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ABSTRACT. In this paper we review the technique on Obata type integral identity, which was
the first used by Obata in 1971, it concerned the constant scalar curvature of the conformal
transformation of the standard metric on sphere, then we review the Gidas-Spruck theorem
on the semilinear elliptic equation in Rn which was the first times to use the Obata integral
identity to semilinear elliptic equation, and the Escobar theorem on the unit ball with critical
exponent growth on boundary which was related to best Sobolev constant in upper half space.
Lin-Ou develop the similar idea to obtain a Liouville type theorem to the harmonic function
with subcritical exponent growth on boundary. At last we review the result by Ma-Ou to obtain
a Liouville type theorem for the classical semilinear subcritical elliptic equation on Heisenberg
group, the soul of the proof is an generalized Obata type integral identity in CR geometry found
by Jerison and Lee in 1988.

1. INTRODUCTION

The Obata identity, which first appeared in Obata [21] in 1971, it concerned the constant
scalar curvature of the conformal transformation ḡ of the standard metric g on sphere, Obata
proved that the new metric is obtained from the standard metric by a conformal diffeomor-
phissm of the sphere. This technique was used in many place in geometry partial differential
equations, we shall review this technique and give some new applications.

Since the argument of Obata is quite subtle as it requires using the unknown metric ḡ as
the background metric instead of the given standard metric g on sphere, we shall give the
proof via the given standard metric g on sphere. If we consider the metric ḡ = u

4
n−2 g on Sn, a

conformal metric ḡ has constant scalar curvature n(n− 1) iff

(1.1) − 4

n(n− 2)
∆u+ u = u

n+2
n−2 , on Sn.

In other words Obata [21] gave the following classification of the solutions for the equation
(1.1)

(1.2) u(x) = c[cosht+ (sinht)x · a]
−(n−2)

2 ,

where for some c > 0, t ≥ 0, and a ∈ Sn.
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There are now several different proofs for this theorem. Analytically, by the stereographic
projection, it is equivalent to the following equation

(1.3) −∆w =
n(n− 2)

4
w

n+2
n−2 on Rn

whose positive solutions were classified by Gidas-Ni-Nirenberg [13] and Caffarelli-Gidas-
Spruck [6] using the moving plane method, and every positive solution of (1.3) assumes
the form w(x) = (4λ2)

n−2
4 [λ2 + |x− x0|2]−

n−2
2 , for λ > 0 and some x0 ∈ Rn.

Gidas-Spruck[14] first used the idea of Obata [21] to study the the semilinear elliptic
equation in Rn, and they got a Liouville type theorem to subcritical exponent for semilinear
elliptic equation in Rn. Let u ≥ 0 satisfy

(1.4) ∆u+ uα = 0 in Rn,

then u = 0 if 1 < α < n+2
n−2

. Chen-Li [7] gave a new proof with the moving plane methods. For
the p-Laplace equation with subcritical and critical exponent, Serrin-Zou [23] and Ciraolo-
Figall-Roncoroni [10] obtained the similar results via the generalized Obata identity. We shall
gave a proof of Gidas-Spruck[14] via Obata identity and some idea from Serrin-Zou [23].

In order to get best constant of the Sobolev inequality in upper half space, Escobar [9] s-
tudied the harmonic function on the unit ball with normal derivative critical exponent growth
on boundary, still he used the Obata identity and Pohozaev identity to get the classification
of the solution. But Escobar’s proof requires using the unknown metric ḡ as the background
metric instead of the given standard metric g on ball. We rewrite the proof via the given
standard metric g on ball. Lin-Ou develop the similar idea to obtain a Liouville type theorem
to the harmonic function with normal derivative subcritical exponent growth on boundary,
which was obtained in [?].

At last we review the recent result by Ma-Ou [20]to obtain a Liouville type theorem for the
classical semilinear subcritical elliptic equation on Heisenberg group. The soul of the proof is
a generalized Obata identity in CR geometry founded by Jerison and Lee [18] in 1988.

The paper is organized as follows. In section 2, we introduce the Obata’s theorem via the
given standard metric g on sphere. In section 3 we prove the Gidas-Spruck’s theorem use
the Obata identity with an idea in Serrin-Zou [23]. In section 4, we prove the theorem of
Escobar [9] via the given standard metric g on ball, then we mention our recent results on the
subcritical exponent case. In section 5, we state a minor generalization of the Jerison-Lee’s
identity in CR geometry. Using this generalized identity, we prove a crucial integral estimates
and the Liouville theorem in Hn.

2. OBATA THEOREM ON SPHERE

In 1971, Obata [21] developed a new technique to get the following result, if ḡ is the
constant scalar curvature metric on Sn conformal to the standard metric g, then ḡ is obtained
from the standard metric by a conformal diffeomorphism of the sphere. In his paper the
argument of Obata is quite subtle as it requires using the unknown metric ḡ as the background
metric instead of the given standard metric on sphere. In the following computation, we work
under the given standard metric on sphere g . It can be written as a critical exponent elliptic
equation on Sn, so the theorem of Obata stated that all the positive solutions to this elliptic
equation on Sn could be classified up to parameter. There are now several different proofs
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for this theorem. Analytically, by the stereographic projection is equivalent to the following
equation

−∆u =
n(n− 2)

4
w

n+2
n−2 on Rn(2.1)

whose positive solutions were classified by Gidas-Ni-Nirenberg [13] and Caffarelli-Gidas-
Spruck [6] using the moving plane method.

Consider the metric ḡ = v−2g = e2fg on Sn, where v > 0 and f are smooth functions, and
g is the canonical metric, let R̄ and R denote the scalar curvature of ḡ and g respectively, by
the standard formulas we get

R̄ij = Rij − (n− 2)fij + (n− 2)fifj − (∆f + (n− 2)|∇f |2)gij

R̄ = e−2f [R− 2(n− 1)∆f − (n− 1)(n− 2)|∇f |2]

v−2 = e2f , f = − log v, fi = −vi
v
,

∆f = −∆v

v
+
|∇v|2

v2
,

R = (n− 1)n.

Combining these, we have

R̄ = v2[n(n− 1) +
2(n− 1)∆v

v
− n(n− 1)

|∇v|2

v2
],(2.2)

then

∆v =
n

2

|∇v|2

v
− n

2
v +

R̄

2(n− 1)v
:= G(v,∇v).(2.3)

Recall that Rij = (n− 1)gij, so

R̄ij = (n− 1)gij +
(n− 2)vij

v
+ [

∆v

v
− (n− 1)

|∇v|2

v2
]gij.(2.4)

If we define the trace free Ricci tensor with respect to the new metric ḡ, Ēij = R̄ij − R̄
n
ḡij,

then

Ēij =(n− 1)gij +
(n− 2)vij

v
+ [

∆v

v
− (n− 1)

|∇v|2

v2
]gij(2.5)

− v−2gij
n

v2[n(n− 1) +
2(n− 1)∆v

v
− (n− 1)n

|∇v|2

v2
]

=
n− 2

v
[vij −

∆v

n
gij].

