Acta Mathematica Sinica, English Series

Sep., 2021, Vol. 37, No. 9, pp. 1313-1348 Acta Mathematica Sinica,
Published online: September 15, 2021 Eng[,sh Series
https://doi.org/10.1007/s10114-021-0340-7 © Springer-Verlag GubH Germany &

http://www.ActaMath.com The Editorial Office of AMS 2021

The Neumann Problem for Parabolic Hessian Quotient Equations

Chuan Qiang CHENV
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, P. R. China

E-mail: chenchuangiang@nbu.edu.cn

Xi Nan MA
School of Mathematical Sciences, University of Science and Technology of China,
Hefei 230026, P. R. China

E-mail: xinanQustc.edu.cn

De Kai ZHANG
Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China
E-mail: dkzhang@fudan.edu.cn

Abstract In this paper, we consider the Neumann problem for parabolic Hessian quotient equations.
We show that the k-admissible solution of the parabolic Hessian quotient equation exists for all time
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classical Neumann problem converge to a translating solution.
Keywords Parabolic Hessian quotient equation, Neumann problem, translating solution

MR(2010) Subject Classification 35K20, 35J60, 35B45

1 Introduction

In this paper, we consider the Neumann problem for parabolic Hessian quotient equation, which

is of the form

- ak(Dzu) . .
u; = log 701(D2u) log f(xz,u), inQx[0,T),
u, = @(x,u), on 00 x [0,T), (1.1)
u(x,0) = uy, in Q,

where 0 < | < k < n, v is the unit outer normal vector of 92, T is the maximal time,
and 2 C R™ n > 2 is a strictly convex bounded domain with smooth boundary. For any
k=1,...,n,

or(D*u) = op(M(D?u)) = > Aiy Ny - iy s

1<ii << - <ip<n
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with A\(D?u) = (\1,...,\,) being the eigenvalues of D?u =: {81‘125sz }. We also set og = 1 for

convenience. And we recall that the Garding’s cone is defined as
Iy = {/\ eR": 0'1(/\) > O,Vl <1< ki}
For any C? function u(x,t) (or u(x)), if A(D?*u) € Ty holds for any (z,t) € Q x (0,T) (or

x € Q), we say u is a k-convex function. If the solution u(z,t) of (1.1) is k-convex, then the
equation (1.1) is parabolic and we say w is a k-admissible solution of (1.1).

If I = 0, (1.1) is known as the parabolic k-Hessian equation. In particular, (1.1) is the
parabolic Laplace equation if k = 1, [ = 0, and the parabolic Monge—Ampere equation if k = n,
I = 0. Hessian quotient equation is a more general form of Hessian type equations. It appears
naturally in classical geometry, conformal geometry and Ké&hler geometry.

Firstly, we present a brief description for the Dirichlet problem of elliptic equations in R™.
The Dirichlet problem for the Laplace equation is well studied in [10, 15]. For nonlinear elliptic
equations, the pioneering works have been done by Evans in [14], Krylov in [26-28], Caffarelli-
Nirenberg—Spruck in [2, 3] and Ivochkina in [22]. In their papers, they solved the Dirichlet
problem for Monge—Ampere equations and k-Hessian equations elegantly. Since then, many
interesting fully nonlinear equations with different structure conditions have been researched,
such as Hessian quotient equations, which were solved by Trudinger in [48]. For more informa-
tion, we refer the citations of [2], etc.

For the curvature equations in classical geometry, the existence of hypersurfaces with pre-
scribed Weingarten curvature was studied by Pogorelov [40], Caffarelli-Nirenberg—Spruck [4, 5],
Guan—Guan [18], Guan—-Ma [19] and the later work by Sheng—Trudinger—Wang [44]. The Hes-
sian equation on Riemannian manifolds was also studied by Li [29], Urbas [52] and Guan [17].
Hessian type equations also appear in conformal geometry, which started from Viaclovsky [53],
Chang—Gursky—Yang [6]. In K&hler geometry, the Hessian equation was studied by Hou—Ma—
Wu [20] and Dinew—Kolodziej [12].

Meanwhile, the Neumann and oblique derivative problem of partial differential equations
was widely studied. For a priori estimates and the existence theorem of Laplace equation
with Neumann boundary condition, we refer to the book [15]. Also, we recommend the recent
book written by Lieberman [33] for the Neumann and the oblique derivative problems of linear
and quasilinear elliptic equations. Especially for the mean curvature equation with prescribed
contact angle boundary value problem, Ural’tseva [49], Simon—Spruck [45] and Gerhardt [16]
got the boundary gradient estimates and the corresponding existence theorem. Recently in [39],
the second author and Xu got the boundary gradient estimates and the corresponding existence
theorem for the Neumann boundary value problem on the mean curvature equation.

The Yamabe problem with boundary is an important motivation for the study of the Neu-
mann problems. The Yamabe problem on manifolds with boundary was first studied by Escobar,
who showed in [13] that (almost) every compact Riemannian manifold (M, g) is conformally
equivalent to one of constant scalar curvature, whose boundary is minimal. The problem re-
duces to solving the semilinear elliptic critical Sobolev exponent equation with the Neumann
boundary condition. Naturally, the Neumann boundary value problem for Hessian type equa-
tions also appears in the fully nonlinear Yamabe problem for manifolds with boundary, which

is to find a conformal metric such that the k-th elementary symmetric function of eigenvalues
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of the Schouten tensor is constant and with the constant mean curvature on the boundary of
manifold. See Jin—Li-Li [25], Chen [9] and Li-Luc [31], but in all these papers they need to
require that the manifold are umbilic or has total geodesic boundary for k£ > 2, which is similar
as the condition in Trudinger [47] where the domain is ball.

In 1986, Lions—Trudinger—Urbas solved the Neumann problem of Monge—-Ampere equations
in the celebrated paper [35]. For related results on the Neumann or oblique derivative problem
for some class of fully nonlinear elliptic equations can be found in Urbas [50]. Recently, the
second author and Qiu [36] solved the the Neumann problem of k-Hessian equations, and then
Chen—Zhang [8] generalized the above result to the the Neumann problem of Hessian quotient
equations. Meanwhile, Jiang—Trudinger [23, 24] studied the general oblique boundary value
problems for augmented Hessian equations with some regular condition and concavity condition.
Motivated by the optimal transport Caffarelli [1] and Urbas [51] proved the existence of the
Monge-Ampere equation with second boundary value problem, for the general convex cost
function this second boundary value problem studied by Ma—Trudinger—Wang [37].

If k=n,1 =0, (1.1) is the well-known parabolic Monge-Ampere equation, which relates to
the Gauss curvature flow if f = f(x,u, Du). Schniirer—Smoczyk proved the long time existence
of this Gauss curvature flow and showed that the flow converges to a solution of the prescribed
Gauss curvature equation in [42].

Naturally, we want to know how about the Neumann problem of parabolic Hessian quotient
equations. In this paper, we obtain two results. One is the long time existence and convergence
of solutions of the Neumann problem of parabolic Hessian quotient equation. The other is that
the solutions of the classical Neumann problem of parabolic Hessian quotient equation converge
to the translating solution.

To state our main results, we first introduce the structural conditions on ¢, f and wug.

Firstly, we assume

9y
Put= oo <, <0, (1.2)
and
f>0 and f,>0. (1.3)

These two conditions are similar as the Monge—Ampere case in [43]. Here ug is always a smooth,

k-convex function. Moreover, we will always assume either

f—; >cy >0, (1.4)
or
o1 (D?ug)
UZ(DQUO) > f(xv'U'O)' (15)

We also assume the following compatibility conditions

()

Our first main theorem is

(uy —p(z,u)) =0, for any j >0 on 9. (1.6)
t=0
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Theorem 1.1 Assume that € is a strictly convex bounded domain in R™, n > 2, with smooth
boundary. Let f,¢ : Q x R — R, be smooth functions which satisfy (1.2) and (1.3). Suppose
there is a smooth, k-convex function ug satisfying the compatibility conditions (1.6). We further
assume that either (1.4) or (1.5) holds. Then there exists a smooth solution u(x,t) of equation
(1.1) for all t > 0. Moreover, u(x,t) converges smoothly to a smooth function u® which is a

solution of the Neumann problem for the Hessian quotient equation

O (DQUOO) .

———~ = f(z,u™® in Q C R,

o1(D?u>) H ) (1.7)
U (@) = (@, u™), on O,

v

where v is the unit outer normal vector of 02. The rate of convergence is exponential provided
(1.4) holds.

Next we consider the related translating solution of the classical Neumann problem for
parabolic Hessian quotient equations. The Monge-Ampere equation case was proven by [43],
and the mean curvature equation by [38].

Let ug be a smooth k-convex function. Assume that uy € C>°(Q) and satisfies

Oug ()
v

Theorem 1.2 Let ) is a strictly convex bounded domain in R™ with smooth boundary. Assume

= p(z) on 0N (1.8)

that ug and ¢ are smooth functions satisfying (1.8), and f is a positive smooth function, f €
C>(Q). Then there exists a smooth k-admissible solution u(x,t) of the following equation for
allt > 0.

or(D?u
:1oga’;((£2u))—logf(x), (z,t) € 2 x(0,T),
uy,(2,t) = (), €00, tel0,T), (1.9)
u(z,0) = ug(z), x €0,

where u(-,t) approaches ug in C*(Q) as t — 0. Moreover, u(-,t) converges smoothly to a

translating solution, i.e., to a solution with constant time derivative.

