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In this paper, we study nonparametric surfaces over strictly 
convex bounded domains in Rn, which are evolving by the 
mean curvature flow with Neumann boundary value. We prove 
that solutions converge to the ones moving only by transla-
tion. And we will prove the existence and uniqueness of the 
constant mean curvature equation with Neumann boundary 
value on strictly convex bounded domains.
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = (δij −

uiuj

1 + |Du|2 )uij in Ω × (0,∞),

uν = ϕ(x) on ∂Ω × (0,∞),

u(x, 0) = u0(x) on Ω̄,

(1.1)

where Ω is a strictly convex bounded domain in Rn with smooth boundary for n ≥ 2 and 
ν is an inward unit normal vector to ∂Ω, Du = ( ∂u

∂x1
, ∂u∂x2

, · · · , ∂u
∂xn

) denotes the spatial 
gradient of u; u0(x) and ϕ(x) are smooth functions satisfying

u0,ν = ϕ(x) on ∂Ω.

Then we consider the existence of constant mean curvature surface with prescribed Neu-
mann boundary value on a strictly convex bounded domain Ω in Rn,

⎧⎪⎪⎨⎪⎪⎩
div

(
Du√

1 + |Du|2

)
= λ in Ω ,

uν = ϕ (x) on ∂Ω,

(1.2)

where ϕ(x) and ν are the same as stated above.
In [2,9,10], Brakke and Huisken studied the parametric surfaces moving by their mean 

curvature. Their work suggested that it is geometrically more natural to consider the 
surfaces whose speed in direction of their unit normal is equal to the mean curvature, 
since in this case the mean curvature flow is the negative gradient flow of the area 
functional of the hypersurface, and some authors investigated the other nonparametric 
evolutionary problem (see for example [6]) with Dirichlet boundary value.

In [11], Huisken studied the equation (1.1) with ϕ(x) = 0 and proved that the so-
lutions asymptotically converge to constant functions. In his paper, he used integral 
methods to prove a time-independent gradient bound by Sobolev inequality and itera-
tion method. When n = 2, Altschuler and Wu [1] considered the mean curvature flow 
with the prescribed contact angle boundary value

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = (δij −

uiuj

1 + |Du|2 )uij in Ω × (0,∞),

uν = ϕ(x)
√

1 + |Du|2 on ∂Ω × (0,∞),

u(x, 0) = u0(x) on Ω.

(1.3)

They proved that if Ω is strictly convex bounded planar domain and |Dϕ| < min∂Ω k, 
where k is the curvature of ∂Ω, the solution of mean curvature flow of (1.3) converges 
to a surface which moves at a constant speed up to a translation. Up to now it is still 
open to generalize the Altschuler and Wu’s [1] result to high-dimension case.
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For n ≥ 2, Guan [8] studied the more generalized mean curvature type evolution 
equation with the prescribed contact angle problem as below⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut = (δij −
uiuj

1 + |Du|2 )uij + φ(x, u,Du) in Ω × (0,∞),

< γ, ν >= ϕ(x) on ∂Ω × (0,∞),

u(x, 0) = u0(x) on Ω,

(1.4)

where γ denotes the downward unit normal to graph u(·, t). He considered the asymp-
totic behavior of the solutions as t → ∞ for two special cases: (i) φ(x, u, Du) =
−ku

√
1 + |Du|2 for k > 0, (ii) φ(x, u, Du) = n/u for u > 0. Guan proved that in 

each case the solution asymptotically approaches the solution to the corresponding sta-
tionary equation. As a consequence of the second case, he obtained some existence results 
for minimal surfaces in hyperbolic space Hn+1 with a prescribed contact angle condition. 
In the work of [8], φ(x, u, Du) must satisfy the crucial monotonicity requirement with 
respect to u.

The existence and the asymptotic behavior of the solution to equation (1.3) or (1.4)
are related to the mean curvature type equation with prescribed contact angle condi-
tion, which have been well studied in the last 40 years (for example see the book by 
Finn [4]). Recently, Ma and Xu studied the mean curvature equation with the Neu-
mann boundary value in [16], and Xu obtained the corresponding existence theorem for 
the mean curvature flow of graphs with the Neumann boundary value in [19]. Their 
work inspires us to consider what the asymptotic behavior of the solution to equa-
tion (1.1) is.

In this paper, we show that up to a translation the solutions to equation (1.1) converge 
to solutions which move at a constant speed of translation by adopting [1]’s method. And 
we will also discuss the existence and uniqueness of the constant mean curvature equation 
with Neumann boundary value on strictly convex bounded domain in Theorem 1.3.

At first we have the following convergence theorem.

Theorem 1.1. Let Ω be a strictly convex bounded domain in Rn with smooth boundary, 
n ≥ 2. For ϕ(x) ∈ C∞(Ω), the unique smooth solution u(x, t) to equation (1.1) converges 
to λt + w, it means that

lim
t→∞

‖u(x, t) − (λt + w(x))‖C0(Ω) = 0,

where (λ, w) is a suitable solution to (1.5).

For completeness, we state the following existence theorem for (1.5).

Theorem 1.2. Let Ω be a strictly convex bounded domain in Rn with C3 boundary, n ≥ 2. 
For ϕ(x) ∈ C3(Ω), there exists a unique λ ∈ R and w ∈ C2,α(Ω) solving
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⎧⎨⎩ (δij −
uiuj

1 + |Du|2 )uij = λ in Ω,

uν = ϕ(x) on ∂Ω,

(1.5)

where ν is an inward unit normal vector to ∂Ω and 0 < α < 1.
Moreover, the solution w is unique up to a constant. Here λ is called the additive 

eigenvalue.

Remark 1.1. By

div( Dw√
1 + |Dw|2

) = λ√
1 + |Dw|2

,

we integrate two sides in Ω and obtain

λ = −

∫
∂Ω

ϕ(x)√
1+|Dw|2 dσ∫

Ω(1 + |Dw|2)−1/2dx
.

Remark 1.2. When ϕ(x) = 0, Theorem 1.1 implies that u(x, t) converges to a constant 
as t → ∞. This is Huisken’s result in [11].