Now we define the trace free tensor Eij = vij − ∆v
n
gij, we get the following key computation,

(v1−nEijvi)j = v1−nEijvij + v1−n(Eij)jvi + (1− n)v−nEijvivj(2.6)

:= I + II + III,

where I = v1−n|Eij|2 ≥ 0.
By the Ricci identity, we have

∆vi = (∆v)i +Rijvj,
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so we get

II = v1−n(vijj −
(∆v)j
n

gij)vi = v1−n(Gi +Rijvj −
Gi

n
)vi

=
n− 1

n
v1−nGivi + (n− 1)v1−n|∇v|2.

And we have

III = (1− n)v−nvijvivj − (1− n)v−n
G

n
|∇v|2.

Recall that G = n
2
|∇v|2
v
− n

2
v + R̄

2(n−1)v
, if R̄ is constant, then we have

Gi = n
vjvji
v
− n

2

|∇v|2

v2
vi −

n

2
vi −

R̄

2(n− 1)v2
vi.(2.7)

It follows that

II + III =
n− 1

n
v1−n(n

vivjvij
v
− n

2

|∇v|4

v2
− n

2
|∇v|2 − R̄|∇v|2

2(n− 1)v2
) + (n− 1)v1−n|∇v|2(2.8)

+ (1− n)v−nvijvivj +
n− 1

n
v−n(

n

2

|∇v|2

v
− n

2
v +

R̄

2(n− 1)v
)|∇v|2

= 0.

So for Eij = vij − ∆v
n
gij, by (2.6) and (2.8) we have

(v1−nEijvi)j = v1−n|Eij|2.(2.9)

Integrate on Sn, it gives∫
Sn
v1−n|Eij|2dσ =

∫
Sn

(v1−nEijvi)jdσ = 0,(2.10)

which means Eij = 0.
By the standard discussion as in Obata[21] (see also [26]), we get

v(x) = c(cosht+ (sinht)x · a),(2.11)

where for some c > 0, t ≥ 0, and a ∈ Sn.
If we consider the metric ḡ = u

4
n−2 g on Sn, A conformal metric ḡ has constant scalar

curvature n(n− 1) iff

−4

n(n− 2)
4u+ u = u

n+2
n−2 , on Sn.(2.12)

From (2.11), we can get the following theorem proved by Obata[21]

Theorem 2.1. [21] Let u(x) be a positive C2 solution for the equation (2.12) then

u(x) = c[cosht+ (sinht)x · a]
−(n−2)

2 ,(2.13)

where for some c > 0, t ≥ 0, and a ∈ Sn.
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It is a remarkable theorem that these are all the positive solutions of (2.12). There are
now several proofs for this theorem. Analytically, by the stereographic projection (2.11) is
equivalent to the following equation

−4w =
n(n− 2)

4
w

n+2
n−2 on Rn(2.14)

whose positive solutions were classified by Gidas-Ni-Nirenberg [13] and Caffarelli-Gidas-
Spruck [6] using the moving plane method, and every positive solution of (1.3) assumes
the form

w(x) = (4λ2)
n−2
4 [λ2 + |x− x0|2]−

n−2
2 ,

for λ > 0 and some x0 ∈ Rn. This Obata identity was also used to study the general semilinear
elliptic equation in compact Riemannian manifold in [2] and [8].

3. LIOUVILLE THEOREM FOR SUBCRITICAL SEMI-LINEAR EQUATION IN Rn

In 1981, Gidas-Spruck [14] used the idea from Obata[21] to study the semilinear elliptic
equation, and they proved the following famous theorem.

Theorem 3.1. [14] Let u(x) be a nonnegative C2 solution for the equation

(3.1) ∆u+ uα = 0 in Rn,

then u = 0 if 1 < α < n+2
n−2

.

This theorem was reproved by Chen-Li [7] with the moving plane methods. For the p-
Laplace equation with subcritical exponent Serrin-Zou [23] proved a similar Liouville theo-
rem. For the critical exponent case with some energy finite condition, Ciraolo-Figall-Roncoroni
[10] obtained the similar classification results via the generalized Obata identity [23]. We
shall gave a proof of the theorem by Gidas-Spruck[14] via Obata identity and some idea from
Serrin-Zou [23].

Proof. By maximum principle, if u vanishes at some points, then u ≡ 0. Assume u > 0, let
u = v−β, β = n−2

2
. Then v satisfies that

(3.2) ∆v =
n

2

|∇v|2

v
+

2

n− 2
vγ,

where

(3.3) γ = α(1− n

2
) +

n

2
, when 1 < α <

n+ 2

n− 2
then − 1 < γ < 1.

We define Eij = vij − ∆v
n
δij, and a ∈ R will be determined later. So we get

(3.4) (vaEijvi)j = vaEijvij + va(Eij)jvi + ava−1Eijvivj := I + II + III,

where

(3.5) I = va|Eij|2 ≥ 0,

and

(3.6) II = va(vijj −
∆vj
n
δij)vi =

n− 1

n
vavi∆vi.
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From (3.2) we get

(3.7) (∆v)i = n
vjvji
v
− n

2

|∇v|2

v2
vi +

2γ

n− 2
vγ−1vi,

and

(3.8) II = −n− 1

2
va−2|∇v|4 + (n− 1)va−1vijvivj +

2(n− 1)γ

n(n− 2)
va+γ−1|∇v|2.

Still from (3.2),

(3.9) III = ava−1(vij −
∆v

n
δij)vivj = ava−1vijvivj −

a

2
va−2|∇v|4 − 2a

n(n− 2)
va+γ−1|∇v|2.

It follow sthat

(vaEijvi)j = va|Eij|2 −
a− 1 + n

2
va−2|∇v|4 + (n− 1 + a)va−1vivjvij

+ [
2(n− 1)γ

n(n− 2)
− 2a

n(n− 2)
]va+γ−1|∇v|2.

Since
1

2
va−1|∇v|2i vi =

1

2
(va−1|∇v|2vi)i −

a− 1

2
va−2|∇v|4 − 1

2
va−1|∇v|2∆v

=
1

2
(va−1|∇v|2vi)i −

a− 1

2
va−2|∇v|4 − n

4
va−2|∇v|4 − 1

n− 2
va−1+γ|∇v|2,

so we obtain
(3.10)

(vaEijvi)j = va|Eij|2 + va−2|∇v|4[−a− 1 + n

2
− (n− 1 + a)(

n

4
+

1

2
(a− 1)]

+
1

2
(n− 1 + a)(va−1|∇v|2vi)i + [

2(n− 1)γ

n(n− 2)
− 2a

n(n− 2)
− n− 1 + a

n− 2
]va+γ−1|∇v|2

= va|Eij|2 +
1

2
(n− 1 + a)(va−1|∇v|2vi)i + Ava−2|∇v|4 +Bva+γ−1|∇v|2,

where
A = −(n− 1 + a)(

n

4
+
a

2
),

and

B =
2(n− 1)γ

n(n− 2)
− 2a

n(n− 2)
− n− 1 + a

n− 2
.

