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Abstract In this paper, we first establish a constant rank theorem for the second
fundamental form of the convex level sets of harmonic functions in space forms. Ap-
plying the deformation process, we prove that the level sets of the harmonic functions
on convex rings in space forms are strictly convex. Moreover, we give a lower bound
for the Gaussian curvature of the convex level sets of harmonic functions in terms of
the Gaussian curvature of the boundary and the norm of the gradient on the boundary.
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1 Introduction

The geometry of the level sets of solutions to elliptic partial differential equations is
a classical subject. For instance, Ahlfors [1] contains the well-known result that level
curves of the Green function on a simply connected convex domain in the plane are
convex Jordan curves. In 1931, Gergen [8] proved the star shape of the level sets of
the Green function on a 3-dimensional star-shaped domain. In 1956, Shiffman [23]
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studied the convexity of the level sets of an immersion minimal annulus in R
3. In

1957, Gabriel [9] proved that the level sets of the Green function on a 3-dimensional
bounded convex domain are strictly convex; see also the book by Hörmander [10]
for a detailed exposition of Gabriel’s proof. Lewis [14] and Caffarelli-Spruck [5]
generalized Gabriel’s result to p-harmonic functions and a class of semilinear el-
liptic partial differential equations in higher dimensions. Motivated by the result of
Caffarelli-Friedman [4], Korevaar [13] gave a new proof of the results of [5, 9, 14]
by applying the deformation process and the constant rank theorem of the second
fundamental form of the convex level sets of p-harmonic functions. A survey on this
subject and the recent related extensions can be found in [2, 3, 12].

Now we turn to the curvature estimates of the level sets of solutions to elliptic par-
tial differential equations. For 2-dimensional harmonic functions and minimal sur-
faces with convex level curves, Ortel–Schneider [20] and Longinetti [15, 16] proved
that the curvature of the level curves attains its minimum on the boundary. Ma–Ou–
Zhang [18] and Chang–Ma–Yang [6] got the lower bound estimates of Gaussian
(principal) curvature of the convex level sets of higher-dimensional harmonic func-
tions in terms of the Gaussian (principal) curvature of the boundary and the norm
of the gradient on the boundary. Recently, Ma–Zhang [19] also explored the rela-
tion between the Gaussian curvature of the level sets and the height of the harmonic
function, which generalized the 2-dimensional result by Longinetti [16].

In this paper we shall study the convexity of level sets of harmonic functions in
space forms. In this case, Papadimitrakis [21] proved the convexity of the level curves
of harmonic functions on convex rings in the hyperbolic plane via one complex vari-
able tools; see also the related works by Rosay–Rudin [22] on the sensitivity of the
curvature of the base manifold. Here we give a unified treatment on the sphere and
hyperbolic space. We first establish a constant rank theorem of the second fundamen-
tal form of the convex level sets of harmonic functions in space forms. Applying the
deformation process, we prove that the level sets of the harmonic functions on con-
vex rings in space forms are strictly convex. Moreover, we give a lower bound for
the Gaussian curvature of the convex level sets of harmonic functions in terms of the
Gaussian curvature of the boundary and the norm of the gradient on the boundary.

Now we state our main results.

Theorem 1.1 Let (Mn,g) be a space form of sectional curvature Ksec = 1, or −1,
and Ω0 and Ω1 be bounded smooth convex domains in Mn, n ≥ 2 and Ω̄1 ⊂ Ω0. Let
u satisfy

⎧
⎪⎨

⎪⎩

�u = 0 in Ω = Ω0\Ω̄1,

u = 0 on ∂Ω0,

u = 1 on ∂Ω1.

(1.1)

Then the level sets of u are smooth strictly convex hypersurfaces. Let K be the Gaus-
sian curvature of the level sets; we have the following estimates.

Case 1: for (Mn,g) = (Sn, gstandard) with Ksec = 1, if n = 2,3, we have

min
Ω

K ≥ min
∂Ω

K, (1.2)
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if n ≥ 4, we have

min
Ω

K ≥ min
∂Ω

K

(
min∂Ω0 |∇u|
max∂Ω1 |∇u|

)n−3

, (1.3)

in this case, we assume Ω0,Ω1 lie on the same upper-hemisphere.

Case 2: For (Mn,g) = (Hn,gstandard) with Ksec = −1, if n = 2, we have
(

min∂Ω0 |∇u|
max∂Ω1 |∇u|

)

min
∂Ω

K ≤ K ≤ max
∂Ω

K

(
max∂Ω1 |∇u|
min∂Ω0 |∇u|

)

, (1.4)

if n = 3, we have

min
Ω

K ≥ min
∂Ω

K, (1.5)

if n ≥ 4, we have

min
Ω

K ≥ min
∂Ω

K

(
min∂Ω0 |∇u|
max∂Ω1 |∇u|

)

. (1.6)

The proof of Theorem 1.1 is a generalization of the old works in [13, 14, 18] to
space forms. The main points are as follows. The harmonic function u in Theorem 1.1
has no critical points in Ω = Ω0\Ω̄1. Here we introduce a new trick to prove it; it is
new even in the Euclidean case. Then we introduce a new addition operation on the
convex domains in space form; it is a substitute for the Minkowski sum in Euclidean
space.

In this paper, we make the following convention. The Greek indices 1 ≤ α,β,

γ ≤ n, the Latin indices 1 ≤ i, j, k ≤ n − 1.
In Sect. 2, we first give the well-known curvature formulas for the level sets of

a function. In Sect. 3, we prove that there is no critical point of the solution u in
Theorem 1.1 in Ω = Ω0\Ω̄1. Then in Sect. 4, we introduce a new addition operation
on the convex domains in space forms. In Sect. 5, we prove the constant rank theorem
of the second fundamental form of the convex level sets of harmonic functions in
space forms along the calculation in Xu [24], then we get the strict convexity result
in Theorem 1.1 using the deformation process. We give the lower bound estimates in
Sect. 5 via a calculation similar to that in [18].

2 Preliminary

In this section, we introduce the curvature formulas for the level sets of a smooth
function on Mn and the relevant geometry of space forms.

Let u : Mn −→ R be a smooth function, for any regular value c ∈ R of u (i.e.,
∇u(x) �= 0 for any x ∈ M such that u(x) = c), the level set u−1(c) is a smooth
hypersurface by the implicit function theorem. The second fundamental form of the
level set u−1(c) is given by

h(V,W) = −Hess(u)(V,W)

|∇u| .
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Indeed, ν = ∇u
|∇u| is the normal direction for u−1(c); please see the details in Chow–

Lu–Ni [7] (p. 40). Let κ1, . . . , κn−1 be the principle curvature of the level sets of u

with respect to ν. Then the k-th curvature of the level sets, denoted by σk , is the k-th
elementary symmetric function of κ1, . . . , κn−1. Clearly, σ1 and σn−1 are the mean
curvature and the Gaussian curvature of the level sets, respectively.

Proposition 2.1 Let u(x) ∈ C2(Mn) and |∇u| �= 0 in Mn. Assume the level sets of u

are convex with respect to the normal ν. Let {e1, e2, . . . , en} be any local orthonormal
frame field on Mn. Then the k-th curvature of the level set Σc = u−1(c) is

σk[Σc] = (−1)k
n∑

α,β=1

∂σk+1(uαβ)

∂uαβ

uαuβ |∇u|−(k+2), (2.1)

where (uαβ) is the Hessian of u and 1 ≤ k ≤ n − 1, and σk(∇2u) is the k-th elemen-
tary symmetric function of the eigenvalues of the Hessian.

Remark 2.2 In [11], Jost–Ma–Ou obtained a similar formula for the k-th curvature
of the level set for function u ∈ C2(Ω) for Ω ⊂ R

n.

Proof of Proposition 2.1 First, we check that the right-hand side of (2.1) is indepen-
dent of the choice of the frame fields {eα} on Mn. Then we can just show (2.1) in a
special frame field.

Step 1: If B is an orthogonal transformation between two tangential frame fields, i.e.,
(ē1, . . . , ēn) = (e1, . . . , en)B , where B = (bαβ) is an orthogonal matrix, we have

eβ =
n∑

β=1

ēαbβα, ūα = ∂u

∂ēα

=
n∑

β=1

uβ

∂eβ

∂ēα

,

(ū1, . . . , ūn) = (u1, . . . , un)B, |∇ū|2 = |∇u|2,
and

ūαβ =
n∑

γ,δ=1

uγ δbδβbγα, (ūαβ) = BT (uαβ)B = B−1(uαβ)B,

(uαβ) = B(ūαβ)BT ⇒ ∂uγ δ

∂ūαβ

= bγαbδβ .

As in [11], from elementary matrix theory,

n∑

α,β=1

∂σk+1(ūαβ)

∂ūαβ

ūαūβ =
n∑

γ,δ=1

∂σk+1(uαβ)

∂uγ δ

uγ uδ.

Step 2: For any point x ∈ Σc, one can choose en = ν = ∇u
|∇u| as the unit inner normal

of the level set. Let {ek}, k = 1,2, . . . , n − 1, be a local orthonormal frame on the
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level set Σc. We have the second fundamental form of the level sets

hij = g(∇ei
ej , ν) = − uij

|∇u| . (2.2)

It actually follows by

uij = eieju − g(∇ei
ej , ν)ν(u) = −hij |∇u|.

Since the level set of u is convex with respect to the normal ν, it follows that the σk

curvature of its level sets is

σk(κ1, . . . , κn−1) = (−1)k

|∇u|k σk(uij ) = (−1)k

|∇u|k
∂σk+1(uαβ)

∂unn

= (−1)k
∂σk+1(uαβ)

∂unn

unun|∇u|−(k+2)

= (−1)k
n∑

γ,δ=1

∂σk+1(uαβ)

∂uγ δ

uγ uδ|∇u|−(k+2).