The study of the equation (1.5) is connected to the capillary surface without gravity, 
which is the constant mean curvature equation with prescribed contact angle boundary 
value condition ⎧⎪⎨⎪⎩

div( Du√
1 + |Du|2

) = λ in Ω,

uν = cos θ0
√

1 + |Du|2 on ∂Ω,

(1.6)

where ν is an inward unit normal vector to ∂Ω. The existence of solution to the equa-
tion (1.6) has been studied by many people, one can refer to the related papers [3], [7]
and the book [4]. Finn–Giusti [5] gave an example of nonexistence for the equation (1.6)
when the domain is non-convex. If Ω is a convex bounded domain in R2 with smooth 
boundary, θ0 is a constant and it satisfies the compatibility condition λ|Ω| = − cos θo|∂Ω|, 
Giusti [7] got an existence theorem when the curvature of the boundary of Ω, denoted 
by k, satisfies an additional condition 0 < k < |∂Ω|

|Ω| .
But for the Neumann boundary value condition, we can get the existence and unique-

ness of the constant mean curvature equation with Neumann boundary value on strictly 
convex bounded domain in Rn.

Theorem 1.3. Let Ω be a strictly convex bounded domain in Rn with smooth boundary, 
n ≥ 2. For any ϕ ∈ C∞(Ω), there exists a unique λ ∈ R and a function u ∈ C∞(Ω)
solving
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⎧⎪⎪⎨⎪⎪⎩
div

(
Du√

1 + |Du|2

)
= λ in Ω ,

uν = ϕ (x) on ∂Ω,

(1.7)

where ν is an inward unit normal vector to ∂Ω.
Moreover, the solution u is unique up to a constant.

Remark 1.3. By integrating two sides of equation (1.7), we obtain

λ = −

∫
∂Ω

ϕ(x)√
1+|Du|2 dσ

|Ω| .

Remark 1.4. In [16], the first author and Xu proved that⎧⎪⎨⎪⎩
div( Du√

1 + |Du|2
) = εu in Ω,

uν = ϕ(x) on ∂Ω,

(1.8)

has a unique solution for ε > 0. To get the existence, they need to get C0 estimate firstly 
and then obtain C1 estimate. But for the solution to (1.7), we obviously have no C0

estimate.

Our method to prove Theorem 1.2 and Theorem 1.3 is to give the uniform C1 estimate 
(independent of ε) for the solution to quasilinear equation{

H(x,Du,D2u) = εu in Ω,

uν = ϕ(x) on ∂Ω.
(1.9)

In order to obtain the uniform C1 estimate, we need the key condition that Ω is a strictly 
convex bounded domain in Rn with smooth boundary. By the maximum principle, we 
can give the C0 uniform estimate for εu. From the Schauder theory, we get uniform 
high order estimates. Let ε → 0, Theorem 1.2 and Theorem 1.3 are proved. This similar 
problem is called additive eigenvalue problem which appears in ergodic optimal control 
or the homogenization of Hamilton–Jacobi equations, and it has been studied by so many 
mathematicians, such as Lions [15], Ishii [12] etc. They applied the additive eigenvalue 
problem to study the large time behavior of the Cauchy problem of Hamilton–Jacobi 
equations. More introduction can be found in [12] and the references therein.

In this paper, in order to simplify the proof of the theorems, we write O(z) as an 
expression that there exists a constant C > 0 such that |O(z)| ≤ Cz.

We also note the following facts when Ω is a strictly convex smooth domain. There 
exists a smooth defining function h for Ω such that h < 0 in Ω and h = 0 on ∂Ω, 
{hij} ≥ k0{δij} for a constant k0 > 0 and supΩ |Dh| ≤ 1, hν = −1 and |Dh| = 1
on ∂Ω. Because of the strict convexity of the domain, we may assume that the curvature 
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matrix of ∂Ω satisfies {κij} ≥ k1{δij}1≤i,j≤n−1, where k1 > 0 is the minimum principal 
curvature of the boundary.

For the arrangement we proceed as below. In Section 2, we firstly give the uniform 
estimates for |ut| and |Du| for equation (1.1) in the strictly convex bounded domain and 
then prove Theorem 1.1 and Theorem 1.2. In Section 3, we give the uniform C1 estimate 
for the solution to equation (1.8) and prove Theorem 1.3.

2. The asymptotic behavior of mean curvature flow

We study the asymptotic behavior of the following nonparametric mean curvature 
flow with Neumann boundary value⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = (δij −
uiuj

1 + |Du|2 )uij in QT ,

uν = ϕ(x) on ∂Ω × [0, T ),

u(x, 0) = u0(x) on Ω,

(2.1)

where Ω is a bounded domain in Rn with ∂Ω ∈ C∞, QT = Ω × [0, T ). ϕ(x), u0(x) ∈
C∞(Ω) and u0,ν = ϕ(x) on ∂Ω.

The existence for short time and uniqueness of the solution to (2.1) follow from the 
classic theory in [13] and the implicit function theorem. We assume that smooth solutions 
exist on the time interval [0, T ). In the following, we will establish a time independent 
estimate of |ut|2, and a time independent a priori bound on the gradient of the solution 
when Ω is a strictly convex bounded domain in Rn. This will turn the quasilinear evo-
lution equation into a uniformly parabolic equation. The higher order regularity follows 
from the standard theory and then the infinite time existence of the smooth solution 
follows.

Firstly we use the maximum principle to establish an a priori bound on |ut|2,

Lemma 2.1. If u(x, t) is a smooth solution to (2.1), then supQT
|ut|2 = supΩ0

|ut|2, so 
there exists a constant C = C(u0) > 0 such that

sup
QT

|ut| ≤ C.

The proof of this lemma is almost the same as in [1], we omit it.
Now we get a time independent a priori bound on the gradient of the solution to (2.1). 

This is the crucial step in establishing the infinite time existence of solutions. In this step 
we will make strong use of the strict convexity of the domain.

Lemma 2.2. Let Ω be a smooth strictly convex bounded domain in Rn and n ≥ 2. 
Suppose that u(x, t) ∈ C3,2(QT ) is a solution to (2.1). Then there exists a constant 
C0 = C0(n, Ω, u0, ϕ(x)) > 0 such that

sup |Du| ≤ C0.

QT
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Along the similar approach in [1], [15] and [17], we get the time independent a priori 
bound on the gradient of the solution to equation (2.1).