Notice if α = n+2
n−2

then for a = 1− n, we get A = 0, B = 0 and (3.10) becomes (vaEijvi)j =

va|Eij|2 which is the same identity with (2.9).
Now we take a = 1− n+ d, then take 0 < d < n−2

2
we have

A =
1

2
d(
n− 2

2
− d) > 0

B > 0 is equivalent to (n−1)γ
n
− a

n
− n−1+a

2
> 0, which is

γ > −1 +
n+ 2

2n
d,
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from the definition of γ in (3.3)

α(1− n

2
) +

n

2
> −1 +

n+ 2

2n
d.

So for 1 < α < n+2
n−2

if we take

(3.11) 0 < d < min{n(n− 2)

n+ 2
(
n+ 2

n− 2
− α),

n− 2

2
},

then we have A > 0, B > 0. In the following computation, we fix the choice of d such that
A > 0, B > 0.

Now, we take ζ(x) be the standard cut-off function, let η = ζ( x
R

), then η = 1 on BR(0),
η = 0, outside B2R(0), |∇η|2 + |∇2η| ≤ c(n)

R2 .

For δ > 0 to be determined later, we times ηδ and integrate (3.10) in Rn,

−
∫
B2R

vaEijvi(η
δ)jdx+

1

2
(n+ a− 1)

∫
B2R

va−1vi|∇v|2(ηδ)idx(3.12)

=

∫
B2R

va|Eij|2ηδdx+ A

∫
B2R

va−2|∇v|4ηδdx+B

∫
B2R

va+γ−1|∇v|2ηδdx.

Since
vavijvi = (vavjvi)i − ava−1vj|∇v|2 − vavjvii

so we have

vaEijvi = (vavjvi)i − (
n+ 1

2
+ a)va−1|∇v|2vj −

2(n+ 1)

n(n− 2)
va+γvj,

it follows that∫
B2R

vaEijvi(η
δ)jdx+

∫
B2R

va−1vi|∇v|2(ηδ)idx(3.13)

.
1

R2

∫
B2R

va|∇v|2ηδ−2dx+
1

R

∫
B2R

va−1|∇v|3ηδ−1dx+
1

R

∫
B2R

va+γ|∇v|ηδ−1dx.

By Young’s inequality,
1

R2

∫
B2R

va|∇v|2ηδ−2dx . ε

∫
B2R

va−2|∇v|4ηδdx+
1

R4

∫
B2R

va+2ηδ−4dx,

1

R

∫
B2R

va−1|∇v|3ηδ−1dx . ε

∫
B2R

va−2|∇v|4ηδdx+
1

R4

∫
B2R

va+2ηδ−4dx,

1

R

∫
B2R

va+γ|∇v|ηδ−1dx . ε

∫
B2R

va+γ−1|∇v|2ηδdx+
1

R2

∫
B2R

va+γ+1ηδ−2dx.

Thus using the above inequalities with (3.12) and (3.13), we arrive the following important
estimate∫

B2R

va−2|∇v|4ηδdx+

∫
B2R

va+γ−1|∇v|2ηδdx . 1

R4

∫
B2R

va+2ηδ−4dx+
1

R2

∫
B2R

va+γ+1ηδ−2dx.

(3.14)

For equation (3.2) of v, we times va+γηδ on both side and integral on B2R, so we get∫
B2R

va+γηδ∆vdx =

∫
B2R

(
n

2
v−1|∇v|2 +

2

n− 2
vγ)× va+γηδdx,(3.15)
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since ∫
B2R

va+γηδ∆vdx = −
∫
B2R

va+γ(ηδ)ividx− (a+ γ)

∫
B2R

va+γ−1ηδ|∇v|2dx

we get
2

n− 2

∫
B2R

va+2γηδdx .
∫
B2R

va+γ−1|∇v|2ηδdx+
1

R

∫
B2R

va+γ|∇v|ηδ−1dx.(3.16)

From Cauchy inequality we have
1

R

∫
B2R

va+γ|∇v|ηδ−1dx .
∫
B2R

va+γ−1|∇v|2ηδdx+
1

R2

∫
B2R

va+γ+1ηδ−2dx,(3.17)

combining (3.16) and (3.17), we obtain∫
B2R

va+2γηδdx .
∫
B2R

va+γ−1|∇v|2ηδdx+
1

R2

∫
B2R

va+γ+1ηδ−2dx,(3.18)

by (3.14), we get∫
B2R

va+2γηδdx .
1

R4

∫
B2R

va+2ηδ−4dx+
1

R2

∫
B2R

va+γ+1ηδ−2dx.(3.19)

By Cauchy inequality
1

R2

∫
B2R

va+γ+1ηδ−2dx . ε

∫
B2R

v2γ+aηδdx+
1

R4

∫
B2R

va+2ηδ−4dx,(3.20)

therefore from (3.19) and (3.20) we get the following estimates

(3.21)
∫
B2R

va+2γηδdx ≤ C

R4

∫
B2R

va+2ηδ−4dx,

which is

(3.22)
∫
B2R

u−
2(a+2γ)
n−2 ηδdx ≤ C

R4

∫
B2R

u−
2(a+2)
n−2 ηδ−4dx.

We recall that a = 1− n+ d, γ = α(1− n
2
) + n

2
< 1 since 1 < α < n+2

n−2
.

k := − 2

n− 2
(1− n+ d+ 2γ) > l := − 2

n− 2
(3− n+ d).

For n > 3 , and we can take d is sufficient small positive constant such that− 2
n−2

(3−n+d) > 0,
then k > l > 0. From Young’s inequality∫

B2R

ukηδdx ≤ C

R4

∫
B2R

ulηδ−4dx . ε

∫
B2R

(η
δl
k ul)

k
l dx+

1

R4q

∫
B2R

(ηδ−
δl
k
−4)qdx.

We take δ sufficiently large, then we get the crucial inequality∫
B2R

ukηδdx . Rn−4q,(3.23)

where

for p :=
k

l
=

1− n+ d+ 2γ

3− n+ d
, q :=

p

p− 1
=

1− n+ d+ 2γ

−2 + 2γ
,

n− 4q = n− 2(1− n+ d+ 2γ)

γ − 1
= n−

2(1 + d+ 2α(1− n
2
))

(1− n
2
)(α− 1)

< 0.
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By taking R→∞ in (3.23) we have u = 0.
For n = 3, 1 < α < 5 by the estimates (3.22)

(3.24)
∫
B2R

u2(α−1−d)ηδdx ≤ C

R4

∫
B2R

u−2dηδ−4dx.