The rest of the paper is organized as follows. In Section 2, we collect some properties and
inequalities of elementary symmetric functions. And we prove the uniform estimate for |u| in
Section 3. Then we use the uniform estimate of |u;| to obtain C%-estimate of u in Section 4.
The C'-estimate and the C?-estimate are derived in Section 5 and Section 6, respectively. And

then we prove Theorem 1.1 in Section 7. At last, we prove Theorem 1.2 in Section 8.
2 Preliminary
In this section, we collect some properties and inequalities of elementary symmetric functions.

2.1 Basic Properties of Elementary Symmetric Functions

Let A= (A,...,\n) ER? and 1 < k < n.

or(\) = > DVID VIRRED VIS

1<i1<ig< -+ <ip<n



Parabolic Hessian Quotient Equations 1317
We denote by o (A|é) the symmetric function with A\; = 0 and oy, (A]éj) the symmetric function
with A; = A; = 0. It is easy to know the following equalities hold

ok(A) = ok (AD) + Niog—1(A]i), V1<i<n,

Z Aiok—1(Ali) = kow(A),

Z or(\i) = (n — k)or(\).

We also denote by o (W|i) the symmetric function with W deleting the i-row and é-column
and oy, (W|ij) the symmetric function with W deleting the ¢, j-rows and ¢, j-columns. Then we

have the following identities.

Proposition 2.1  Suppose W = (W;;) is diagonal, and m is a positive integer, then

8am(W) - Um—l(W|i)7 Zfl = jv

oW 0, if i # j.
Recall that the Garding’s cone is defined as
Fy={AeR":0;(A) >0,V1 <i<k}. (2.1)
Proposition 2.2 Let A €Ty and k € {1,2,...,n}. Suppose that
AL 2> 2 A 2> 2 Ay,

then we have

O'k_l(>\|n) > O'k_l(>\|n — 1) > e > O'k_1(>\|k) > 2> O'k_l(/\‘l) > 0; (22)
M > >N >0, op(N) < CFA A (2.3)
k
Aok—1(A]Ll) > Egk()\)' (2.4)
where Ck = ﬁlk),
Proof  All the properties are well known. For example, see [32] or [21] for a proof of (2.2), [30]
for (2.3), and [11] or [20] for (2.4). O

Proposition 2.3 (Newton-MacLaurin inequality) For A € Ty and k > 1> 0, r > s > 0,
k>r,1>s, we have

L—lu)/qﬂ = Lsm/q@} ) (2:5)
where Ck = Wlk)'

Proof  See [46]. O

2.2 Key Lemmas

The following inequalities of Hessian operators are very useful for us to establish a priori esti-
mates. One can find the proofs in [7, 8].

Lemma 2.4  Suppose A = (A1, A2,...,\n) €T, k >1, and Ay < 0. Then we have

omA1) = om(N), Vm=0,1,...,k (2.6)



1318 Chen C. Q. et al.

Moreover, we have

> CYO<I<k 2.7
oM T kn—In—k+1 oN; - (2.7)
Lemma 2.5 Suppose A = {a;j}nxn satisfies
a1 <0, {aijle<ij<n is diagonal, (2.8)
and AM(A) € Ty (k> 1). Then we have
AT _nk—1 1 ]
ai(A) n Uz(A)
— VO <I<k, 2.9
dayr ~ kn—In—k+14 Oa; ’ N 29)
and
n A2 k-1 1
> (—ap)*Y VO<I<k 2.10
Z aa” =Tk 711( all) ) S U<k, ( )
where C!, = l,(n"—ll),

Lemma 2.6 Suppose A = (A, Aa,...,Ap) €Tk, k>2, and Xy > - > Ny If Ay >0, A\, <0,
A1 > 0o, and =\, > €A1 for small positive constants & and €, then we have
om(A|1) > coom(A), Vm=0,1,... k-1, (2.11)

2 2
where cog = mln{2 )‘s(n L 4(n 1 }. Moreover, we have

a1z n Q2]
o > 2N V0<I<E, 2.12
N — Cl; GV = (2.12)
h _nk=l_c
wnere €1 = ol n—k+1

Remark 2.7 These lemmas play an important role in the establishment of a priori estimates.
Precisely, Lemma 2.5 is the key of the gradient estimates in Section 5, including the interior
gradient estimate and the near boundary gradient estimate. Lemmas 2.4 and 2.6 are the keys
of the lower and upper estimates of double normal second order derivatives on the boundary in
Section 6, respectively.

3 us-estimate

In this section, we follow the proof in Schniirer—-Smoczyk [42] to obtain u-estimate.

Lemma 3.1 Suppose Q C R" is a C3 domain, and u € C3(Q x [0,T)) is a k-admissible
solution of equation (1.1), satisfying (1.2) and (1.3). Then it holds
min{m_inut(x,O),O} < up(x,t) < max{m@xut(az,O),O}, V(z,t) € 2 x[0,T). (3.1)
Q Q

Moreover,
(i) if (1.4) holds, then we have for any 0 < X\ < cy

min { mjnut(a:,()),O} < ug(x, t)er < max { m@xut(x,O),O}, V(z,t) € Q2 x[0,T). (3.2
Q Q

(ii) 4f (1.5) holds, then we have u(z,0) =0 or uy(x,t) > 0 for any t > 0.
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Proof For any € > 0 sufficiently small, we consider the evolution equation of u; in Qx [0, T —¢].
It is easy to see that wu; satisfies

(ur)e = 9 (ug)ij — L2,

f

dlog (Zk
%8 (o)) Assume u; (20, t0) = maxgy (o, 7 wt(T,t) > 0, then the weak parabolic

where F’LJ = “ou.. -
ij
maximum principle implies that either oy € 9 or to = 0. If xg € 92, we have at (xg, o)

0 < (u)y = puty < —Cpuy,

which is a contradiction. Thus we have tg = 0, and the second inequality in (3.1) is proved.
Similarly, we can prove the first inequality in (3.1).

The proof of (3.2) is similar as that in [42]. We give it for completeness. Let v(z,t) =
eMuy(z,t) for 0 < A < ¢y, and then v(z,t) satisfies

Vy = v+ e)‘tutt
_ At ij fu
=v+e|F um—j—Tut

:Fijvij+ (/\—f—;>v

Assume v(wo,to) = maxg o r—e v(7,t) > 0. Therefore by maximum principle, we have either
2o € 0N or tg = 0. If 2y € 9, we have at (zg,tp) by the Neumann boundary condition,

A

O<v,,=etul,t:v<,0u<07

which is a contradiction. Hence, to = 0, i.e., maxg, (o, r—q)) v(7,t) = maxg us(z,0). Similarly,
we can prove the first inequality in (3.2).
At last, if (1.5) holds, then we have u:(z,0) > 0. From (3.1), we know that u; > 0 for

any t > 0. If u;(,0) is not identically to zero, then we let us(wo,to) = ming, o r_ ue(z,1).

If wi(xo,to) = 0, the strong maximum principle implies ui(z,t) = ui(zo,tp) = 0, for any
(z,t) € Q x [0,t9). Thus u¢(x,0) = 0, which contradicts the hypothesis that wu(x,0) is not
identically to zero. O

4 COV-stimate
Due to u-estimate in Lemma 3.1, we can derive the C%-estimate of u as follows.

Theorem 4.1 Suppose Q C R" is a C? domain, and u € C3(Q x [0,T)) is a k-admissible
solution of equation (1.1), satisfying (1.2) and (1.3). Moreover, if f satisfies (1.4) orug satisfies
(1.5), then we have

lu(z, )] < My, (z,t) € 2x1[0,T), (4.1)
where My is a positive constant depending only on c,, maxgq |¢(z,0)|, maxg |ug|, ¢f and
maxg |ug(z, 0)].

Proof We first prove the upper bound of u. For any fixed ¢, u(z,t) is a subharmonic function.

If u(zo,t) = maxgu(z,t) > 0, we must have zg € 9Q2. By the Neumann boundary condition,

we have at this point

0 < uy = (o, u) = @(20,0) + pu(zo, )u < p(20,0) — cpu.
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Thus u(zg,t) < %ﬂx,o)'
M)
o1(D2ug)

—log f(x,up) > 0. Thus by Lemma 3.1, we immediately have u(z,t) > u(z,0) = up(x).
If (1.4) holds, we have by Lemma 3.1

Next we prove the lower bound of u. If (1.5) holds, by the equation u:(z,0) = log (

u(z,t) > u(z,0) —i-/o ue(x, s)ds

t c
> ug(x) —&—min{mjnut(aj,O),O}/ e~ 55s
Q2 0

N 2 min{ming u;(x,0),0}
Cf ’

> up ()

|+w_ O

Hence (4.1) holds if we choose My = =22 L

w + maxg |ug(z)

Remark 4.2 Due to the C° estimate of u and u;, we now have

Ok D2u ut . — maxg |ut (T
#QU)) = f(z,u)e"t > ngnf(x, —Mp) e alu@Ol —. ¢) > 0. (4.2)

5 Cl-estimates

In this section, we prove the global gradient estimate as follows

Theorem 5.1 Suppose Q C R™ is a C3 domain, and u € C3(Q x [0,T)) is a k-admissible
solution of equation (1.1), satisfying (1.2) and (1.3). Then we have

sup |Du| < My, (5.1)
Qx[0,7)
where My depends on n, k, 1, Q, |u|co, |ut|co, |Duglco, |¢|cs, min f, max f and | D, f|co.

To state our theorems, we denote d(x) = dist(x, 0f2), and Q, = {z € Q|d(z) < u} where p
is a small positive universal constant to be determined in Theorem 5.3. In Subsection 5.1, we
give the interior gradient estimate in (2\ ©,) x [0,7"), and in Subsection 5.2 we establish the
near boundary gradient estimate in §,, x [0,T), following the idea of Ma-Qiu [36].

