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Abstract. For any bounded strictly convex domain Ω in R
n with smooth boundary,

we find the prescribed contact angle which is nearly perpendicular such that nonpara-
metric mean curvature flow with contact angle boundary condition converge to ones
which move by translation. Subsequently, the existence and uniqueness of smooth
solutions to the capillary problem without gravity on strictly convex domain are also
discussed.
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1 Introduction

In this paper, we are interested in the study of the evolution of graphs defined over
bounded strict convex domains Ω⊂R

n by the nonparametric mean curvature flow, whose
speed in the direction of their normal is equal to their mean curvature and with a pre-
scribed contact angle to ∂Ω.

Various results have been obtained for mean curvature flow of hypersurfaces with
Dirichlet boundary conditions [26], zero-Neumann boundary condition [15], [18] and
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general Neumann boundary condition [25]. We study the evolution of graphs for u =
u(x,t) with the speed depending on the mean curvature of the surface {(x,u(x,t)) :x∈Ω}
and with the prescribed contact angle boundary condition, that is,





ut=
√

1+|Du|2H(u) in Ω×(0,∞),

〈γ,ν〉=cosθ on ∂Ω×(0,∞),

u(x,0)=u0(x) on Ω,

(1.1)

where Ω⊂R
n, n≥ 2, is a compact domain with smooth boundary ∂Ω, θ : ∂Ω→R is the

angle (contact angle) between the graph and the boundary, given by 〈γ,ν〉=cosθ, which is
equivalent to uν=−cosθ

√
1+|Du|2, where ν is the unit inner normal of ∂Ω. Remark that

one may extend θ to Ω with θ ∈C∞(Ω). And u0(x) is also a smooth function satisfying
the compatible condition

u0,ν=−cosθ
√

1+|Du0|2 on ∂Ω.

While H is the mean curvature operator

H(u) :=div

(
Du√

1+|Du|2

)
,

and γ is the upward normal of the graph {(x,u(x,t)) : x∈Ω}, which is given by

γ :=
(−Du,1)√

1+|Du|2
,

and we denote by QT :=Ω×[0,T) for convenience.
For the prescribed contact angle boundary condition, a more general type of problem

is to study the following equation, which has an extra term F(x,u,Du) (some called the
transport term) compared to (1.1), i.e.

ut=
√

1+|Du|2H(u)−F(x,u,Du) in QT. (1.2)

Guan [14] proved the global existence of solutions to (1.2) with prescribed contact angle
condition for general bounded domain Ω. Recently, Zhou generalized Guan’s results to
the domain Ω on Riemannian manifold in [30].

As for studying the asymptotic behavior of u(x,t) in (1.2), Guan [14] or Zhou [30]
only obtained the convergence results for F(x,u,Du) with specific form, say F :=φ(x,u)·√

1+|Du|2 with φu ≥ c0 > 0, which excluded F ≡ 0. In [15], Huisken studied the fixed
vertical contact angle case of (1.1), i.e. θ(x)≡ π

2 , so uν = 0 on ∂Ω. By using the Sobolev-
type inequalities and an iteration method, Huisken proved that the solution u(·,t) of (1.1)
converges to a constant function as t→+∞. For the non-perpendicular case, Altschuler
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and Wu in [1] firstly considered the problem (1.1) with fixed contact angle boundary
condition in one dimension, and showed that u(x,t) converges to translating solitons.
Subsequently, they studied in [2] for two dimension case and proved that the solutions
of (1.1) converge to one which moves only by translation, under the condition that Ω⊂
R

2 is strictly convex and ‖Dθ‖C0 < min∂Ωκ, where κ is the curvature of the curve ∂Ω.
The convergence results in [1] and [2] are only known now for one and two dimension
cases respectively. In particular, the uniform gradient estimate is still unknown for higher
space dimension. It is an open question whether the results in [1] and [2] also hold for
higher space dimension? In the first part of this paper, we give a partial positive answer
to this question, when the contact angle is close to π

2 and the domain is strictly convex.
From above discussions, we rewrite (1.1) into the following equivalent form,





ut=
n

∑
i,j=1

aijuij in Ω×[0,T),

uν=−cosθ(x)
√

1+|Du|2 on ∂Ω×[0,T),

u(x,0)=u0(x) on Ω,

(1.3)

where aij :=δij− uiuj

1+|Du|2 and the other quantities are just the same as the ones in (1.1). Our

first main result is the following convergence theorem for (1.3).

Theorem 1.1. Let Ω⊂R
n (n≥ 2) be a strictly convex, bounded domain and ∂Ω∈ C3. There

exists ε0>0 depending only on the convexity of Ω such that if θ∈C3(Ω) satisfies

|cosθ|≤ ε0 <1, and ‖Dθ‖C1(Ω)≤ ε0, (1.4)

then the flow u(x,t) in (1.3) exists for all time and converges to a translating solution to the
following mean curvature equation





n

∑
i,j=1

aijuij=τ in Ω,

uν=−cosθ(x)
√

1+|Du|2 on ∂Ω.

(1.5)

That is, the solution of (1.3) converges to w(x)+τt as t→∞, which means that

lim
t→+∞

‖u(·,t)−(w(·)+τt)‖C0 (Ω)=0,

where (τ,w) is a suitable solution solving (1.5).

The crucial part of the proof is to derive an a priori estimate for the spatial gradient
of u(x,t), which is time-independent. This will be achieved by choosing an appropriate
auxiliary function and combining with the maximum principle. Our auxiliary function
and approach are motivated by methods used in [10, 24, 25, 27].
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Remark 1.1. When θ(x)≡ π
2 , Theorem 1.1 was firstly proved by Huisken in [15]. If one

denotes θ(x):= π
2 +γ(x), then condition (1.4) is equivalently reduced to: there exists ε0>0

satisfying
‖γ‖C2(Ω)≤ ε0.

It is worthwhile to notice that, when the contact angle θ(x)≡θ0 is a fixed constant, the
evolution equation (1.3) is related to the so-called mean curvature flow of surface clusters,
also called space partitions (networks, in the plane), see [3], [8] and references therein for
more interesting physical background. As a direct corollary of Theorem 1.1, we have the
following result for the fixed contact angle.

Corollary 1.1. Let Ω ⊂ R
n (n ≥ 2) be a strictly convex, bounded domain and ∂Ω ∈ C3.

Assume that θ(x)≡ θ0 ∈ (0, π
2 ] in (1.3), then there exists ε0 > 0 depending only on the

convexity of Ω such that if

0<
π

2
−ε0< θ0≤

π

2
,

the unique smooth solution u(x,t) of (1.3) converges to w(x)+λt as t→∞, which means
that

lim
t→+∞

‖u(·,t)−(w(·)+λt)‖C0 (Ω)=0,

where (λ,w) is a suitable solution to (1.5) with θ(x)≡ θ0 and τ :=λ.

In fact, the existence of solutions to (1.5) is closely related to the capillary problem.
Precisely, the capillary problem is referred to study the following equations.

{
H(u)=τ+ku in Ω,

〈γ,ν〉=cosθ on ∂Ω,
(1.6)

where k is usually referred to as the capillarity constant (see [8], Chapter 1). Results about
the positive gravity k>0 case are extensively studied and quite well-known. Ural’tseva
[29], Simon-Spruck [28] and Gerhardt [10] had obtained the existence results of (1.6) for
any dimensions. More results related to positive gravity capillary problem also could be
seen in [12], the wonderful exposition book by Finn in [8] and references therein. We only
discuss and focus on k=0 (gravity free) in (1.6) in the rest part of this paper, i.e.





div
( Du√

1+|Du|2
)
=τ in Ω,

uν=−cosθ
√

1+|Du|2 on ∂Ω.