From step 1 and step 2, we get the proof of the curvature formula (2.1). �

We now give necessary formulas concerning our later computations in space
forms; refer to, for example, [7].

Proposition 2.3 Let (Mn,g) be a space form of sectional curvature Ksec = ε. We
have

Rαβγ δ = ε(gαγ gβδ − gαδgβγ ), (2.3)

uαβγ = uαγβ − Rγβξαuξ , (2.4)

n∑

α=1

uξηαα =
n∑

α=1

uααξγ − 2
n∑

α,β=1

Rξαηβuαβ +
n∑

α=1

(Rξαuηα + Rηαuξα). (2.5)

3 No Critical Points

Let (Mn,g), n ≥ 2, be a space form of sectional curvature Ksec = 1,0, or −1, and
U2 \ U1 be an annulus bounded by two convex hypersurfaces in Mn. Suppose that u

is a harmonic function defined in U2 \ U1 and continuous in U2 \ U1 satisfying

u|∂U1 = 1, u|∂U2 = 0.

We prove that in our situation u has no critical points.
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In our consideration, let x0 ∈ U1 be a given point and ρ(x) be the distance from
x0 to x. Under the identification BR(x0) \ {x0} = (0,R) × Sn−1, we express

g = dρ2 + ϕ2(ρ)gS,

where ϕ satisfies

d2ϕ

dρ2
+ Ksecϕ = 0, ϕ(0) = 0,

and gS is the standard metric on the sphere Sn−1 of sectional curvature 1.
Let {Ek}n−1

k=1 be a local orthonormal frame on (Sn−1, gS), so that

ek = ϕ−1Ek, en = ∇ρ = ∂

∂ρ

form a local orthonormal frame on Mn \ {x0}. Note that each ek is actually parallel
along the en direction.

Suppose that u is a harmonic function defined on U2 \ U1. We define

F = en(u) =
n∑

α=1

uαρα.

Lemma 3.1 It holds that

�
(
ϕn−1F

) = 2(n − 2)g
(∇ logϕ,∇(

ϕn−1F
))

.

Proof We first compute that

�F = �

(
n∑

α=1

ραuα

)

=
n∑

α,γ=1

ραuαγγ +
n∑

α,γ=1

uαραγγ + 2
n∑

α,γ=1

ραγ uαγ

= −
n∑

α,γ,ξ=1

Rγαξγ uξρα −
n∑

α,γ,ξ=1

Rγαξγ ρξuα +
n∑

α,γ=1

uαργγα + 2
n∑

α,γ=1

ραγ uαγ

= 2
n∑

α,ξ=1

Rαξuξρα +
n∑

α,γ=1

uαργγα + 2
n∑

α,γ=1

ραγ uαγ .

Let f ′ stand for the differentiation of f in en. Note that

∇ek
en = (logϕ)′ek, ∇ek

el = −(logϕ)′δklen,

so we have

ρα = δnα, ρnα = 0, ρkl = (logϕ)′δkl .
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Hence we get

�F = 2(n − 1)KsecF + (n − 1)(logϕ)′′F + 2(logϕ)′ukk

= 2(n − 1)KsecF + (n − 1)(logϕ)′′F − 2(logϕ)′F ′.

Recall that

ϕ′′ + Ksecϕ = 0,

so we get

�F = (n − 1)
(
Ksec − ϕ−2ϕ′2)F − 2ϕ−1ϕ′F ′.

Note that

� = ∂2

∂ρ2
+ (n − 1)(logϕ)′ ∂

∂ρ
+ ϕ−2�gS

.

A straightforward computation shows that

�
(
ϕn−1F

) = 2(n − 1)(n − 2)ϕn−3ϕ′2F + 2(n − 2)ϕn−2ϕ′F ′.

That is,

�
(
ϕn−1F

) = 2(n − 2)ϕ−1ϕ′(ϕn−1F
)′
.

Then we complete the proof of this lemma. �

Now we use the above lemma to prove that there is no critical point of the solution
u in Theorem 1.1 in Ω = Ω0\Ω̄1.

Proposition 3.2 Let U2 \ U1 be an annulus between smooth convex hypersurfaces in
a space form Mn, and u be a harmonic function in U2 \U1 and continuous in U2 \ U1

satisfying

u|∂U1 = 1, u|∂U2 = 0.

Then it holds that

|∇u|(x) > 0, ∀x ∈ U2 \ U1.

Proof Taking a point x0 ∈ U1, all the geodesics γ (t) initiating from x0 satisfy

g(γ̇ , ν) < 0

on the boundary of the annulus, since the boundary is two convex hypersurfaces. On
the other hand, by the Hopf Lemma, on the boundary of the annulus we have

∂u

∂ν
> 0.
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Therefore, on the boundary of the annulus we have

γ̇ (u) = g(γ̇ ,∇u) = g(γ̇ , ν)
∂u

∂ν
< 0.

Recall that

F = en(u) = γ̇ (u),

so we have

ϕn−1F < 0

on the boundary of the annulus. By Lemma 3.1 and the maximum principle, we see
that ϕn−1en(u) < 0 in the annulus. �

In this section, we find a new test function ϕn−1F which attains its maximum and
minimum on the boundary. If Mn = Rn, then ϕn−1F = |X|n−2 ∑n

α=1 Xαuα , and it
is a constant on the standard Green function on a ball. Our test function is different
from the classical test function

∑n
α=1 Xαuα which can be found in Caffarelli–Spruck

[5] or Kawohl [12].

4 Deformations of Convex Annulus

Let (Mn,g) be a space form of sectional curvature Ksec = 1,0, or −1, and Ω2 \
Ω1 be an annulus bounded by two convex hypersurfaces in Mn. Suppose B2 \ B1
is another annulus containing Ω2 \ Ω1 and Bi, i = 1,2, are also convex domains.
We will construct a family of annuli Vt = V2(t) \ V1(t),0 ≤ t ≤ 1, bounded by two
convex domains with

V0 = B2 \ B1, V1 = Ω2 \ Ω1.

We use B1 and Ω1 to construct a family of convex domains V1(t), and V2(t) can be
obtained in the same way.

Take a point O ∈ B1 as our center. In polar coordinates centered at O , we have

g = dρ2 + ϕ2(ρ)gS;
here ϕ and gS is the same as in the last section.

Let Ω be a convex domain that encloses O . Since the convexity of the domain
Ω is the same as that of any geodesic which ends on the boundary ∂Ω inside the
domain, we first study the geodesics which end on ∂Ω . Let p,q be two different
points on ∂Ω . The geodesic γ connecting p and q lies on the plane spanned the
geodesics Op and Oq . To be more precise, the geodesics Op and Oq give two
tangent vectors in TOMn, which are assumed here to be linearly independent, hence
they span a tangent plane. This tangent plane determines a surface as the image of the
exponential map, which is totally geodesic.

The induced metric on this plane expressed in polar coordinates can be written as

g = dρ2 + ϕ(ρ)2dθ2, θ ∈ [0,2π].
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A straightforward computation shows

∇ ∂
∂ρ

∂

∂ρ
= 0, ∇ ∂

∂ρ

∂

∂θ
= ∇ ∂

∂θ

∂

∂ρ
= ϕ−1ϕρ

∂

∂θ
, ∇ ∂

∂θ

∂

∂θ
= −ϕϕρ

∂

∂ρ
.

Let θ be the parameterization of γ . Therefore, we have

γ (θ) = (
ρ(θ), θ

)

and

|γ̇ |2(θ) = ρ2
θ + ϕ(ρ)2.

By the geodesic equation

∇γ̇ /|γ̇ |γ̇ /|γ̇ | = 0,

we get

∇γ̇ γ̇ = d

dθ

(|γ̇ |) γ̇

|γ̇ | .

One can compute that

∇γ̇ γ̇ = (ρθθ − ϕϕρ)
∂

∂ρ
+ 2ρθϕ

−1ϕρ

∂

∂θ

and

d

dθ

(|γ̇ |) γ̇

|γ̇ | = |γ̇ |−2ρθ (ρθθ + ϕϕρ)

(

ρθ

∂

∂ρ
+ ∂

∂θ

)

.

Hence we get the following characterization of geodesics in space forms

ρθθ = 2ρ2
θ ϕ−1ϕρ + ϕϕρ.

Note that

ϕρρ + Ksecϕ = 0,

we get
(

ϕρ

ϕ

)

θθ

= −ϕϕρ

(
Ksec + ϕ−2ϕ2

ρ

)
.

One can check case by case that

(
ϕρ

ϕ

)

θθ

+ ϕρ

ϕ
= 0.

Let

σ(ρ) = ϕρ(ρ)

ϕ(ρ)
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and σ−1 be the inverse function of σ . We now construct V1(t) as follows. Let Sn−1

be the unit sphere of TOMn and (ρ, θ) = expO(ρ, θ), θ ∈ Sn−1. Denote the boundary
of B1 and Ω1 by

∂B1 = {(
ρB1(θ), θ

)
, θ ∈ Sn−1}, ∂Ω1 = {(

ρΩ1(θ), θ
)
, θ ∈ Sn−1}.

Let V1(t) be the domain enclosed by ∂V1(t), which is given by

∂V1(t) = {(
σ−1[(1 − t)σ

(
ρB1(θ)

) + tσ
(
ρΩ1(θ)

)]
, θ

) | θ ∈ Sn−1}.