Proof. To reach the conclusion of the lemma, we only need to prove that for 0 < T ′ < T

we can bound |Du| on QT ′ independent of T ′ and then take a limit argument.
Let

Φ(x) = log |Dw|2 + f(h),

where

w = u + ϕ(x)h, f = αh,

and α is a positive constant which will be determined later. For convenience we denote 
by G = −ϕ(x)h.

We firstly show the maximum of Φ(x) on Ω × [0, T ′] can not be achieved at the 
boundary ∂Ω × [0, T ′].

Let n denote the unit inner normal vector and 1 ≤ i ≤ n − 1 denote the tangential 
derivative. D denotes the derivative in Rn, � denotes the derivative on the boundary. We 
also denote �i(un) := uni for 1 ≤ i ≤ n − 1. By the boundary condition, wn = 0 on ∂Ω, 
which means that Dw|∂Ω is a tangent vector along ∂Ω. If Φ(x) attains its maximum at 
(x0, t0) ∈ ∂Ω × [0, T ′], then at (x0, t0), we have

0 ≥ Φn = |Dw|2n
|Dw|2 − α

=
n−1∑
k=1

2wkDknw

|Dw|2 − α

=
n−1∑
k=1

2wkwnk + 2
∑n−1

i=1 wkwiκik

|Dw|2 − α

=2
n−1∑
i,k=1

wkwiκik

|Dw|2 − α

≥2k1 − α.

(2.2)

By taking 0 < α < 2k1, the maximum of Φ can only be achieved in Ω × [0, T ′].
Now, only the following two cases are left to be discussed.
Case 1: Φ attains its maximum (x0, 0) ∈ Ω × {0}, then there exists a constant C =

C(u0) > 0 such that

max |v| ≤ C. (2.3)

QT ′
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Case 2: Φ(x) attains its maximum at (x0, t0) ∈ Ω × (0, T ′]. We have

Φt(x0, t0) = |Dw|2t
|Dw|2 , (2.4)

Φi(x0, t0) = |Dw|2i
|Dw|2 + αhi = 0 (2.5)

and

Φij(x0, t0) =
|Dw|2ij
|Dw|2 −

|Dw|2i |Dw|2j
|Dw|4 + αhij

=
|Dw|2ij
|Dw|2 + αhij − α2hihj .

(2.6)

Let aij = δij − uiuj

1+|Du|2 , then it follows at (x0, t0),

0 ≥
∑

1≤i,j≤n

aijΦij − Φt

=
∑

1≤i,j≤n

aij
|Dw|2ij
|Dw|2 − |Dw|2t

|Dw|2 + α
∑

1≤i,j≤n

aijhij − α2
∑

1≤i,j≤n

aijhihj

� I1 + I2,

(2.7)

where

I1 =
∑

1≤i,j≤n

aij
|Dw|2ij
|Dw|2 − |Dw|2t

|Dw|2

and

I2 =
∑

1≤i,j≤n

(αaijhij − α2aijhihj).

At (x0, t0), we choose coordinates such that |Du| = u1 and (uij)2≤i,j≤n is diagonal. 
Then

a11 = 1
v2 , aij = 0 for i 	= j and aii = 1 for i ≥ 2,

where we denote by v =
√

1 + |Du|2.
We always assume u1 is big enough such that u1, w1, |Dw| and v are equivalent 

with each other at (x0, t0). Otherwise, the Theorem is proved. It is also noticeable that 
|wi| ≤ C for i = 2, · · · , n. In our proof, C is denoted to be a positive constant which 
may be changed in different places but has nothing to do with T ′.

I2 ≥ α
[
(n− 1)k0 + k0

v2

]
− α2(h

2
1

v2 +
n∑

h2
i ). (2.8)
i=2
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We denote by J =
n∑

i,j=1
aij |Dw|2ij − |Dw|2t and compute this term carefully. By differ-

entiating the equation (2.1),

J =
n∑

i,j,k=1

aij(2wkwkij + 2wkiwkj) − 2
n∑

k=1

wkwtk

=2
n∑

k=1

wk[
n∑

i,j=1
aijwijk − wtk] + 2

n∑
i,k=1

aiiw
2
ki

=2
n∑

k=1

wk[
n∑

i,j=1
aij(ukij −Gkij) − utk] + 2

n∑
i,k=1

aiiw
2
ki

= − 2
n∑

i,j,k=1

aijwkGkij − 2
n∑

i,j,k=1

wk(aij)kuij + 2
n∑

i,k=1

aiiw
2
ki

�J1 + J2 + J3.

It is obvious that

J1 ≥ −Cv. (2.9)

Next we deal with J2.

J2 =
n∑

i,j,k=1

−2wk(δij −
uiuj

v2 )kuij

=4
n∑

i,j,k=1

wk
uikujuij

v2 − 4
n∑

i,j,k,l=1

wk
uiujuijululk

v4

=4
n∑

i,k=1

wk
uiku1ui1

v2 − 4
n∑

k=1

wk
u11u

3
1u1k

v4

=4w1u1u
2
11

v4 + 4
n∑

i=2

w1u1u
2
1i

v2 + 4
n∑

i=2

wiu1u1iuii

v2 + 4
n∑

i=2

wiu1iu11u1

v4

=J21 + J22 + J23 + J24.

By using (2.5), for 2 ≤ i ≤ n, we have

u1i −G1i =
−αhi|Dw|2 − 2wiuii + 2

∑n
k=2 wkGik

2w1
(2.10)

and

n∑ 2wi(u1i −G1i)
|Dw|2 = − αh1 −

2w1(u11 −G11)
|Dw|2 . (2.11)
i=2
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By (2.10), for 2 ≤ i ≤ n,

u1i = O(1) − 1
2αhiv −

wiuii

w1
. (2.12)

By (2.10),

n∑
i=2

2wi(u1i −Gi1)
|Dw|2 =

n∑
i=2

2wi

|Dw|2
(−αhi|Dw|2 − 2wiuii + 2

∑n
k=2 wkGik

2w1

)
=O( |αhi|

v
) −

n∑
i=2

2w2
i uii

|Dw|2w1
+

n∑
i,k=2

2wiwkGki

w1|Dw|2 .