(1.7)

If there exists a solution to (1.7) with constant angle θ ≡ θ0, integrating by parts on Ω

yields that

τ=

∫
∂Ω

cosθdσ

|Ω| =
|∂Ω|
|Ω| cosθ0. (1.8)

As pointed out by Concus and Finn in [6], Eq. (1.7) may not have any solution, even for
constant angle θ≡ θ0 ∈ [0, π

2 ]. In [12], Giusti proved the following results.
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Theorem 1.2 ([12]). Let Ω⊂R
n (n≥2) be a Lipschitz bounded domain. If θ0 ∈ (0, π

2 ] and there
exists ε0>0 such that

∣∣∣
|∂Ω|
|Ω| |Ω

′|−|∂Ω∩Ω′|
∣∣∣·cosθ0≤ (1−ε0)|∂Ω′∩Ω|, (1.9)

holds for all proper subdomains Ω′⊂Ω. Then there exists a solution u∈BV(Ω) solving (1.7) in
weak sense, with θ≡ θ0 be a fixed constant.

Nevertheless, one should note that the criterion (1.9) in Theorem 1.2 is often quite
complicated and difficult to be verified, since it involves infinitely many subdomains Ω′⊂
Ω. Subsequently, in 2 dimension, Giusti ( [13], Appendix) showed that (1.9) in Theorem

1.2 holds under the curvature condition 0<κ≤ |∂Ω|
|Ω| (this implies that Ω is strictly convex),

where κ denotes the curvature of curve ∂Ω. Also we mention the papers [7] and [23],
where Finn and afterwards Lieberman provided another interesting viewpiont to replace
criterion (1.9) with the existence of a vector field criterion. Based on those consideration
and motivation, we provide below with another sufficient condition for any dimension
(n≥ 2), which can ensure the existence of smooth solution to (1.7). Precisely, we obtain
the following result.

Theorem 1.3. Let Ω⊂R
n (n≥2) be a strictly convex, bounded domain and ∂Ω∈C∞. Assume

θ∈C∞(Ω), then there exists a small constant ε0 >0 only depending on the convexity of Ω such
that if θ satisfies

|cosθ|≤ ε0 <1, and ‖Dθ‖C1(Ω)≤ ε0, (1.10)

then there exists a unique τ ∈R and a function u∈C∞(Ω) satisfying (1.7). In particular, the
solution is unique up to an additive constant.

Remark 1.2. The convexity condition of the domain is necessary in the sense that Finn-
Giusti [9] gave an example of nonexistence for the equation (1.7) when the domain is
non-convex. And if the domain is nonsmooth, there are already many works related to
the generalized solution using the variational methods, see e.g. [8] (particularly Chapters
6, 7), [9], [12], and references therein.

The main difference and difficulty between the positive gravity (k>0 in (1.6)) and free
gravity (1.7) is that there is no C0 estimate for the solutions to (1.7), since a solution plus
any constant is still a solution to (1.7). Thus one can not use the continuity method to get
the existence. In order to overcome this difficulty, we use an approximation argument
and obtain the uniform gradient estimate of the approximation equation, which is inde-
pendent of ‖u‖C0 . This approach has been used previously in several different settings,
see, e.g., [16, 17, 25, 27]. Those results also motivate our work here. Additionally, we
want to point out that this approach is different with many former methods about the
capillary problem, say e.g. [8, 12, 13], where they usually proved the existence of gen-
eralized solutions firstly, hereafter to show that the generalized solutions possess some
regularity. Here our methods are able to get the existence of smooth solution directly.
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This article is structured as follows. In Section 2, the uniform gradient estimate is es-
tablished for (1.3). In Section 3, the asymptotic behavior of solution to (1.3), i.e. Theorem
1.1 is demonstrated and followed as the same as the approach used in [2], once we get
the uniform gradient estimate. The last section is devoted to prove Theorem 1.3, after
obtaining the uniform gradient estimate for the solutions to approximation equations.

2 Uniform gradient estimate for mean curvature flow

In this section, in order to study the asymptotic behavior of the nonparametric mean cur-
vature flow with prescribed contact angle boundary condition, we establish the uniform
gradient estimate for the solution to (1.3) under the condition (1.4).

We have the following facts when Ω is a strictly convex smooth domain. By the clas-
sical result (see for example Caffarelli- Nirenberg-Spruck [4] Section 2, and we can take
g′(0) = 1 in their definition of u in page 275), there exists a smooth defining function h
for Ω such that h< 0 in Ω and h= 0 on ∂Ω, {hij}≥ k1{δij} for some constant k1 > 0 and
supΩ |Dh|≤1, hν =−1 and |Dh|=1 on ∂Ω. Because of the strict convexity of the domain,
we may assume that the curvature matrix of ∂Ω satisfies

{κij}1≤i,j≤n−1≥κ0{δij}1≤i,j≤n−1

for some constant κ0>0. For convenience, we denote by

M1 :=sup
Ω

|D2h|, M2 :=sup
Ω

|D3h|,

and define the big O notation O(s), which means that there exists a constant C>0, such
that |O(s)| ≤Cs for s large enough. In particular, we have the positive constant C only
depending on M1,M2 and n in the rest setting of this paper.

Using the maximum principle, the same as in [2], we have a priori bound on |ut|2.

Lemma 2.1 ([2], Lemma 2.2). If u(x,t) is a smooth solution to (1.3), then

sup
QT

|ut|2=sup
Ω

|ut|2
∣∣
t=0

holds. So there exists a constant C=C(u0)>0 such that supQT
|ut|≤C.

Next we obtain the uniform gradient estimate for (1.3), which turns the quasilinear
evolution equation (1.3) into a uniformly parabolic equation and the infinite time exis-
tence of smooth solutions follows by standard regularity theory.

Theorem 2.1. Let Ω⊂R
n (n≥2) be a smooth strictly convex bounded domain. There is a small

constant ε0>0 depending only on the convexity of Ω such that if θ∈C3(Ω) satisfying condition
(1.4), and if u(x,t)∈C3,2(QT) is a solution to (1.1), then there exists a constant C∼ n,Ω,u0,θ
such that

sup
QT

|Du|≤C. (2.1)
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Proof. To get the uniform bound of |Du| in QT, we only need to prove that: for 0<T′
<T,

the bound of |Du| on QT ′ is independent of T′ and then one takes a limit argument.

Let

Φ(x,t) := logw(x,t)+αh(x),

where w(x,t) :=v−∑
n
l=1ulhl cosθ and α is a positive constant to be determined later, v :=√

1+|Du|2.

Assume that Φ(x,t) attains the maximum value at (x0,t0)∈QT ′ . We divide it into the
following three cases to complete the proof.

Case 1: x0 ∈ ∂Ω×[0,T′]. At x0, we choose the coordinate such that ∂
∂xn

be the inner

normal direction of ∂Ω, which is exactly equal to ν, and let {xi}n−1
i=1 be the geodesic coor-

dinate of x0 ∈∂Ω. Along the geodesic xn = t (0< t≤ ε), one takes the parallel transport of
tangential direction ∂

∂xi
to establish the geodesic coordinate in the neighborhood around

the point x0 in Ω. Denote∇′ as the induced connection on ∂Ω by D. We denote Dij=DiDj.

Firstly, we notice from boundary condition in (1.3) that

w=v+uncosθ=vsin2θ on ∂Ω.