5.1 Interior Gradient Estimate

Theorem 5.2 Under the assumptions in Theorem 5.1, then we have

sup |Du| < M, (5.2)
(2\Q,)x[0,T)
where M depends on n, k, l, u, My, |Dug|co, |ut|co, min f, max f and | D, f|co.
Proof  For any fixed point (zo,t0) € (2\ Q) x (0,T), we prove that |Du|(zo,to) < M;, where
M; > 0 depends on n, k, I, p, My, |Dug|co, |ut|co, min f, max f and |D, f|co. It is easy to
know that B, (x¢) x [0,t0] C © x [0,t0], and we consider the auxiliary function

G(x,t) = [Dulgp(u)p(z) (5.3)

1

in B, (xo) x [0,t], where p = p? — |z — z¢|?, and ¢(u) = (3My — u)~2. Then G(x,t) attains
maximum at some point (z1,¢1) € By, (zo) X [0,to]. If t1 = 0, then |Du(z1,t1)| = |Dug(z1)|. It

is easy to obtain the estimate (5.2).
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In the following, we assume ¢; € (0,¢y]. By rotating the coordinate (z1,...,z,), we can
assume
wy(z1,t1) = |Dul(z1,t1) >0,  {ui;}o<ij<n is diagonal. (5.4)
Then
B(,) = log s (3,1) + log Y(u) + log (5.5)
attains local maximum at the point (z1,t1) € By(xo) x [0,t0]. Denote \ = (Xg, .. ,Xn) =
(u2(x1,t1), -, unn(z1,t1)), and all the calculations are at (z1,t1). So we have at (x1,t1),
U1 Vi Pi
0=¢; = 24 Vi P 5.6
¢ w o, (5.6)
0< g = Uty ¥t (5.7)
u Y
Hence
(¥ (! P1> (1// P1>
—_— = — — 4+ — == —u1+—1. 58
i e 7t (58)

In the following, we always assume
M,
| Du(zo, to)| > 32\/570. (5.9)

Otherwise there is nothing to prove. Then we have

¥ (u)(xo, to) 1 M, _
uy (1, t1)p(z1) = WMWUK%JO)P(%) > \/; : 32\/570 -p?=2-8Mo - 2p

Y
> 2@|p1\7 (5.10)
SO
i (I 1+p1) _£u1_7¢’u1p+2¢91<_£’u1 (5.11)
Uy (0 29 2¢p A
 Blog(2RIwy
Denote F* = ga+sz, and we have
i v uuy Wy Y py o pip; wiy P
0> F4 i — = FY _J_—J+_3__3+_]__]:|_|:_+_
G~ 0 {ul T R R
1 f1+ fuus i ULiUL [1/// Wz} i Y’
=— —pu A Y P+ (k= 1) —u
w f I vy i+l
4+ FiiPid _ pigPibi
02
1 f1+ fuws [@/JH 1//2] 1,2 Y
= — AT ol P (k=1 —u
w f e L AT
02 il vip pﬂb] . PiPj
_ F“f _ Fzg J J | _ 2F”7J
22: p [wp Y p?
lf1/1] [1//’ w} 1,2, ¥
> - ol =2 | PNl 4+ (k= 1) —u
U1 ’l/} wg Uy 77[}[( ) t]

_ ZF“ QZF“ |Dp| ZF”
%
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|f1/f| 4 Fll w/

= 64M2 oyl =0~
i 2p Ap
—2ZF |: +m 1_+p—:| (5.12)

From Lemma 2.5, we know
F'Y >y F", (5.13)

where ¢3 = Z((E:g n+k+1 Moreover, from (2.10) and (5.11), we have

o (D) ok (D?u)
ZFii _ Z 1 8[0?(132“)] _ 1 Z 8[0];(D2u)]
Somg  Ous fer s dus
1 k=11 o
> WTC_A(_ull)k -1
> cquf*Y. (5.14)
Then we can get
J 1 2(k—1) |f1/f| V'
0>FY W e ) —
= Gij — Pt > 128M2 C3C4Uy + " [( ) — u]
i 1 1 1 2u  4p?
F" P-2(- P 5.15
+XZ_: L%M&C?’“l <P+4MOU1 PR ﬂ (515
This yields
p(zr)ur(z1, t1) < C, (5.16)

where C' depends on n, k, I, p, My, |ut|co, min f, max f and |D, f|co. Hence we can get

p(u)(z1,t1) 1
| Du(zo,t0)| < ¥(u) (2o, to) p(zo)

From this, the proof is complete. O

px)ui (21, t1) < M.

5.2  Near Boundary Gradient Estimate

Theorem 5.3 Under the assumptions in Theorem 5.1, then there exists a positive universal
constant p such that
sup |Du| < max{M, M}, (5.17)
Q,,x[0,T)

where ]\Z is the constant in Theorem 5.2, and Z\/i\l depends on n, k, 1, u, Q, My, |Duo|co,
|Ut|CO; miHQ f7 max f7 |Dwf|c() and ‘()0|C3
Proof The proof follows the idea of Ma-Qiu [36].

Since Q is a C3 domain, it is well known that there exists a small positive universal constant
0 < pu < 15 such that d(z) € C3(€,). As in Simon-Spruck [45] or Lieberman [33, p.331], w
can extend v by v = —Dd in Q,, and note that v is a C?(Q,,) vector field. As mentioned in the

book [33], we also have the following formulas

|Dv| +|D?*v| < Cy in Q,, (5.18)
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> VDt =0, > VDl =0, |v|=1 inQ,, (5.19)
i=1 i=1
where Cj is depending only on n and Q. As in [33], we define
¢ =0, — v, inQ, (5.20)
and for a vector ¢ € R™, we write ¢’ for the vector with i-th component >>"_, ¢/¢7. Then we
have
n ..
|(Du)'|* = Z uu;, and |Dul® = [(Du)|? +ul. (5.21)
ij=1

We consider the auxiliary function
G(z,t) = log |Dw|? + h(u) + g(d), (5.22)
where

w(z,t) = u(z,t) + o(x,u)d(z),

h(u) = —log(1 4+ My — u),

g(d) = apd,
with ag > 0 to be determined later. Note that here ¢ € C3(Q) is an extension with universal
C3 norms.

For any fixed Tp € (0,7T), it is easy to know G(z,t) is well-defined in 2, x [0,Tp]. Then
we assume that G(z,t) attains its maximum at a point (xo,%y) € 2, x [0,Ty]. If ty = 0, then
|Du(xo,to)| = |Duo(xo)|. It is easy to obtain the estimate (5.17).

In the following, we assume to € (0, Tp] and |Du|(zo, to) > 10n[|¢|cr + |u|co]. Then we have

1

§|Du(x0,t0)\2 S |Dw(x0,t0)\2 S 2|Du(9c0,t0)|2, (523)
since w; = wu; + D;pd 4+ ¢d; and d is sufficiently small. Now we divide into three cases to
complete the proof of Theorem 5.3.
Casel x9€0Q,N0Q.

Then zo € Q\ Q,, and we can get from the interior gradient estimate (i.e. Theorem 5.2),

|Du(zo,to) < sup  |Du| < M, (5.24)
(@\2,)x[0,T)
then we can prove (5.17).

Case II  z( € 09).

At (zg,to), we have d = 0. We may assume 2o = 0. We choose the coordinate such that
09 is locally represented by 9Q = (2/, p(z')), where p(z’) is a C® function with p;(0) = 0 for
1<i<n-—1. Thus v(zo) = (0,...,0,—1). Rotating the z'-coordinate further, we can assume

w1 (xo,to) = [Dwl|(xg,to). Therefore we have
’wn(l‘o,to) = Up + Dn‘Pd + @dn =u, +p=0

By Hopf lemma, we have

2Wrwgp / ;2w
W, + ¢ = 224
Duwp T TIT

0 Z —Gl,(l'(),to) = Gn(l'o,to) = — h/(p + g/. (525)
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Differentiate the Neumann boundary condition along its tangential direction e; at (xq, to),

—Up1 + uiyi’l =unt + uil/iJ = Dj. (5.26)
Since
Wiy = Uy + @din + Di¢d,, + Dy pdy
= U1p + @din + D1, (5.27)
then

wi, = w1+ pdiy,
—|Dv||Du| — |D?d]|¢|
> —Chwy, (5.28)

v

where C; =: 4|Dv|co + 2|D?d|co. Inserting (5.28) into (5.25), we have
0>-2C; — Ingx|<p| + ayp,

which is a contradiction if we choose ag > 2Cy + maxq |¢|.
Case III o € Q.