Clearly, V1(0) = B1,V1(1) = Ω1 and ∂V1(t) ⊂ Ω1 \ B1.

Proposition 4.1 V1(t) is a smooth convex domain for each t ∈ [0,1].

Proof Let γ be a geodesic with ends p1 = (ργ (θ1), θ1) and p2 = (ργ (θ2), θ2) on
∂V1(t). We assume the geodesics Op1 and Op2 do not match into a smooth geodesic.
That is, |θ1 − θ2| < π . Otherwise, it is even easier to see the geodesic p1p2 is
inside the domain V1(t). Clearly, in the situation |θ1 − θ2| < π we can express
γ = {(ργ (θ), θ), θ ∈ [θ1, θ2]}.

Let γ1 be the geodesic with ends (ργ1(θ1), θ1) and (ργ1(θ2), θ2) on ∂B1; respec-
tively, let γ2 be the geodesic with ends (ργ2(θ1), θ1) and (ργ2(θ2), θ2) on ∂Ω1. Note
that γ , γ1, and γ2 are all on the same plane spanned by Op1 and Op2. On the other
hand,

γ̃ (θ) = {(
σ−1[(1 − t)σ

(
ργ1(θ)

) + tσ
(
ργ2(θ)

)]
, θ

) | θ ∈ [θ1, θ2]
}

is a geodesic with the same ends as γ . Hence we have γ = γ̃ .
Note that σ is a decreasing function and

ρB1(θ) > ργ1(θ), ρΩ1(θ) > ργ2(θ), θ ∈ (θ1, θ2).

Hence for any θ ∈ (θ1, θ2), we have

ργ (θ) = σ−1[(1 − t)σ
(
ργ1(θ)

) + tσ
(
ργ2(θ)

)]

< σ−1[(1 − t)σ
(
ρB1(θ)

) + tσ
(
ρΩ1(θ)

)]
,

which shows the convexity of V1(t).
And from the construction, V1(t) is a smooth convex domain for each t ∈ [0,1]. �

Even in Rn, our addition operation is different from the usual Minkowski vector
sum in classical convex bodies theory.

5 Constant Rank Theorem of the Second Fundamental Form

In this section, following the calculation in Xu [24], we use the curvature expression
of the level sets in (2.1) to prove the following constant rank theorem for the second
fundamental forms of convex level sets Σc.
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Theorem 5.1 Suppose u ∈ C4(Ω) is a solution of the Poisson equation

�u = f (x) ≥ 0 in Ω, (5.1)

where Ω ⊂ Mn, and (Mn,g) is a space form of sectional curvature Ksec = 1, or −1.
Assume f (x) satisfies the condition

3fifj + 4εf 2δij ≤ 2ffij ,

where ε = ±1 for Ksec = ±1, and we have used the local orthonormal frame on
(Mn,g). If ∇u �= 0 in Ω and the set {x ∈ Ω | u(x) ≥ c0} is connected and locally
convex for all c ∈ (−γ0 + c0, γ0 + c0) and some γ0 > 0. Then the second fundamental
form of level surfaces {x ∈ Ω | u(x) = c} has the same constant rank for all c ∈
(−γ0 + c0, γ0 + c0).

Remark 5.2 When (Mn,g) = (Sn, gstandard) with Ksec = 1 and f > 0, the structure

condition of f is equivalent to f − 1
2 ( X

|X| ) is a concave function in R
n+1\{0}.

Since Theorem 5.1 is of local feature, we may assume level surface Σc = {x ∈
Ω | u(x) = c} is connected for each c ∈ (c0 − γ0, c0 + γ0). We will concentrate in
a neighborhood of some point x0 ∈ Ω such that the minimal rank l of the second
fundamental form of Σu(x0) is attained at x0. We may assume l ≤ n − 2, otherwise
the second fundamental form of every level surface has full rank. And we assume
u ∈ C4(Ω) and un > 0 in the rest of this paper.

Let U be a small open neighborhood of x0 such that for each x ∈ U , there are l

“good” eigenvalues of the second fundamental form of Σc which are bounded from
below by a positive constant, and the other n − 1 − l “bad” eigenvalues of the second
fundamental form of Σc are very small. Let G be the index set of these “good”
eigenvalues and B be the index set of “bad” eigenvalues. For any x ∈ U fixed, by
choosing e1, . . . , en−1, en such that

|∇u|(x) = un(x) > 0 and the matrix (uij ), i, j = 1, . . . , n − 1, is diagonal at x, (5.2)

we may express the second fundamental form of Σc in the form of (2.2). So the
matrix (hij ), i, j = 1, . . . , n − 1 is also diagonal at x, and without loss of generality
we may assume h11 ≤ h22 ≤ · · · ≤ hn−1,n−1. There is a positive constant C > 0 de-
pending only on ‖u‖C4 and U , such that hn−1,n−1 ≥ hn−2,n−2 ≥ · · · ≥ hn−l,n−l > C

for all x ∈ U . For convenience we let G = {n − l, n − l + 1, . . . , n − 1} and
B = {1,2, . . . , n − l − 1} be the “good” and “bad” sets of indices, respectively. If
there is no confusion, we also denote

B = {h11, . . . , hn−l−1,n−l−1} and G = {hn−l,n−l , . . . , hn−1,n−1}. (5.3)

Note that for any δ > 0, we may choose U small enough such that hjj < δ for all
j ∈ B and x ∈ U . We also let λ = hii in the following calculation.

For each c, set

ϕ(h) = |∇u|l+3σl+1(λ1, . . . , λn−1) = (−1)l+1
n∑

α,β=1

∂σl+2(uαβ)

∂uαβ

uαuβ. (5.4)
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Theorem 5.1 is equivalent to saying ϕ(h) ≡ 0 in U .
For any fixed x ∈ U , with the coordinate chosen as in (5.2) and (5.3). So by the

strong maximum principle, we need only to show:

�ϕ(x) ≤ 0 mod
{∇ϕ(x),ϕ(x)

}
in U. (5.5)

Proof of Theorem 5.1 Now all our calculations work at x with the above coordinate.
In order to simplify the calculation, we introduce a new notation aij,α ,

unuijα = −u2
naij,α + uniujα + unjuiα + unαuij . (5.6)

Then we have the following relations

unuiin = −u2
naii,n + 2u2

ni, for i ∈ B, (5.7)

unuiij = −u2
naii,j , for i ∈ B, 1 ≤ j ≤ n − 1. (5.8)

In the following, all the calculations will be done at x, and the terms of
ϕ(x),∇ϕ(x) will be omitted, i.e., all the equalities or inequalities should be un-
derstood in the sense of mod{ϕ(x), ∇ϕ(x)}.

ϕν = (−1)l+1
n∑

α,β,γ,δ=1

∂2σl+2(uαβ)

∂uαβ∂uγ δ

uαuβuγ δν

+ (−1)l+1
n∑

α,β=1

∂σl+2(uαβ)

∂uαβ

(uανuβ + uαuβν)

= (−1)l+1u2
n

n−1∑

i=1

σl(uij | i)uiiν + 2(−1)l+1un

n∑

α=1

∂σl+2(uαβ)

∂uαn

uαν

= −ul+2
n σl(G)

∑

i∈B

uiiν + 2(−1)l+1un

[
∂σl+2(uαβ)

∂unn

unν +
n−1∑

i=1

∂σl+2(uαβ)

∂uin

uiν

]

= −ul+2
n σl(G)

∑

i∈B

uiiν − 2(−1)l+1un(−1)lul
n

n−1∑

i=1

σl(λ | i)uniuiν

= −ul+2
n σl(G)

∑

i∈B

uiiν + 2ul+1
n σl(G)

∑

i∈B

uniuiν . (5.9)

Noting (5.7)–(5.8), we deduce:

∑

i∈B

aii,α = 0, ∀1 ≤ α ≤ n. (5.10)
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Now we calculate that

�ϕ = (−1)l+1
n∑

α,β,γ,δ,ζ,η,ν=1

∂3σl+2(uαβ)

∂uαβ∂uγ δ∂uζη

uγ δνuζηνuαuβ

+ 4(−1)l+1
n∑

α,β,γ,δ,ν=1

∂2σl+2(uαβ)

∂uαβ∂uγ δ

uγ δνuανuβ

+ (−1)l+1
n∑

α,β,γ,δ,ν=1

∂2σl+2(uαβ)

∂uαβ∂uγ δ

uγ δννuαuβ

+ 2(−1)l+1
n∑

α,β,ν=1

∂σl+2(uαβ)

∂uαβ

uαννuβ

+ 2(−1)l+1
n∑

α,β,ν=1

∂σl+2(uαβ)

∂uαβ

uανuβν

:= I + II + III + IV + V. (5.11)

Next we will compute the above terms step by step.