We denote ∇′u and un as the tangential and normal part of Du on the boundary by our
choice of coordinate above. We also denote ∇′

i(un) :=uni. From the boundary condition
un=−vcosθ, we deduce that

u2
n=v2cos2θ=cos2 θ(1+|∇′u|2+u2

n),

so it directly follows that

u2
n =cot2 θ(1+|∇′u|2), (2.2)

and in particular, we have

w=vsin2θ=
√

1+|∇′u|2+u2
n sin2θ=

√
1+|∇′u|2sinθ,

and

vw=1+|∇′u|2.

From Gauss-Weingarten equation and directly computation, we have

Dnv=
1

v

n

∑
k=1

ukDknu=
1

v

n−1

∑
i=1

uiDinu−cosθDnnu

=
1

v

n−1

∑
i=1

(
uiuni+

n−1

∑
j=1

uibijuj

)
−cosθDnnu,
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where bij is the second fundamental form of ∂Ω. Then at x0∈∂Ω, it follows that

0≥DnΦ(x0)=
Dnw

w
+αhn

=
1

w

[
Dnv−Dn(

n

∑
k=1

ukhk)cosθ−Dn(cosθ)·
n

∑
k=1

ukhk

]
−α

=
1

w

[
Dnv−

n

∑
k=1

Dnkuhk cosθ−
n

∑
k=1

ukDnkhcosθ+
n

∑
k=1

ukhk sinθθn

]
−α

=
1

w

[
Dnv+Dnnucosθ−

n

∑
k=1

ukDnkhcosθ−sinθθnun

]
−α

=
1

vw

n−1

∑
i=1

(
uiuni+

n−1

∑
j=1

bijuiuj

)
− 1

w

n

∑
k=1

ukDnkhcosθ+cotθθn−α. (2.3)

And for all 1≤ i≤n−1, since {xi} is the tangential direction, we obtain

0=∇′
iΦ(x0)=

∇′
iw

w
=

1

w

[
∇′

iv+uni cosθ−un sinθ∇′
iθ
]
,

this implies that

∇′
iv=−uni cosθ+un sinθ∇′

iθ. (2.4)

On the other hand, by taking the tangential derivative to the boundary condition of (1.3)
and combining with (2.4), it yields that

uni=∇′
i(−cosθv)=−cosθ∇′

iv+sinθ∇′
iθv=cos2θuni−cosθsinθun∇′

iθ+sinθ∇′
iθv,

then it follows that

uni=(cosθcotθ+cscθ)∇′
iθv, for i=1,··· ,n.

Hence, we get

1

vw

n−1

∑
i=1

(
uiuni+

n−1

∑
j=1

bijuiuj

)
=

1

vw

n−1

∑
i,j=1

bijuiuj+
1

w

(
cosθcotθ+cscθ

)n−1

∑
i=1

ui∇′
iθ, (2.5)

− 1

w

n

∑
k=1

ukDnkhcosθ=− 1

w

(n−1

∑
i=1

uiDnih+unDnnh

)
cosθ. (2.6)

Substituting Eqs. (2.5) and (2.6) into (2.3), and note that we have condition (1.4) with
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ε0<1, thus we have

0≥DnΦ(x0)=
1

vw

n−1

∑
i,j=1

bijuiuj+
1

w

(
cosθcotθ+cscθ

)n−1

∑
i=1

uiθi

− 1

w

(n−1

∑
i=1

uiDnih+unDnnh

)
cosθ+cotθθn−α

≥ κ0

vw
|∇′u|2−(cot2θ+csc2θ)

|∇′u|√
1+|∇′u|2

|∇′θ|− |∇′u|√
1+|∇′u|2

|cotθ|M1

+cot2θk1+cotθθn−α

≥κ0 ·
|∇′u|2

1+|∇′u|2 −
2

sin2 θ
|∇′θ|−

(
M1+|Dθ|

)
|cotθ|−α

≥κ0 ·
|∇′u|2

1+|∇′u|2 −
ε0

1−ε2
0

(3+M1)−α,

where M1 :=sup
Ω

|D2h|. Then it yields that

[
κ0−

ε0

1−ε2
0

(M1+3)−α
]
|∇′u|2≤ ε0

1−ε2
0

(M1+3)+α. (2.7)

By choosing α,ε0>0 such that

0<α≤ κ0

3
, and any ε0∈

(
0,

κ0

9(M1+3)

]
, (2.8)

it follows from (2.7) that we have |∇′u|2≤2, so the estimate of |Du| follows by combining
this with equation (2.2).

Case 2: x0∈Ω and t0=0, then we have

Φ(x,t)≤Φ(x0,0)= log(
√

1+|Du0|2−〈Du0,Dh〉cosθ)+αh≤C(u0,sup
Ω

|h|,α).

Since |cosθ|≤ ε0 <1, it yields from above that

sup
ΩT

v≤C(u0,sup
Ω

|h|). (2.9)

Case 3: x0∈Ω and T′≥ t0>0, so at (x0,t0), we have

0=Φi(x0,t0)=
wi

w
+αhi, (2.10)

and

0≥
n

∑
i,j=1

aijΦij(x0,t0)−Φt(x0,t0)

=

( n

∑
i,j=1

aijwij

w
−wt

w

)
−α2

n

∑
i,j=1

aijhihj+α
n

∑
i,j=1

aijhij =: I+II+III. (2.11)
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We choose a proper coordinates at (x0,t0) such that |Du|(x0,t0)=u1(x0,t0) and
{uij(x0,t0)}2≤i,j≤n is diagonal. Then at (x0,t0),

a11=
1

v2
, aij =0 for i 6= j and aii =1 for i≥2.

We always assume that u1(x0,t0) is large enough in the below computation, such that

u1, v=
√

1+u2
1, and w=v−u1h1 cosθ (since we assume |cosθ|≤ ε0<1) are comparable at

(x0,t0), that is, if we let u1≥1 (otherwise |u1| is bounded by 1), then

u1≤v≤
√

2u1, (1−ε0)u1≤w≤ (
√

2+ε0)u1, (1−ε0)v≤w≤ (1+ε0)v.

All the computation below will be done at the point (x0,t0). We have

II=−α2
n

∑
i,j=1

aijhihj =−α2

(
h2

1

v2
+

n

∑
i=2

h2
i

)
≥−α2

[
1

v2
+1

]
, (2.12)

and

III=α
n

∑
i,j=1

aijhij =α

(
h11

v2
+

n

∑
i=2

hii

)
≥αk1

[
1

v2
+(n−1)

]
. (2.13)

We denote by J :=
n

∑
i,j=1

aijwij−wt. From (2.10), we have

n

∑
l=1

(
ululi

v
−ulihl cosθ−ulhli cosθ+ulhl sinθθi

)
=−αhiw.

If we denote by

Sl :=
ul

v
−hl cosθ, for l=1,··· ,n,

then we have the bound as 2≥ S1 ≥ 1
4 if we assume u2

1 ≥ 1 and ε0 ≤ 1
4 . Hence, then we

obtain
n

∑
l=1

Sluli =h1i cosθu1−h1 sinθθiu1−αhiw. (2.14)

It follows that for i=2,··· ,n,

u1i =− Si

S1
uii+

h1i cosθ

S1
u1−

h1sinθθi

S1
u1−

αhi

S1
w

=− Si

S1
uii+O(|cosθ|+|Dθ|)u1+O(α)w, (2.15)
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and

u11=−
n

∑
k=2

Sk

S1
u1k+

h11 cosθ

S1
u1−

h1sinθθ1

S1
u1−

αh1

S1
w

=
n

∑
k=2

S2
k

S2
1

ukk+O(|cosθ|+|Dθ|)u1+O(α)w. (2.16)

To handle the term I, we take the first derivative with respect to xk to the equation in (1.3),

ukt=

( n

∑
i,j=1

aijuij

)

k

=
n

∑
i,j=1

aij,kuij+
n

∑
i,j=1

aijuijk.