At (xo,tp), we have 0 < d(zg) < p, and by rotating the coordinate {ei,...,e,}, we can
assume

wi(zo, to) = |Dw|(zo,t0) >0, {usj(xo,t0)}2<i,j<n is diagonal. (5.29)

In the following, we denote = (Xg, . ,Xn) = (u22(zo,t0);- - -, Unn(Zo,t0)), and all the calcu-
lations are at (zg,tg). So from the definition of w, we know w; = u; + ¢d; + (¢; + @yu;)d, and

we get
—pdy — p1d
up = W1~ Ph 1 0, (5.30)
14+ pud
—pdi —pid .
TP i Rk S L} (5.31)
14 @.d

By the assumption |Du|(zo,to) > 10n[|p|co + |Dz¢|co] and d sufficiently small, we know for
12> 2

] < % < o 1Dul(o. 1), (5.52)
hence
|Dul? — guf > %|Du| > iwl. (5.33)
Also we have at (o, to),
0 Gi:%—i—h'ui—i—aodi, i=1,2,...,n, (5.34)
056, = PPy (5.35)
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Hence
2’(1)12'

= —[h'ui—f—aodi], 1= 1,2,...,77,. (536)
wy

From the definition of w, we know

wi; = (1 + pud)ur; + odi; + (P10 + @1ati + Qi1 + Puutit;)d

+ (01 + puur)d; + (i + puui)dy, i=1,...,n; (5.37)
wie = (1 + pud)urr + (P1au + Puutiiug)d + @y udy . (5.38)
So we have
S S (P11 + 2010u1 + Puatid)d + pdi1 + 2(p1 + @uur)dy
L wud 1+ p,d
_ —Wutaodijwr  puud 5 2p1d +2pudi - pud + pdin + 201ds
2(1 + pud) 1+ @ud 1+pud 1+ @ud
—h' [Puuld o
< Aruul
S 0t pud) M T T pad™
« 2|1y ld + 2|pylld d+ @|di|+2 d
n Ot P10l |Pul| 1\ul+|<ﬁ11| @ldi] + 2[p1]di]
2(1 + pud) 1+ pud 14 @ud
1
<——wi<0 5.39
= T16(1+ 2My) T (5:39)
since ws is sufficiently large and d is sufficiently small. Moreover, for i = 1,...,n, we can get
| = |2 (P1: + P1rutli + Pintn + Yuwtiui)d + odi; + Dipd; + Dipdy
v 14+ pud 14+ pud
_ =R ui + aodi]wr (@10 + @rutti + Qiuur + puutiui)d + pdi; + Dipd; + Dipd,
2(1 + @y d) 1+ ¢ud
< Cowsl. (5.40)
 Ollog IEDZW
Denote F = %. Then we have
(IDw?)i; — (1Dw]*); ((Dw); p
Gij = - Ruij + houiu, dijs
! | Dw|? |Dw[?  [Dw]? g Tt oty
and

~ ij FI(1Dw|?)i; iy (Dw[?)i (([Dw]?); — (IDw]*),
0> S FiG; -G, = Y _ i : -
> T | Dw|? [Dw|*  [Dw|? | Dw|?

ij=1

+ Fij [h'uij + h“uiuj + aodij] — h/ut

_2F (22 p—2 Wpitrpj + wiiwy; + wiwy] r
w? wy Wi wq

ij 211)11‘ 2w1j _ 27.U1t

+ FZ] [h'uij + h“uiuj + O[()dij] — h/ut

2F w2 1 . 2wq; 2wy, »
> Drig St 2 pig SO ST R 4 B g+ aodyg) — W
wy w1 2 wy Wi
2F T w2 1 ..
= W5 aWig iy [h’ui + Oéodi] [h’uj + aodj]
w1 w1 2

+ W [(k = 1) — ug] + FY[R" uu; + apd;;]
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> 2Fij’ll)1ij _ 2’Ll)1t

+ 0 [(k = 1) = u]

w1 w1
. 1 1
+ FY |:<h” — §h/2) UUj — aoh,diu]' + Oé()dij — §Oéodidj:|.
It is easy to know

. 1 1
FY |:<h” — §h’2)uiuj — Oéoh/diuj' + Oéodij — §Oéodidj:|

{Fllu% - 22 |Fhu1ui] — aph’|Dul Z F' — ao(|D?d| + 1)

Z -0
2(1 4 2Mo) s .
1

n
> Fll 2 C F’LZ
= 3R1+2M,) T ;

From the definition of w, we know

2Fij’w1ij 2w1t 2

wq w1 w1

2
- w—l[(l + pud)urr + (Proue + Quutirug)d + @y urd]

2
+ w—F” [dpuuuuiujur + O(w?)]
1

Z —C4dF11’LU12 — C4’LU1 Z F“ — C4.
i=1
From (5.41), (5.42) and (5.43), we get
0> )Y FiIG,; -G,
=1
1

32(1 + 2Mp) v

From Lemma 2.5, we know
F11 Z s ZFVL’L7

where c3 = Z((:i:g n_i_H. Moreover, from (2.10) and (5.39), we have

o (D) ok (D?u)
Yoy Osomy] _ 1 Za[m]
7?;((3225)) Oui feu Oug
1 k—-11 -
> Fem o)
> 05w?(k_l_1).

Then we can get from (5.44), (5.45) and (5.46)
U]l(zo,to) §C5

So we can prove (5.17).

ij
> |:7 — C4d] FH’U}% — (Cg + C4)w1 ZF“ — C4.

Chen C. Q. et al.

(5.41)

Z ol

(5.42)

= —[(1+ pud) F7uij1 + (p1aF7uij + Quuvr FPuij)d + o0 FPu;5dy]

(5.43)

(5.44)

(5.45)

(5.46)
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6 C?-estimate

We come now to the a priori estimates of global second derivatives, and we obtain the following
theorem

Theorem 6.1 Suppose Q C R™ is a C* strictly convex domain, and u € C*(Q x [0,T)) is a
k-admissible solution of equation (1.1), satisfying (1.2) and (1.3). Moreover, if f satisfies (1.4)

or ug satisfies (1.5), then we have
sup |D%u| < M, (6.1)
Qx[0,T)
where My depends on n, k, I, 0, |D*ug|co, |Dulco, |u¢lco, ming f, |flcz and |p|cs.
Following the idea of Lions—Trudinger—Urbas [35] (see also Ma—Qjiu [36]), we divide the proof
of Theorem 6.1 into three steps. In step one, we reduce global second derivatives to double
normal second derivatives on boundary, then we prove the lower estimate of double normal
second derivatives on boundary in step two, and at last we prove the upper estimate of double

normal second derivatives on boundary.

6.1 Global C? Estimates can be Reduced to the Double Normal Estimates

Lemma 6.2 Under the assumptions in Theorem 6.1, then we have

sup |D%u| < Cp (1 + sup \u,,,,|)7 (6.2)
Qx[0,T) 20 x[0,T)

where Cg depends on n, k, 1, Q, |D?ug|co, |Du|co, ming f, |flc2, and |¢|cs.

Proof Since Q is a C* domain, it is well known that there exists a small positive universal
constant 0 < p < {5 such that d(z) € C*(€2,) and v = —Vd on 9. We define d € C*(Q) such
that d = d in STH and denote

v=-Vd inQ.

In fact, v is a C3(Q) extension of the unit outer normal vector field on 9Q. We also assume
0eq.

Following the idea of Lions-Trudinger—Urbas [35] (see also Ma—Qiu [36]), we consider the
auxiliary function

K
o, £,6) = uge —v'(x,£,6) + | Dul® + T |af?, (6:3)

where v/ (z,t, &) = 2(£-v)¢' - (Dp—w; DVY) = alug+b, & = E—(&E-v)v, al = 2(6-v)(E pu—¢ D)),
b=2(¢- V)f’lcpl, and K is a positive universal constant to be determined later.
For any fixed & € S"~!, we have
Flvij —vp = Fluijee — wee — (Fvj; — vp)

n

+2uk(Fijuijk —utk) +2Fijuikujk -l—KlZFii, (64)
i=1
. [ Uk(Dzu)
where F¥ =: 82-@%) . Direct calculations yield
ij

vy = aluy + a' gup + by > alugy — O,
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and
Fv; = Flalw; + ol gyup + 20’ jug; + big]
n
< Y [alu“j + 2al,iulj] + Cg Z Fi,
i=1
Hence

Fijﬂij — V¢ Z Fijuijgg — Utge — al(Fijulij — ult) + 2uk(Fijuijk — utk:)

n

—2d' i Fuyj + 2F9ujugp + (K1 — Cs) ZFii -
i=1
> —F7 M eupe + %ugg — Fd! ;al ; + (K; — Cg) Z F — ¢y
i=1

> f—;v-i-(fﬁ —C1O)ZF“—09
i=1
fu
> —v,
- f

if we choose K sufficiently large. So maxq o, v(z,t,§) attains its maximum on d,(2x [0, T7).

(6.5)

Hence max(qxjo,1))xsn—1 v(,t,§) attains its maximum at some point (xo,to) € 9,(2 x [0,7))
and some direction & € S If tg = 0, then |D?u(xg,to)| = |D?uo(z0)|, and it is easy to
obtain the estimate (6.2).

In the following, we assume ¢y € (0,T).

Case a & is tangential to 09 at .
We directly have & - v = 0, v’ (2, to,&) = 0, and wug ¢, (0, to) > 0. In the following, all the
calculations are at the point (xq, o) and & = &.
From the Neumann boundary condition, we have
uvt = [ + v Wy
=l [Dj(l/lul) — Djl/lul] + Viyjylulj
=D — Dt + vV, (6.6)
So it follows that

! !
upy” = [P 4+ VP uyqv

= D, (uliul) — uliDqu] + l/puquliqul
=cPDy(c“Djp — c”uleZ/l + y’yjylulj) — cpqu“unl + prqyluliq. (6.7)
Then we obtain

n
3 l
Uggeor = Y &6y

ipl=1

n
, g g . i . .
= E &8P Dy (" Djp — M wDjv' + vV viugj) — Pluy Dt + vP vty
ip=1

=Y &&l[Dy (¢ Dy — cTuDt + vy uy) — w D]
=1
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= £63(c" Dy Dy + Dyc Djip) — €05 urg Dy + &€ Dgv s
— §&0 Dy (7 Dy yuy — E5€Guri D!
< Pullgogy — 2€6ul£oDiVl + g(i)gquViuuu - Ch1. (6.8)

We assume &y = ey, it is easy to get the bound for wuy;(zg, o) for ¢ > 1. In fact, we can assume
¢(e) = 1229 Then we have

14e2
dv(fo, th E(E))

