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THE EXTERIOR DIRICHLET PROBLEM FOR THE HOMOGENEOUS
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k-HESSIAN EQUATION
XINAN MA AND DEKAI ZHANG

AssTrACT. We study the exterior Dirichlet problem for the homogeneous k-Hessian equa-
tion. The prescribed asymptotic behavior at infinity of the solution is zero if k < g, it is
log|x| + O(1) if k = % and it is |x|¥ +00)if k > % By constructing smooth solutions
of approximating non-degenerate k-Hessian equations with uniform C!!-estimates, we
prove the existence part. The uniqueness follows from the comparison theorem and thus
the C*! regularity of the solution of the homogeneous k-Hessian equation in the exte-
rior domain is proved. We also prove a uniform positive lower bound of the gradient.
As an application of the C!*! estimates, we derive an almost monotonicity formula along
the level set of the approximating solution. In particular, we get an weighted geometric
inequality which is a natural generalization of the k = 1 case.
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1. INTRODUCTION

Let u be a C? function and A = (1;,-- -, 4,) be the eigenvalues of D?u, the k-Hessian
operator is defined by
(1.1) SiDu) = Se )= D Ay Ay
1<t <-ig<n

where 1 <k <n. When k = 1, S (D?u) = Au. When k = n, S ,(D*u) = det D*u.
Let Q be a bounded smooth domain in R”, the Dirichlet problem for the k-Hessian
equation is as follows

2 _ .
(12) {Sk(D u) =f in Q,

u =@ on 0Q,

where f and ¢ are given smooth functions. When k = 1, the k-Hessian equation is the
Poisson equation. When k = n, it is the well known Monge-Ampere equation.

1.1. Some known results. We briefly give some known results of the Dirichlet problem
for the k-Hessian equation in the nondegenerate case i.e. f > 0 and in the degenerate
cases i.e. f > 0. In general, the k-Hessian equation is a fully nonlinear equation.

1.1.1. Results on bounded domains. If f > 0, Caffarelli-Nirenberg-Spruck [7] solved
(1.2) in a bounded (k — 1)-convex domain. Guan [14] solved (1.2) by only assuming the
existence of a subsolution. The advantage of Guan’s result is that there are no geometric
restriction on the domain.

The Dirichlet problem in bounded domains of degenerate fully nonlinear equations has
been studied extensively. For the Dirichlet problem of degenerate Monge-Ampere equa-
tion in bounded convex domain, Caffarelli-Nirenberg-Spruck [8] show the C"! regularity
for the homogeneous case i.e. f = 0. If f satisfies f = e Chl, Guan-Trudinger-Wang [20]
proved the C*!' regularity, which is optimal by Wang’s counterexample [33]. The C"!
regularity problem of degenerate k-Hessian equation with Dirichlet boundary value in
bounded (k — 1)-convex domain was solved by Krylov [22,23] and Ivochina-Trudinger-
Wang [21] (PDE’s proof) with the assumption f teClL, Dong [12] studied the mixed
Hessian equations.



THE HOMOGENEOUS K-HESSIAN EQUATION 3

1.1.2. Results on unbounded domains. The exterior Dirichlet problem for viscosity so-
lutions of nondegenerate fully nonlinear equations has been studied extensively. The C°
viscosity solution for the Monge-Ampere equation: det D’ = 1 with prescribed asymp-
totic behavior at infinity was solved by Caffarelli-Li [6]. The related problem for the
k-Hessian equation : S (D?u) = 1 was proved by Bao-Li-Li [4]. For the related results on
other type nondegenerate fully nonlinear equations, one can see [3,25,26,28]. Note that
in these cases the regularity are only continuous.

Li-Wang [27] proved the global C¥*2>® regularity of the homogeneous Monge-Ampeére
equation: det(x;;)) = 0 in a strip region: R"! x [0, 1] by assuming that the boundary
functions are locally uniformly convex and C*?. Moreover, they gave a counterexample
to show the necessity of the uniform convexity of the boundary functions.

1.2. Motivation. The motivation of this paper arises from proving geometric inequal-
ity by establishing certain monotonicity formula on the level set of solutions in exterior
domains. Another one comes from studying the regularity of extremal function of the
complex Monge-Ampere operator.