By direct computation, we have

wt=vt−
( n

∑
l=1

ulhl cosθ

)

t

=
n

∑
l=1

(
ulult

v
−ulthl cosθ

)
=

n

∑
l=1

Slult

=
n

∑
k=1

Sk

[ n

∑
i,j=1

aij,kuij+
n

∑
i,j=1

aijuijk

]
. (2.17)

and

wij =vij−
n

∑
k=1

(ukhk cosθ)ij

=
n

∑
k=1

ukiukj

v
+

n

∑
k=1

ukukij

v
−

n

∑
k,l=1

ukukiululj

v3
−

n

∑
l=1

ulihlj cosθ−
n

∑
l=1

uljhli cosθ−u1h1ij cosθ

−
n

∑
l=1

ulijhl cosθ−
n

∑
k=1

(ukhk)i(cosθ)j−
n

∑
k=1

(ukhk)j(cosθ)i−
n

∑
k=1

ukhk(cosθ)ij. (2.18)

By (2.17) and (2.18), thus it follows that

J=wI=
n

∑
i,j=1

aijwij−wt

=
n

∑
i,j=1

aij

( n

∑
k=1

ukiukj

v
−

n

∑
k,l=1

ukukiululj

v3

)

+
n

∑
i,j,k=1

[
aij

(ukukij

v
−ukijhk cosθ

)
−Skaij,kuij−Skaijuijk

]

−
n

∑
i,j,k=1

aijuk

(
hkij cosθ−2hki sinθθj−hk cosθθiθj−hk sinθθij

)

−2
n

∑
i,j,k=1

aijuki

(
hkj cosθ−hk sinθθj

)

=:J1+J2+J3+J4. (2.19)
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We can derive that

J3=−
n

∑
i,j,k=1

aijuk

(
hkij cosθ−2hki sinθθj−hk cosθθiθj−hk sinθθij

)

=−h111 cosθ
u1

v2
−

n

∑
i=2

h1ii cosθu1+2h11 sinθθ1
u1

v2
+2

n

∑
i=2

h1i sinθθiu1

+h1 cosθθ2
1

u1

v2
+

n

∑
i=2

h1cosθθ2
i u1+h1 sinθθ11

u1

v2
+

n

∑
i=2

h1 sinθθiiu1

≥−C(|cosθ|+|Dθ|+|D2θ|)u1. (2.20)

Using (2.15) and (2.16), we get

J4=−2
n

∑
i,j,k=1

aijuki

(
hkj cosθ−hk sinθθj

)

=−2
n

∑
k=1

(
hk1 cosθ−hk sinθθ1

)u1k

v2
−2

n

∑
k=1

n

∑
i=2

(
hki cosθ−hk sinθθi

)
uki

=−2
(
h11 cosθ−h1 sinθθ1

)u11

v2
−2

n

∑
k=2

(
hk1 cosθ−hk sinθθ1

)u1k

v2

−2
n

∑
i=2

(
h1i cosθ−h1 sinθθi

)
u1i−2

n

∑
i=2

(
hii cosθ−hi sinθθi

)
uii

=−2
(
h11 cosθ−h1 sinθθ1

)[ n

∑
k=2

S2
k

S2
1

ukk+O(|cosθ|+|Dθ|)u1+O(α)w

]
1

v2

−2
n

∑
k=2

(
hk1 cosθ−hk sinθθ1

)[
− Sk

S1
ukk+O(|cosθ|+|Dθ|)u1+O(α)w

]
1

v2

−2
n

∑
i=2

(
h1i cosθ−h1 sinθθi

)[
− Si

S1
uii+O(|cosθ|+|Dθ|)u1+O(α)w

]

−2
n

∑
i=2

(
hii cosθ−hi sinθθi

)
uii

≥−C(|cosθ|+|Dθ|)
( n

∑
i=2

|uii|+u1

)
. (2.21)

It follows that

J3+J4≥−C(|cosθ|+|Dθ|+|D2θ|)u1−C(|cosθ|+|Dθ|)
n

∑
i=2

|uii|. (2.22)
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A direct computation gives

J2=
n

∑
i,j,k=1

[
aij

(ukukij

v
−ukijhk cosθ

)
−Skaij,kuij−Skaijuijk

]

=−
n

∑
i,j,k=1

Skaij,kuij =−
n

∑
i,j,k=1

Skuij

(
−2

uikuj

v2
+2

n

∑
l=1

uiujulkul

v4

)

=2
1

v2

n

∑
i=1

u1u1i

( n

∑
l=1

Sluil

)
− 2

v4
u3

1u11

n

∑
l=1

Slu1l

=2
u1u11

v4

n

∑
l=1

Slu1l+2
n

∑
i=2

u1i
u1

v2

( n

∑
l=1

Sluil

)

=
2u1u11

v4

[
S1u11+

n

∑
l=2

Slu1l

]
+

2u1

v2

[
S1

n

∑
i=2

u2
1i+

n

∑
i=2

Siuiiu1i

]

=
2u1S1

v4
u2

11+
2u1u11

v4

n

∑
l=2

Slu1l+
2u1S1

v2

n

∑
i=2

u2
1i+

2u1

v2

n

∑
i=2

Siuiiu1i. (2.23)

By expanding the sum in J1, it is easy to obtain that

J1=
1

v5
u2

11+
2

v3

n

∑
i=2

u2
1i+

1

v

n

∑
i=2

u2
ii. (2.24)

So we have

J1+J2=

[
1

v5
+

2u1S1

v4

]
u2

11+

[
2

v3
+

2u1S1

v2

] n

∑
i=2

u2
1i

+
1

v

n

∑
i=2

u2
ii+

2u1u11

v4

n

∑
l=2

Slu1l+
2u1

v2

n

∑
i=2

Siuiiu1i. (2.25)

From 2≥S1≥ 1
4 and for 2≤ i≤n,|Si|≤ |cosθ|, we can use the Cauchy inequality

∣∣∣∣
2u1u11

v4

n

∑
l=2

Slu1l

∣∣∣∣≤
2u1S1

v4
u2

11+
(n−1)|cosθ|2u1

2S1v4

n

∑
i=2

u2
1i, (2.26)

∣∣∣∣
2u1

v2

n

∑
i=2

Siuiiu1i

∣∣∣∣≤
u1S1

v2

n

∑
i=2

u2
1i+

u1|cosθ|2
S1v2

n

∑
i=2

u2
ii. (2.27)

Substituting (2.26) and (2.27) into (2.25), if we assume |cosθ|≤ 1
4 , we obtain

J1+J2≥
1

2v

n

∑
i=2

u2
ii. (2.28)
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Substituting (2.19), (2.22) and (2.28), we get

J≥ 1

2v

n

∑
i=2

u2
ii−C(|cosθ|+|Dθ|)

n

∑
i=2

|uii|−C(|cosθ|+|Dθ|+|D2θ|)u1

≥ 1

4v

n

∑
i=2

u2
ii−C(|cosθ|+|Dθ|+|D2θ|)v.

Hence, finally we derive that

I=
J

w
≥−C(|cosθ|+|Dθ|+|D2θ|).