I := (−1)l+1
n∑

α,β,γ,δ,ζ,η,ν=1

∂3σl+2(uαβ)

∂uαβ∂uγ δ∂uζη

uγ δνuζηνuαuβ

= ul+1
n

n∑

ν=1

n−1∑

i �=j,i,j=1

σl−1(λ | i, j)uiiνujjν − ul+1
n

n∑

ν=1

n−1∑

i �=j,i,j=1

σl−1(λ | i, j)u2
ijν

= ul+1
n

n∑

ν=1

( ∑

i∈G,j∈B

+
∑

i∈B,j∈G

+
∑

i,j∈G,i �=j

+
∑

i,j∈B,i �=j

)

σl−1(λ | i, j)uiiνujjν

− ul+1
n

n∑

ν=1

( ∑

i∈G,j∈B

+
∑

i∈B,j∈G

+
∑

i,j∈G,i �=j

+
∑

i,j∈B,i �=j

)

σl−1(λ | i, j)u2
ijν

= 2ul−1
n

n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)[(unuiiα)(unujjα) − (unuijα)2]

+ ul−1
n σl−1(G)

n∑

α=1

∑

i,j∈B,i �=j

[
(unuiiα)(unujjα) − (unuijα)2]. (5.12)
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Using (5.6) and (5.10), it follows that

2
n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)[(unuiiα)(unujjα) − (unuijα)2]

= 2
n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)[(−u2
naii,α + 2uniuiα + unαuii

)

× (−u2
najj,α + 2unjujα

) − (−u2
naij,α + uniujα + unjuiα

)2]

= −2u4
n

n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)a2
ij,α − 4u2

n

∑

i∈G,j∈B

σl−1(G | i)aii,nu
2
nj

+ 4u2
n

n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)aij,α(uniujα + unjuiα)

+ 4
∑

i∈G,j∈B

σl−1(G | i)(2u2
ni + unnuii

)
u2

nj

− 2
n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)[uniujα + unjuiα]2 (5.13)

and

n∑

α=1

∑

i,j∈B,i �=j

[
(unuiiα)(unujjα) − (unuijα)2]

=
n∑

α=1

∑

i,j∈B,i �=j

[(−u2
naii,α + 2uniuiα

)(−u2
najj,α + 2unjujα

)

− (−u2
naij,α + uniujα + unjuiα

)2]

=
n∑

α=1

∑

i,j∈B,i �=j

[−u4
na

2
ij,α + u4

naii,αajj,α − 4u2
naii,αunjujα

+ 4u2
naij,αuniujα + 4uniunjuiαujα − (uniujα + unjuiα)2]

= −u4
n

n∑

α=1

∑

j∈B

a2
jj,α − u4

n

n∑

α=1

∑

i,j∈B,i �=j

a2
ij,α
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+ 4u2
n

∑

j∈B

ajj,nu
2
nj + 4u2

n

∑

i,j∈B,i �=j

aij,nuniunj

= −u4
n

n∑

α=1

∑

i,j∈B

a2
ij,α + 4u2

n

∑

i,j∈B

aij,nuniunj . (5.14)

It follows that

u1−l
n I = −2u4

n

n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)a2
ij,α − u4

nσl−1(G)

n∑

α=1

∑

i,j∈B

a2
ij,α

− 4u2
n

∑

i∈G,j∈B

σl−1(G | i)aii,nu
2
nj + 8u2

n

∑

i∈G,j∈B

σl−1(G | i)aij,nuniunj

− 4u3
nσl(G)

∑

i∈G,j∈B

aij,iunj + 4u2
nσl−1(G)

∑

i,j∈B

aij,nuniunj

− 4lununnσl(G)
∑

j∈B

u2
nj − 2u2

nσ1(G)σl(G)
∑

j∈B

u2
nj . (5.15)

To compute the second term in (5.11), we still use (5.10):

II := 4(−1)l+1
n∑

α,β,γ,δ,ν=1

∂2σl+2(uαβ)

∂uαβ∂uγ δ

uγ δνuανuβ

= 4(−1)l+1un

n∑

γ,δ,α=1

[
∂2σl+2(uαβ)

∂unn∂uγ δ

uγ δαunα +
n−1∑

i=1

∂2σl+2(uαβ)

∂uin∂uγ δ

uγ δαuiν

]

= −4ul+1
n

n∑

α=1

n−1∑

i=1

σl(hij | i)unαuiiα + 4ul+1
n

n∑

α=1

n−1∑

i=1

σl(hij | i)uiαuniα

+ 4ul
n

n∑

α=1

n−1∑

i �=j,i,j=1

σl−1(hij | i, j)uiαujiαunj

− 4ul
n

n∑

α=1

n−1∑

i �=j,i,j=1

σl−1(hij | i, j)uiαujjαuni

:= II1 + II2 + II3 + II4. (5.16)
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By (5.10), the first term on the right-hand side of the above equality can be treated
as:

II1 := −4ul+1
n

n∑

α=1

n−1∑

i=1

σl(hij | i)unαuiiα

= −4ul+1
n σl(G)

∑

i∈B

unnuiin − 4ul+1
n σl(G)

n−1∑

j=1

∑

i∈B

unjuiij

= −8ul
nσl(G)unn

∑

j∈B

u2
nj . (5.17)

Using (5.6), (5.10), and (5.1), we get

II2 := 4ul+1
n

n∑

α=1

n−1∑

i=1

σl(hij | i)uiαuniα

= 4ul+1
n σl(G)

∑

i∈B

uinunin + 4ul+1
n σl(G)

n−1∑

j=1

∑

i∈B

uijunij

= 4ul+1
n σl(G)

∑

i∈B

uinunni

= 4ul+1
n σl(G)

∑

j∈B

unj

(

fj −
∑

i∈G

uiij

)

= 4ul+1
n σl(G)

∑

j∈B

unjfj − 4ul
nσl(G)

∑

j∈B

∑

i∈G

unj

[−u2
naii,j + unjuii

]

= 4ul+1
n σl(G)

∑

j∈B

unjfj + 4ul+2
n σl(G)

∑

i∈G,j∈B

unjaii,j

+ 4ul+1
n σ1(G)σl(G)

∑

j∈B

u2
nj . (5.18)

Similarly, we have

II3 := 4ul
n

n∑

α=1

n−1∑

i �=j,i,j=1

σl−1(hij | i, j)uiαujiαunj

= 4ul
n

n∑

α=1

[ ∑

i∈G,j∈B

+
∑

i∈B,j∈G

+
∑

i,j∈G,i �=j

+
∑

i,j∈B,i �=j

]

σl−1(hij | i, j)uiαujiαunj
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= 4ul
n

n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)uiαunjuijα

+ 4ul
n

n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)ujαuniuijα

+ 4ul
nσl−1(G)

∑

i,j∈B,i �=j

uinunjuijn

= 8ul
n

∑

i∈G,j∈B

σl−1(G | i)uniunjuijn − 4ul+1
n σl(G)

∑

i∈G,j∈B

unjuiij

+ 4ul
nσl−1(G)

∑

i,j∈B,i �=j

uinunjuijn. (5.19)

Using (5.6) and (5.10) again, it follows that

II3 := −8ul+1
n

∑

i∈G,j∈B

σl−1(G | i)uniunj aij,n + 16ul−1
n

∑

i∈G,j∈B

σl−1(G | i)u2
niu

2
nj

+ 4ul+2
n σl(G)

∑

i∈G,j∈B

unjaii,j + 4ul+1
n σ1(G)σl(G)

∑

j∈B

u2
nj

− 4ul+1
n σl−1(G)

∑

i,j∈B,i �=j

uinunj aij,n + 8ul−1
n σl−1(G)

∑

i,j∈B,i �=j

u2
niu

2
nj .

(5.20)

Now we treat the II4 term.

II4 := −4ul
n

n∑

α=1

n−1∑

i �=j,i,j=1

σl−1(hij | i, j)uiαujjαuni

= −4ul
n

n∑

α=1

[ ∑

i∈G,j∈B

+
∑

i∈B,j∈G

+
∑

i,j∈G,i �=j

+
∑

i,j∈B,i �=j

]

σl−1(hij | i, j)uiαujjαuni

= −4ul
n

n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)uiαuniujjα

− 4ul
n

n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)ujαunjuiiα
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− 4ul
nσl−1(G)

n∑

α=1

∑

i,j∈B,i �=j

uinuiαujjα

= −8ul−1
n

(∑

i∈G

σl−1(G | i)u2
ni

)∑

j∈B

u2
nj − 4ul

n

∑

i∈G,j∈B

σl−1(G | i)u2
njuiin

− 8ul−1
n σl−1(G)

(∑

j∈B

u2
nj

)2

+ 4ul
nσl−1(G)

∑

j∈B

u2
njujjn. (5.21)

Using (5.6) and (5.10) again, we have

−4ul
n

∑

i∈G,j∈B

σl−1(G | i)u2
njuiin

= 4ul+1
n

(∑

i∈G

σl−1(G | i)aii,n

)∑

j∈B

u2
nj

− 8ul−1
n

(∑

i∈G

σl−1(G | i)u2
ni

)∑

j∈B

u2
nj + 4lul

nunnσl(G)
∑

j∈B

u2
nj , (5.22)

and

4ul
nσl−1(G)

∑

j∈B

u2
njujjn

= −4ul+1
n σl−1(G)

∑

j∈B

ajj,nu
2
nj + 8ul−1

n σl−1(G)
∑

j∈B

u4
nj . (5.23)

It follows that

u1−l
n II := −8u2

n

∑

i∈G,j∈B

σl−1(G | i)uniunj aij,n + 8u3
nσl(G)

∑

i∈G,j∈B

unjaii,j

+ 4u2
n

(∑

i∈G

σl−1(G | i)aii,n

)∑

j∈B

u2
nj − 4u2

nσl−1(G)
∑

j∈B

ajj,nu
2
nj

− 4u2
nσl−1(G)

∑

i,j∈B,i �=j

uinunj aij,n

− 8f unσl(G)
∑

j∈B

u2
nj + 4lununnσl(G)

∑

j∈B

u2
nj

+ 4u2
nσl(G)

∑

j∈B

unjfj . (5.24)