1.2.1. Geometric inequalities. One motivation for us to consider the exterior Dirichlet
problem for the homogeneous k-Hessian equation comes from the following geometric
inequalities:

1 1
Vo (Q) \™! V() \F
(1.3) (ﬁ) < (A) ,
Vi-1-1(B) Vi1-(B)
where 0 < [ < k < n, V,_,(Q) = fm H,_1(k)dA, V_; := |Q| and H is the k-Hessian
operator of the principal curvature « = (ky, -+ , k,-1) of €. (1.3) are called Alexandrov-

Fenchel inequalities. An open question is whether (1.3) holds for (k — 1)-convex domain
Qie H,>0forl <m<k-1.

When Q is (k — 1)-convex and starshaped, Guan-Li [19] proved (1.3) by the method
of inverse curvature flows. If Q is k-convex, Chang-Wang [9], Qiu [29] proved the above
inequalities when / = 0 by the optimal transport method.

Very recently, by considering the exterior Dirichlet problem of the Laplace equation,
Agostiniani-Mazzieri [2] proved several geometric inequalities such as the Willmore in-
equality. By studying the the exterior Dirichlet problem of the p-Laplacian equation, Fo-
gagnolo and Mazzieri and Pinamonti [13] showed the volumetric Minkowski inequality
i.e. the Alexandrov-Fenchel inequality with / = 0 and k£ = 2 for smooth convex domains.
Later, Agostiniani-Fogagnolo-Mazzieri [1] removed the convexity assumption for the do-
main. The key point for them is to prove a monotonicity formula along the level set of the
solution of the exterior Dirichlet problem for the p-Laplace equation.

1.2.2. Regularity problems of extremal functions. P. F. Guan. [17, 18] proved the C"!
regularity of the homogeneous complex Monge-Ampere equation in U := V; \ V with
V= Uf\; , Vi, where V,, and V; are strongly pseudoconvex and bounded smooth domains
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in a complex manifold M", V is holomorphically convex subset of €;. Then he solved
a conjecture of Chern-Levine-Nirenberg on the extended intrinsic norms. B. Guan [15]
proved the C"! regularity of solutions of the exterior Dirichlet problem for the homo-
geneous complex Monge-Ampere equation in C* \ V with V = (UX,V;), where V; are
strongly pseudoconvex and bounded smooth domains and V' is a holomorphically convex
subset of Vj,. If V is strictly convex and smooth (analytic), the smooth (analytic) regularity
of this problem was proved by Lempert [24]

1.3. Our main results. In this paper, we consider the following exterior Dirichlet prob-

lem for the k-Hessian equation. For convenience, we always assume 0 € Q and there

exists positive constants ry, Ry such that B, CC Q C Br,, where B, and Br, are balls
2 2

centered at 0 with radius r and % respectively.

1.3.1. Casel: 1 < k < 3. Since the Green function in this case is —leﬂ%, we consider
the k-Hessian equation when k < 7 as follows

Si(D*u)=0 in Q :=R"\Q,
(1.4) u=-1 ondQ,

lim u(x) =0.

X—00

Theorem 1.1. Assume 1 < k < 3. Let Q be a smoothly convex domain in R" and strictly

(k — 1)-convex. There exists a unique k-convex solution u € C(Q°) of the equation (1.4).
Moreover, there exists uniform constant C such that for any x € Q° the following holds

CUA™ T < —u(x) < Cla~ "7,
(1.5) Clx™"F <|Dul(x) < Clx|~"F,
|D?ul(x) <C|x["%,

=~

where the k-convex solution is defined in Section 2 and we use the notation Q := RMQ.

1.3.2. Case2: k > 3. Since the Green function in this case is leﬂ%, we consider the
k-Hessian equation when k > 7 as follows

S «(D*u) =0 in QF,
(1.6) u=l1 on 0Q,
u(x) =T + 0(1) as |x| — co.

Theorem 1.2. Assume k > 3. Let Q be a smoothly convex domain in R" and strictly

(k —1)-convex. There exists a unique k-convex solution u € C 1’l(ﬁ) of the equation (1.6).
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Moreover, there exists uniform constant C such that for any x € Q° the following holds
() - ¥ 7] <C,
(1.7) C™'Ix'F < |Dul(x) <Clx| %",
\D*ul(x) <Clx|"%.

1.3.3. Case3: k = 5. Since the Green function in this case is log x|, we consider the

k-Hessian equation when k = 3 as follows
S 3(D*u) =0 in Q°,
(1.8) u =0 on 0Q,
u(x) =log|x| + O(1) as |x| — oo.

Theorem 1.3. Assume k = 3. Let Q be a smoothly convex domain in R" and strictly

(k — 1)-convex. There exists a unique k-convex solution u € C l’1(5) of the equation (1.8).
Moreover, there exists uniform constant C such that for any x € Q° the following holds

lu(x) — log |x|| <C,
(1.9) C™'x™" < |Dul(x) <C|x™",
|D?u(x) <Clx|™2.