Combining this with (2.11)–(2.13) together, we obtain

0≥ I+II+III≥−C(|cosθ|+|Dθ|+|D2θ|)−α2

(
1

v2
+1

)
+αk1

(
1

v2
+(n−1)

)
.

By taking α :=min{ k1
2 , κ0

3 ,1} :=α0 and ε0=min{ κ0

9(M1+3)
, α0k1

2C1
, 1

4} in (1.4), we obtain

v(x0,t0)≤ C̃,

where C̃ is independent of T′.
Combining three cases above together, we get the uniform estimate for |Du| which is

independent of T′ and then Theorem 2.1 is proved.

3 Elliptic interlude and asymptotic behavior

As the approach in the two dimension case in the paper [2], our gradient estimate also
can be used to solve the elliptic version of the problem. The elliptic version of equation
(1.3) is 




n

∑
i,j=1

(
δij−

uiuj

1+|Du|2
)

uij=τ in Ω,

uν=−cosθ
√

1+|Du|2 on ∂Ω,

(3.1)

where τ∈R is a uniquely determined constant. In fact, by using the integration by parts,
one can see that

τ=

∫
∂Ω

cosθdσ
∫

Ω
(1+|Du|2)− 1

2 dx
. (3.2)

We can obtain the following existence result for (3.1) in high space dimension case un-
der the condition (1.4). For 2 dimension, this result was proved by Altschuler-Wu (see
Theorem 2.6 in [2]) under more generally condition on Ω and θ.
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Theorem 3.1. Let Ω⊂R
n (n≥3) be a smooth strictly convex bounded domain. There is a small

constant ε0>0 such that if θ∈C3(Ω) satisfying condition (1.4), then there exists a unique τ and
a smooth solution u for (3.1). In particular, the solution u is unique up to an additive constant.

Proof. Firstly one wants to consider the following problem,





n

∑
i,j=1

(
δij−

uiuj

1+|Du|2
)
uij = εu in Ω,

uν=−cosθ
√

1+|Du|2 on ∂Ω.

(3.3)

Using the barrier argument in [2] (see the proof of Theorem 2.6), one obtains supΩ |εu|≤
C0, where C0 is independent of ε. Under the condition (1.4), we want to show the solution
to (3.3) has the uniform gradient estimate, which is independent of ε, i.e. |Du|≤C. This
can be proved by the same procedure as the proof of Theorem 2.1 by now replacing ut in
(1.3) with εu.

We choose the same Φ(x) := logw(x)+αh(x) and the boundary case is treated by the
Case 1 in Section 2. Now we assume the Φ(x) attains its maximum at x0∈Ω.

So at x0, we have 0=Φi(x0)=
wi
w +αhi and

0≥
n

∑
i,j=1

aijΦij(x0)=
n

∑
i,j=1

aijwij

w
−α2

n

∑
i,j=1

aijhihj+α
n

∑
i,j=1

aijhij =: I+II+III. (3.4)

We choose a proper coordinates at x0 such that |Du|(x0)= u1(x0) and {uij(x0)}2≤i,j≤n is
diagonal. Then at x0,

II+III≥−α2

(
1

v2
+1

)
+αk1

(
1

v2
+(n−1)

)
. (3.5)

We denote by J :=∑
n
i,j=1 aijwij and as in (2.19), it follows that

J=wI := J1+ J̃2+J3+J4, (3.6)

where J1,J3,J4 are defined as in (2.19). Using Eq. (3.3) we have

J̃2 :=
n

∑
i,j,k=1

aij

(ukukij

v
−ukijhk cosθ

)
=

n

∑
i,j,k=1

Skaijuijk

=−
n

∑
i,j,k=1

Skaij,kuij+
n

∑
k=1

Sk(εu)k = J2+εu1S1≥ J2. (3.7)

By the same procedure as the proof of Theorem 2.1 we can get the the uniform gradient
estimates which is independent of ε.

From the C0 and C1 estimates, we get the existence of the solution to (3.3) by standard
theory in [11] for each ε>0.
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The uniform estimate of |Du| also implies that |D(εu)| → 0 as ε → 0. Thus one can
conclude that εu→τ as ε→0 for some τ∈R (One can see the detail proof on the existence
part for the similar limited equation in Theorem 1.3 ).

To show the uniqueness, as in [2] (see the proof of Theorem 2.6 there) one assumes
that if (u1,τ1) and (u2,τ2) are two solutions to (3.1). Without loss of generality, we assume
τ1≤τ2, denote u :=u1−u2. By direct computation, we obtain that u is the super-solution
of the following elliptic operator

Lu :=
n

∑
i,j=1

âijuij+
n

∑
l=1

blul,

where

âij := aij(Du1), bl :=
n

∑
i,j=1

∫ 1

0
aij,pl

(tDu1+(1−t)Du2)dt·(u2)ij.

From the maximum principle, u attains the maximum value on the boundary, say at
x0 ∈ ∂Ω. Thus combining with Hopf lemma, we have ∇′u(x0)= 0 and Dνu(x0)< 0, that
is, |∇′u1|= |∇′u2|= q and Dνu1 < Dνu2, where we denote ∇′ and Dν as the tangential
and normal part of D on boundary respectively. On the other hand, from the boundary
condition in (3.1), it follows that

Dνu1√
1+q2+|Dνu1|2

=
Dνu2√

1+q2+|Dνu2|2
,

but this is a contradiction with the fact that function x√
1+q2+x2

is strictly increasing with

respect to x∈R and Dνu1(x0)<Dνu2(x0). So u must be a constant, and τ1=τ2. Therefore,
we have completed the proof.

Remark 3.1. For any ε>0, even for any bounded smooth domain, the existence of solution
to (3.3) could be got from the standard method on the capillary problem with positive
gravity, see for example Theorem 9.12 in Lieberman [22] or [19].

Remark 3.2. If one considers the following problem,





n

∑
i,j=1

(
δij−

uiuj

1+|Du|2
)

uij = εu(1+|Du|2)β in Ω,

uν=−cosθ
√

1+|Du|2 on ∂Ω,

(3.8)

then for 0≤ β< 1
2 , using the same calculation we can get the uniform gradient estimates

of u for any ε>0. When β= 1
2 , we need make a more careful computation in Section 4 so

as to get the corresponding existence theorem.
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For a solution w=w(x) to (3.1), it is obvious that w̃=w(x)+λt solves the following
parabolic problem,





ut=(δij−
uiuj

1+|Du|2 )uij in Ω×(0,∞),

uν=−cosθ
√

1+|Du|2 on ∂Ω×(0,∞),

u(x,0)=w(x) on Ω,

Corollary 3.1. For a solution u=u(x,t) to (1.1), there exists a time-indenpendent positive
constant C, such that

|u(x,t)−λt|≤C.

Proof. Let z(x,t)=u(x,t)−w̃(x,t), then it satisfies the following equation

zt= ãijzij+bizi,

where ãij=aij(Du) and bi=(w̃)kl

∫ 1
0 akl,pi

(ηDu+(1−η)Dw̃)dη. If z achieves its maximum

and minimum on Ω×{0}, then

sup
Ω×(0,∞)

|u−w−λt|= sup
Ω×(0,∞)

|z|≤ sup
Ω×{0}

|z|=sup
Ω

|u0−w|.

Therefore,
sup

Ω×(0,∞)

|u−λt|≤sup
Ω

|w|+sup
Ω

|u0−w|.