Level Sets of Harmonic Functions on Space Forms 355

By (5.15) and (5.24), and using aij,i = aii,j for i ∈ G,j ∈ B , we have

u1−l
n (I + II) := −2u4

n

n∑

α=1

∑

i∈G,j∈B

σl−1(G | i)a2
ij,α + 4u3

nσl(G)
∑

i∈G,j∈B

aij,iunj

− u4
nσl−1(G)

n∑

α=1

∑

i,j∈B

a2
ij,α

− 8f unσl(G)
∑

j∈B

u2
nj + 4u2

nσl(G)
∑

j∈B

unjfj

− 2u2
nσ1(G)σl(G)

∑

j∈B

u2
nj

= −2u4
n

n∑

α �=i,α=1

∑

i∈G,j∈B

σl−1(G | i)a2
ij,α − u4

nσl−1(G)

n∑

α=1

∑

i,j∈B

a2
ij,α

− 2
∑

i∈G,j∈B

σl−1(G | i)(u2
naii,j + uiiunj

)2

− u4
nσl−1(G)

n∑

α=1

∑

i,j∈B

a2
ij,α

− 8f unσl(G)
∑

j∈B

u2
nj + 4u2

nσl(G)
∑

j∈B

unjfj . (5.25)

Now we deal with the third and fourth terms in (5.11). Using the commutator
formulas (2.4)–(2.5), by (5.1) we get

n∑

α=1

uiαα = fi,

n∑

α=1

uiiαα = fii − 2εf. (5.26)

By (5.26), we have

u1−l
n III = (−1)l+1u1−l

n

n∑

α,β,γ,δ,ν=1

∂2σl+2(uαβ)

∂uαβ∂uγ δ

uγ δννuαuβ

= −u3
n

n∑

α=1

n−1∑

i=1

σl(hij | i)uiiαα

= −u3
nσl(G)

n∑

α=1

∑

j∈B

ujjαα

= −u3
nσl(G)

∑

j∈B

(fjj − 2εf ). (5.27)
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Similarly, by (5.26) we have

u1−l
n IV = 2(−1)l+1u1−l

n

n∑

α,β,ν=1

∂σl+2(uαβ)

∂uαβ

uαννuβ

= 2u2
nσl(G)

∑

j∈B

unj

(
n∑

α=1

ujαα

)

= 2u2
nσl(G)

∑

j∈B

unjfj . (5.28)

For V , we have

V = 2(−1)l+1
n∑

α,β,ν=1

∂σl+2(uαβ)

∂uαβ

uανuβν

= 2(−1)l+1

[
n∑

α=1

∂σl+2(uαβ)

∂unn

u2
nα +

n∑

α=1

n−1∑

i,j=1

∂σl+2(uαβ)

∂uij

uiαujα

+ 2
n∑

α=1

n−1∑

j=1

∂σl+2(uαβ)

∂unj

unαujα

]

. (5.29)

Note that

n∑

α=1

∂σl+2(uαβ)

∂unn

u2
nα = 0, (5.30)

and

4(−1)l+1u1−l
n

n∑

α=1

n−1∑

j=1

∂σl+2(uαβ)

∂unj

unαujα = 4ununnσl(G)
∑

j∈B

u2
nj . (5.31)

We now compute the term

2(−1)l+1u1−l
n

n∑

α=1

n−1∑

i,j=1

∂σl+2(uαβ)

∂uij

uiαujα

= 2(−1)l+1u1−l
n

n∑

α=1

[ ∑

i=j∈G

+
∑

i=j∈B

+
∑

i �=j∈G

+
∑

i �=j∈B

+2
∑

i∈G,j∈B

]

× ∂σl+2(uαβ)

∂uij

uiαujα

:= V1 + V2 + V3 + V4 + V5. (5.32)
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One can see that

V1 = 2(−1)l+1u1−l
n

n∑

α=1

∑

i=j∈G

∂σl+2(uαβ)

∂uij

uiαujα

= 2(−1)l+1u1−l
n

∑

i∈G

σl−1(G | i)(−un)
l−1

∑

j∈B

(−u2
nj

)(
u2

ii + u2
in

)

= −2u2
nσ1(G)σl(G)

∑

j∈B

u2
nj − 2

∑

i∈G,j∈B

σl−1(G | i)u2
niu

2
nj ,

V2 = 2(−1)l+1u1−l
n

n∑

α=1

∑

i=j∈B

∂σl+2(uαβ)

∂uij

uiαujα

= 2(−1)l+1u1−l
n

∑

j∈B

u2
nj

[

σl(G)(−un)
lunn

+
∑

i∈G

σl−1(G | i)(−un)
l−1

(

−u2
ni +

∑

k∈B,k �=j

(−u2
kn

)
)]

= −2ununnσl(G)
∑

j∈B

u2
nj − 2

∑

i∈G

σl−1(G | i)u2
ni

∑

j∈B

u2
nj

− 2
∑

i∈G

σl−1(G | i)
∑

j,k∈B,j �=k

u2
nju

2
nk,

V3 = 2(−1)l+1u1−l
n

n∑

α=1

∑

i,j∈G,i �=j

∂σl+2(uαβ)

∂uij

uiαujα = 0,

V4 = 2(−1)l+1u1−l
n

n∑

α=1

∑

i,j∈B,i �=j

∂σl+2(uαβ)

∂uij

uiαujα

= 2
∑

k∈G

σl−1(G|k)
∑

i,j∈B,i �=j

u2
ni

u2
nj ,

and

V5 = 4(−1)l+1u1−l
n

n∑

α=1

∑

i∈G,j∈B

∂σl+2(uαβ)

∂uij

uiαujα

= 4
∑

i∈G

σl−1(G | i)u2
ni

∑

j∈B

u2
nj .
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So we get

2(−1)l+1u1−l
n

n∑

α=1

n−1∑

i,j=1

∂σl+2(uαβ)

∂uij

uiαujα

= −2ununnσl(G)
∑

j∈B

u2
nj − 2u2

nσ1(G)σl(G)
∑

j∈B

u2
nj . (5.33)

Combining (5.29)–(5.33), it follows that

u1−l
n V = 2f unσl(G)

∑

j∈B

u2
nj . (5.34)

By (5.11), (5.25), (5.27), (5.28), and (5.34), it follows that

u1−l
n �ϕ ≤ −unσl(G)

∑

j∈B

[
u2

n(fjj − 2εf ) − 6ununjfj + 6f u2
nj

]
. (5.35)

So if f (x) ≥ 0 satisfies the following condition

3fifj + 4εf 2δij ≤ 2ffij ,

then we get

�ϕ ≤ 0. (5.36)

So we finish the proof of Theorem 5.1. �

Proof of the strict convexity in Theorem 1.1 In Sect. 4, we constructed a family of
annuli Vt = V2(t) \ V1(t),0 ≤ t ≤ 1, bounded by two convex domains with

V0 = B2 \ B1, V1 = Ω0 \ Ω1

where B1,B2 are convex geodesic balls with the same center and supposing that
B2 \ B1 contain Ω2 \ Ω1. We assume the harmonic function ut satisfies the homo-
geneous Dirichlet boundary conditions in the convex ring Vt (see (1.1)). In Sect. 3,
we know |∇ut | �= 0 in Vt , and by the standard elliptic theory we have the uniform
estimates on ‖ut‖C3(Vt )

with the bound only depending on the geometry of Ω0,Ω1.
Since at t = 0, the standard solution of (1.1) on V0 = B2 \ B1 is radial solution, and
its level sets is a sphere. If 0 < to < 1 is the first time that the level sets of uto become
convex but not strict convex. By the constant rank Theorem 5.1, we know the second
fundamental form of the level sets of uto is full rank. So we can extend to t = 1, and
know the level sets of the solution of (1.1) is strictly convex. This finish the strict
convexity proof. �
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6 Gaussian Curvature Estimates for the Convex Level Sets of Harmonic
Functions

In this section, we prove the Gaussian curvature estimates of the strictly convex level
set of harmonic functions on the space form. We follow the proof in Ma–Ou–Zhang
[18].

Theorem 6.1 Let (Mn,g) be a space form of sectional curvature Ksec = 1, or −1,
and Ω be a bounded smooth domain in Mn, n ≥ 2. Let u satisfy

�u = 0 in Ω (6.1)

We assume |∇u| �= 0 in Ω and the level sets of u are smooth strictly convex hypersur-
faces with respect to ∇u

|∇u| . Let K be the Gaussian curvature of the level sets; we have
the following statement.

Case 1: for (Mn,g) = (Sn, gstandard) with Ksec = 1,

(1a) for n = 2,3, we have K attains its minimum on the boundary;
(1b) for n ≥ 4, we have |∇u|3−nK attains its minimum on the boundary.

Case 2: for (Mn,g) = (Hn,gstandard) with Ksec = −1,

(2a) for n = 2, we have |∇u|K attains its minimum on the boundary;
(2b) for n = 3, we have K attains its minimum on the boundary;
(2c) for n ≥ 4, we have |∇u|−1K attains its minimum on the boundary.

Proof of Theorem 6.1 Since the level sets of u are strictly convex with respect to the
normal ∇u

|∇u| . We set ψ(x) = |∇u|2αK(x), and let

ϕ = logψ(x) = logK(x) + α log |∇u|2,
where

K(x) = (−1)n−1
n∑

α,β=1

∂σn(uαβ)

∂uαβ

uαuβ |∇u|−(n+1)

is the Gaussian curvature of the level sets. For a suitable choice of θ , we will derive
the following elliptic inequality

�ϕ ≤ 0, mod∇ϕ in Ω, (6.2)

where we modular the terms of ∇ϕ with locally bounded coefficients. Then by the
standard strong minimum principle, we get the result immediately.

