 1 + α)2

4
+ (3 + α)2

4
.

Since

1 ≤ 1 +
∑

k≥2

βk ≤ n − 1,

it follows that

�1 ≤ 1
4

∑

k≥2

1

βk
− (n + 1 + α)2

4(n − 1)
+ (3 + α)2

4

= n−2
4(n−1)

(2 + α)2 + 1
4 (2σ1b11 − 2).
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Therefore,

T1 ≥ −
[

n − 2

n − 1
(2 + α)2 + 2σ1b11 − 2

]

(ht1b11)2. (3.34)

Now, we will deal with the term T2. For every i ≥ 2 fixed, set Xk =
ht bii bkkbkk,i , λ = 1 + 2bii b11, μ = hti bii , bk = 1 + 2bii bkk (k 
= i), bi = 1,
and ck = bii bkk − α

2 − (1 + α)bii b11. By Lemma 3.2, we have

−T2 ≤ 4
∑

i≥2

(hti b
ii )2�i ,

where

�i = c2
i +

∑

k≥2
k 
=i

c2
k

bk
−

(
1

λ
+ 1 +

∑

k≥2
k 
=i

1

bk

)−1(

ci +
∑

k≥2
k 
=i

ck

bk

)2

.

For k 
= i , let βk = 1
bk

. Then, we have

bii b
kk = 1

2βk
− 1

2
, ck = 1

2βk
− δ,

where

δ = 1 + α

2
+ (1 + α)bii b

11.

Noticed that

ci = 3

2
− δ,

δ

λ
= 1 + α

2
,

we obtain

�i = c2
i +

∑

k≥2
k 
=i

βk

(
1

2βk
− δ

)2

−
(

1

λ
+ 1 +

∑

k≥2
k 
=i

βk

)−1[

ci +
∑

k≥2
k 
=i

βk

(
1

2βk
− δ

) ]2

= 1

4

∑

k≥2
k 
=i

1

βk
−

(
1

λ
+ 1 +

∑

k≥2
k 
=i

βk

)−1 (
n

2
+ δ

λ

)2

+ 9

4
+ δ2

λ

= 1

4

∑

k≥2
k 
=i

1

βk
−

(
1

λ
+ 1 +

∑

k≥2
k 
=i

βk

)−1
(n + 1 + α)2

4
+ 9

4
+ 1 + α

2
δ.
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Obviously,

1 ≤ 1

λ
+ 1 +

∑

k≥2
k 
=i

βk ≤ n − 1,

and hence

�i ≤ 1

4

∑

k≥2
k 
=i

1

βk
− (n + 1 + α)2

4(n − 1)
+ 9

4
+ 1 + α

2
δ

= n − 2

4(n − 1)
α2 − 1

n − 1
α + n − 3

2(n − 1)
+ 1

2
σ1bii + 1

2
α2bii b

11 + αbii b
11.

Therefore, we have

T2 ≥ −
∑

i≥2

(
n − 2

n − 1
α2 − 4

n − 1
α + 2n − 6

n − 1
+ 2σ1bii

+2α2bii b
11 + 4αbii b

11
)

(hti b
ii )2. (3.35)

Combining (3.32)–(3.35), we obtain

R ≥
∑

i

(
1

n − 1
α2 + 4

n − 1
α − 2n − 6

n − 1
− 2σ1bii

)

(hti b
ii )2 + R(∇θϕ). (3.36)

By (3.24)–(3.25) and (3.36),

L(ϕ) − 1

n − 1
ϕ2

t ≥ 1

p − 1

[
1

n − 1
α2 − (p − 4

n − 1
)α + (n − 3)(p − 1)

−2n − 6

n − 1

] ∑

i

(hti b
ii )2

+2

(
βα + 1

p − 1
htσ1 + βαh−1

t

∑

j

h2
t j b

j j + β
∑

k

bkkbkk,t

)

∑

i

hti b
ii ∂ϕ

∂θi
+ 1

p − 1
R(∇θϕ). (3.37)

For α = n + 1 − 2p and β = − 1
n−1 , we have

L(ϕ) − 1

n − 1
ϕ2

t ≥ 2(n + 1)

n − 1

(p − 2)2

p − 1

∑

i

(hti b
ii )2 mod ∇θϕ

≥ 0 mod ∇θϕ. (3.38)
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So, we finish the proof of (3.20) and then complete the proof of Theorem 1.2. ��

Now, we state the following elementary calculus lemma which appeared in [19].

Lemma 3.2 Let λ ≥ 0, μ ∈ R, bk > 0, and ck ∈ R for 2 ≤ k ≤ n − 1. Define the
quadratic polynomial

Q(X2, · · · , Xn−1) = −
∑

2≤k≤n−1

bk X2
k − λ

( ∑

2≤k≤n−1

Xk

)2

+ 4μ
∑

2≤k≤n−1

ck Xk .

Then, we have

Q(X2, · · · , Xn−1) ≤ 4μ2�,

where

� =
∑

2≤k≤n−1

c2
k

bk
− λ

(

1 + λ
∑

2≤k≤n−1

1

bk

)−1( ∑

2≤k≤n−1

ck

bk

)2

.

Let us give a remark on Theorem 1.2.

Remark 3.3 In the proof of Theorem 1.2, if we choose − 1
n−1 < β ≤ 0 (for β = 0 it

suffices to work on L(ϕ)), we may use Lemma 3.2 to get a lower bound for P2 and
repeat the similar calculation as in step 2 and step 3. Then, we have

L(ϕ) + βϕ2
t ≥

[

q1(α, β)
∑

i

(bii )2 + q2(α, β)σ 2
1

]

h2
t

+q3(α, β)
∑

i

(hti b
ii )2 mod ∇θϕ.

In the last formula, we have let

q1(α, β) = n + 1 − 2p − α

p − 1
,

q2(α, β) = β

1 + (n − 1)β

(n + 1 − 2p − α)2

(p − 1)2 − n + 1 − 2p − α

(p − 1)2 ,

q3(α, β) = 1

p − 1

[
1

n − 1
α2 −

(

p − 4

n − 1

)

α + (n − 3)(p − 1) − 2n − 6

n − 1

]

.

By a simple observation, a sufficient condition to guarantee

L(ϕ) + βϕ2
t ≥ 0 mod ∇θϕ,
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is
⎧
⎨

⎩

q1(α, β) + q2(α, β) ≥ 0,

q1(α, β) + (n − 1)q2(α, β) ≥ 0,

q3(α, β) ≥ 0.

(3.39)

By solving the inequalities in (3.39), we can arrive at the following conclusions:

• p = 2, n ≥ 2 : α > n − 3, β = 0;
• α = n + 1 − 2p,− 1

n−1 < β ≤ 0.

For the case n = 2, p = 2 we can choose α = β = 0. Let K be the curvature of
the level curves. Then, for ϕ = − log K , we have

L(ϕ) ≥ (ht1b11)2 ≥ 0 mod ∇θϕ.

We recover Longinetti’s result (see Remark 1.4).
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