If z attains its maximum or minimum on ∂Ω×(0,∞), then as in the uniqueness part
proof of Theorem 3.1, Hopf’s lemma tells us u0−w must be a constant. Therefore u−w̃
also must be a constant on Ω×(0,∞) for the uniqueness of the solution to (1.1), so we
have

sup
Ω×(0,∞)

|u−λt|≤ sup
Ω×(0,∞)

|u−λt−w|+sup
Ω

|w|=sup
Ω

|u0−w|+sup
Ω

|w|.

Using the technique in [2], the uniform estimates in Lemma 2.1, Theorem 2.1 and
Schauder estimates, we get the following result.

Lemma 3.1. Let u1 and u2 be any two solutions to equation (1.1), with initial data u0,1 and u0,2

respectively. Let u=u1−u2, then u converges to a constant function as t→∞. In particular, the
limit of any solution to Eq. (1.1) is w̃ up to a constant.

Proof. We now see that u satisfies a linear parabolic equation





zt = ãijzij+bizi in Ω×(0,∞),

Dνu1√
1+|Du1|2

=
Dνu2√

1+|Du2|2
on ∂Ω×(0,∞),
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where ãij = aij(Du1) and bi =(u2)kl

∫ 1
0 akl,pi

(ηDu1+(1−η)Du2)dη. The strong maximum
principle implies that osc(u)(t) = maxΩ u(x,t)−minΩ u(x,t)≥ 0 is a strictly decreasing
function unless u is a constant.

We claim that
lim
t→∞

osc(u)(t)=0.

Otherwise, if limt→∞ osc(u)(t)= δ for some δ> 0, we will reach a contradiction. In fact,
given a sequence tn →+∞, we define

u1,n(·,t)=u1(·,t+tn)−λtn

and
u2,n(·,t)=u2(·,t+tn)−λtn.

By Corollary 3, for i=1,2, we know |ui,n−λt|≤C, remark that the uniform(independent

of n) estimates on
∂ui,n

∂t ,|Dui,n| have already been obtained in Lemma 2.1 and Theorem 2.1.

According to Schauder theory [21], u1,n(·,t) and u2,n(·,t) are locally (in time) Ck uniformly
bounded with respect to n for any k.

So, there exists a subsequence (still denoted by tn) such that u1,n(·,t) and u2,n(·,t)
converge locally uniformly in any Ck to u∗

1(·,t) and u∗
2(·,t) respectively. That is

u∗
1(·,t)= lim

n→∞
u1,n(·,t), u∗

2(·,t)= lim
n→∞

u2,n(·,t).

Let u∗=u∗
1−u∗

2, then we deduce that

osc(u∗)(t)= osc(u∗
1−u∗

2)

= lim
n→∞

osc(u1(x,t+tn)−λtn−u2(x,t+tn)+λtn)

= lim
n→∞

osc(u1(x,t+tn)−u2(x,t+tn))

= lim
n→∞

osc(u)(t+tn)=δ, (3.9)

where the second equality holds because of the uniform convergence of u1,n(·,t) and
u2,n(·,t) .

But u∗ satisfies the uniformly parabolic equation





zt = ãijzij+bizi in Ω×(−∞,∞),

Dνu∗
1√

1+|Du∗
1 |2

=
Dνu∗

2√
1+|Du∗

2 |2
on ∂Ω×(−∞,∞),

where ãij = aij(Du∗
1) and bi=(u∗

2)kl

∫ 1
0 akl,pi

(ηDu∗
1+(1−η)Du∗

2)dη.
By the strong maximum principle and Hopf’s lemma, we know u∗ is a constant. This

makes a contradiction to osc(u∗)(t)≡δ and the claim now is proved.
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According to the claim, we have

lim
t→∞

max
Ω

u= lim
t→∞

min
Ω

u= c0 for some constant c0.

It then follows that lim
t→∞

|u−c0|=0 and we finish the proof of this lemma.

Proof of Theorem 1.1. From Lemma 2.1 and Theorem 2.1 and Schauder estimate, we obtain
uniform estimates in any Ck−norm for the derivatives of u, and locally (in time) uniform
bounds for the C0 norm. So we get longtime existence with uniform bounds on all higher
derivatives of u. From Corollary 3 and Lemma 3.1, the limit of any solution to Eq. (1.1) is
w̃=w+λt up to a constant, where (λ,w) is the solution to Eq. (3.1) by Theorem 3.1.

4 Constant mean curvature equation with prescribed contact

angle boundary value condition

In this section, we consider the capillary problem with prescribed contact angle boundary
condition. We first obtain the following uniform gradient estimate of u for equations (4.1).
Note that, for any fixed ε>0, the existence of solutions to (4.1) is well-known, see [8] for
example. Now we can prove the following lemma.

Lemma 4.1. Let Ω⊂R
n (n≥2) be a strictly convex, bounded domain and ∂Ω∈C3. There is a

small constant ε0 such that if θ∈C3(Ω) satisfying condition (1.4), and if u is the solution to the
following mean curvature type equation with prescribed contact angle boundary condition,





div

(
Du√

1+|Du|2

)
= εu in Ω,

uν=−cosθ
√

1+|Du|2 on ∂Ω,

(4.1)

then there exists a constant C∼n,Ω such that

sup
Ω

|Du|≤C. (4.2)

Remark 4.1. The idea and approach for proving Lemma 4.1 are similar with those showed
in Theorem 3.1. However, as we remark in Remark 3.2 that there are new difficulties
arising here. Moreover, it follows from the remark below Theorem 1 in the work [5] of
Concus and Finn that |u|≤ C1

ε +C2. Denoting by f = εu, we have

sup
Ω

| f |=sup
Ω

|εuε|≤C0, (4.3)

where C0 is independent of ε. One can also derive the same result following the barrier
argument in [2] (Just note that there is one more factor 1√

1+|Du|2
in (4.1) compared to the

proof of Theorem 2.6 in [2], which does not affect the barrier argument).
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Proof. Let
Φ(x)= logw(x)+αh(x),

where w(x) = v−∑
n
l=1ulhl cosθ and α is a positive constant to be determined later, v =√

1+|Du|2. Denoting here by aij :=v2δij−uiuj, Eq. (4.1) now can be expressed to be

n

∑
i,j=1

aijuij = f v3.

Assume that Φ(x) attains the maximum value at x0 ∈Ω. We divide it into the following
two cases to complete the proof.

Case 1: If x0 ∈ ∂Ω, this is the same as in Case 1 in Theorem 2.1, since we retain the
same boundary condition. By choosing the same α,ε0 as in (2.8), we obtain the same
conclusion.

Case 2: If x0∈Ω, we have

0=Φi =
wi

w
+αhi, (4.4)

0≥
n

∑
i,j=1

aijΦij =
n

∑
i,j=1

aijwij

w
−

n

∑
i,j=1

α2aijhihj+
n

∑
i,j=1

αaijhij =: I+II+III. (4.5)

We choose a proper coordinates at (x0,t0) such that |Du|(x0)=u1(x0)>0 and
{uij(x0)}2≤i,j≤n is diagonal. Then at x0, a11 =1 and aii =v2, for i=2,··· ,n.

We always assume that u1(x0) is large enough in the below computation, such that u1,
v, and w (since we assume |cosθ|≤ ε0 <1) are equivalent to each other at x0. Otherwise,
we have completed the proof. All the computation below are at the point x0.

We start to deal with the terms in (4.5).

II+III=
n

∑
i,j=1

αaijhij−
n

∑
i,j=1

α2aijhihj ≥αk1[1+v2(n−1)]−α2[1+v2]. (4.6)

We denote by J :=
n

∑
i,j=1

aijwij. From (4.4), we have

n

∑
l=1

(
ululi

v
−ulihl cosθ−ulhli cosθ+ulhl sinθθi

)
=−αhiw.