We first recall a Harnack inequality (see Han-Lin [17] Theorem 3.2 in Chapter 4): If−∆u ≥ 0,
u ≥ 0, then for all r ∈ (0, 3), we have

min
B2R

u(x) ≥ CR−
3
r ||u||Lr(B4R).(3.25)

For q < 2, δ is sufficient large, then by Holder inequality and (3.24)∫
BR

uq(α−1)dx ≤ (

∫
BR

u2(α−1−d)dx)
q
2 (

∫
BR

uqd×
2

2−q dx)
2−q
2(3.26)

≤ C(R−4

∫
B2R

u−2ddx)
q
2 (

∫
BR

u
2dq
2−q dx)

2−q
2 .

If r := 2dq
2−q < 3, then by the Harnack inequality (3.25), in B2R we have

u−2d ≤ CR3× 2−q
2dq
×2d(

∫
B4R

u
2dq
2−q dx)−

2−q
2dq
×2d,(3.27)

it follows that∫
BR

uq(α−1)dx ≤ C(R−4+3 ×R3× 2−q
2dq
×2d)

q
2 (

∫
B4R

u
2dq
2−q dx)−

2−q
2dq
×2d× q

2 (

∫
BR

u
2dq
2−q dx)

2−q
2(3.28)

≤ CR3−2q.

To conclude what we need are 2dq < 6 − 3q and q > 3
2

which intersect with q < 2 are
nonempty when d is a sufficient positive constant. If we take such q, and let R → ∞ then
u = 0.

Therefore u = 0, and we complete the proof of this theorem. �

In the above proof the key inequality is (3.14) which comes from Obata identity, the in-
equality (3.18) which comes from the equation (3.2) by integral by parts, then we get the
crucial inequality (3.23). In section 5, we shall get the corresponding inequalities in semilin-
ear subcritical elliptic equation on Heisenberg group to get the Liouviile theorem.

The above proof was generalized to p-Laplace operator with subcritical exponent in Serrin-
Zou [23] and they got a similar Liouville theorem.

4. ESCOBAR’S SHAPR SOBOLEV CONSTANT IN UPPER HALF SPACE

From the Hardy-Littlewood-Sobolev inequality on Sn−1 with sharp constant, Beckner [3]
derived the following family of inequalities on Bn :

Theorem 4.1. [3] Let u ∈ C∞(Bn), then

(4.1) c
q−1
q+1
n (

∫
Sn−1

|u(ξ)|q+1dσ(ξ))
2
q+1 ≤ (q − 1)

∫
Bn
|∇u(x)|2dx+

∫
Sn−1

|u(ξ)|2dσ(ξ),

for 1 < q < ∞ if n = 2 and 1 < q ≤ n
n−2

if n ≥ 3, where cn = 2π
n
2 /Γ(n/2) = |Sn−1| and dσ is

the standard form on Sn−1.
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The critical case q = n
n−2

was also proved by Escobar [9] by a different method. In 1988,
Escobar[9] also got the best constant for the Sobolev inequality in upper half space, through
the conformal transformation he reduced to proof to the following uniqueness theorem.

Theorem 4.2. [9] Let u(x) be a positive smooth solution for the equation

∆u = 0 in B1(0) ⊆ Rn,(4.2)

uν +
n− 2

2
u =

n− 2

2
hu

n
n−2 on ∂B1(0) = Sn−1,

where ν is the unit out normal and 0 < h ≤ 1 is constant. If u > 0 is normalized such that∫
Sn−1 dσ =

∫
Sn−1 u

2(n−1)
n−2 dσ, then h = 1.

We present the proof of the above theorem by Escobar[9] with standard metric in Rn.

Proof. Let u = v−
n−2
2 , then v satisfies

∆v =
n

2

|∇v|2

v
in B1(0) ⊆ Rn,(4.3)

vν = v − h on ∂B1(0).

If we define Eij = vij − ∆v
n
δij, then by (4.3) and (Eij)j = vijj − (∆v)j

n
δij = n−1

n
∆vi, we have

(v1−nEijvi)j = (1− n)v−nEijvivj + v1−n(Eij)jvi + v1−nEijvij(4.4)

= (1− n)v−nvijvivj − (1− n)v1−n∆v

n
|∇v|2 +

n− 1

n
v1−n∆vivi + v1−n|Eij|2

= v1−n|Eij|2.

It follows that ∫
B1

v1−n|Eij|2dx =

∫
B1

(v1−nEijvi)jdx =

∫
∂B1

v1−nEijviνjdσ(4.5)

=

∫
∂B1

v1−nΣn−1
α=1Eαnvαdσ +

∫
∂B1

v1−nEnnvndσ

= II + I,

if we denote ν = en, where

I =

∫
∂B1

v1−n(vnn −
∆v

n
)vndσ(4.6)

=

∫
∂B1

v2−n(vnn −
∆v

n
)dσ − h

∫
∂B1

v1−n(vnn −
∆v

n
)dσ

= I1 + I2.

Recall the following standard formulas (see (3.3) in [22] ), we have

(vn)α = vnα + vα(4.7)

Σn−1
α=1vαα = ∆∂B1v + (n− 1)vn,
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so we get

vnn −
∆v

n
= ∆v − Σn−1

α=1vαα −
∆v

n
=
n− 1

n
∆v − Σn−1

α=1vαα(4.8)

=
n− 1

2

|∇v|2

v
−∆∂B1v − (n− 1)vn.

From (4.7), we have

II =

∫
∂B1

v1−nΣn−1
α=1Eαnvαdσ =

∫
∂B1

v1−nΣn−1
α=1vαnvαdσ(4.9)

=

∫
∂B1

v1−nΣn−1
α=1v

α[(vn)α − vα]dσ = 0.

By divergence theorem and (4.3) we have∫
∂B1

v1−nvndσ =

∫
B1

div(v1−n∇v)dx(4.10)

=

∫
B1

[(1− n)v−n|∇v|2 + v1−n∆v]dx

=
2− n

2

∫
B1

|∇v|2v−ndx,

and ∫
∂B1

v1−n∆∂B1vdσ = (n− 1)

∫
∂B1

v−n|∇Σv|2dσ.(4.11)

Now by (4.8), (4.10)-(4.11) we get

−1

h
I2 =

∫
∂B1

v1−n(vnn −
∆v

n
)dσ

(4.12)

=
n− 1

2

∫
∂B1

v−n|∇v|2dσ −
∫
∂B1

v1−n∆∂B1vdσ − (n− 1)

∫
∂B1

v1−nvndσ

=
n− 1

2

∫
∂B1

v−n|∇v|2dσ − (n− 1)

∫
∂B1

v−n|∇Σv|2dσ − (n− 1)(
n

2
+ 1− n)

∫
B1

v−n|∇v|2dx

=
n− 1

2
[

∫
∂B1

v−n|∇v|2dσ − 2

∫
∂B1

v−n|∇Σv|2dσ + (n− 2)

∫
B1

v−n|∇v|2dx],

where ∇Σv is the tangential gradient of v on ∂B1.
Now we derive a Pohozaev identity from which we obtain I2 = 0. First we use the equation

(4.3) to get

n

2
v−n−1|∇v|2vixi = v−nvixi∆v

(4.13)

= (v−nvixivl)l − (v−nvixi)lvl

= (v−nvixivl)l + nv−n−1vixi|∇v|2 − v−n|∇v|2 − v−nxivlvil

= (v−nxivivl)l −
1

2
(v−nxl|∇v|2)l +

n

2
v−n−1xivi|∇v|2 + (

n

2
− 1)v−n|∇v|2.