(2.13)

By (2.11) and (2.13), we have

(2v + O(1))u11 = −αh1v
2 + O(v) +

n∑
i=2

O(1
v
)uii. (2.14)

So,

u11 = −1
2αh1v +

n∑
i=2

O( 1
v2 )uii + O(1). (2.15)

We deal with J21, J22, J23, J24 respectively.
It’s obvious that

J21 + J22 ≥ 0. (2.16)

For the term J23,

J23 =4
n∑

i=2

wiu1uii

v2 (O(1) − 1
2αhiv −

wiuii

w1
)

=
n∑

i=2
[O( 1

v2 )u2
ii + O(|αhi|)uii].

(2.17)

And

J24 =4
n∑

i=2

wiu1

v4 (O(1) − 1
2αhiv −

wiuii

w1
)(−1

2αh1v +
n∑

i=2
O( 1

v2 )uii + O(1))

=O(α
2|hih1|
v

) + O( 1
v2 ) +

n∑
i=2

[
O( |αh1|

v2 ) + O( |αhi|
v4 )

]
uii +

n∑
i=2

O( 1
v6 )u2

ii.

(2.18)
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By (2.16)–(2.18), it follows that

J2 ≥
n∑

i=2
[O( 1

v6 ) + O( 1
v2 )]u2

ii +
n∑

i=2

[
O( |αh1|

v2 ) + O( |αhi|
v4 ) + O(|αhi|)

]
uii

+ O(α
2|hih1|
v

) + O( 1
v2 ).

(2.19)

It is obvious that

J3 = 2
v2

n∑
k=1

(u1k −G1k)2 + 2
n∑

i=2

n∑
k=1

(uki −Gik)2

≥(1 + 1
v2 )

n∑
k=2

u2
1k +

n∑
i=2

u2
ii − C.

(2.20)

From (2.9), (2.19) and (2.20), we write all the terms containing uii in J as below and 
by the fact that ax2 + bx ≥ − b2

4a for a > 0 we have

n∑
i=2

[1 + O( 1
v6 ) + O( 1

v2 )]u2
ii +

n∑
i=2

[
O( |αh1|

v2 ) + O( |αhi|
v4 ) + O(|αhi|)

]
uii

≥ −
n∑

i=2
O(|αhi|2).

(2.21)

Combining (2.9) and (2.19)–(2.21), we obtain

J ≥ −
n∑

i=2
O(|αhi|2) − Cv − C. (2.22)

So we have

I1 = J

|Dw|2 ≥ −
∑n

i=2 O(|αhi|2) + Cv + C

|Dw|2 . (2.23)

Finally, by (2.7), (2.8) and (2.23), at the maximum point (x0, t0), we obtain in this 
case

0 ≥
∑

1≤i,j≤n

aijΦij − Φt

≥ −
∑n

i=2 O(|αhi|2) − Cv − C

|Dw|2 + α
[
(n− 1)k0 + k0

v2

]
− α2(h

2
1

v2 +
n∑

i=2
h2
i )

≥ −C

v
+ α

[
(n− 1)k0 + k0

v2

]
− α2(h

2
1

v2 +
n∑

h2
i ).

(2.24)
i=2



X.-N. Ma et al. / Journal of Functional Analysis 274 (2018) 252–277 263
Taking 0 < α < min{(n − 1)k0, 2k1}, we can obtain

v(x0, t0) ≤ C, (2.25)

where C is independent of T ′.
Combining the two cases above, we get the uniform estimate for |Du| which is inde-

pendent of T ′ and then Lemma 2.2 is proved. �
We would like to point out now that the method above can also be used to obtain the 

uniform (w.r.t. ε > 0) gradient estimates for the elliptic version of the problem.

Lemma 2.3. Let Ω be a strictly convex bounded domain in Rn and ∂Ω ∈ C3, n ≥ 2. 
Suppose that ε > 0 and ϕ is a function defined on Ω. Assume that there exists a positive 
constant L > 0 such that

|ϕ|C3(Ω) ≤ L. (2.26)

Let u ∈ C2(Ω) 
⋂

C3(Ω) be a solution to the following equation

⎧⎨⎩ (δij −
uiuj

1 + |∇u|2 )uij = εu in Ω,

uν = ϕ(x) on ∂Ω,

(2.27)

then there exists a constant C0 = C0(n, Ω, L) > 0 such that

sup
Ω

|Du| ≤ C0,

here C0 is independent of ε.

For completeness, we sketch the proof.

Proof. Let Φ(x) = log |Dw|2 +αh, where w = u +ϕ(x)h, and α will be determined later. 
We denote by G = −ϕ(x)h.

If we choose 0 < α < 2k1, almost the same procedure as in (2.2) then shows that the 
maximum of Φ can only be achieved in the interior of Ω.

Then we assume Φ(x) attains its maximum at x0 ∈ Ω, then we have at this point 
that

Φi(x0) = |Dw|2i
|Dw|2 + αhi = 0 (2.28)

and
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0 ≥ Φij(x0) =
|Dw|2ij
|Dw|2 −

|Dw|2i |Dw|2j
|Dw|4 + αhij

=
|Dw|2ij
|Dw|2 + αhij − α2hihj .

(2.29)

It follows that

0 ≥
∑

1≤i,j≤n

aijΦij =
∑

1≤i,j≤n

aij
|Dw|2ij
|Dw|2 + α

∑
1≤i,j≤n

aijhij − α2
∑

1≤i,j≤n

aijhihj � I1 + I2,

(2.30)

where

I1 =
∑

1≤i,j≤n

aij
|Dw|2ij
|Dw|2

and

I2 =
∑

1≤i,j≤n

αaijhij − α2aijhihj .

At x0, we choose a coordinate such that |Du| = u1 and (uij)2≤i,j≤n is diagonal.
For the term I2, we have

I2 ≥ α
[
(n− 1)k0 + k0

v2

]
− α2(h

2
1

v2 +
n∑

i=2
h2
i ).