If we denote by

Sl :=
ul

v
−hl cosθ, for l=1,··· ,n,

then we obtain
n

∑
l=1

Sluli =h1i cosθu1−h1 sinθθiu1−αhiw. (4.7)
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We also have

u1i=− Si

S1
uii+

1

S1

n

∑
l=1

Sluli, for i=2,··· ,n, (4.8)

u11=−
n

∑
k=2

Sk

S1
u1k+

1

S1

n

∑
l=1

Slul1=
n

∑
i=2

S2
i

S2
1

uii−
n

∑
i=2

Si

S2
1

( n

∑
l=1

Sluli

)
+

1

S1

n

∑
l=1

Slul1. (4.9)

From the equation we have,

f v=
u11

v2
+

n

∑
i=2

uii. (4.10)

On the other hand, since

f v3 =
n

∑
i,j=1

(v2δij−uiuj)uij =v2∆u−u2
1u11,

we have

3 f v−2∆u= f v−2
u2

1

v2
u11=

(
1

v2
−2

u2
1

v2

)
u11+

n

∑
i=2

uii. (4.11)

Substituting (4.9) and (4.10) into (4.11), we obtain

3 f v−2∆u (4.12)

=
n

∑
i=2

(
1

v2
− 2u2

1

v2

)
S2

i

S2
1

uii+
n

∑
i=2

uii−
n

∑
i=2

(
1

v2
− 2u2

1

v2

)
Si

S2
1

( n

∑
l=1

Sluli

)
+
( 1

v2
− 2u2

1

v2

) 1

S1

n

∑
l=1

Slul1.

As in Section 2, by (2.18) and J :=
n

∑
i,j=1

aijwij we have

J=
n

∑
i,j,k=1

aij

(
ukiukj

v
−

n

∑
l=1

ukukiululj

v3

)
+

n

∑
i,j,k=1

aij

(
ukukij

v
−ukijhk cosθ

)

−
n

∑
i,j,k=1

aijuk

(
hkij cosθ−2hki sinθθj−hk cosθθiθj−hk sinθθij

)

−2
n

∑
i,j,k=1

aijuki(hkj cosθ−hk sinθθj)

=:J1+J2+J3+J4, (4.13)
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where J1, J3 and J4 are almost the same as in the proof of Theorem 2.1. We have

J1=
n

∑
i,j,k=1

aij

(
ukiukj

v
−

n

∑
l=1

ukukiululj

v3

)
=

1

v3
u2

11+
2

v

n

∑
i=2

u2
1i+v

n

∑
i=2

u2
ii, (4.14)

J3=−
n

∑
i,j,k=1

aijuk

(
hkij cosθ−2hki sinθθj−hk cosθθiθj−hk sinθθij

)

≥−C(|cosθ|+|Dθ|+|D2θ|)v3, (4.15)

J4=−2
n

∑
i,j,k=1

aijuki(hkj cosθ−hk sinθθj)

=(|cosθ|+|Dθ|)[O(v2)+O(v)]
n

∑
i=2

|uii|+O(v2u1)(|cosθ|+|Dθ|)

≥−v

4

n

∑
i=2

u2
ii−C(|cosθ|+|Dθ|)v3. (4.16)

A direct computation gives

J2 :=
n

∑
i,j,k=1

aij

(ukukij

v
−ukijhk cosθ

)
=

n

∑
i,j,l=1

aijSlulij

=
n

∑
i,j,l=1

Sl(aijuij)l−
n

∑
i,j,l=1

Slaij,luij =
n

∑
l=1

Sl( f v3)l−
n

∑
i,j,l=1

Slaij,luij

=
n

∑
l=1

Sl flv
3+3

n

∑
k,l=1

Sl f vukukl−2
n

∑
k,l=1

Slukukl∆u+
n

∑
i,j,l=1

2Sluilujuij

=u1(3 f v−2∆u)
n

∑
l=1

Slu1l+2u11u1

n

∑
l=1

Slu1l+2
n

∑
i=2

u1iu1

( n

∑
l=1

Sluil

)
+

n

∑
l=1

Sl flv
3

=:J21+J22+J23+J24. (4.17)

Note that fl = εul , and S1=
u1
v −h1cosθ, suppose that |cosθ|< 1

2 , we have

J24=
n

∑
l=1

Sl flv
3=S1εu1v3

>0. (4.18)

It follows from (4.12) that

J21=u1

n

∑
l=1

Slu1l(3 f v−2∆u) (4.19)

=u1

( n

∑
l=1

Slu1l

)[ n

∑
i=2

(
1

v2
− 2u2

1

v2

)
S2

i

S2
1

uii+
n

∑
i=2

uii

]

−u1

( n

∑
m=1

Smu1m

)[ n

∑
i=2

( 1

v2
− 2u2

1

v2

)
Si

S2
1

( n

∑
l=1

Sluli

)
−
(

1

v2
− 2u2

1

v2

)
1

S1

( n

∑
l=1

Slul1

)]
.
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Using (4.9), we have

J22=2
n

∑
l=1

Slu1lu1u11 (4.20)

=2

( n

∑
l=1

Slu1l

)
u1

( n

∑
i=2

S2
i

S2
1

uii

)
−2

( n

∑
m=1

Smu1m

)
u1

[ n

∑
i=2

Si

S2
1

( n

∑
l=1

Sluli

)
− 1

S1

( n

∑
l=1

Slul1

)]
.

Using (4.8), we have

J23=2
n

∑
i=2

u1iu1

( n

∑
l=1

Sluil

)
=−2

n

∑
i=2

u1
Si

S1
uii

( n

∑
l=1

Sluil

)
+2

n

∑
i=2

u1

S1

( n

∑
l=1

Sluil

)2

. (4.21)

Substituting (4.18)–(4.21) into (4.17), we obtain

J2≥u1

( n

∑
l=1

Slu1l

)[ n

∑
i=2

(
1

v2
− 2u2

1

v2

)
S2

i

S2
1

uii+
n

∑
i=2

uii

]

−u1

( n

∑
m=1

Smu1m

)[ n

∑
i=2

(
1

v2
− 2u2

1

v2

)
Si

S2
1

(
n

∑
l=1

Sluli)−
(

1

v2
− 2u2

1

v2

)
1

S1

( n

∑
l=1

Slul1

)]

+2

( n

∑
l=1

Slu1l

)
u1

( n

∑
i=2

S2
i

S2
1

uii

)
−2

( n

∑
m=1

Smu1m

)
u1

[ n

∑
i=2

Si

S2
1

(
n

∑
l=1

Sluli)−
1

S1

( n

∑
l=1

Slul1

)]

−2
n

∑
i=2

u1
Si

S1
uii

( n

∑
l=1

Sluil

)
+2

n

∑
i=2

u1

S1

( n

∑
l=1

Sluil

)2

=
3u1

v2

( n

∑
l=1

Slu1l

)( n

∑
i=2

S2
i

S2
1

uii

)
+

3u1

v2

1

S1

( n

∑
l=1

Slul1

)2

− 3u1

v2

( n

∑
m=1

Smu1m

) n

∑
i=2

Si

S2
1

( n

∑
l=1

Sluli

)

+u1

( n

∑
l=1

Slu1l

)( n

∑
i=2

uii

)
−2u1

n

∑
i=2

Si

S1
uii

( n

∑
l=1

Sluil

)
+2

n

∑
i=2

u1

S1

( n

∑
l=1

Sluil

)2

=:K1+K2+K3+K4+K5+K6. (4.22)

Using the fact ax2+bx≥− b2

4a for any a>0, we obtain

K1+K2+K5+K6

=
3u1

v2

( n

∑
l=1

Slu1l

)( n

∑
i=2

S2
i

S2
1

uii

)
+

3u1

v2

(
1

S1

n

∑
l=1

Slul1

)2

−2u1

n

∑
i=2

Si

S1
uii

( n

∑
l=1

Sluil

)
+2

n

∑
i=2

u1

S1

( n

∑
l=1

Sluil

)2

≥− 3(n−1)u1

4v2

n

∑
i=2

S4
i

S2
1

u2
ii−

u1

2

n

∑
i=2

S2
i

S1
u2

ii.
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Noting that Si =O(cosθ) for i≥ 2, u1,v are comparable provided u1 ≥ 1, and by (4.7) we
see that.