In order to prove (6.2) at an arbitrary point xo ∈ Ω , as in Caffarelli–Friedman [4],
we choose the normal coordinate at xo, by rotating the coordinate system suitably
by Txo , we may assume that ui(xo) = 0 , 1 ≤ i ≤ n − 1 and un(xo) = |∇u| > 0. And
we can further assume that the matrix (uij (xo)) (1 ≤ i, j ≤ n − 1) is diagonal and
uii(xo) < 0. We also choose Txo to vary smoothly in xo. If we can establish (6.2)
at xo under the above assumptions, then going back to the original coordinate we
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find that (6.2) remains valid with new locally bounded coefficients on ∇ϕ in (6.2),
depending smoothly on the independent variables. Thus it suffices to establish (6.2)
under the above assumptions.

In the following calculation we shall let

g = (−1)n−1
n∑

α,β=1

∂σn(uαβ)

∂uαβ

uαuβ, and θ = α − n + 1

2
(6.3)

then

ϕ = logψ(x) = logg + θ log |∇u|2. (6.4)

From now on, all the calculations will be done at the fixed point xo. In the follow-
ing, we shall prove the theorem in three steps.

Step 1: We first compute the formula (6.12).
In the following, all the calculations will be done at xo,

ϕν = θ
|∇u|2ν

|∇u|2 + gν

g
, (6.5)

and using (6.5)

�ϕ =
n∑

α=1

gαα

g
−

n∑

α=1

g2
α

g2
+ θ

�|∇u|2
|∇u|2 − θ

n∑

α=1

(|∇u|2α)2

|∇u|4

=
n∑

α=1

gαα

g
+ θ

�|∇u|2
|∇u|2 − (

θ + θ2)
n∑

α=1

(|∇u|2α)2

|∇u|4

−
n∑

α=1

ϕ2
α + 2θ

n∑

α=1

|∇u|2α

|∇u|2 ϕα. (6.6)

Let λi = −uii

un
, σl := σl(λ), and using (6.1), we have

n∑

α=1

u2
nα = u2

nn +
n−1∑

j=1

u2
nj = u2

nσ
2
1 +

n−1∑

j=1

u2
nj

n∑

α,β=1

u2
αβ = u2

nn + 2
n−1∑

j=1

u2
nj +

n−1∑

j=1

u2
jj = u2

nσ
2
1 + u2

n

n−1∑

j=1

λ2
j + 2

n−1∑

j=1

u2
nj .

(6.7)

Since |∇u|2α = 2ununα , it follows that

−(
θ + θ2)

n∑

α=1

(|∇u|2α)2

|∇u|4 = −4
(
θ + θ2)

n∑

α=1

u2
nα

u2
n

= −4
(
θ + θ2)σ 2

1 − 4
(
θ + θ2)

n−1∑

j=1

u2
nj

u2
n

. (6.8)
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Using the commutator formulas, (6.1), (6.7), and Rαβ = (n − 1)εδαβ , we have

n∑

α=1

unαα =
n∑

α=1

uααn +
n∑

α=1

Rnαuα

= (n − 1)εun, (6.9)

and

�|∇u|2 = 2
n∑

α,β=1

u2
αβ + 2

n∑

α,β=1

uαuαββ

= 2un

n∑

α=1

unαα + 2
n∑

α,β=1

u2
αβ

= 2(n − 1)εu2
n + 2u2

nσ
2
1 + 2u2

n

n−1∑

j=1

λ2
j + 4

n−1∑

j=1

u2
nj . (6.10)

It follows that

θ
�|∇u|2
|∇u|2 = 2θ(n − 1)ε + 2θσ 2

1 + 2θ

n−1∑

j=1

λ2
j + 4θu−2

n

n−1∑

j=1

u2
nj . (6.11)

And we have
n∑

α=1

|∇u|2α

|∇u|2 ϕα = 2σ1ϕn + 2u−1
n

n−1∑

j=1

unjϕj

By (6.6)–(6.8) and (6.11), we obtain

�ϕ =
n∑

α=1

gαα

g
+ 2θ(n − 1)ε − (

2θ + 4θ2)σ 2
1 − 4θ2u−2

n

n−1∑

j=1

u2
nj + 2θ

n−1∑

j=1

λ2
j

−
n∑

α=1

ϕ2
α + 4θσ1ϕn + 4θu−1

n

n−1∑

j=1

unjϕj . (6.12)

Step 2: In this step, using a calculation similar to the one in Sect. 5, we compute∑n
α=1

gαα

g
. We get the formula in (6.37).

First, at xo, g = un+1
n K . Similar to (5.9), we have

gν = (−1)n−1
n∑

α,β,γ,δ=1

∂2σn(uαβ)

∂uαβ∂uγ δ

uαuβuγ δν

+ (−1)n−1
n−1∑

α,β=1

∂σn(uαβ)

∂uαβ

(uανuβ + uαuβν)
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= −un
n

n−1∑

i=1

σn−2(λ | i)uiiν + 2un
nKunν

+ 2un−1
n

n−1∑

i=1

σn−2(λ | i)uniuiν, (6.13)

then

gα

g
= −u−1

n

n−1∑

i=1

uiiα

λi

+ 2
unα

un

+ 2u−2
n

n−1∑

i=1

uniuiα

λi

. (6.14)

From (6.5) and (6.14), we get

n−1∑

i=1

uiiα

λi

= 2(1 + θ)unα + 2u−1
n

n−1∑

i=1

uniuiα

λi

− unϕα, (6.15)

so we have the following formulas

n−1∑

i=1

uiin

unλi

= 2(1 + θ)σ1 + 2u−2
n

n−1∑

j=1

u2
nj

λj

− ϕn,

n−1∑

i=1

uiij

unλi

= 2θu−1
n unj − ϕj for 1 ≤ j ≤ n − 1.

(6.16)

Now we calculate that

�g = (−1)n−1
n∑

α,β,γ,δ,ζ,η,ν=1

∂3σn(uαβ)

∂uαβ∂uγ δ∂uζη

uγ δνuζηνuαuβ

+ 4(−1)n−1
n∑

α,β,γ,δ,ν=1

∂2σn(uαβ)

∂uαβ∂uγ δ

uγ δνuανuβ

+ (−1)n−1
n∑

α,β,γ,δ,ν=1

∂2σn(uαβ)

∂uαβ∂uγ δ

uγ δννuαuβ

+ 2(−1)n−1
n∑

α,β,γ,δ,ν=1

∂σn(uαβ)

∂uαβ

uαννuβ

+ 2(−1)n−1
n∑

α,β,ν=1

∂σn(uαβ)

∂uαβ

uανuβν

:= I + II + III + IV + V, (6.17)
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and we write

�g

g
= III + IV + V

g
+ I + II

g
. (6.18)

As in Sect. 5, we will compute the above terms step by step. First we deal with the
terms III + IV in (6.17). Using the commutator formulas (2.4)–(2.5), we have

n∑

α=1

uiαα = 0, (6.19)

and for 1 ≤ i ≤ n − 1,

n∑

α=1

uiiαα = −2Rininunn − 2
n−1∑

j,k=1

Rijikujk + 2
n∑

α=1

Riαuαi

= −2εunn + 2(n − 1)εuii − 2ε

n−1∑

j �=i,j=1

ujj

= 2nεuii . (6.20)

By (6.20), we have

III = (−1)n−1
n∑

α,β,γ,δ,ν=1

∂2σn(uαβ)

∂uαβ∂uγ δ

uγ δννuαuβ

= −un
n

n−1∑

i=1

σn−2(λ | i)
n∑

α=1

uiiαα

= −un
n

n−1∑

i=1

σn−2(λ | i)(2nεuii)

= 2n(n − 1)εun+1
n K. (6.21)

Similarly, by (6.9), (6.19), and (5.28), we have

IV = 2(−1)n−1
n∑

α,β,ν=1

∂σn(uαβ)

∂uαβ

uαννuβ

= 2(−1)n−1un

[
n∑

α=1

∂σn(uαβ)

∂unn

unαα +
n−1∑

i=1

n∑

α=1

∂σn(uαβ)

∂uin

uiαα

]

= 2(n − 1)εun+1
n K. (6.22)
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For V , as in (5.29) and using (6.1), we have

V = 2(−1)n−1 ∂σn(uαβ)

∂uαβ

uανuβν

= 2(−1)n−1

[
n∑

α=1

∂σn(uαβ)

∂unn

u2
nα + 2

n∑

α=1

n−1∑

j=1

∂σn(uαβ)

∂unj

unαujα

+
n∑

α=1

n−1∑

i,j=1

∂σn(uαβ)

∂uij

uiαujα

]

= 2(−1)n−1

[

σn−1(uij )

n∑

α=1

u2
nα − 2

n−1∑

j=1

n∑

α=1

σn−2(uii | j)unjunαujα

+
n∑

α=1

n−1∑

i=1

∂σn(uαβ)

∂uii

u2
iα +

n−1∑

i �=j,i,j=1

n∑

α=1

∂σn(uαβ)

∂uij

uiαujα

]

. (6.23)

Note that

n∑

α=1

n−1∑

i=1

∂σn(uαβ)

∂uii

u2
iα

= unn

n∑

α=1

n−1∑

i=1

σn−2(uii | i)u2
iα −

n∑

α=1

n−1∑

i �=j,i,j=1

σn−3(uii | i, j)u2
nju

2
iα

= unn

n−1∑

i=1

σn−2(uii | i)u2
in + unnσn−1(uij )

n−1∑

i=1

uii

−
n−1∑

i �=j,i,j=1

σn−3(uii | i, j)u2
nju

2
in −

n−1∑

j=1

σn−2(uii | j)u2
nj (−unn − ujj ),

and

n−1∑

i �=j,i,j=1

n∑

α=1

∂σn(uαβ)

∂uij

uiαujα =
n∑

α=1

n−1∑

i �=j,i,j=1

σn−3(uii | i, j)uniunjuiαujα

=
n−1∑

i �=j,i,j=1

σn−3(uii | i, j)u2
nju

2
in.
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By the equation, one can see that

V = 2(−1)n−1

[

σn−1(uij )

(

u2
nn +

n−1∑

j=1

u2
nj

)

− 2unn

n−1∑

j=1

σn−2(uii | j)u2
nj

− 2σn−1(uij )

n−1∑

j=1

u2
nj + unn

n−1∑

i=1

σn−2(uii | i)u2
in

+ unnσn−1(uij )

n−1∑

i=1

uii −
n−1∑

j=1

σn−2(uii | j)u2
nj (−unn − ujj )

]

= 0. (6.24)

Combining (6.21)–(6.22) and (6.24), it follows that

III + IV + V

g
= 2(n + 1)(n − 1)ε. (6.25)

Now we treat the term I in (6.17).