Integrate on B1 in the above formula (4.13), we obtain the following Pohozaev identity
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(n− 2)

∫
B1

v−n|∇v|2dx = −2

∫
∂B1

v−nv2
ndσ +

∫
∂B1

v−n|∇v|2dσ(4.14)

= 2

∫
∂B1

v−n|∇Σv|2 −
∫
∂B1

v−n|∇v|2dσ.

Then from (4.12) and (4.14) we obtain I2 = 0.
From II = 0, I2 = 0 and (4.5) we get∫

B1

v1−n|Eij|2dx =

∫
∂B

v2−n[vnn −
∆v

n
]dσ = I1.(4.15)

From (4.8) we have

2I1 = 2

∫
∂B1

v2−n[
n− 1

2

|∇v|2

v
−∆∂B1v − (n− 1)vn]dσ

=

∫
∂B1

[(n− 1)v1−n|∇Σv|2 + (n− 1)v1−nv2
n − 2(n− 2)v1−n|∇Σv|2 − 2(n− 1)v2−nvn]dσ

=

∫
∂B1

[(3− n)v1−n|∇Σv|2 + (n− 1)v1−n(v − h)2 − 2(n− 1)v2−n(v − h)]dσ

=

∫
∂B1

[(3− n)v1−n|∇Σv|2 − (n− 1)v3−n]dσ + (n− 1)h2

∫
∂B1

v1−ndσ.

Then we have

2

∫
B1

|Eij|2dx =

∫
∂B1

[(3− n)v1−n|∇Σv|2 − (n− 1)v3−n]dσ + (n− 1)h2

∫
∂B1

v1−ndσ.(4.16)

For n = 3, then

2

∫
S2
v−2|Eij|2dσ = 2h2

∫
S2
v−2 − 2

∫
S2
dσ.

If u is normalized such that ∫
S2
v−2dσ = 4π =

∫
S2
dσ,

then

2

∫
S2
v−2|Eij|2dσ = 8π2(h2 − 1) ≥ 0,

so we have h = 1 since 0 < h ≤ 1.

For n ≥ 4, we normalize u such that∫
Sn−1

v1−ndσ =

∫
Sn−1

dσ =

∫
Sn−1

u
2(n−1)
n−2 dσ.

We first state a Sobolev inequality on Sn−1 (for example see Aubin [1]):

∫
Sn−1

|∇Σφ|2 +
(n− 1)(n− 3)

4

∫
Sn−1

φ2dσ ≥ (n− 1)(n− 3)

4
(

∫
Sn−1

|φ|
2(n−1)
n−3 dσ)

n−3
n−1 |Sn−1|

2
n−1 .

(4.17)
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Now we take φ = v
3−n
2 and use (4.17), it follows that

Right hand side of (4.16) = (n− 1)h2

∫
Sn−1

φ
2(n−1)
n−3 dσ − 4

n− 3

∫
Sn−1

|∇φ|2dσ − (n− 1)

∫
Sn−1

φ2dσ

= (n− 1)h2|Sn−1| − 4

n− 3
[

∫
Sn−1

|∇φ|2dσ +
(n− 1)(n− 3)

4

∫
Sn−1

φ2dσ]

≤ (n− 1)h2|Sn−1| − 4

n− 3

(n− 1)(n− 3)

4
|Sn−1|

n−3
n−1 |Sn−1|

2
n−1

= (n− 1)(h2 − 1)|Sn−1|.

Then 0 < h ≤ 1 implies h = 1. �

The above (Escobar [9]) theorem gave the classification of all positive solutions of equation
(4.2) using the integral method and hence proved inequality (4.1) for q = n

n−2
. The inequality

for 1 < q < n
n−2

would also follow in the same way from the following

Conjecture 1. [15] If u ∈ C∞(Bn) is a positive solution of the following equation

(4.18)
∆u = 0 on Bn,

uν + λu = uq on Sn−1,

then u is constant provided 1 < q < n
n−2

and 0 < λ ≤ 1
q−1

.

In Guo-Hang -Wang [16], they proved it in two dimension case via moving plane methods.
In higher dimension case, Guo-Wang [15] proved the following theorem.

Theorem 4.3. [15] For n ≥ 3, if u ∈ C∞(Bn) is positive and satisfies the equation (1.2), then u
is constant, provided 1 < q < n

n−2
and 0 < λ ≤ n−2

2
.

Using the similar Obata identity technique, Bidaut-Véron [2] got following Sobolev in-
equalities,

Lemma 4.4. [2]
∫
Sn−1 [|∇u|2 + su2] dσ ≥ s(

∫
Sn−1 |u|p+1dσ)

2
p+1 |Sn−1|

p−1
p+1 where 1 < p ≤ n+1

n−3
and

(p− 1)s ≤ n− 1.

From these Sobolev inequalities, Obata identity and Pohozaev identity, we study the above
conjecture in a short note [?] . The main result is the following partial results in dimensions
n ≥ 9.

Theorem 4.5. [?] If u ∈ C∞(Bn) is a positive solution of (1.2) when n ≥ 9 and 1 < q ≤ 1+ 2
3n−5

,
then there is a λ0 ∈ (0, 1

q−1
) depending on n and q implicitly, such that u is constant if λ ∈ (0, λ0).

More precisely, λ0 = O( 1√
q−1

), as q → 1+.

5. LIUOUVILLE THEOREM FOR SUBCRITICAL SEMI-LINEAR EQUATION IN Hn

In this section, we study the following equation

(5.1) −∆Hnu = 2n2uq in Hn,

where u is a smooth, nonnegative real function defined in Hn, while ∆Hnu =
∑n

α=1[uαα +

uαα] is the Heisenberg Laplacian of u which will be defined latter. Let Q = 2n + 2 be the
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homogeneous dimension of Hn. Denote q∗ = Q+2
Q−2

, we shall give the sketch to prove the
following Liouville type theorem.