To solve the above problems, we consider the following approximating equation
Sr@®) =f€in Q°,
w == 1ifk < . = Lifk> Z.u" = 0, ifk = 5 on 90,
w(x) =0if k < g W) = T+ 0(1) if k > g £ (x) = log x| + O(1) if k = g x| — oo,

where f© = c,&*(|x* + £2)7>7! (see the precise value of c,; in Section 4).

u® will be obtained by approximating solutions u** defined on bounded domains: Qp :=
Br \ ﬁ(see Section 4 for precise definition of #®F). The existence and uniqueness of the
k-convex solution of u®® follows from B. Guan [14] if we can construct a subsolution,
which can be constructed since we assume €2 is convex.

The key point is to establish the uniform C? estimates for u®R.

1.4. Applications. As an application of our C? estimates, we can prove an almost mono-
tonicity formula along the level set of u® (see Section 6). Consequently, we get geometric
inequalities of JQ as follows.

Theorem 1.4. Let Q) be a smoothly convex domain in R" and strictly (k — 1)-convex.

(i) Assume 1 <k <5 andb > % Let u be the unique C"' solution in Theorem 1.1.
We have
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-2k
(1.10) f \Dul’*'Hy_, < 2 f \Dul’H,,
00 n—k Jso
where H,, is the m-Hessian operator of the principal curvature k = (kq, - - - , k,—1) of Q.
(ii) Assume k = % and b > 4 — 1. Let u be the unique C"! solution in Theorem 1.3.
We have
(1.11) f \Dul”*'H,_; < f \Dul’Hy.
oQ oQ

Remark 1.5. When k = 1, (1.10) was proved by Agostiniani- Mazzieri [2].

In section 2, we give some preliminaries. In section 3, we solve the Dirichlet problem
of degenerate k-Hessian equation in a ring domain. Section 4 is the main part of this
paper. We show uniform C"! estimate of the solution which is the limit of the solutions
of nondegenerate k-Hessian equation. The key ingredient is to establish uniform gradient
estimates and uniform second order estimates. We use the idea of Chow-Wang [11] to
establish the uniform second order estimate. Theorem 1.1, Theorem 1.2 and Theorem 1.3
will be proved in Section 5. In section 6, we prove an almost monotonicity formula along
the level set of the approximating solution and thus prove Theorem 1.4.

Part of results in this paper has been reported by Xinan Ma at 2/w5139-Interaction Be-
tween Partial Differential Equations and Convex Geometry on October 17th 2021 and by
Dekai Zhang at seminars at Xiamen University, on November 3th, 2021 and at Academy
of Mathematics and Systems Science, CAS, on July 6th, 2022.

Very recently (July 12th, 2022), when k < %, Xiao [35] solved the exterior Dirichlet
problem for the homogenous k-Hessian equations in which Xiao assumed the domain
is strictly (k — 1)-convex and starshaped. For the case of k < 3, our proof is different
from Xiao’s. We directly prove the uniform C? decay estimates for the approximating
solutions.

2. PRELIMINARIES

2.1. k-convex solutions. In this section we give the definition of k-convex functions and
the definition of k-convex solutions.
The I';-cone is defined by

(2.1) I ={1eR"S;(1)>0,1<i<k}
Recall S;(Q) := > Aiy - A,

1<ij<--<ix<n
1

One can find the concavity property of S} in [7].

1
Lemma 2.1. S/ is a concave function in I'y. In particular, 1og S is concave in T.
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For more properties of the k-Hessian operator, one can see the Lecture notes by Wang
[34]. We following the definition by Trudinger-Wang [31] to give the definition of k-
convex functions.

Definition 2.2. Let U be a domain in R". _

(1). A function u € C*(U) is called k-convex (strictly k-convex) if A(D*u) € I
(A(D*u) € Ty).

(2). A function u € C°(U) is called k-convex in U if there exists a sequence of functions
{u;} € C*(U) such that in any bounded subdomain V CC U, u; is k-convex and converges
uniformly to u.

Definition 2.3. Let Q be a bounded domain in R" and ¢ € C°(0Q). A function u € C°(Q°)

is called a k-convex solution of the homogeneous k-Hessian equation

SiDu)=0 in Q :=R"\Q,

2.2) K(D7u) in \
u=¢ on 0Q,

if there exists a sequence of k-convex functions {u,,} C C*(Q°) converging in C°(QX) to
u with {S «(D*u)} converging in L}OC(QC) to 0 and u = ¢ on 0Q.