I := (−1)n−1
n∑

α,β,γ,δ,ζ,η,ν=1

∂3σn(uαβ)

∂uαβ∂uγ δ∂uζη

uγ δνuζηνuαuβ

= un−1
n

n∑

α=1

n−1∑

i �=j,i,j=1

σn−3(λ | i, j)uiiαujjα

− un−1
n

n∑

α=1

n−1∑

i �=j,i,j=1

σn−3(λ | i, j)u2
ijα, (6.26)

so we have

I

g
= u−2

n

n∑

α=1

n−1∑

i �=j,i,j=1

uiiαujjα

λiλj

− u−2
n

n∑

α=1

n−1∑

i �=j,i,j=1

u2
ijα

λiλj

= u−2
n

n∑

α=1

(
n−1∑

i=1

uiiα

λi

)2

− u−2
n

n∑

α=1

n−1∑

i,j=1

u2
ijα

λiλj

. (6.27)

Using (6.16), we get

u−2
n

(
n−1∑

i=1

uiin

λi

)2

=
[

2(1 + θ)σ1 + 2u−2
n

n−1∑

i=1

u2
ni

λi

− ϕn

]2

= 4(1 + θ)2σ 2
1 + 4

(
n−1∑

i=1

u2
ni

u2
nλi

)2

+ 8(1 + θ)σ1

n−1∑

i=1

u2
ni

u2
nλi

− 4ϕn

[

(1 + θ)σ1 + u−2
n

n−1∑

i=1

u2
ni

λi

]

+ ϕ2
n, (6.28)
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and

u−2
n

n−1∑

j=1

(
n−1∑

i=1

uiij

λi

)2

=
n−1∑

j=1

(
2θu−1

n unj − ϕj

)2

= 4θ2
n−1∑

j=1

u2
nj

u2
n

− 4θu−1
n

n−1∑

j=1

unjϕj +
n−1∑

j=1

ϕ2
j , (6.29)

so we have

u−2
n

n∑

α=1

(
n−1∑

i=1

uiiα

λi

)2

= u−2
n

(
n−1∑

i=1

uiin

λi

)2

+ u−2
n

n−1∑

j=1

(
n−1∑

i=1

uiij

λi

)2

= 4(1 + θ)2σ 2
1 + 4

(
n−1∑

i=1

u2
ni

u2
nλi

)2

+ 8(1 + θ)σ1

n−1∑

i=1

u2
ni

u2
nλi

+ 4θ2
n−1∑

j=1

u2
nj

u2
n

− 4ϕn

[

(1 + θ)σ1 + u−2
n

n−1∑

i=1

u2
ni

λi

]

− 4θu−1
n

n−1∑

j=1

unjϕj +
n∑

α=1

ϕ2
α. (6.30)

To compute the second term in (6.17), we still use (5.16)

II := 4(−1)n−1
n∑

α,β,γ,δ,ν=1

∂2σn(uαβ)

∂uαβ∂uγ δ

uγ δνuανuβ

= 4(−1)n−1un

n∑

γ,δ,α=1

[
∂2σn(uαβ)

∂unn∂uγ δ

uγ δαunα +
n−1∑

i=1

∂2σn(uαβ)

∂uin∂uγ δ

uγ δαuiα

]

= −4un−1
n

n∑

α=1

n−1∑

i=1

σn−2(λ | i)unαuiiα + 4un−1
n

n∑

α=1

n−1∑

i=1

σn−2(λ | i)uiαuniα

+ 4un−2
n

n∑

α=1

n−1∑

i �=j,i,j=1

σn−3(λ | i, j)uiαunjuijα

− 4un−2
n

n∑

α=1

n−1∑

i �=j,i,j=1

σn−3(λ | i, j)uiαuniujjα. (6.31)
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Using the equation and the commutator formula we have

unin = unni −
n∑

α=1

Rniαnuα = −
n−1∑

j=1

ujji , uiji = uiij ,

unii = uini = uiin −
n∑

α=1

Rinαiuα = uiin + εun.

(6.32)

Via a calculation similar to (5.24), it follows that

II

g
:= −4

σ1

un

n−1∑

i=1

uiin

λi

− 4

un

n−1∑

i=1

uiin + 4

u3
n

n−1∑

i �=j,i,j=1

uniunj

λiλj

uijn

− 4

u3
n

n−1∑

i �=j,i,j=1

u2
ni

λiλj

ujjn

− 4

u2
n

[
n−1∑

i,j=1

uiij

λi

unj +
n−1∑

i,j=1

ujji

λi

uni +
n−1∑

i �=j,i,j=1

uiij

λj

unj −
n−1∑

i �=j,i,j=1

ujji

λj

uni

]

− 4(n − 1)ε

:= II1 + II2 − 4(n − 1)ε. (6.33)

By (6.16),

II1 = −4

(

σ1 +
n−1∑

i=1

u2
ni

u2
nλi

)
n−1∑

j=1

ujjn

unλj

− 4

un

n−1∑

i=1

uiin + 4

u3
n

n−1∑

i,j=1

uniunj

λiλj

uijn

= −8(1 + θ)σ 2
1 − 8(2 + θ)σ1

n−1∑

i=1

u2
ni

u2
nλi

− 8

(
n−1∑

i=1

u2
ni

u2
nλi

)2

− 4

un

n−1∑

i=1

uiin + 4

u3
n

n−1∑

i,j=1

uniunj

λiλj

uijn

+ 4

(

σ1 +
n−1∑

i=1

u2
ni

u2
nλi

)

ϕn. (6.34)

And

II2 = −8
n−1∑

i,j=1

uniujji

u2
nλi

. (6.35)
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Then by (6.33)–(6.35), we get

II

g
= −8(1 + θ)σ 2

1 − 8(2 + θ)σ1

n−1∑

i=1

u2
ni

u2
nλi

− 8

(
n−1∑

i=1

u2
ni

u2
nλi

)2

− 4

un

n−1∑

i=1

uiin + 4

u3
n

n−1∑

i,j=1

uniunj

λiλj

uijn − 8
n−1∑

i,j=1

uniujji

u2
nλi

− 4(n − 1)ε + 4

(

σ1 +
n−1∑

i=1

u2
ni

u2
nλi

)

ϕn. (6.36)

Combining (6.18), (6.25), (6.27), (6.30), and (6.36), it follows that

�g

g
= −u−2

n

n−1∑

i,j=1

u2
ijn

λiλj

− 4

un

n−1∑

i=1

uiin + 4

u3
n

n−1∑

i,j=1

uniunj

λiλj

uijn

− u−2
n

n−1∑

i,j,k=1

u2
ijk

λiλj

− 8
n−1∑

i,j=1

uniujji

u2
nλi

+ 4
(
θ2 − 1

)
σ 2

1 − 4

(
n−1∑

i=1

u2
ni

u2
nλi

)2

+ 4u−2
n−1∑

i=1

(

θ2 − 2σ1

λi

)

u2
ni

+ 2(n − 1)2ε − 4θϕnσ1 − 4θu−1
n

n−1∑

j=1

unjϕj +
n∑

α=1

ϕ2
α. (6.37)

Step 3: In this step, using a calculation similar to the one in Ma–Ou–Zhang [18], we
complete the proof of this theorem. Combining (6.12) and (6.37), it follows that

u2
n�ϕ = −

n−1∑

i,j=1

u2
ijn

λiλj

− 4un

n−1∑

i=1

uiin + 4

un

n−1∑

i,j=1

uniunj

λiλj

uijn

−
n−1∑

i,j,k=1

u2
ijk

λiλj

− 8
n−1∑

i,j=1

uniujji

λi

− 4u−2
n

(
n−1∑

i=1

u2
ni

λi

)2

− 8σ1

n−1∑

j=1

u2
nj

λj

− (4 + 2θ)u2
nσ

2
1 + 2θu2

n

n−1∑

j=1

λ2
j + 2(n − 1)(θ + n − 1)εu2

n. (6.38)
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As in Sect. 5, in order to simplify the calculation, we introduce a new notation
aij,α ,

unuijα = −u2
naij,α + uniujα + unjuiα + unαuij . (6.39)

Then we know aij,k is a commutator for 1 ≤ i, j, k ≤ n − 1. Using (6.39) and (6.16),
we have

n−1∑

i=1

aii,n

λi

= −(n + 2θ + 1)σ1 + ϕn,

n−1∑

i=1

aii,j

λi

= −(n + 2θ + 1)u−1
n unj + ϕj for 1 ≤ j ≤ n − 1.