0= de le=0
= 2y, t) S| o) - LD
= 2uy9(wo, to) — 20 (D1 — ulDlul), (6.9)
S0
|ura (20, to)| = [ (D1p — wD1w')| < Cha. (6.10)
Similarly, we have for all i > 1,
[u1i(zo, t0)] < Cha. (6.11)

So by the strict convexity of 2 and ¢, < 0, we have
Ugoeor < Pullgngy — 2D1I/1U5O§0 + 013(1 + |’U,w,|) < —2Kminu50§0 + 013(1 + ‘uuu|); (612)

where Kmin is the minimum principal curvature of 9 such that Div' > kmin > 0. Then
combining the above with the Hopf lemma, (6.6) and (6.11),

0 < v, (o, to, o)
= Ugygow + 2ui§0Dj§0iVj — d'uyy — Dyatuy — by, + 2uiug, + Ky (z-v)
< Ugpeor + Clra

< —2Kminlgoe, + C13(1 + |upy|) + Cha. (6.13)
Then we get
tgoto(30:10) € 5 (C1a + Cua)(1+ o), (6.14)
and
luge (2, t)| < (n— 1) Uge (1)

max
(2x[0,T))xSn—1

<(n-1 v(z,t,8) + Ci5| = (n — 1)[v(z0, t0,&0) + C15]

max
(X [0,T]) xEn—1
< (n = Dlugyg, (w0, to) + 2C15]
< Cr6(1 + Jupul). (6.15)

Case b ¢, is non-tangential.
We have &y -v # 0 and write £y = a7+ [fv, where T is a tangential vector and o = &7 > 0,
B=E& -v#0,a?+ B2 =1and 7-v=0. Then we have
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Ugogo (x0,t0) = 06211177— (wo,to) + ﬁQUVV (o, to) + 2aBur, (20, t0)
= &®ur- (20, t0) + 2wy (20, to) + 2a8[Dipr" — u; Dv' 7]
= 0427)7-7' (I'Oa tO) + ﬂsz’ (1'0’ to)

K , o
— |Dul? - 71|x|2 +2a8(D;pr" —ujDi’ )

K
= a®vrr (20, to) + Bvu (20, to) — | Dul? — 71|x\2 + 0/ (20, to, &) (6.16)
Hence
v(z0,t0,&0) = a?v(z0, o, T) + B20(20, 0, V)
S a2U($0,t0,§0) +52’U($0,t0,y), (617)

where the inequality follows from that v(xg, to, ) attains its maximum at the direction &y. Since
8 # 0, we finally obtain

v(zo,t0,&0) = v(20, to, V). (6.18)

This yields
Ugog, (o, to) < v(20,t0,80) + C15 = v(o, 0, V) + Ci5 < [uw| + 2C15. (6.19)
Similarly with (6.15), we can prove (6.2). O

6.2 Lower Estimate of Double Normal Second Derivatives on Boundary

Lemma 6.3 Under the assumptions in Theorem 6.1, then we have

i f 12% Z _C 9 620
ool 1 17 (6.20)

where Ch7 is a positive constants depending on n, k, 1, Q, |ug|cz, |Dulco, |ut|co, min f, |f|c2
and |p|cz.

To prove Lemmas 6.3 and 6.5, we need the following lemma.

Lemma 6.4 Suppose Q C R™ is a C? strictly convex domain, and u € C%*(Q x [0,T)) is a

- a1 n‘k(D2u)
k-admissible solution of parabolic Hessian quotient equation (1.1). Denote F* = [Oga‘;i:fz“) ] ,
and
h(z) = —d(z) + d*(z), (6.21)

where d(x) = dist(x, Q) is the distance function of Q. Then

Z Fih; > CG(ZF“ * 1) in Qy, x [0,T), (6.22)
1

ij=1 i=
where Q,, = {x € Q : d(x) < p} for a small universal constant . and cg is a positive constant
depending only on n, k, I, Q and co (here co is defined in (4.2)).
Now we come to prove Lemma 6.3.
Proof  Firstly, we assume infyqy(o,7) U,y < 0, otherwise there is nothing to prove. Also, if

—infaqx(o,1) Uvw < SUPgax[0,T) Ury, that is suPgq 0.1 [Uww| = SUPsox [0, Uvw, We can easily
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get from Lemma 6.4

— inf  uy, < osup  uy, < Ch.
o0x[0,T) 29x[0,T)

In the following, we assume —infaqx(o,1) Uvy > SUPsox[0,7) Uvw, that 18 SUPygy(o.7) [Uvw| =
—infaaxjo,1) Upw. For any Ty € (0,7), denote M = —minggxo,7,] Ury > 0 and let (x1,%1) €
9 x [0, Tp] such that minpo (o, 7,] Uwr = Upw (21, t1).

Now we just need to show that the test function P(x,t) defined below is non-positive in
Q, x [0, To]

P(z,t) = [1 + Bd(2)][Du - (—Dd)(z) — p(z, u)] + (A + %M) h(z), (6.23)
where
B = max {% 5n (2nmax + ) (576 } (6.24)

(6.25)

C (k-1
A:max{Al,Ag,L()}‘
Ce

It is easy to know that P < 0 on 0,(€, x [0,To]). Precisely, on 092 x [0,T}], we have
d=h=0and —Dd = v, then

P(z,t)=0 on 90 x [0,T]. (6.26)

On (09, \ 09) x [0,Tp], we have d = 1, then

1
Ple,t) < (14 ) (Dul + o+ (A4+ 330 ) (1)
1

< Clg — §,LLA < 0, (627)

since A > 2p7*Cig =: A;. On Q,, x {t =0}, we have t =0, and 0 < d < p. For every = € Q,,
there exists y € 0Q such that = y + d(x)v(y). Thus we have

Dug - (=Dd)(z) — p(x, uo(x))

(
= Dug - (=Dd)(x) — Dug - (=Dd)(y) + Dug - (=Dd)(y) — ¢(x, uo(z))
= Dug - (=Dd)(z) — Duo - (=Dd)(y) + ¢(y, uo(y)) — ¢ (x, uo(x))
= D[Dug - (=Dd)](2) - (z — y) = (Dg)(w, uo(w)) - (z — y)

d(z)v - {D[Dug - (=Dd)](2) - v = (D) (w, uo(w))}.
Now we obtain
|Dug - (—Dd)(z) — ¢(x,uo(2))| < Cd(z) in Q. (6.28)
where C' is a positive constants depending only on [ug|c2(q), [¢lc1(a) and Q. Therefore

P(e.0) < (14 A|Dus - (~Dad)(a) ~ ple o) + (4+ 5 ) () + E(a)

< O(1+ A)d(x) ~ ()
<0, (6.29)
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where we use A > 2C(1 + 5).
In the following, we want to show that P attains its maximum only on 9 x [0, Tp]. Then

we can get

1
OSPV(l'l,tl): |:U,/V CL’l,tl Zu] ju VQO:| + <A+ 2M>

< min uW—|—C’+A+—M,
a0 x[0,To] 2

hence (6.20) holds.
To prove P attains its maximum only on 9Q x (0, Tp], we assume P attains its maximum
at some point (zo, %) € Q, x [0, To] by contradiction. Since P(x,0) < 0 in Q,, we have ¢y > 0.

Rotating the coordinates, we can assume
D?u(zq, 1) is diagonal.
In the following, all the calculations are at (g, to). Firstly, we have

0=F
= ﬂdz < — Zujdj - QO) + (1 + 5d) |: — Z (Ujidj + Ujdji) — Qi — @uui} + <A + ;M) hl
J J
:ﬁdl<_zu]d] _50) +(1+ﬁd ( uu % Zu] ji — Pi — quuz)
J
+ (A+ ;M> hi, (6.30)

0< P, =(1+3d) ( Zuﬁd <puut), (6.31)

and

0> P” = ﬂd”(— Z’u]'dj - (,0) + 26d1|: Z uﬂd +’LL] ]2) — Qi — gOu’U,Z:|
J

J

+ (1 + 8d) [ — Z (ujiidj + 2ujidji + uidji) — Pii — 2Pt — Puutl; — sﬁuuu}
J

+ (A g0 )
= ﬂdu( =D uid; — 90) + 2ﬂdi< uiid; Zu] i — Pi — wuuz)
J
(1+ 3d) ( Zum — 2uy;d;; Zu] i — Pii — 2Pl — gouuu gauu“-)
J
+ (A + §M> hii
> —2ﬁu“—d? + (1+ Bd) ( Zuj“ — 2u;d;; wuuii)

<A + ;M> ~ Ch, (6.32)
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where Cpg is a positive constant depending only on 3, |Dulco(qy, |¢[cz and Q.

o . [1 Uk(Dzru)
Since D?u(xg, ) is diagonal, we know F'*/ = 0 for i # j, where F%/ =: 825;32 Y Hence
0>> F'P;—P,
i=1
> =2p Z F“uzzdzz 1 + Bd ( Z F u]md -2 Z ad uzz it — Pu Z F“uzz>
i=1
@+AOZF“W%@ZW’1+M<—ZW%+W>
J
i=1 =1
1 L
+ {<A+ 5M)cﬁ —020] <2F+1> (6.33)

where Coo depends only on n, k, I, 3, Q, |ut|co, [log flor, [Dulcoqy, and [p|c2.
Denote B = {i : 8d? < 1, 1 <i<n}and G={i:pd? > 1 1<i<n} We choose
8> i > 1, s0

1 1
d? < —=~|Dd]*, i€B. (6.34)
n o n
It holds d? <1 =|Dd|?, and G is not empty. Hence for any i € G, it holds
i€B ™1
1
d? > — 6.35
P> (6.3)

and from (6.30), we have
u“——l_Zd A—I—lM +5(*Zj“jdj_§0)+*Zjujdji—DiSO
14 4d 1+ 8d d; '