We need the following comparison principle by Wang-Trudinger [31] (see also [30,32])
to prove the uniqueness of our equations.

Lemma 2.4. Let u, v be k-convex functions in a bounded smooth domain U in R" satisfy-

ing

2.3
(2:3) u<v on oU,

{Sk(Dzu) >S«(D*) inU,
in the viscosity sense. Then u < v in U.
2.2. The existence of the subsolution.

Definition 2.5. A C? domain U is called (k — 1)-convex (strictly (k — 1)-convex) if for any
x € dU, the principal curvature k := (ky,- -+ ,k) of OU at x € AU satisfies k € I'y (k € T'y).

Note that a C?> domain U is (n — 1)-convex if and only if U is convex.

Definition 2.6. Let U be a smoothly bounded domain in R". © is called a defining function
of UifU = {x: ®(x) < 0}, Olsgy = 0 and |DD||5y = 1.

Caffarelli-Nirenberg-Spruck [7] proved the following.

Lemma 2.7. Let U be a smoothly and strictly (k—1)-convex bounded domain in R". There
exists a smoothly and strictly k-convex defining function ® on U.

We need the following lemma by Guan [17] to construct the subsolution of the k-
Hessian equation in a ring.
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Lemma 2.8. Suppose that U is a bounded smooth domain in R". For h,g € C"(U),
m > 2, forall 6 > 0, there is an H € C"(U) such that

(1) H> max{h, g} and

[ R, if W) - g(0) > 6,
H(x)‘{gu), if g(0) — h(x) > 6:

(2) There exists |t(x)| < 1 such that

2 2

By Lemma 2.1, we see H is k-convex if f and g are both k-convex.

{Hij(x)} 2 {1 - t(X)gij + ﬂhij} , forall x € {|g — h| < 6}.

Lemma 2.9. Let Qy and Q, be smoothly and strictly (k — 1)-convex domain in R" with
Qy cc Q. Assume that C is convex. Then there exists a stricily k-convex function
u € C¥(U)with U := Q \ Q satisfying

S (D*u) >, in U,
24 u =1o®°, near 69,
u=1+ K, @', near 6Q,
where @' is the defining function of Q;, Ty and K, are uniform constants.

Proof. 1f Q is (k — 1)-convex and smooth, Caffarelli-Nirenberg-Spruck [7] constructed a
strictly k-convex defining function @, € C* () satisfying

S (D*®°) >, on Qy,
@0 =)' (e"od(x) - 1) near 0Q,

where ¢, f are positive constants and d(x) is the distance function from x to 9€).
Since we also assume that € is convex, d(x) is smooth in €. Then we can take ®(x) =

1! (e’od(x) - 1) for any x € Qf and we still have
(2.6) SuD*®°) > € in Q.

Letg = 7o®°, h = 1+K,®'. By Lemma 2.8 (§ = 1), for K| > 0 sufficiently large, there
exists a smooth function u satisfying (2.4). Indeed, define Q, = {x € Q; : ®'(x) < —1,}
with #; > 0. Then for #; small enough, Qy cC Q,, and dist(9€2,,, 0€2) > %dist(@Ql, 09).
Let Q% ={xeQ, :d'(x)< —%}.

For any x € ﬁtl \ Qo, by choosing K| = 2t1‘1 large enough, we have

(2.5)

1
gx)—h(x)>-h(x)>-1+Kit; =1> 5
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Then u = g = 7,@° in Q,, \ Q.
For any x € Q; \ Q% , by choosing 7y small enough, we have
1 1
h—g>1 -3 — 70| D°(x)| > 5
Thenu=h=1+ 2t1‘1(l)1 in ﬁl \Q% . Moreover, by Lemma 2.8, u is strictly k-convex. 0O
2.3. Level sets. For any function # on a domain U, we define the level set of u with
height 7 as follows
2.7) S;={xeU:ulx) =t}

Let H,,(x) be the m-Hessian operator of the principal curvature «(x) = (ky,- - , k,_1) of
x € §,. We have the following useful formula which can be founded in [5].