Denote by J =
n∑

i,j=1
aij |Dw|2ij . By differentiating the equation (2.27), we derive

J =
n∑

i,j,k=1

aij(2wkwkij + 2wkiwkj)

=2
n∑

i,j,k=1

aijwk(ukij −Gkij) + 2
n∑

i,k=1

aiiw
2
ki

= − 2
n∑

i,j,k=1

aijwkGkij − 2
n∑

i,j,k=1

wk(aij)kuij + 2
n∑

i,k=1

aiiw
2
ki + 2

n∑
k=1

wk(εuk)

�J1 + J2 + J3 + J4.

Without loss of generality, we assume that u1 is big enough, then

J4 = 2ε(u1 −G1)u1 ≥ 0. (2.31)
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The other terms J1, J2, J3 can be treated by the same computation as (2.9)–(2.25). 
Taking 0 < α < min{(n − 1)k0, 2k1}, we can obtain

v(x0) ≤ C, (2.32)

where C is independent of ε. So the proof is completed. �
Using the above Lemma 2.3, we will firstly give the proof of Theorem 1.2 for the mean 

curvature type equation.

Proof of Theorem 1.2. For each fixed ε > 0, we firstly prove the existence of the solution 
to equation (2.27). Basing on the C1 estimate in Lemma 2.3, the only task remained is 
to derive a priori C0 estimate for the solution to (2.27) which is denoted to be uε(x).

Using the technique in [1], let g be a smooth function on Ω satisfying Dνg <

− supΩ |ϕ(x)|. Let ζ be a point where g − uε achieves its minimum. If ζ ∈ ∂Ω, then 
DT g(ζ) = DTuε(ζ) and Dνg(ζ) ≥ Dνuε(ζ) = ϕ(ζ), where T denotes the tangent vec-
tor to ∂Ω. It’s contradicted to g’s definition. So ζ ∈ Ω, then Dg(ζ) = Duε(ζ) and 
D2g(ζ) ≥ D2uε(ζ). Therefore, there exists a constant c = c(g) such that

c ≥ aij(Dg)gij(ζ) ≥ aij(Duε)(uε)ij(ζ) = εuε(ζ).

Therefore, combining with g(x) − uε(x) ≥ g(ζ) − uε(ζ) for x ∈ Ω, it implies that

εuε(x) ≤ εg(x) − εg(ζ) + c.

By the similar method, we can derive the lower bound for εuε(x). So supΩ |εuε| ≤ C and 
it then follows the existence result according to the standard theory of elliptic partial 
differential equations.

Secondly, we consider the limit behavior as ε → 0+.
Let wε = uε − 1

|Ω|
∫
Ω uεdx. We know wε satisfies

⎧⎪⎪⎨⎪⎪⎩
(δij −

(wε)i(wε)j
1 + |Dwε|2

)(wε)ij = εwε + ε
1
|Ω|

∫
Ω

uεdx in Ω,

(wε)ν = ϕ(x) on ∂Ω,

(2.33)

where ν is an inward unit normal vector to ∂Ω.
As

sup
Ω

|Dwε| = sup
Ω

|Duε| ≤ C,

and the fact that wε has at least one zero point, we have |wε| ≤ C. Also 1
|Ω|

∫
Ω(εuε)dx

≤ C. By Schauder theory, we know |wε|C2,α(Ω) ≤ C for some α ∈ (0, 1). Taking ε → 0, 
we have wε → w and εwε + ε 1 ∫

uεdx → λ, where (λ, w) solves the equation (1.5).
|Ω| Ω
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Next we come to prove the uniqueness. Assume there exist two pairs (λ1, u1) and 
(λ2, u2) solving (1.5). Without loss of generality, we may assume that λ1 ≤ λ2.

Let w = u1 − u2, it is obvious that w satisfies{
ãijwij + biwi = λ1 − λ2 ≤ 0 in Ω,

wν = 0 on ∂Ω,
(2.34)

where ãij = aij(Du1) and bi = (u2)kl
∫ 1
0 akl,pi

(ηDu1 + (1 − η)Du2)dη.
By Hopf’s lemma, w must be a constant. Consequently, we have λ1 = λ2. �
Now we study the asymptotic behavior of the solution to equation (1.1) on the strictly 

convex bounded domain in Rn. Remark that we have already obtained uniform estimates 
on ∂u∂t , |Du| as long as a smooth solution exists in Lemma 2.1 and Lemma 2.2. Applying 
the standard theory of quasilinear parabolic differential equations, we get the longtime 
existence of the solution to (1.1).

Let

w̃(x, t) = w + λt, (2.35)

where (λ, w) is the solution to equation (1.5). It’s easy to check that w̃ solves the parabolic 
problem ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut = (δij −
uiuj

1 + |Du|2 )uij in Ω × (0,∞),

uν = ϕ(x) on ∂Ω × (0,∞),

u(x, 0) = w(x) on Ω.

(2.36)

As in [1] we have

Corollary 2.4. For a solution u = u(x, t) to equation (1.1), there exists a positive con-
stant C, independent of t, such that

|u(x, t) − λt| ≤ C.

Proof. Let z(x, t) = u(x, t) − w̃(x, t) and it satisfies the following equation

⎧⎪⎪⎨⎪⎪⎩
zt = ãijzij + bizi in Ω × (0,∞),

zν = 0 on ∂Ω × (0,∞),

z(x, 0) = u0(x) − w(x) on Ω,

(2.37)

where ãij = aij(Du) and bi = (w̃)kl
∫ 1

akl,pi
(ηDu + (1 − η)Dw̃)dη.
0



X.-N. Ma et al. / Journal of Functional Analysis 274 (2018) 252–277 267
By the maximum principle, z achieves its maximum and minimum on Ω × {0}.
Therefore,

sup
Ω×(0,∞)

|u− λt| ≤ sup
Ω

|w| + sup
Ω

|u0 − w|. �
Using the technique in [1], the uniform estimates in Lemma 2.1, Lemma 2.2 and 

Schauder estimates, we get the following result.

Lemma 2.5. Let u1 and u2 be any two solutions to equation (1.1) with initial data u0,1
and u0,2 respectively. Let u = u1−u2, then u converges to a constant function as t → ∞. 
In particular, the limit of any solution to equation (1.1) is w̃ up to a constant.