We choose A > 53(|Du|co + |¢|co) + 5v/nB(|Du|co|D3d|co + |p|cr) =: Aa, such that for any
ieG

(6.36)

B(=22 uidj — ) =3 ujdj; — Digp A (6.37)
14 5d d; 5
then we can get
6A M A
Also there is an ig € G such that
1 1
d?> > Z|Dd]* = ~. :
2 > ~|Dd* = (6:39)

From (6.33), we have

0> FiPy— P> =28 Fluyd; —28)  Flud;
i=1 i€eG i€B

w;; >0 ;<0
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+ K/H ;M>c6 —020] (f:F+ 1)

i=1

> 283 Z Filugd? — 28 Z Flugd? + 4K max Z Fiiy,

i€G 1€B u;; <0
1 LR
+ KA + §M> c6 — 020] (; Fii 4 1), (6.40)

where fpax =: max |D?d|. Direct calculations yield

y L 28 . .
—252F”u”df Z —QﬂFZOZOUiOiOd?O Z —EFZOlOUiOiO, (641)
i€G "
and
y y 92 y
-9 i, g2 o i, g2 _Z i,
BY Flugdi>-28 % Fludi>->~ 3 Fluy
i€B 1€B,u;; >0 1€B,u;; >0
2 y 2 y
> —— Fru;=——k—1— Mg |- ~
> 25 p n{kz ZM} (6.42)
ui;>0 i3 <0
For w;,;, < 0, we know from Lemma 2.5,
Fioio > ¢ Yy " F*", (6.43)
i=1
So it holds
- [%3 2/6 ioio (X3
0> FUPy > === Fu;, + 4KW+ > Flug
i=1 " ;<0
[<A+ 2M>C5 —020— Z(k—=1) } (ZF”+1)
286 A+M
> _ﬁ er + ZF“ —~ <4nmax - )06(1 + M) ZF”
i=1
> 0, (6.44)

since 8 > 5n(2kmax + )Cﬁ. This is a contradiction. So P attains its maximum only on
0 x (0, Tp]. The proof of Lemma 6.3 is complete. O

6.3 Upper Estimate of Double Normal Second Derivatives on Boundary

Lemma 6.5 Under the assumptions in Theorem 6.1, then we have

sup Upy S C’217 (645)
o0 x[0,T)

where Co1 depends on n, k, 1, Q, |ug|cz, |Dulco, |ut|co, min f, |flcz and |¢|c=.
Proof  Firstly, we assume supyq o, 1) uvw > 0, otherwise there is nothing to prove. Also, if

SUPsox[0,1) v < — infaax(0,7) Uvw, that is supso (o 1) [ty | = —infaoyx o, 1) Uy, We can easily
get from Lemma 6.3

sup Uy, < — inf  wu,, < Cyr. (6.46)
a0x[0,T) 0Qx[0,T)
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In the following, we assume supyq (o) Uvw > — infaqx(o,7) Uvw, that is supsg o,y [tv| =
SUPsox[o,1) Uvv- For any Ty € (0,7'), denote M = maxaox(o,1,] vy > 0 and let (x1,t1) €
0 x [0, Tp] such that maxpqxjo,7,] Uvy = U (T1,11).

Now we consider the test function

P(z,t) = [1 + Bd(z)][Du - (—Dd)(z) — o(z,u)] — (A + %M) h(z), (6.47)

1 1
3 —max{ on <2nmax + ) G }
po2 €1

A =max {Al,Az,A& Ay, — Ca }
C

where

Similarly, we first show that P > 0 on 0p(Qy % [0,Tp]). Precisely, on 992 x [0, Tp], we have
P(z,t) = 0. (6.48)
On (09, \ 02) x [0,Tp], we have d = p1, and then

Pla,0) 2 = (14 Au)(1Dul + 1) + (A + 30 ) u—1)

1
— Cis + 5pA > 0, (6.49)

since A > 2u~'Cig =: A;. On Q,, x {t = 0}, we have from (6.28)
P(a,0) 2 (14 9D (~Da)a) — gl ua(a)| + (44 ) fdla) ~ (o)

—C(14 p)d(x) + gd(x)
>0, (6.50)

where we used A > 2C(1 + ).
In the following, we want to prove P attains its minimum only on 9 x [0,7;]. Then we

can get

1
OZP({Ehtl) |:Ul,y xl,tl Zu] JD—D,,QO:| <A+ §M)

> maxu,, —C —A— lM, (6.51)
o0 2
hence (6.45) holds.
To prove P attains its minimum only on 9Q x [0, Ty], we assume P attains its minimum at
some point (T, to) € Q,, x (0,Ty] by contradiction.

Rotating the coordinates, we can assume
D?u(Zg, to) is diagonal. (6.52)

In the following, all the calculations are at (Zg, o).

Firstly, we have

0=F
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1
:ﬁdl(—;ujdj—ga) (14 pd) [ Z (ujidj + u, ﬂ)—gai—gouuz} — <A+ §M>hz

J

= 6d1< Z u] ) 1 + ﬁd ( Ugid; Z Uj ji — Pi — uuz>
— (A + §M> h;, (6.53)

J

and
0< Py = fBdy ( - Zujdj - @) + 25611{ Z (ujidj + ujdj;) — @i — @uuz’]
J J

+ (14 4d) [ - Z (wjiidj + 2ujidji + widji) — Pii — 2Pt — Puutl — Spuuii:|

J

1
(4 50)
= ﬁdn< - Z ujdj - Lp) + 26dz< Ugid; Z u] ji — Pi — (Puuz)
J

1 + ﬁd ( Z uj’LZ — 2u;dy; Z u] jii — Pii — 205U — <Puuu @uuii)

J
9 1
< —2Buyud? + (1 + Bd) Zum = 2uiidii — puis | — ( A+ 5M ) his + Caa. - (6.55)

Since D?u(Zg, to) is diagonal, we know F = 0 for i # j. Hence

0< iF“ﬁu - P,
i=1
< _2ﬂiF“uud? 1+ﬂd < ZF ujZ’L QZF Ui ‘PUZF“uu>
(A+ M) ZF”h” +CQQZF” - 1+ﬂd)<_ Zujtdj - Sauut>
J

i=1

i=1 i=1
1 LI
+ [— <A+ §M>06+023] (Z;FJr 1). (6.56)

Denote B = {i : fd? < %,1§i§n} and G = {i : Bd? > %,1§i§n}. We choose
ﬁ2i>1,so

1

1
<= = E|Dd\2, i€ B. (6.57)

K2
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It holds >, 5 d? <1 =|Dd|?, and G is not empty. Hence for any i € G, it holds

1
2
2 > :
e (6.58)
and from (6.53), we have
_ Y ugd; — Y uidy; — D
Uz‘izl 2d A lM +ﬂ( Z] id; — ) Z] j&ji z‘P. (6.59)
14 8d 2 14 8d d;

We choose A > 50 (|Dulco + [¢|co) + 5v/nB (|Dulco|D?d|co + |@|cr) =: Ag, such that for any
ied

=S weds — =S wsdis — D
B( Z] ujd; — ) Z] Ujlyji iP < é7 (6.60)
1+ 06d d; 5
then we can get
3A  2M 6A M
— <y < —+ =, Vied. 6.61
5 Ty SMisTy Ty VIE (6.:61)
Also there is an 79 € G such that
1 1
d? > =|Dd]* = ~. 6.62
2> |Ddf = (6.62)

From (6.56), we have

0 S i Fiiﬁii — ﬁt S —262 F”u”df — 26 Z F”u“df
i=1

i€G i€B
uq; >0 uq; <0

+ {— (A-l—%M)cG—i—ng} (ﬁ;FH)

< =28 Flugd? =28 Fluid] + Akmax Y, Fus;

1€G i€B uq; >0
1 oo
+ {— (A+2M>c6+023} (Z;FH) (6.63)

where Kpax =: max |D?d|. Direct calculations yield

g - 28 . .
—28) " Flluyd; < —28F""u;;,d7 < —gFu (6.64)
ieG
and
g g 2 g
—252 Fily,d? < —28 Z Fluyd? < —= Z F"uy
i€B 1€B,u;; <0 " i€ By <0
2 g
<--= Z F*uj;
" u;; <0
2<k - > F" > (6.65)
= — — — (L — Wi |- .
n
wuq; >0
So it holds

0= FiB - R

i=1
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2% .. 2 )
S _WFszUiOiO + (4Hmax + E) Z F”uii

uq; >0

+ {— (A+%M)c6+023} (iFH) (6.66)

i=1
We divide into three cases to prove the result.
io=1€ G, and ugy > -+ > Upy,.

CASEI wup, >0.