K3=−3u1

v2

( n

∑
l=1

Slu1l

) n

∑
i=2

Si

S2
1

( n

∑
l=1

Sluli

)
≥−C(|cosθ|+|Dθ|)+|α|)v.

Now we deal with term K4, by (4.7), we have

|K4|=|u1

( n

∑
l=1

Slu1l

)( n

∑
i=2

uii

)
|

≤|(h11 cosθ−h1 sinθθ1)|u2
1

n

∑
i=2

|uii|+|αh1u1w
n

∑
i=2

uii|

≤C(|cosθ|+|Dθ|)v3+C(|cosθ|+|Dθ|)v
n

∑
i=2

u2
ii+

u1

4

n

∑
i=2

u2
ii+(n−1)α2u1w2.

Thus we have

J2≥− 3(n−1)u1

4v2

n

∑
i=2

S4
i

S2
1

u2
ii−

u1

2

n

∑
i=2

S2
i

S1
u2

ii−
u1

3

n

∑
i=2

u2
ii−α2(n−1)u1w2

−C(|cosθ|+|Dθ|)v3−C(|cosθ|+|Dθ|+|α|)v. (4.23)

Substituting (4.14), (4.23), (4.15) and (4.16) into (4.13), we have

J≥ 1

v3
u2

11+
2

v

n

∑
i=2

u2
1i+v

n

∑
i=2

u2
ii−

v

4

n

∑
i=2

u2
ii

− 3(n−1)u1

4v2

n

∑
i=2

S4
i

S2
1

u2
ii−

u1

2

n

∑
i=2

S2
i

S1
u2

ii−
u1

3

n

∑
i=2

u2
ii−α2(n−1)u1w2

−C(|cosθ|+|Dθ|+|D2θ|)v3−C(|cosθ|+|Dθ|+|α|)v

≥−C(|cosθ|+|Dθ|+|D2θ|)v3−α2(n−1)u1w2, (4.24)

where we take |cosθ|≤ 1
100 such that 1

2
S2

i
S1
≤ 1

4 .

Note that v
2 <w<

3v
2 , we have

I :=
J

w
≥−2C(|cosθ|+|Dθ|+|D2θ|)v2−2nα2v2. (4.25)

Substituting (4.25) and (4.6) into (4.5), we obtain

0≥ I+II+III≥αk1[1+v2(n−1)]−α2[1+v2]−2C(|cosθ|+|Dθ|+|D2θ|)v2−2nα2v2.
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By taking α=min{ k1
8 , κ0

3 ,1} :=α0 and ε0 :=min{ κ0

9(M1+3)
, α0k1

16C1
, 1

100} in (1.4), we obtain

v(x0)≤ C̃.

Finally, combining all above two cases together, thus we have v(x0)≤ C̃, where C̃ is
independent of ε and ‖u‖C0 .

With the preparations above, now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. To solve Eq. (1.7), we will estimate the solutions to the following
family of equations (⋆ε,L).





div

(
Du√

1+|Du|2

)
= εu−L in Ω,

uν=−cosθ
√

1+|Du|2 on ∂Ω,

(⋆ε,L)

for any given ε∈ (0,1) and L∈R.
Firstly, from [19] or [20], we know that there exists a unique solution uε,0 to problem

(⋆ε,0) for L=0 and any ε>0. Hence for general L∈R, one denotes uε,L(x) :=uε,0(x)+ L
ε ,

thus it solves (⋆ε,L) and also be the unique solution of problem (⋆ε,L).
Secondly, we show that, for any ε∈ (0,1), there exists a unique constant Lε satisfying

‖uε,Lε‖C1(Ω)≤C, where C is independent of ε. In fact, one can achieve this by just con-

structing the supersolution and subsolution of (⋆ε,0). Let ψ be the smooth fixed function
satisfying

ψν=−cosθ
√

1+|Dψ|2 on ∂Ω and ψ∈C∞(Ω).

Denotes M := sup
Ω

|ψ|+sup
Ω

|div
( Dψ√

1+|Dψ|2
)
|+1, we consider the functions ψ±(x) :=

ψ(x)± M
ε . It follows that, for any ε∈ (0,1), we have

L(uε,0−ψ+) :=div

(
Duε,0√

1+|Duε,0|2

)
−div

(
Dψ√

1+|Dψ|2
)

≥εuε,0−εψ−M= ε(uε,0−ψ+),

where the elliptic operator Lu :=
n

∑
i,j=1

∂
∂xi

(
âi

j(x)∂xj
u
)

with

âi
j(x) :=

∫ 1

0
∂pj

Ai
(
tDuε,0(x)+(1−t)Dψ(x)

)
dt, Ai(p) :=

pi√
1+|p|2

for 1≤ i≤n.

Therefore, the maximum principle implies that uε,0−ψ+ attains the nonnegative max-
imum value at the boundary, say x0∈∂Ω and uε,0(x0)−ψ+(x0)≥0. Since

Dνψ√
1+|Dψ|2

=
Dνuε,0√

1+|Duε,0|2
,
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by using the similar argument in Altschuler-Wu (see Theorem 2.6 in [2]) or the proof of
Theorem 3.1, it yields a contradiction. Hence uε,0≤ψ+ in Ω. Similarly, from

L(uε,0−ψ−) :=div

(
Duε,0√

1+|Duε,0|2
)
−div

(
Dψ√

1+|Dψ|2
)

≤εuε,0−εψ+M= ε(uε,0−ψ−),

using the maximum principle and the boundary condition again, it follows that uε,0≥ψ−
in Ω. Consequently, we have

uε,−M(x)=uε,0(x)− M

ε
≤ψ(x)≤uε,0(x)+

M

ε
=uε,M(x) in Ω.

Since uε,L is strictly increasing with respect to L∈R for any fixed ε∈ (0,1), it follows that,
there exists a unique constant Lε ∈ [−M,M] such that uε,Lε(x0)=ψ(x0) for some x0 ∈Ω.
Combining this with Lemma 4.1, it yields that we also have the uniform C0 estimate
for uε,Lε , then we obtain ‖uε,Lε‖C1(Ω) ≤ C, where C is independent of ε. Following the

standard estimates [11] (Theorem 13.2), it implies that ‖uε,Lε‖Ck,α(Ω) ≤ C for any k ∈ N,

where α= α(n,Ω). Hence, by the Arzela-Ascoli theorem and (4.3), there exists ε i → 0, a
subsequence uε i,Lε i

, Lε i
, and a smooth function u∞ such that

ε iuε i,Lε i
−Lε i

→τ, and uε i,Lε i
→u∞.

And one can easily see that (u∞,τ) solves (1.7).
As in the proof of Theorem 3.1 (or see [2], Theorem 2.6 there) we can get the unique-

ness. Thus we have completed the proof.
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