Theorem 5.1. [20] Let 1 < q < q∗, then the equation (5.1) has no positive solution, namely,
any nonnegative entire solution of (5.1) must be the trivial one.

As in section 3, the soul of the proofs of Theorem 5.1 is an integral estimate. In fact we
shall prove the following estimates. Let 1 < q < q∗, B4r(ξ0) ⊂ Ω be any ball centered at ξ0

with radio 4r. Then any positive solution u of (5.1) satisfies:

(5.2)
∫
Br(ξ0)

u3q−q∗ ≤ C rQ−2× 3q−q∗
q−1 ,

with some positive constant C depending only on n and q. For 1 < q < q∗, we have Q − 2 ×
3q−q∗
q−1

< 0. So if u is a positive solution of (5.1), taking r → +∞ in (5.2) we get

(5.3)
∫
Hn
u3q−q∗ −→ 0.

This contradiction signifies directly the conclusion of Theorem 5.1. This integral estimate is
similar to the integral estimate (3.23) in Rn.

The equation (5.1) studied intensively by many authors in decades is connected to the CR
Yamabe problem on Hn. The number 2Q

Q−2
is the CR Sobolev embedding exponent [11]. For

the equation (5.1) with q = q∗ = Q+2
Q−2

, by the remarkable work Jerison-Lee [18], there is a
nontrivial solution as follows

(5.4) u(z, t) = C
∣∣t+
√
−1z · z + z · µ+ λ

∣∣−n
for some C > 0, λ ∈ C, Im(λ)> |µ|2/4, and µ ∈ Cn, which is the only extremals of the CR
Sobolev inequality on Hn.

In fact, for equation (5.1) with q = Q+2
Q−2

, Jerison-Lee [18] obtained the uniqueness of the

solution on the case of finite volume, i.e., u ∈ L
2Q
Q−2 (Hn). Garofalo-Vassilev [12] also got a

uniqueness result under the assumption of cylindrically symmetry on groups of Heisenberg
type. For the subcritical case 1 < q ≤ Q

Q−2
, Birindelli-Dolcetta-Cutri [4] proved that the only

nonnegative entire solution of (5.1) is the trivial one. There are some partial results for the
subcritical case Q

Q−2
< q < q∗, for example the solutions are cylindrical symmetry or decay at

infinity in [5], and as n > 1, Q
Q−2

< q ≤ q∗ − 1
(Q−2)(Q−1)2

in [27].
In CR conformal geometry, Jerison-Lee [18] had found a magic identity which involved

the derivative of torsion in the divergence term, and they got an Obata type theorem in CR
geometry: if θ is a contact form associated with the standard CR structure on the sphere
which has constant pseudohermitian scalar curvature, then θ is obtained from a constant
multiple of the standard form θ̂ by a CR automorphism of the sphere. In the same paper,
Jerison-Lee [18] also got the related identity to obtain the extremal function of the Sobolev
inequality in Heisenberg group.
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In the paper [20], based on a new observation, it gave a generalization of the Jerison-Lee’s
identity on Heisenberg group (see (4.2) for example in [18]) with a transparent proof, so
that we can deduce a Liouville theorem for the subcritical case of the equation (5.1).

5.1. A Generalization of Jerison-Lee’s identity. We discuss a minor generalization of the
remarkable Jerison-Lee’s identity ( (4.2) in [18]) on Heissenberg group Hn to our equation
(5.1). We adopt notations as in [18].

We shall first give a brief introduction to the Heissenberg group Hn and some notations.
We consider Hn as the set Cn × R with coordinates (z, t) and group law ◦:

(z, t) ◦ (w, s) =
(
z + w, t+ s+ 2Imzαwα

)
for ξ = (z, t), ζ = (w, s) ∈ Cn × R,

where and in the sequel, we shall use the Einstein sum with the convention: the Greek indices
1 ≤ α, β, γ, δ ≤ n. If ξ = (z, t) = (z1, z2, ..., zn, t) ∈ Cn × R is an element of Hn, then we set
|ξ|4 = |(z, t)|4 = |z|4 + t2, associated with this norm is a distance function d(ξ, ζ) = |ζ−1ξ|.
We will use the notation B(ξ, r) for the metric ball centered in ξ = (z, t) with the radius
r > 0. The Heisenberg group is a dilation group and the associated homogeneous dimension
Q = 2n+ 2 such that the volume |B(ξ, r)| ≈ rQ.

The CR structure of Hn is given by the bundle H spanned by the left-invariant vector fields
Zα = ∂/∂zα +

√
−1zα∂/∂t and Zᾱ = ∂/∂z̄α −

√
−1zα∂/∂t, α = 1, · · · , n. The standard (left-

invariant) contact form on Hn is Θ = dt+
√
−1(zαdzα− zαdzα). With respect to the standard

holomorphic frame {Zα} and dual admissible coframe {dzα}, the Levi forms hαβ = 2δαβ.
Accordingly, for a smooth function f on Hn, denote its derivatives by fα = Zαf , fαβ =

Zβ(Zαf) , f0 = ∂f
∂t

, f0α = Zα(∂f
∂t

), etc. We would also indicate the derivatives of functions or
vector fields with indices preceded by a comma, to avoid confusion. Then as in [18] we have
the following commutative formulae:

fαβ − fβα = 0, fαβ − fβα = 2
√
−1δαβ f0, f0α − fα0 = 0,

fαβ0 − fα0β = 0, fαβγ − fαγβ = 2
√
−1δβγ fα0, · · · .

Now we are at the point to give the generalized identity for positive solution of the equation
(5.1). Let u > 0 be the solution of (5.1). Take ef = u

1
n and q = q∗ + p

n
, then the subcritical

exponent 1 < q < q∗ is corresponding to −2 < p < 0. It follows that f satisfies the following
equation

(5.5) Refαα = −n|∂f |2 − ne(2+p)f ,

where |∂f |2 = fαfα.
Define the tensors

Dαβ =fαβ − 2fαfβ, Dα = Dαβfβ,

Eαβ =fαβ −
1

n
fγγδαβ, Eα = Eαβfβ,

Gα =
√
−1f0α −

√
−1f0fα + e(2+p)ffα + |∂f |2fα.

(5.6)
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As in [18], the above Jerison-Lee’s tensors play key roles in our proof, one can see [18]
the reason to introduce them. Let g = |∂f |2 + e(2+p)f −

√
−1f0, then we can rewrite equation

(5.5) as

(5.7) fαα = −ng.

Moreover, we observe that

Eαβ = fαβ + gδαβ, Eα = fαβfβ + gfα,

Dα = fαβfβ − 2|∂f |2fα, Gα =
√
−1f0α + gfα.

(5.8)

We can get

gα =|∂f |2α + (e(2+p)f )α −
√
−1f0α

=Dα + Eα −Gα + 2gfα + pfαe
(2+p)f .