In this case, we have

2 g 2
4 max — F” i — 4 max F“ 1 — 4 max — k—l . 6.67
(s 3) 32 = (st 2 2o (st B0 o

Without loss of generality, we assume that

ui; >0

Hence from (6.66) and (6.67)

LS ~ 1 L
0<> F'P;— P, < <4nmax+ ) > Fllug + [ <A+§M)c6+023} (ZF“—i—l)
i=1 i=1

w;; >0
1
S k(4limax + 1) + |:— (A + EM)CG + 023:|
<0, (6.68)
since A > %:W =: As. This is a contradiction.
CASE 11 Unn < 0 and —Upn < mun
In this case, we have
Ui + 2 > Pl =(8 + 2 (k=i > Fiiuy
Rmax n Uj; = | ORmax n Ui
;i >0 u;i; <0
2 =L
<4max - k—1- nn "
() (1=t )
n .o
<k(4kmax + 1) + 1—0u11 Z; i
c6 (64 MY &
< =6 [ 242 - i
k(4nmax+1)+10(5 + 2);1? (6.69)
Hence from (6.66) and (6.69)
0<> FiB, - B
i=1
2 1 noo
< (4Kmax + E) Z Fly; + [ (A-i- §M>C6 + 023} (ZF” + 1)
u;; >0 i=1
6A M\ < i 1 L
k(4femax+1)+ﬁ< >2F +{—<A+§M>c6+023}(;F +1)
<0, (6.70)

since A > max{ k(4”"‘a"czl)+023, 2%%;23} =: A4. This is a contradiction.
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CASE III  u,, <0 and —uy,, >

C
= 10(4nmf;x+%)
In this case, we have ui; > % + %, and uge < Cg(1 + M). So

(AR

2
> ——ugo. 6.71
Uil = 5Cs U22 ( )
Let 6 = % and € = m, then (2.12) in Lemma 2.6 holds, that is
n -
F'' > ) FY (6.72)
i=1
h _nk=l_ % a0d co = mi e?s? <*6_}. Hence from (6.66) and (6.72
where ¢1 = 7= = and ¢o = rmn{2(n_2)(n_1)7 4(n_1)}. ence from (6.66) and (6.72)

oo ) ) g
0< ZF”PM < —§F11u11 + (4/€max + g) Z Fuy;
i=1

w;; >0
1 oo
+ [— <A+§M)CG+CQS:| (;F“—i—l)
268 [(3A  2M\ <~ oo
< 27 Dl =/ 11 17
= ncl( 5 + 5 );F +(4Hmax+1)C6(1+M);F
<0, (6.73)

since B > 5n(2Kmax + 1)(5—16 This is a contradiction.

So P(z, t) attains its maximum only on 9 x [0, Tp]. The proof of Lemma 6.5 is complete. [J

7 Proof of Theorem 1.1

For the Neumann problem of parabolic Hessian quotient equations (1.1), we have established the

lug|, C°, C and C? estimates in Section 3, Section 4, Section 5, Section 6, respectively. Then the

equation (1.1) is uniformly parabolic in Q x [0, 7). Due to the concavity of operator log (Z’;(())\‘)))

in 'y, we can get the global Holder estimates of second derivative following the discussions
n [34], the uniform estimates of all higher derivatives of u can be derived by differentiating
the equation (1.1) and apply the Schauder theory for linear, uniformly parabolic equations.
Applying the method of continuity (see [15, Theorem 17.28]), we can get the existence of
smooth k-admissible solution u(z,t).

By the uniform estimates of u and the uniform parabolicity of equation (1.1), the solution
u(z,t) exists for all time ¢ > 0, that is T' = +o0.

Following the discussions in [42], we can obtain the smooth convergence of u(x,t). That is,

lim wu(z,t) = u>(z), (7.1)

t—+4oo

and v (x) satisfies the equation (1.7).
If f satisfies (1.4), we know from (3.2)

Jug (2, 1) | < Coge™". (7.2)

Hence the rate of convergence is exponential.
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8 Proof of Theorem 1.2

In this section, we prove Theorem 1.2, following the ideas of Schniirer—Schwetlick [43], Qiu—Xia
[41] and Ma—Wang—Wei [38].

8.1 Elliptic Problem

Firstly, we solve the following elliptic problem, which is the key of proof of Theorem 1.2.

Theorem 8.1 Let () is a strictly convex bounded domain in R™ with smooth boundary. Assume
that ug is given as in Theorem 1.2 and f is a positive smooth function, f € C°°(Q). Then there

exists a unique s € R and a k-convex function u € C>®(Q) solving

o 2
ai (8.1)

Moreover, the solution u is unique up to a constant.

Proof To find a pair (s,u) solving the above equation, we consider the following approximating

equation
(Dzu) +
= f(z)e®™, ze€Q,
(*c.5) (D2u)
ou
W = p(z), x € 0.
Let u. s(x) be the k-admissible solution of (k. ) if the solution exists. Then we have

s

Ue,s(T) = ue 0() — o

Thus ue,s(z) is strictly decreasing with respect to s.

In the following, we will prove that for any € > 0, there exists a unique constant s. which
is uniformly bounded such that |uc s_|cx(q) (k is any positive integer) is uniformly bounded.
Thus by extracting subsequence, we have s., converges to s and u. s, converges to a solution u

of our problem (8.1).

Step 1  If we choose M sufficiently large, we have that ul = ug + % is a supersolution of

(%c,0) and uz = ug — % is a subsolution of (x. ), i.e., uZ < u.o < uf. Indeed, we have

ﬂ(D2u€70)e_€us,0 _ (D2 +) —eut
gl gy
1 d +
- [ @ { (D2(tuo + (1 — t)ud ))e==tueot =00 | gy
0
=q¥ (ue o — uj)” — c(tueo —ul), (8.2)

where

1 Ik 2 _ +
Clij _ / a( o']; (D (tua,O + (1 t)ue )))e_e(tu5’0+(l_t)u?)dt
0 uij 7

is positive definite and
1
c:e/ T (D2tn + (1 — oo et 00 5 0,
o Ol

On the other hand, by the equation

Ok 2 —cu 2, 4\ —cul
— (D ugp)e =0 — D=u
X (D?uz) % (Dr)e
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1 _M— Ok
= f(z)[1— ——e Msw0 (D% >>0, 8.3
) (1= g2 2 (D0 (53
where we choose M = 1 + max |log f| + max |ug| + max | log (
Combining (8.2) with (8.3), we obtain

ok (D2u0)

DT )| and e < 1.

a(ueo —ul)ij — c(ueo —ut) >0, zeQ,
O(uco—ul)  O(ueco—uo)

£ = £ =0, x € 0.

The maximum principle yields that u. o < ud in Q. Similarly, u. o > v in Q. Thus we have

Ue M < Up < Ue,—ps in 2. By strictly decreasing property of u. s, for any € € (0,1), there exists
a unique s € (—M, M) such that u. s_(yo) = uo(yo) for a fixed point yo € Q. We also have
o Q) <2M + E|UO|CO(Q) < 3M.

lete,s.

Step 2 We prove that for ¢ > 0 sufficiently small, |Du, s.| < Cas, where Cos is a positive
constant independent of |uc s_[co(q)-

2
~ . ( o (D7u) )
We denote F'7 =: %275’2”) By the equation, we have
ij

2
o7

En:ﬁu _ (n—k+1)op_10,— (n—1+1)oro11
=1

k-1 Tr1(\)
(n—k+ 1)7@(/\)

2 ¢(n, k) (%{3) oS

-1 k—=l-1

= ¢(n, k)fk;*l e F-T (setew)

We use the following auxiliary function
G = log|Dw|* + ah,

where w = u — @h, h is the defining function with |Dh|?> < k; and D*h > kol, and a =
min{2xks, Z—f} Suppose that G attains its maximum at the point 5. We claim that xq € Q.
In fact, z¢ € 012, we assume xo = 0 and choose the coordinate such that 09 N Bs(zg) can be
represented as (2, x,,) with z, = p(z’), where p(z’) satisfies p(x(,) = 0 and D,/ p(z() = 0. Also
we have v(zg) = (0,...,0,—1) = Dh(zp), and then wy(zg) = up — ¢ - (=1) = —u, + ¢ = 0.
Rotating the z'-axis, we can further assume that wi(z9) = |Dw|(z). Moreover we have
ui(xo) = wi(xo) and u;(zo) = wi(xg) =0 for 2 <i<n—1.
By Hopf lemma, we can get

0> —— tll
- v (o) 8xn( )
2WE W, 2wy,
= hn = —
| Dw|? ta wq “

2u1n . 2@1hn + 2Sanhl + 2<Ph1n o
w1 w1
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_ 2u1y, _ —2p1 + 2ph1y, _
w1 w1
=2l —a> 2k —a>0,

where we have used the equality u,; = upr® — Y1 = wivty + v — 1. Contradiciton.

Hence z( € €2, and then we have

2WE Wi 2w1;
0=G; = —F 12“ ah; = h—f—ahi, i=1,...,n.
| Dw| w1
Hence
W1 1 1
’U}h = —§ahi, Wi = —§w1ahi, i:l,...,n.
1
Since
2WpWhij + 2WriWr;  AWpWe W W5
G — J Jj 94 ahs
g Du? Duwpi
2w 2WEiWi
= 14j —+ k’LQ ki — a2hihj —|—ahl~j.
w1 w1
Then
o FUyys 2F Y ~. ~.
0> FiGQi = 1ij + ];Z kj —a2F”hihj +G,thij
w1 wy
2Fwy;  2F 9wy un ~i ~ii
> 1ij + 211 1j —G/QFUhih]‘ +G/Fz‘7hij
w1 w
1

VF a1 — 2F (R, 1 o~ o~
— ij1 ($hijt §a2F”hihj + aF" h;;

w1
2efur + f1)es ™ Cosx~mu 1 oz =i
> - — " — —a*FYh;h; FYh,;;
o w1 w1 ; 20, ? J+a ]
>

1 &~ LB
—6027—02810—2}7“-1—(1(/@2—?)ZF”
=1 i=1

1 o~
> —eCo7 + (ﬁ - 028_) ZFH,

2 wi/ 53
hence we can get wq(xzg) is bounded if we choose ¢ sufficiently small. Then we can get

|Duc .| < |Dwl| + |@]|h] < Ca.

Step 3  From the choice of s., we know w. 5_(yo) = uo(yo). Then we have that
|Ue,s|co@)y = te,s. (#1) < Ueps. (40) + [Due s, |col@1 — yo| = uo(yo) + [Duc,s. o1 — yo| < Cso.