Lemma 2.10. Let u € C*(U) and |Du| # 0. Then on S,, for 1 < m < n, we have
S (D*uyuu;

|Du|m+1 ’
S w(D*u) =H,,|Dul™ + S Yuzuuy| Dul %,

Hm—l =

3S ((D*u)

ou;;
in[5]. In particuljar, if u is k-convex (strictly k-convex), the level set S, is (k — 1)-convex
(strictly k-convex).

where S = and the curvature is defined with respect to the upward normal as

3. THE DIRICHLET PROBLEM FOR THE HOMOGENEOUS k-HESSIAN EQUATIONS IN THE RING

In this section, we prove the existence of the Dirichlet problem of degenerate k-Hessian
equation in a smooth ring.

SiD?u)=0, in U:=Q\Q,
3.1) u=0, on 0Q,
u=1, on 0Q;.
We assume that ; is smoothly and strictly (k — 1)-convex domain and € is a smoothly
strictly (k— 1)-convex and convex domain. Using Lemma 2.9, there exists a smoothly and
strictly k-convex subsolution u satisfying

S (D*u) >e, in U,
3.2) u =7,®°, near 9Q,
u=1+ K, ®', near 0Q;,

where 1, K, are positive constants and @' are defining functions of ;.

Theorem 3.1. Let €, O be smooth (k - 1)-convex domain and assume that € is convex.
There exists a unique solution u € C'(U) of the equation (3.1).
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The uniqueness follows from the classical comparison theorem for k-convex solutions
of k-Hessian equations. Next, we prove the existence and regularity of k-convex solution
by approximation. Indeed, for every 0 < € < ¢, we consider the following problem

Si(D*u) =€, in Q,
(3.3) ut=0, on 0Q,
u=1, on 0Q,.

Since u€ is a subsolution, by Guan [14], the above problem has a unique smooth solu-
tion u€.

Next, we want to show the C*! estimates are independent of e. Firstly, by maximum
principal, u > u® for any €, < €. Thus u° := lim u€ exists. If we could prove uniform

E—00

C"! estimates, then u° is the C"! solution of equation (3.1).

Theorem 3.2. Let u€ be the smooth k-convex solution of (3.3). Then there exists a uniform
constant C independent of € such that

|uelcl,l(U) SC.

In the following subsections, for simplicity, we use u instead of u°.

3.1. C'-estimates.

Lemma 3.3. There exists a uniform constant C such that
(3.4) luler gy < C.
Proof. Let h be the unique solution of the problem

Ah=0, in U,
(3.5) h=0, on 0Q,
h=1, on 09Q.

By the maximal principle, we have u < u < h. This gives the uniform C° estimates.
Let Fi/ ;= % log S «(D*u). Since F(uz);; = 0 for any unit constant vector £, we have
max [Du| = rr;gx |Du|. Since u < u® < hin U and u = u®* = h on U, we have
U [e

h, < u, <u, <0, on 9
h, > u, 2u, > 0, on €,
where v is the unit normal vector of U (inner normal vector of 9€2;). Thus we have

(3.6) max |Du| = max |Du| < C.
U ou
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3.2. Second order estimates.

Lemma 3.4. There exists a uniform constant C such that

(3.7) max |D*u| < C.
U

Proof. Since Fugg; = —F"*uguf, > 0, we have MAX g < maxug. Thus we need

to prove the second order estimate on the boundary OU Here we use the method by B
Guan [14] and P. F. Guan [17] (see also [16]).

Tangential derivative estimates on 0U
For any fixed xy € dU, we choose the coordinate such that xo = 0, U () Bs(xp) =
(X', p(x)), p(0) = 0 and Vp(0) = 0. Since u(x’, p(x")) = 0, we have

0 =uo (X', p(x)) + s (X', p(X"))pe(X),
0 =ua5(0) + e, (0)ps(0) + 14,5(0)0a(0) + 1,,(0)p,(0)ps(0) + 1,,5(0)p5(0)
:uaﬁ(o) + un(O)pa',B(O)

Then we have |u,3(0)| < Cn;gx |Du| < C.

Tangential-normal derivative estimates on 0U.

We use Guan’s method [14] (see slao [16]). Our barrier function here is simpler than
before since u is constant on the boundary and the right hand side of the approximating
equation is a sufficiently small constant €.

For any fixed xo € 0U, we choose the coordinate such that x, = 0, AU () Bs(xp) =
(X, p(x)),Vp(0) = 0 and p(x') = Y-, KalXal* + O(X'|?). Consider the tangential operator
T, =04 + ko(x,0, — x,0,).

We will prove w = A (u — u) + As|x|> + Tou > 0 in Us := B5(0) N U.