Proof. As the proof of Corollary 2.4, u satisfies⎧⎪⎪⎨⎪⎪⎩
zt = ãijzij + bizi in Ω × (0,∞),

zν = 0 on ∂Ω × (0,∞),

z(x, 0) = u0,1(x) − u0,2(x) on Ω,

(2.38)

where ãij = aij(Du1) and bi = (u2)kl
∫ 1
0 akl,pi

(ηDu1 + (1 − η)Du2)dη.
Let osc(u)(t) = maxΩ u(x, t) − minΩ u(x, t). By the strong maximum principle and 

the Hopf lemma, osc(u)(t) is a strictly decreasing function unless u is a constant.
We claim that

lim
t→∞

osc(u)(t) = 0.

Otherwise, if lim
t→∞

osc(u)(t) = δ for some δ > 0, we will reach a contradiction. In fact, 
given a sequence tn → +∞, we define

u1,n(·, t) = u1(·, t + tn) − λtn

and

u2,n(·, t) = u2(·, t + tn) − λtn.

By Corollary 2.4, for i = 1, 2, we know |ui,n − λt| ≤ C, remark that the uniform (inde-
pendent of n) estimates on ∂ui,n

∂t , |Dui,n| have already been obtained in Lemma 2.1 and 
Lemma 2.2. According to Schauder theory ([14]), u1,n(·, t) and u2,n(·, t) are locally (in 
time) Ck uniformly bounded with respect to n for any k.

So, there exists a subsequence (still denoted by tn) such that u1,n(·, t) and u2,n(·, t)
converge locally uniformly in any Ck to u∗

1(·, t) and u∗
2(·, t) respectively. That is

u∗
1(·, t) = lim u1,n(·, t), u∗

2(·, t) = lim u2,n(·, t).

n→∞ n→∞
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Let u∗ = u∗
1 − u∗

2, then we deduce that

osc(u∗)(t) = osc(u∗
1 − u∗

2)

= lim
n→∞

osc(u1(x, t + tn) − λtn − u2(x, t + tn) + λtn)

= lim
n→∞

osc(u1(x, t + tn) − u2(x, t + tn))

= lim
n→∞

osc(u)(t + tn) = δ,

(2.39)

where the second equality holds because of the uniform convergence of u1,n(·, t) and 
u2,n(·, t).

But u∗ satisfies the uniform parabolic equation

{
zt = ãijzij + bizi in Ω × (−∞,∞),

zν = 0 on ∂Ω × (−∞,∞),
(2.40)

where ãij = aij(Du∗
1) and bi = (u∗

2)kl
∫ 1
0 akl,pi

(ηDu∗
1 + (1 − η)Du∗

2)dη.
By the strong maximum principle and Hopf’s lemma, we know u∗ is a constant. This 

makes contradiction to osc(u∗)(t) ≡ δ and the claim now is proved.
According to the claim, we have lim

t→∞
maxΩ u = lim

t→∞
minΩ u = c0 for some constant c0. 

It then follows that lim
t→∞

|u − c0| = 0 and we finish the proof of the Lemma. �
Now we use the Lemma 2.1, Lemma 2.2 and Lemma 2.5 to complete the proof of 

Theorem 1.1.

Proof of Theorem 1.1. From the Lemma 2.1 and Lemma 2.2 and the Schauder estimate, 
we have uniform estimates in any Ck-norm for the derivatives of u, and locally (in time) 
uniform bounds for the C0-norm. So we get longtime existence with uniform bounds 
on all higher derivatives of u. From Corollary 2.4 and Lemma 2.5, the limit of any 
solution to equation (1.1) is w̃ = w + λt up to a constant, where (λ, w) is the solution 
to equation (1.5) by Theorem 1.2. �
3. The additive eigenvalue problem for mean curvature equation

In this section, we will firstly give the uniform C1 estimate for equation (3.2) and 
then prove Theorem 1.3 by following the method of [18]. Note that the existence of the 
solution to equation (3.2) has been derived by [16] for fixed ε > 0.

Lemma 3.1. Let Ω be a strictly convex bounded domain in Rn and ∂Ω ∈ C3, n ≥ 2. ν is 
an inward unit normal vector to ∂Ω. Suppose that ε > 0 and ϕ ∈ C3(Ω). Assume that 
there exists a positive constant L such that
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|ϕ|C3(Ω) ≤ L. (3.1)

Let u be the solution to the following mean curvature type equation with Neumann bound-
ary value ⎧⎪⎨⎪⎩

div( Du√
1 + |Du|2

) = εu in Ω,

uν = ϕ(x) on ∂Ω,

(3.2)

then there exists a constant C = C(n, Ω, L) such that

sup
Ω

|Du| ≤ C.

Proof. Denoting by aij = (1 + |Du|2)δij − uiuj , f = εu and v =
√

1 + |Du|2, the 
equation (3.2) now can be expressed to be

n∑
i,j=1

aijuij = fv3.

Let

Φ = log |Dw|2 + αh,

where w = u + ϕ(x)h and α is a positive constant (will be chosen small) determined 
later. For convenience, we denote G = −ϕ(x)h in this section. During the proof of this 
theorem, A is denoted to be |Dw|2 for simplicity.

We assume x0 ∈ Ω is the maximum point of Φ.
We firstly declare that x0 can not be located on ∂Ω once 0 < α < 2k1. This is almost 

the same as the procedure in (2.2) and we skip it.
The remained case we set out to consider is x0 ∈ Ω. By rotating the coordinate 

around x0, we have u1 = |Du|, ui = 0 (i = 2, · · · , n) and {uij}2≤i,j≤n is diagonal. Thus 
at x0, we have

a11 = 1, aii = 1 + u2
1 for i = 2, · · · , n.

Remark that in the following all the calculations will be done at this fixed point. 
Without loss of generality, we may assume that |Du| is large enough, otherwise we have 
already reached the conclusion of this lemma.

At x0, we have

0 = Φi =
(|Dw|2)i

A
+ αhi (3.3)
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and

0 ≥
n∑

i,j=1
aijΦij =

∑n
i,j=1 aij(|Dw|2)ij

A
− α2

n∑
i,j=1

aijhihj + α
n∑

i,j=1
aijhij

�I + II + III.

(3.4)

From (3.3), we deduce that for i = 1, 2, · · · , n,

n∑
l=1

wluli =
n∑

l=1

wlwli +
n∑

l=1

wlGli = −αA

2 hi + O(v). (3.5)

Also it is remarkable that as v is large enough, u1, v, w1 and |Dw| are equivalent with 
each other.