(5.9)

Through similar computation, it follows that

gα =Dα + Eα +Gα + pfαe
(2+p)f ,(5.10)

and

ḡα =Dα + Eα +Gα + pfαe
(2+p)f .(5.11)

In view of the above observations, now we give the crucial identity as follows

Proposition 5.2.

ReZα

{
e2(n−1)f

[(
g + 3

√
−1f0

)
Eα

+
(
g −
√
−1f0

)
Dα − 3

√
−1f0Gα −

p

4
fα|∂f |4

]}
= e(2n+p)f

(
|Eαβ|2 + |Dαβ|2

)
+ e2(n−1)f

(
|Gα|2 + |Gα +Dα|2 + |Gα − Eα|2 + |Dαβfγ + Eαγfβ|2

)
+ e(2n−2)fRe

(
Dα + Eα

)
fα
(
pe(2+p)f − p

2
|∂f |2

)
− p(2n− 1)|∂f |2e2(n+1+p)f − p

4
(7n− 6)|∂f |4e(2n+p)f

− p

4
n|∂f |6e2(n−1)f − 3np|f0|2e(2n+p)f .

(5.12)

Remark 5.3. Note that for p = 0, (5.12) is exactly the key identity founded by Jerison and
Lee (see (4.2) in [18]). For −2 < p < 0, the subcritical case, we will show by elementary
computations that the right hand side of (5.12) is also nonnegative. The term −p

4
fα|∂f |4 in

the left of (5.12) is important for our proof in n = 1 case.
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5.2. Proof of Theorem 5.1. Let f satisfy the equation (5.7) and hence the identity (5.12).
Then by q = q∗ + p

n
, the subcritical exponent 1 < q < q∗ is corresponding to −2 < p < 0.

In order to complete the proof of (5.2) and hence Theorem 5.1, we only need to prove the
following inequality

(5.13)
∫
Br(ξ0)

e(2n+4+3p)f ≤ Cr2n+2−2× 2n+4+3p
2+p .

Note that (5.12) can be rewritten as

M = ReZα

{[(
Dα + Eα)(|∂f |2 + e(2+p)f )

−
√
−1f0

(
2Dα − 2Eα + 3Gα

)
− p

4
fα|∂f |4

]
e2(n−1)f

}
,

(5.14)

we take 0 < s0 = 1
2

+ p
4n
< 1, then

M =
(
|Eαβ|2 + |Dαβ|2

)
e(2n+p)f +

(
|Gα|2 + |Dαβfγ + Eαγfβ|2

)
e2(n−1)f

+ s0

(
|Gα +Dα|2 + |Gα − Eα|2

)
e2(n−1)f

+ e2(n−1)f
∣∣∣√1− s0(Gα +Dα) +

p

2
√

1− s0

fα
(
e(2+p)f − 1

2
|∂f |2

)∣∣∣2
+ e2(n−1)f

∣∣∣√1− s0(Eα −Gα) +
p

2
√

1− s0

fα
(
e(2+p)f − 1

2
|∂f |2

)∣∣∣2
− pn(2n+ p)

4(2n− p)
|∂f |6e2(n−1)f − p

4

[
7n− 6− 8np

2n− p
]
|∂f |4e(2n+p)f

− p4n2 − 2n+ p

2n− p
|∂f |2e2(n+1+p)f − 3np|f0|2e(2n+p)f ,

(5.15)

and clearly all the coefficients in the above are positive for −2 < p < 0 henceM≥ 0.
Since B4r ⊂ Ω, we can take a real smooth cut off function η such that

(5.16)


η ≡ 1 in Br,

0 ≤ η ≤ 1 in B2r,

η ≡ 0 in Hn\B2r,

|∂η| . 1
r

in Hn,

where we use “.” , “∼=” to replace “≤” and “=” respectively, to drop out some positive con-
stants independent of r and f .

Take a real s > 0 big enough. Multiply both sides of (5.14) by ηs and integrate on Hn we
have
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∫
Hn
ηsM

=

∫
Hn
ηsReZα

{[(
Dα + Eα)(|∂f |2 + e(2+p)f )

−
√
−1f0

(
2Dα − 2Eα + 3Gα

)
− p

4
fα|∂f |4

]
e2(n−1)f

}
.

(5.17)

Integrating by parts and using (5.16) we get

∫
B2r

ηsM

=− s
∫
B2r

ηs−1Reηα

{[(
Dα + Eα)(|∂f |2 + e(2+p)f )

−
√
−1f0

(
2Dα − 2Eα + 3Gα

)
− p

4
fα|∂f |4

]
e2(n−1)f

}
.

(5.18)

Using the Young’s inequality we obtain∫
B2r

ηsM . 1

r2

∫
B2r

ηs−2
(
|∂f |4 + e2(2+p)f + |f0|2

)
e2(n−1)f

+
1

r

∫
B2r

ηs−1|∂f |5e2(n−1)f .

(5.19)

To go forward, we need the following Lemma 5.4, which will be proved at the end of this
section.

Lemma 5.4. ∫
B2r

ηs−2|f0|2e2(n−1)f . εr2

∫
B2r

ηsM+

∫
B2r

ηs−2|∂f |4e2(n−1)f

+

∫
B2r

ηs−2|∂f |2e(2n+p)f +
1

r2

∫
B2r

ηs−4|∂f |2e2(n−1)f .

(5.20)

Now plugging (5.20) into (5.19) with small ε we get

∫
B2r

ηsM . 1

r2

∫
B2r

ηs−2e2(n+1+p)f

+
1

r2

∫
B2r

ηs−2|∂f |4e2(n−1)f +
1

r2

∫
B2r

ηs−2|∂f |2e(2n+p)f

+
1

r4

∫
B2r

ηs−4|∂f |2e2(n−1)f +
1

r

∫
B2r

ηs−1|∂f |5e2(n−1)f .

(5.21)

For the last term in above, using Young’s inequality one gets

1

r

∫
B2r

ηs−1|∂f |5e2(n−1)f .ε
∫
B2r

ηs|∂f |6e2(n−1)f +
1

r6

∫
B2r

ηs−6e2(n−1)f .(5.22)

Similarly, one has
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1

r2

∫
B2r

ηs−2|∂f |4e2(n−1)f .ε
∫
B2r

ηs|∂f |6e2(n−1)f +
1

r6

∫
B2r

ηs−6e2(n−1)f ,(5.23)

1

r2

∫
B2r

ηs−2|∂f |2e(2n+p)f .ε
∫
B2ra

ηs|∂f |4e(2n+p)f +
1

r4

∫
B2r

ηs−4e(2n+p)f ,(5.24)

and
1

r4

∫
B2r

ηs−4|∂f |2e2(n−1)f .ε
∫
B2r

ηs|∂f |6e2(n−1)f +
1

r6

∫
B2r

ηs−6e2(n−1)f .(5.25)

Inserting these into (5.21) and taking ε small yields∫
B2r

ηsM . 1

r2

∫
B2r

ηs−2e2(n+1+p)f

+
1

r4

∫
B2r

ηs−4e(2n+p)f +
1

r6

∫
B2r

ηs−6e2(n−1)f .