Since u — u = 0 and |T,u| < C|x'[* on U N B;(0), we have

wlaansso) = Azlxl> = Clxl* > 0,
where we require A, > C. Since |T,u| < C and u > u, on U N dBs(0), we have
Wlanass0) = A20° = C > 0,

where A, > 2C52. Thus we have w > 0 on dUs.

Next we show F'/w;; < 0 in U;. Indeed, recall u is k-convex and S (D*u) > € > 0,
there exits 7o > 0 sufficiently small depending only on € and |u|c> such that & := u —7o|x]>
is k-convex and S (D*&t) > 2.
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By the concavity of log S, we have
FY(ui; = ;) <F(D*u) = F(D*w)
=log € — log S (D%t
€0
<l —log —
oge —log >
<0,
where we take 2¢€ < ¢y. Thus we have
F(u—w)ij =F7(u;; — ;) = 2tof
< - ZTQT,
where ¥ = Y| F". Then we have
Fw,;; =FY(A;(u — u) + As|x® + Tou);;
:AlFij(I/l - Z)ij + 2A,F
< =2A110F +2A,F

<0,
where we use Fij(Tau)ij = 0 and we take A; = é%. Then we obtain w > 0 in Us and
w(0) = 0. Namely we have
(3.8) |Toul <A(u —u) + Aslx|* in Uy,

3.9 (Tou)(0) =0.

This gives |u,,(0)] < C.

Double normal derivative estimates on U
For any fixed xy € dU, we choose the coordinate such that x, = 0, AU () B.(xp) =
(¥, p(x")) and Vp(0) = 0.

Case 1: xy € 09,

We have

Uap(0) = =1, (0)pap(0) = [Dul(0)pas(0).
Since |Du|(0) > ¢ > 0 on €2, and Q; is (k — 1)-convex, we have
(3.10) S 1 (Uap(0)) = ¢*S 1 (0ap(0)) = ¢; > 0.

Case 2: xy € 0Q

Since % < % = —|Du| < 0 on 9€)y, we have |Du| > |Du| > a, > 0 and then there exists
a smooth function g such that u = gu near 9. Since u > u > 0 in U, we have g > 1
near d€)y. On the other hand, since u = 0 on 0€),, we have forany 1 < @,8 < n -1,



THE HOMOGENEOUS K-HESSIAN EQUATION 13
u,(0) = u,(0) = 0. Thus
1ap(0) =8ap(0)u(0) + g0 (0, (0) + g5(0)u, (0) + g(0)u,,,(0)
=g(0)744(0),
where we have used u = 7o®° near Q. Therefore

(3.11)
k=1 ok—1 0 k=1 k=1~ G (2e0)
S k-1 (ttap(0)) = g7 0)76 S iy (@04(0)) > 767 ' CF min$’ (D*0%) :=c, > 0.

Let ¢cp = min{cy, ¢;} (see (3.10) and (3.11)), we have
n—1

tnCo < U (0)S i1 (ttas(0) =S K(D*u(0)) = St (0) + " 1S k2 (1)
i=1

<C.
Then we obtain
un,(0) < C,

n—1
where C is a uniform constant. On the other hand, u,,(0) > >’ u,,(0) > —C. In conclu-
i=1
sion, we have |u,,(0)| < C.
In conclusion, we get the uniform C 2 estimate. O

3.3. Proof of Theorem 3.1. The uniqueness follows from the comparison principal for
k-convex solutions of k-Hessian equations in Lemma 2.4 by Wang-Trudinger [31] (see
also [30,32])..

For the existence part, since u¢ is increasing on €, u® 1= lim u€ exits. Since |ME|C2(U) <C,

e—0

there exists a subsequence u¢ converges to u° in C"® on U and u° € C"!(U).

4. SOLVING THE APPROXIMATING EQUATION IN 2 := Bp \ Q.

We always assume Q2 is a smoothly convex domain and strictly (k — 1)-convex. Recall
that we always assume B, CC Q CC Bxk,.
2

4.1. Case 1: k < 3. Since the Green function in this case is —leﬂ%, we want to solve the
following k-Hessian equation .

S «(D*u) =0 in Q:=R"\Q,
4.1) u=-1 on 0Q,

lim u(x) =0.

X—00
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n=2k _n=2k
Define w'® := — (R(Z) + 82) * (|x|2 + 82) *" . We have
ko
fl,s = Sk(DZWI,S) zcﬁ(n — Zk) (R(Z) + SZ)T(|X|2 + 82)_7_182.