It follows that for i > 1,

w1u1i + wiuii = O(v) − αA

2 hi,

u1i = O(1) − αA

2w1
hi −

wi

w1
uii,

(3.6)

and for i = 1,

w1u11 +
n∑

l=2

wlul1 = O(v) − αA

2 h1. (3.7)

Combining (3.6) with (3.7), we then have

u11 =O(1) − αA

2w1
h1 −

n∑
l=2

wl

w1

(
O(1) − αA

2w1
hl −

wl

w1
ull

)

=O(1) − αA

2w1
h1 +

n∑
l=2

(
wl

w1

)2

ull.

(3.8)

From the equation u11 + (1 + u1
2) 

n∑
l=2

ull = fv3 and (3.8), we derive

Δu = fv + u1
2

v2 u11 = fv + O(1) − u1
2αAh1

2v2w1
+

n∑
l=2

(
u1wl

vw1

)2

ull, (3.9)

and

fv = u11

v2 +
n∑

l=2

ull = O(v−2) − αAh1

2v2w1
+

n∑
l=2

[
1 +

(
wl

vw1

)2
]
ull. (3.10)
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In the following, we come to settle (3.4).
It’s easy to get

II = −α2

(
h1

2 + (1 + u1
2)

n∑
i=2

hi
2

)
, (3.11)

and

III =
∑

1≤i,j≤n

αaijhij ≥ αk0
(
n + (n− 1)u2

1
)
. (3.12)

We settle the term I in the rest.
Direct calculation shows that

n∑
i,j=1

aij(|Dw|2)ij =2
n∑

i,j,l=1

aijuijlwl − 2
n∑

i,j,l=1

aijGijlwl + 2
n∑

i,j,l=1

aijuilujl

− 4
n∑

i,j,l=1

aijuilGjl + 2
n∑

i,j,l=1

aijGilGjl

=I1 + I2 + I3 + I4 + I5.

(3.13)

In the following, we compute these terms one by one.
For the term I1, by differentiating the equation and the condition f ′ = ε > 0, we have

I1 =2
n∑

l=1

wl

⎛⎝(
fv3)

l
−

n∑
i,j=1

aij,luij

⎞⎠
=2

n∑
l=1

(
f ′wlulv

3 + 3fv
n∑

k=1

ukuklwl

)
− 4Δu

n∑
k,l=1

ukuklwl + 4
n∑

i,j,l=1

uiuijujlwl

≥ (6fv − 4Δu)u1

n∑
l=1

u1lwl + 4u1

n∑
j,l=1

u1jujlwl (3.14)

=I11 + I12.

From [1], as in the proof of the Theorem 1.2 in section 2, we conclude that |f | =
|εu| ≤ C(n, Ω), thus for the term I11, jointing with (3.5), (3.9) and (3.10), we derive

I11 =u1

[
6fv − 4

(
fv + O(1) − u1

2αAh1

2v2w1
+

n∑
l=2

(
u1wl

vw1

)2

ull

)](
−αA

2 h1 + O(v)
)

=u1

(
2fv + O(1) + 2αAu1

2

v2w1
h1 − 4

n∑(
u1wl

vw1

)2

ull

)(
−αA

2 h1 + O(v)
)

l=2
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= − fvu1αAh1 + O(v3) − α2A2u1
3

v2w1
h1

2 +
n∑

l=2

Ol(v)ull (3.15)

=
(
O(v−2) + αA

2v2w1
h1 −

n∑
l=2

[
1 +

(
wl

vw1

)2
]
ull

)
u1αAh1

+ O(v3) − α2A2u1
3

v2w1
h1

2 +
n∑

l=2

Ol(v)ull

=O(v3) − u1
3α2A2h1

2

v2w1
+

n∑
l=2

(Ol(v) − u1αAh1)ull,

and for the term I12, also by (3.5), (3.6) and (3.8), we obtain

I12 =4u1

n∑
j=1

u1j

(
−αA

2 hj + O(v)
)

=4u1

(
O(1) − αA

2w1
h1 +

n∑
l=2

(
wl

w1

)2

ull

)(
−αA

2 h1 + O(v)
)

+ 4u1

n∑
l=2

(
O(1) − αA

2w1
hl −

wl

w1
ull

)(
−αA

2 hl + O(v)
)

=O(v3) + u1α
2A2h1

2

w1
+

n∑
l=2

u1α
2A2hl

2

w1
+

n∑
l=2

Ol(v2)ull.

(3.16)

Thus by (3.15) and (3.16), we have

I1 ≥ O(v3) + u1α
2A2h1

2

v2w1
+

n∑
j=2

u1α
2A2hj

2

w1
+

n∑
l=2

(
O(v2) − u1αAh1

)
ull. (3.17)

It is easy to observe that

I2 = O(v3), I5 = O(v2). (3.18)

For the term I4 we get

I4 = − 4u11G11 − 4(1 + v2)
n∑

l=2

u1lG1l − 4v2
n∑

l=2

ullGll

≥−
(

2u11
2 + 2G11

2 + 1 + v2

2

n∑
l=2

u1l
2 + 8(1 + v2)

n∑
l=2

G1l
2

)

−
(
v2

2

n∑
l=2

ull
2 + 8v2

n∑
l=2

Gll
2

)
.

(3.19)
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Therefore we have by (3.6)

5∑
i=2

Ii ≥
3
2(1 + v2)

n∑
l=2

u1l
2 + 3v2

2

n∑
l=2

ull
2 + O(v3)

=3
2(1 + v2)

n∑
l=2

(
O(1) − αA

2w1
hl −

wl

w1
ull

)2

+ 3v2

2

n∑
l=2

ull
2 + O(v3)

=O(v3) + 3(1 + v2)
8

n∑
l=2

α2A2

w12 hl
2 +

n∑
l=2

(
3v2

2 + O(1)
)
ull

2 +
n∑

l=2

O(v2)ull.