And the second order estimate now holds by the same calculations in [8]. Thus we have the
higher order estimates as in [34]. Therefore by extracting subsequence, we have s., converges to
So0 and u. s, converges to a k-convex function ul which satisfies equation (8.1) with s = s.

0
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8.2 A Priori Estimates of (1.9)

In this subsection, we prove the following a priori estimates of (1.9).
(1) us-estimate.

Following the proof of (3.1) in Lemma 3.1, we can get
|ut(xvt)| § max |ut(x,0)| § CSla V(:L’,t) € x [OaT)v (85)

where C3; depends only on n, k, I, min f, |f|co and |ug|cz.
(2) |Du| estimate.
For any Ty € (0,T), we will prove that

_max |Du| < Csa, (8.6)
x[0,To]

where C3o depends only on n, k, I, Q, |Dug|co, min f, |f|cr and |p|cs, but is independent of
|u|co and Tp.
Since €2 is smooth and strictly convex, there exist a defining function h € C°() and

positive constants ag and Ag such that

h=0o0n 909, h<0in Q;
|[Dh|=1o0n 09, |Dh|<1in
0 < agl, < D*h < Apl, in Q.

Denote w(z,t) = u(x,t) — p(z)h(z), and we consider the following auxiliary function in
ﬁ X [0, To]

G(z,t) = log |Dw|* + ah,

where a = 4. Suppose that G attains its maximum at the point (zq,t9) € Q x [0,Tp]. If
to = 0, then the a priori estimate holds directly. In the following, we always assume ty > 0.
Firstly, we claim that zg € Q. In fact, xg € 02, we assume xg = 0 and choose the coordinate
such that 9Q N Bs(xzo) can be represented as (2/,x,) with z, = p(z'), where p(a’) satisfies
p(xzy) = 0 and Dy p(zy) = 0. Also we have v(zg) = (0,...,0,—1) = Dh(zg), and then
wn(20,t0) = un(To,to) — ¢ - (—1) = —u, + ¢ = 0. Rotating the z’-axis, we can further assume
that wi(zo,t0) = |Dw|(zo,to). Moreover we have uj(zg,t0) = wi(zo,to) and u;(zo,to) =
w;(xo,tp) = 0 for 2 < i <n —1. Then we can get

0> —%(xo,to) = %(%,to)
2W W 2w1p
= W + ahn = Tl —Qa
- 22Uy 2@1hn + Q@nhl + 2<ph1n
- w1 B w1 B
_ 2u1n —2¢1 + 2¢hy,
- w1 B w1 B

:2u11—a22a0—a>0,

k

where we have used the equality u,; = uxv™; — 1 = wuvly + pv™1 — 1. Contradiciton.
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Hence zy € 2, and we can choose the coordinate such that wy (zg,t0) = |Dw|(zo,%0). Then

we have
2 i 2w1; .
=G; = wkw;; + ah; = e +ah;, i=1,...,n,
| Dw| wy
and
0<G, = Zwkw;;t _ %
| Dw| w1
Hence
Wi 1 ,
= ——ah;, wy; =—=wiah;, i=1,...,n.
w1 2
Since
2WpWhsj + 2wwy; AW wiwg;
G.. = J J J + ah.:
Y |Dw|® | Dl K
2wy 2Wgiw,
= Wiij —+ Wk ;Uk] — azhihj + ahij.
w1 wy
5 s 250 . .
Denote F' =: ——zL—=—. By the equation and u; estimate, we have
”
Zn:F” _or(n—k+1)og_101— (n—1+1)oko11
i=1 o of
(D2 ) 7%
gR\u . P
ZC(TL, k) <m> = C(TL, k)f k—le k-1 Z Cg > 0. (87)
Then
i 2Fwy;  2FYwgwy; y y 2
0> FiiGH — Gy = =14 22 TORBK 2 piip 4 aF Ry — —2
w1 wy wi
2FVwy;  2FYwiwy i ” 2
> W1ij + 11)21 Wiy o aze]hihj +GF”hij . U1t
w1 wy w1
2F ;0 — 2F9 (ph)i1 1 . . 2
_ Ujj1 (90 )Jl__a2Fzghihj+anjhij_ﬂ
w1 2 w1
21/f  Css = pii 1 o) i
> - F* — —a*FYh;h,; FYh;
- owy w1 ; 2@ 7 ta J
21f1l/f 1 Q= i ( a) i
> ——— — (34— F"+alay— = "
hence we can get w1 (g, to) is bounded, and then (8.6) holds.
(3) |D?ul estimate.
Following the proof of Theorem 6.1, we can get
|D?u| < C35, V(z,t) € Qx[0,T), (8.8)

where C35 depends only on n, k, I, Q, |ug|cz, |Du|co, min f, | f|cz and |p|cs, but is independent
of |u|co.
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8.3 Proof of Theorem 1.2

(1) We first get a bound for the solution u of (1.9).
Now denote u™(z,t) = udfj(z) + s>°t, where uj is the solution obtained in Theorem 8.1,

then u®° satisfies

0o _ Uk(D2uoo) . _
1; = log (DT log f, (z,t) € 2 x (=00, 4+00),

gy = p(x), (z,t) € N x (—o0, +00), (8.9)
u™(z,0) = u(x), x e

Take Cs6 = maxg |uly| + maxgq |ugl, then
ugn(z) — Cs6 < u(z,0) = uo(z) < u>(z,0) + C36, Vz €
Thus by parabolic maximum principle we obtain
udy — Cs6 < u(z,t) <udi+ Cse, (x,t) € 2 x (0,4+00).
That is, we obtain the C? estimate of u
§°t — C37 < u(x,t) < st + Cs7,  (z,t) € Q x (0,400), (8.10)

where C37 = Cs + maxg \ugﬁ\

(2) We prove the solution u of (1.9) is longtime existence and smooth.

The C! and C? estimates hold as in Subsection 8.2, and the C° estimate is established as
above. Following the discussions in [42], we can obtain the existence of the smooth k-admissible
solution u(zx,t), and all higher derivatives of u have uniform bounds. By the uniform estimates
of u and the uniform parabolicity of equation (1.9), the solution u(z,t) exists for all time, that
is T = 4o00.

(3) Now we will show that u converges to a translating solution as t — ~+o0.

To obtain the convergence, we just need to prove that there exists a constant a such that

tlg-noo lu(z,t) — ugy(z) — s>t — alemq) = 0, (8.11)
holds for any integer m > 0.
Obviously, (ugy,s>) is a solution of (1.9), then (uZ§ + a,s*) is also a solution of (1.9).
We denote w(z,t) := u(x,t) — u>(z,t), then it satisfies

wy = aYw;;, (z,t) € Q x (0,400),

ow (8.12)
— =0, x € 0N

ov

where a¥ is positive definite. If there exists some time ¢y such that w is constant in Q x [tg, 00),
ie. u=u™in Q X [tg,00). Thus u is a translating solution. If for any ¢ > 0, w is not constant
in Q x [t,00). We claim that osc w(-,t) = maxg w(z,t) — ming w(z, t) is strictly decreasing. In

fact, for any t; < t3, there hold by the maximum principle and Hopf Lemma
max u(z,t1) > maxu(x,t2) (8.13)
Q Q
and

min u(x,t;) < minu(x, ts). (8.14)
Q Q
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Thus osc w(-,t1) > osc w(:,ta), i.e., osc w(-,t) is strictly decreasing. Hence we can get

lim osc w(-,t) =4d > 0.

t—o0

In the following, we prove § = 0. We define u’(z,t) := u(x,t + t;) — s°°t; for a sequence
{t;} which converges to co. Since (8.10), we have —Cs; + ts>° < u'(x,t) < Cs7 + ts*°. And
|ut|cr < C, for any k > 1. Hence, there exists a subsequence (for convenience we also denote) u’
such that u’ converges locally uniformly in any C*-norm to a k-convex function u*. Moreover,

u* exists for all time ¢ € (—o0, +00) and satisfies the following equation

ey oR(Dur) _
1; *— log o1 (D) log f, (x,t) € Q x (—00,+0), (5.15)
a—uy = p(x), (z,t) € 90 x (—00, +00).

So for any time ¢t € (—o0, +00), we have

osc (u* —u™)(-,t) = lim osc(u(-,t+t;) — s®t; — u™(-,t))
71— 00

= lim osc(u(-,t +t;) —u>=(-,t+t;))

11— 00

= lim osc(w(-,t+t;))

11— 00

=J4.
Namely,

max(u® — u*°) — min(v* —u™) =4¢ (8.16)
) o

holds for any time ¢t € (—o0, +00). It is easy to know u* — u™ satisfies
(U* - uoo)t = ij(u* - uoo)ijv (l‘,t) € x (_007 —‘rOO),
O(u* — u™)

ov

Then maxg(u* — u™) is decreasing with respect to ¢, and ming(u* — u*) is increasing by the

=0, (z,t) € 002 x (—00,400).

maximum principle. Hence from (8.16), maxg(u* — u™) and ming(u* — u>) are constants for
any time t € (—oo, +00). By the strong maximum principle and Hopf Lemma, u* — u™ is a
constant, and this implies 6 = 0.

Now, we have lim;_,., osc w(-,t) = 0, then there exists a constant a such that

lim max(u — u™) = lim min(u — u™) = a.
t—oo t—oo

Thus lim; .o |u(:,¢) =u> (-, ) —al oy = 0. The C'-norm convergence follows by the following
interpolation inequality
|DU|?;O(§) < C(Q)|U|CO(§)(‘D2U‘CO(§) + |DU|CU(§))

for v = u — u™ — a. The C*¥-norm convergence is similar. Hence (8.11) holds, which means the
solution u(x,t) converges to a translating solution as ¢ — +o0o. The proof of Theorem 1.2 is
finished.
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