For & small enough, we can construct a smoothly strictly k-convex function u!*¢ as follows

Lemma 4.1. For any & € (0, %) small enough, there exists a strictly k-convex function
u'€ € C*(R"\ Q) satisfying

dx) _ 1y _ ;
2) = {To(e h-1, in B, \ Q.

le . ¢
w in Byg

u"® > max {w'®, 79(e" = 1) = 1} in By, \ Bz,
Sk(DZZLS) Zfl,s’ in QC,

n—2k
2 2% —1
eRo—1

where Ty = 27 % > 0 since k < 3.

Proof. We apply Lemma 2.8 by taking U = Bag, \ Q, h = w'*, g = 19(¢?™@ — 1) — 1 and
0= 2‘7"1«(2"5_1? — 1) to get a function u'* € C*(U) which is strictly k-convex and satisfies
u"® 2 max (W', 7o(e"™ — 1) = 1} in Bag, \ Bag,
S (D*u"*) > in U.
Next we prove (4.2). When x € Bsg, \ Bag,, for € < Ry,
h(x) = g(x) =w"*(x) = To(e"® = 1) + 1
> - (R% + ez)ng_'%k (4R% + 82)_% — o - 1) +1

S1 =27 — (e — 1)

n—2k

1

—(1=-2""=
>2(
=:0 > 0,

where 0 > 0 since k < %
When x € Bz, \ Q, since & < R we have

g(x) — h(x) > —wh(x) — 1

2 ZnE_I%k 4 2 2

>0 — 1> 6.
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We can finish the proof by extending the domain of u! to Q¢ by taking u'¢ = w'€ in

C
B3R0. O

Now for any € € (0, &p) and R € (Ky(Ry + 1), +00) with & small enough and K|, large
enough, we consider the approximating equation

SDuw) =f"* in Qp=Br\Q,
(4.3) u=-1on 0Q,
u(x) :gl’s on O0Bg.

Since u'** is a subsolution, by Guan [14], equation (4.3) has a strictly k-convex solution

utR € C*(Qg). Our goal is to establish uniform C? estimates of X, which are indepen-
dent of € and R. We prove the following

Theorem 4.2. Assume 1 < k < 3. For every sufficiently small £ and sufficiently large R,
usk satisfies
C'™F < —utR(x) < I~ 7,
C™'™F < IDuR|(x) <Cla T,

ID*u®|(x) <Clx|7F,
where C is a uniform constant which is independent of € and R.

4.2. Case 2: k > 7. Since the Green function in this case is leLk_", we want to solve the
k-Hessian equation as follows

S«(D*u) =0 in Q°,
(4.4) u=1 onoQ,
u(x) =[x + O(1) as x — oo.
2k—n 2k—n

4.2.1. The approximating equation. Define w>® := (le2 + SZ)T - (R% + sz)T + 1 and
we have

ko )
f2,8 = Sk(DZWZ,S) :Cﬁ(Zk ) (|x|2 + 82)_5_182.
—-n

We construct a smoothly and strictly k-convex function u*¢ as follows
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Lemma 4.3. For any & € (0, %) small enough, there exists a strictly k-convex function
u>® € C*(R" \ Q) satisfying

“5) v {To(ed(x) -1 +1, in Bag, \ Q,

= 2.& . C
w in Byg s

2 2 dl .
> > max {w?*, 79(e"” — 1) + 1} in Bog, \ Bag,
Sk(DZEZ,E) Zfz,s, ln QC,

2k—n
2 2% -1
eRo—1

2k=n
where Ty = %RO" > 0 since k > 3.

Proof. We apply Lemma 2.8 by taking U = Bag, \ Q, h = w**, g = 19(¢?™@ — 1) — 1 and
2k=n —n . — . . . .
0= %RO" (ZMT — 1) to get a function u*¢ € C*(U) which is strictly k-convex and satisfies

uw** 2 max (W, 7o(e™™ — 1) = 1} in Bag, \ Bzg,
S (D*u*®) > > in U.
Next we prove (4.5). When x € Bsg, \ Bag,, for € < Ry,
h(x) — g(x) =w™*(x) — To(e™™ = 1) - 1
> (4RG + 82)2]5_;’1 — (3 + 82)% — 1o = 1)
SR (2% — 1) = ro(e — 1)

2§;n _ ]7)

1 2kn
>§R0" (2
=:0>0,

2k-n _2k-n
where we choose 7g = 3R, 263%;__11 >0and § > 0 since k > .