(3.20)

Combining (3.17) and (3.20), we then have

5∑
i=1

Ii ≥O(v3) + u1α
2A2h1

2

v2w1
+

n∑
j=2

u1α
2A2hj

2

w1
+ 3(1 + v2)

8

n∑
l=2

α2A2

w12 hl
2

+
n∑

l=2

(
3v2

2 + O(1)
)
ull

2 +
n∑

l=2

(
O(v2) − u1αAh1

)
ull

≥O(v3) + u1α
2A2h1

2

v2w1
+

n∑
j=2

u1α
2A2hj

2

w1
+ 3(1 + v2)

8

n∑
l=2

α2A2

w12 hl
2

−
n∑

l=2

[
O(v2) − u1αAh1

]2
6v2 + O(1) ,

(3.21)

where in the last formula, for each term 2 ≤ l ≤ n, we once again use the fact that 
at2 + bt ≥ − b2

4a for a > 0.
So we have

I =
∑n

i,j=1 aij(|Dw|2)ij
A

=

5∑
i=1

Ii

A
.

(3.22)

Since v has been assumed to be large enough, we have

u1α
2Ah1

2

v2w1
+

n∑
j=2

u1α
2Ahj

2

w1
+ 3(1 + v2)

8

n∑
l=2

α2A

w12 hl
2 ≥ α2v2

n∑
l=2

hl
2, (3.23)

and

−
n∑

l=2

[
O(v2) − u1αAh1

]2
6v2A + AO(1) ≥ −n− 1

5 α2v2h2
1 + O(1). (3.24)
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By (3.21) and (3.22)–(3.24), it follows that

I ≥O(v) + α2v2
n∑

l=2

hl
2 − n− 1

5
α2v2h2

1. (3.25)

Then by (3.4), (3.11), (3.12) and (3.25), we obtain

0 ≥
n∑

i,j=1
aijΦij ≥O(v) + α2v2

n∑
i=2

hi
2 − n− 1

5 α2v2h2
1 + αk0

[
n + (n− 1)u1

2]
− α2

(
h1

2 + (1 + u1
2)

n∑
i=2

hi
2

)

≥O(v) + α(n− 1)k0v
2 − n− 1

5 α2v2h2
1.

(3.26)

Taking 0 < α < min{2k0, 2k1}, we know |Du| must be bounded at this point. And by 
an easy argument we then reach

max
x∈Ω

|Du| ≤ C

for a universal constant C depending upon the quantities described in the lemma. �
Remark 3.1. Comparing to the proof of Theorem 1.2, the main difference here is that 
when we deal with the third order derivatives, there exists a bad term which appears 
in I11.

Proof of Theorem 1.3. Firstly, we show that for any given ε > 0 and v ∈ R, there exists 
a unique solution to

(∗ε,v)

⎧⎪⎪⎨⎪⎪⎩
div

(
Du√

1 + |Du|2

)
= v + εu in Ω ,

uν = ϕ (x) on ∂Ω.

(3.27)

Actually, for fixed ε, if v = 0, as in the proof of the Theorem 1.2 via the technique by [1], 
we conclude the C0 estimate of the solution to (∗ε,0). Joining with Lemma 3.1, it follows 
the existence of the solution. The uniqueness is due to the Hopf’s lemma. Let

uε,v(x) = uε,0(x) − v

ε
,

then uε,v(x) solves the equation (∗ε,v). Uniqueness is apparent.
Obviously, uε,v(x) is strictly decreasing with respect to v. In the following we deduce 

that for any ε > 0, there exists a unique constant vε which is uniformly bounded such 
that |uε,vε |C1(Ω) is uniformly bounded.
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Let u0(x) ∈ C∞(Ω) be a fixed function with ∂u0
∂ν = ϕ (x).

If we choose

M = 1 + max
Ω

|u0| + max
Ω

∣∣∣∣div
(

Du0√
1 + |Du0|2

)∣∣∣∣ and u+
ε = u0 + M

ε
,

we then derive that

0 <M − div
(

Du0√
1 + |Du0|2

)
+ εu0

=
[
div

(
Duε,0√

1 + |Duε,0|2

)
− εuε,0

]
−
[
div

(
Du+

ε√
1 + |Du+

ε |2

)
− εu+

ε

]

=
n∑

α,β=1

Dα

[
mαβ(x)Dβ(uε,0 − u+

ε )
]
− ε(uε,0 − u+

ε )

(3.28)

where

mαβ(x) =
1∫

0

∂Aα

∂pβ

(
sDuε,0 + (1 − s)Du+

ε

)
ds

and

Aα( �p ) = pα√
1 + | �p |2

.

Therefore, by the boundary condition

∂(uε,0 − u+
ε )

∂ν
= 0

and strong maximal principle, we can get that u+
ε is a supersolution of (∗ε,0). Similarly, 

u−
ε = u0 − M

ε is a subsolution of (∗ε,0). It then yields that uε,M < u0 < uε,−M .
By strictly decreasing property of uε,v, for any ε ∈ (0, 1), there exists a unique 

vε ∈ (−M, M) such that uε,vε(0) = u0(0). By Lemma 3.1, we conclude |Duε,vε | can 
be uniformly bounded independent of ε, thus it also yields the uniform C0 bound for 
the above fact that uε,vε(0) = u0(0). In a word, we have obtained the uniform bound 
of |uε,vε |C1(Ω) and Schauder theory then ensures the uniform higher order derivative 
estimates.

Now let ε → 0, extracting subsequence if necessary, we may deduce that there exists 
a constant λ and a smooth function u∞(x) such that

vε + εuε,vε → λ, uε,vε → u∞,

and it is obvious that (λ, u∞) satisfies (1.7).
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In the following, we come to prove the uniqueness. If another (μ, uμ) also solves (1.7), 
then almost the same discussion as in (3.28) yields that⎧⎪⎪⎪⎨⎪⎪⎪⎩

n∑
α,β=1

Dα [gαβ(x)Dβ(u∞ − uμ)] =λ− μ in Ω ,

∂(u∞ − uμ)
∂ν

=0 on ∂Ω ,

where {gαβ(x)} is positive definite and

gαβ(x) =
1∫

0

∂Aα

∂pβ
(sDu∞ + (1 − s)Duμ) ds.

Integrating by parts gives that λ = μ and then Hopf’s lemma shows that u∞ − uμ must 
be a constant. Thus we complete the proof of the theorem. �
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