(5.26)

We note that (5.26) is similar to the formula (3.14)
In order to complete this proof, we state another lemma, it is similar to formula (3.18), it

will also be proved at the end of this section.

Lemma 5.5.

(5.27)
∫
B2r

ηse(2n+4+3p)f .
∫
B2r

ηs|∂f |2e2(n+1+p)f +
1

r2

∫
B2r

ηs−2e(2n+2+2p)f .

Now since all the coefficients in (5.15) are positive for −2 < p < 0, it follows that

(5.28)
∫
B2r

ηs|∂f |2e2(n+1+p)f ≤ c(n, p)

∫
B2r

ηsM.

Combining (5.28) with (5.27) and (5.26), we have∫
B2r

ηse(2n+4+3p)f

.
∫
B2r

ηs|∂f |2e2(n+1+p)f +
1

r2

∫
B2r

ηs−2e(2n+2+2p)f

.
∫
B2r

ηsM+
1

r2

∫
B2r

ηs−2e(2n+2+2p)f

.
1

r2

∫
B2r

ηs−2e2(n+1+p)f

+
1

r4

∫
B2r

ηs−4e(2n+p)f +
1

r6

∫
B2r

ηs−6e2(n−1)f

.ε
∫
B2r

ηse(2n+4+3p)f + r−2× 2n+4+3p
2+p

∫
B2r

ηs−2× 2n+4+3p
2+p ,

(5.29)

where in the last step, the Young’s inequality has been used three times with different expo-
nent pairs. Note that 0 ≤ η ≤ 1 in B2r(ξ0) ⊂ Ω and η = 1 in Br(ξ0). Therefore, by choosing
s > 0 big enough and ε small, we finally obtain



20 DAOWEN LIN; XI-NAN MA AND QIANZHONG OU

(5.30)
∫
Br(ξ0)

e(2n+4+3p)f . r2n+2−2× 2n+4+3p
2+p .

This is (5.13), and hence Theorem 5.1 is proved. �

To complete this section, now we give the proofs of Lemma 5.4 and Lemma 5.5.

Proof of Lemma 5.4 :

Since f satisfies equation (5.7), a straight calculation shows

(5.31) e−kfReZα

(√
−1f0fαe

kf
)

= −ReGαfα − n|f0|2 + |∂f |4 + |∂f |2e(2+p)f .

Multiply both sides of (5.31) by ηs−2ekf with k = 2(n− 1) and integrate we have

∫
B2r

ηs−2ReZα

(√
−1f0fαe

2(n−1)f
)

=

∫
B2r

ηs−2
(
−ReGαfα − n|f0|2 + |∂f |4 + |∂f |2e(2+p)f

)
e2(n−1)f .

(5.32)

Integrating by parts, using (5.16) and arranging the terms yields

n

∫
B2r

ηs−2|f0|2e2(n−1)f =

∫
B2r

ηs−2
(
|∂f |4 + |∂f |2e(2+p)f

)
e2(n−1)f

−
∫
B2r

ηs−2ReGαfαe
2(n−1)f

+ (s− 2)

∫
B2r

ηs−3Reηα

(√
−1f0fαe

2(n−1)f
)

.
∫
B2r

ηs−2
(
|∂f |4 + |∂f |2e(2+p)f

)
e2(n−1)f

+

∫
B2r

ηs−2|Gα||∂f |e2(n−1)f

+
1

r

∫
B2r

ηs−3|f0||∂f |e2(n−1)f .

(5.33)

For the above last two terms, Young’s inequality implies

∫
B2r

ηs−2|Gα||∂f |e2(n−1)f +
1

r

∫
B2r

ηs−3|f0||∂f |e2(n−1)f

≤ εr2

∫
B2r

ηs|Gα|2e2(n−1)f + ε

∫
B2r

ηs−2|f0|2e2(n−1)f

+
C

εr2

∫
B2r

ηs−4|∂f |2e2(n−1)f .

(5.34)

Submitting this into (5.33) with small ε we get
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∫
B2r

ηs−2|f0|2e2(n−1)f . εr2

∫
B2r

ηsM+

∫
B2r

ηs−2|∂f |4e2(n−1)f

+

∫
B2r

ηs−2|∂f |2e(2n+p)f +
1

r2

∫
B2r

ηs−4|∂f |2e2(n−1)f .

(5.35)

This is just (5.20). �
The proof of Lemma 5.5 is similar to that of Lemma 5.4.

Proof of Lemma 5.5 :

Multiply both sides of the equation (5.7) by −ηse2(n+1+p)f and integrate we have

n

∫
B2r

ηsge2(n+1+p)f =−
∫
B2r

ηsfααe
2(n+1+p)f

=2(n+ 1 + p)

∫
B2r

ηs|∂f |2e2(n+1+p)f

+ s

∫
B2r

ηs−1fαηαe
2(n+1+p)f .

(5.36)

Take the conjugate in (5.36), we have

n

∫
B2r

ηsḡe2(n+1+p)f =−
∫
B2r

ηsfᾱαe
2(n+1+p)f

=2(n+ 1 + p)

∫
B2r

ηs|∂f |2e2(n+1+p)f

+ s

∫
B2r

ηs−1fᾱηαe
2(n+1+p)f .

(5.37)

Add (5.36) and (5.37), it follows that

n

∫
B2r

ηs[|∂f |2 + e(2+p)f ]e2(n+1+p)f =2(n+ 1 + p)

∫
B2r

ηs|∂f |2e2(n+1+p)f

+ s

∫
B2r

ηs−1Refᾱηαe
2(n+1+p)f .

(5.38)

Using (5.16) and arranging the terms yields∫
B2r

ηse(2n+4+3p)f .
∫
B2r

ηs|∂f |2e2(n+1+p)f +
1

r

∫
B2r

ηs−1|∂f |e2(n+1+p)f

.
∫
B2r

ηs|∂f |2e2(n+1+p)f +
1

r2

∫
B2r

ηs−2e2(n+1+p)f ,

(5.39)

where in the last step, the Cauchy-Schwarz inequality has been used, and this is (5.27) as
desired. �
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[2] Bidaut-Véron, M.F., Véron, L.:Nonlinear elliptic equations on compact Riemannian man ifolds and asymp-
totics of Emden equations. Invent. Math. 106(3), 489-539 (1991)



22 DAOWEN LIN; XI-NAN MA AND QIANZHONG OU

[3] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math.
(2) 138 (1993), no.1, 213-242.

[4] Birindelli, I., Capuzzo-Dolcetta, I, Cutri, A: Liouville theorems for semilinear equations on the Heisenberg
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