(6.40)

By (6.39) and (6.40), it follows that

−
n−1∑

i,j=1

u2
ijn

λiλj

− 4un

n−1∑

i=1

uiin + 4

un

n−1∑

i,j=1

uniunj

λiλj

uijn

= −u2
n

n−1∑

i,j=1

a2
ij,n

λiλj

+ 4u2
n

n−1∑

i=1

aii,n

+ (n + 4θ + 7)u2
nσ

2
1 − 8

n−1∑

j=1

u2
nj + 4u−2

n

(
n−1∑

j=1

u2
nj

λj

)2

− 2u2
nσ1ϕn, (6.41)

and

−
n−1∑

i,j,k=1

u2
ijk

λiλj

− 8
n−1∑

i,j=1

uniujji

λi

= −u2
n

n−1∑

i,j,k=1

a2
ij,k

λiλj

+ 4un

n−1∑

i,j=1

uniajj,i

λi

+ 6σ1

n−1∑

i=1

u2
nj

λj

+ (n + 4θ + 13)

n−1∑

j=1

u2
nj − 2un

n−1∑

j=1

unjϕj . (6.42)

Combining (6.38) and (6.41)–(6.42), we have

u2
n�ϕ = −u2

n

n−1∑

i,j=1

a2
ij,n

λiλj

+ 4u2
n

n−1∑

i=1

aii,n − u2
n

n−1∑

i,j,k=1

a2
ij,k

λiλj

+ 4un

n−1∑

i,j=1

uniajj,i

λi

+ (n + 4θ + 5)

n−1∑

j=1

u2
nj − 2σ1

n−1∑

i=1

u2
nj

λj

+ (n + 2θ + 3)u2
nσ

2
1 + 2θu2

n

n−1∑

j=1

λ2
j

+ 2(n − 1)(θ + n − 1)u2
nε − 2u2

nσ1ϕn − 2un

n−1∑

j=1

unjϕj . (6.43)
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Recall that θ = α − n+1
2 , then (6.40) becomes

n−1∑

i=1

aii,α

λi

= −2αu−1
n unα + ϕα, (6.44)

and if we let

Q : = −u2
n

n−1∑

i,j=1

a2
ij,n

λiλj

+ 4u2
n

n−1∑

i=1

aii,n − u2
n

n−1∑

i,j,k=1

a2
ij,k

λiλj

+ 4un

n−1∑

i,j=1

uniajj,i

λi

+ (4α + 3 − n)

n−1∑

j=1

u2
nj − 2σ1

n−1∑

i=1

u2
nj

λj

+ (2α + 2)u2
nσ

2
1

+ (2α − n − 1)u2
n

n−1∑

j=1

λ2
j − 2u2

nσ1ϕn − 2un

n−1∑

j=1

unjϕj , (6.45)

then we have

u2
n�ϕ = Q + 2(n − 1)

(

α − 3 − n

2

)

u2
nε. (6.46)

Notice that (6.44) and (6.45) are the same as (3.6) and (3.47) in Ma–Ou–Zhang
[18]. By the analysis in [18] we get the following sufficient condition on α to guar-
antee

Q ≤ 0

(where we have suppressed the terms containing the gradient of ϕ with locally
bounded coefficients), which turns out to be

n = 2, −∞ < α < +∞,

n ≥ 3, α ≥ n − 3

2
or α ≤ −1

2
.

(6.47)

Combining (6.46) and (6.47), we get the following sufficient condition on α to
guarantee

�ϕ ≤ 0 mod∇ϕ.

Case 1: for (Mn,g) = (Sn, go) with Ksec = 1, i.e., ε = 1, n = 2,3, we choose α = 0,
n ≥ 4, we choose α = −n−3

2 .

Case 2: for (Mn,g) = (Hn,go) with Ksec = −1, i.e., ε = −1, n = 2, we choose
α = 1

2 , n = 3, we choose α = 0, n ≥ 4, we choose α = − 1
2 .

By the maximum principle, we complete the proof of Theorem 6.1. �
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Now we give a discussion for the H 2 case. We shall get a new proof of Papadimi-
trakis’s [21] result, and using the following conclusion we can obtain an upper bound
for the curvature of level curves in terms of the boundary data.

Theorem 6.2 Let (H 2, g) be the hyperbolic space form of sectional curvature −1.
Let u satisfy (1.1) in a convex ring Ω = Ω0\Ω̄1 in H 2 and k be the curvature of the
level curves with respect to ∇u

|∇u| . For ϕ = |∇u|−1k, the following relation is satisfied:

�ϕ = 2ϕ. (6.48)

From (6.48), we have two conclusions.

(1) If k > 0 on ∂Ω , then k > 0 in Ω .
(2) ϕ attains its maximum on ∂Ω .

Proof From Sect. 2, we know the curvature of the level curve of u with respect to the
normal ∇u

|∇u| is

k = −
2∑

α,β=1

∂σ2(uαβ)

∂uαβ

uαuβ |∇u|−3.

We set ϕ(x) = |∇u|2αk(x),

g = −
2∑

α,β=1

∂σ2(uαβ)

∂uαβ

uαuβ

and θ = α − 3
2 . Then we can rewrite ϕ(x) = |∇u|2αk(x) as

ϕ(x) = |∇u|2θg.

In order to prove (6.48) at an arbitrary point xo ∈ Ω , as in the proof of Theo-
rem 6.1, we choose the normal coordinate at xo, by rotating the coordinate system
suitably by Txo , we may assume that u1(xo) = 0 and u2(xo) = |∇u| > 0. We also
choose Txo to vary smoothly with xo. We only need to establish (6.48) at xo under the
above assumptions.

In the following, all the calculations will be done at xo,

ϕα = (|∇u|2θ
)

α
g + |∇u|2θgα, (6.49)

and

�ϕ = g�|∇u|2θ + 2
2∑

α=1

gα

(|∇u|2θ
)

α
+ |∇u|2θ�g. (6.50)

Similar to the calculation in Theorem 6.1, at xo, g = −u2
2u11, and we have

�|∇u|2θ = −2θu2θ
2 + 4θ2u2θ−2

2

(
u2

11 + u2
12

)
. (6.51)
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Using (6.49), we get

2
2∑

α=1

gα

(|∇u|2θ
)

α
= 8θ2u2θ

2 u11
(
u2

11 + u2
12

) + 4θu−1
2

2∑

α=1

u2αϕα. (6.52)

It follows that

g�|∇u|2θ + 2
2∑

α=1

gα

(|∇u|2θ
)

α

= 4θ2u2θ
2 u11

(
u2

11 + u2
12

)
,+2θu2θ+2

2 u11 + 4θu−1
2

2∑

α=1

u2αϕα. (6.53)

Note that

g = −u11u2u2 − u22u1u1 + 2u12u1u2,

so we get

gα = −u2
2u11α − 2u2u11u2α + 2u2u12u1α. (6.54)

By (6.49), one can see that

gα = u−2θ
2 ϕα + 2θu2u11u2α. (6.55)

So we have

u2u111 = −2θu11u12 − u−2θ−1
2 ϕ1,

u2u112 = 2u2
12 + 2(1 + θ)u2

11 − u−2θ−1
2 ϕ2.

(6.56)

We now compute that

�g = −
2∑

α,β,γ,δ,ν=1

∂2σ2(uαβ)

∂uαβ∂uγ δ

uγ δννuαuβ − 2
n∑

α,β,ν=1

∂σ2(uαβ)

∂uαβ

uαννuβ

− 2
n∑

α,β,ν=1

∂σ2(uαβ)

∂uαβ

uανuβν − 4
2∑

α,β,γ,δ,ν=1

∂2σ2(uαβ)

∂uαβ∂uγ δ

uγ δνuανuβ

:= I + II + III + IV. (6.57)

One can check that

I = 4u2
2u11, II = 2u2

2u11, III = 0,

IV = −4u2
2u11 − 8u12(u2u111) + 8u11(u2u112).



Level Sets of Harmonic Functions on Space Forms 373

It follows that

�g = 2u2
2u11 − 8u12(u2u111) + 8u11(u2u112). (6.58)

Using (6.56), we obtain

�g = 2u2
2u11 + 16(1 + θ)u11

(
u2

11 + u2
12

)

+ 8u−2θ−1
2 u12ϕ1 − 8u−2θ−1

2 u11ϕ2. (6.59)

Combining (6.50), (6.53), and (6.59), it follows that

u−2θ
2 �ϕ = 2(1 + θ)u2

2u11 + 4(2 + θ)2u11
(
u2

11 + u2
12

)

+ (8 + 4θ)u−2θ−1
2 u12ϕ1 − (8 + 4θ)u−2θ−1

2 u11ϕ2. (6.60)

Let θ = −2, i.e., α = − 1
2 . In this case ϕ = |∇u|−1k = −u−2

2 u11 satisfies

�ϕ = 2ϕ. (6.61)

�

We use the observation on the monotonicity of the norm of the gradient along the
gradient direction, which also appeared in [15, 17, 18]. It follows that |∇u| attains its
minimum on ∂Ω0, and attains its maximum on ∂Ω1.

Now we combine Theorem 6.1, Theorem 6.2, and the strict convexity of the level
sets to obtain the estimates in the second part of Theorem 1.1.

Proof of estimates in Theorem 1.1 If u is the smooth solution of (1.1), then from the
first part we know the level sets of u are strictly convex with respect to the normal
∇u
|∇u| . Since |∇u| attains its minimum on ∂Ω0, and attains its maximum on ∂Ω1, from

Theorems 6.1 and 6.2 we can get the estimates in Theorem 1.1. �
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