When x € Bapg, \ Q,

g(x) = h(x) = - w>(x) - 1
>R + )% — (%R% + )

>0~

2k—n n
FRE 1) >4

Then we finish the proof by extending the domain of u*€ to Q° by taking u*¢ = w*€ in
B, - |

We consider the approximating equation as follows
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SuDu) = >, in Bp\Q,
(4.6) u=1, on 0Q,
u=u>*, on OBy.
Since u?>? is a subsolution, by Guan [14], equation (4.6) has a strictly k-convex solution
utR € C°(Qg). Our goal is to establish uniform C? estimates of #®X, which are indepen-
dent of € and R.
We prove the following

Theorem 4.4. Assume k > 7. For every sufficiently small & and sufficiently large R, usk
satisfying

) = 1 < €,
C'IF < IDuR)(x) <CIx'T,
ID*u”R|(x) <Clx|7,
where C is a uniform constant which is independent of € and R.

4.3. Case 3: k = 3. Since the Green function in this case is log|x|, we want to solve the
k-Hessian equation as follows

S:(D’u)=0 in €
4.7) u=0 ondQ,
u(x) =loglx| + O(1) as x — oo.

4.3.1. The approximating equation. Define w** := 1log II);I;:;Z and we have
0
(4.8) f3"9 = S (D*w>?) = 2k+1C§__1182(|X|2 " 82)_§_1

We construct a smoothly and strictly k-convex function 1> as follows

Lemma 4.5. Forany ¢ € (0, Ro), there exists a strictly k-convex function u>® € C*(R" \ Q)
satisfying

4.9)
we in By,

d(x) /
B = {To(e o, in Bzg, \ €,
w® > max {W3’8, To(e™ - 1)} in Bo, \ Bz,
SD*u*®) 2 f> in Q°

_ 1 log2
where T) = ;.
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Proof. We apply Lemma 2.8 by taking U = Bsg, \ Q, h = w**, g = 10(¢?® — 1) and
0= % log 2 to get a function u*¢ € C*(U) which is strictly k-convex and satisfies

¥ > max {w3’8,7’0(ed(x) - 1)} in Byg, \ By,

S (D*u*®) > 3% in U.
Next we prove (4.9). When x € Bsg, \ Bag,,

h(x) = g(x) =w*(x) = To(e"™ ~ 1)
1 4R2+¢&?
>—log ———— — 1o(e’F — 1)

-2 RS + &

1
>3 log2 — 1o(e*® — 1)

1
>—log?2 =: 0,
4 0%

log2
where we use € < R, and we choose Ty = }”32(%_1.

When x € B%RO \ Q, since € < %Ro, we have

() = h(x) = = w**(x)

1 RS + &
Z3 108 T
§R0 + &£
1
>—log?2 > 9.
2 8
Then we finish the proof by extending the domain of u*€ to Q¢ by taking u*¢ = w*€ in
B O
3Ry’

We consider the approximating equation as follows

S«(D*u) = 3%, in Bg\ Q,
(4.10) u=0, on 9Q,

u=u>*, on OBg.

Since u>* E a subsolution, by Guan [14], equation (4.6) has a strictly k-convex solution
utR € C=(Qg).
We prove the following
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Theorem 4.6. Assume k = 3. For every sufficiently small & and sufficiently large R, usk
satisfies
™R (x) — log Ixl| <C,
CIx™" < [DuR|(x) <Clx ™",
ID*uR|(x) <Clx~2,
where C is a uniform constant which is independent of € and R.

In the next subsections, we will prove uniform C*-estimates of solutions of equations
(4.3), (4.6) and (4.10). The key point is that these estimates are independent of £ and R.

4.4. C° estimates.

4.4.1. Case 1: k < 5. We fisrt prove u“R is increasing with R. Indeed, since for any

R > R > 100(R, + 1), we have

SHD2uR) =8 ((D*us®) = 1 in O

R =y = —1 on 9Q,

u® =u < u®® on OBy

Applying the maximum principle in g, we have

4.11) utR < usk,

Since
n—2k
k

S«DuRy = 15> 0= 8, (D*(r,* M7 )], in Qs
0

n=2k n—2k
uR = —1 < —r,” |x*T", on 9Q (For B,, cC Q),

ok (Ijé +é
R* + &
Applying the maximum principle in Qz, we have

.
B 12k — p2k
) <-r,* R"%, ondBy

i n-2k n=2k

(4.12) ut < —r," X7 in Qg

Then by (4.11) and (4.12), for any R>R> 100(Ry + 1),

P n-2k n=2k
(4.13) utk <yl < =" X7 T in Q.

On the other hand, for any x € Qg, we have u®f(x) > u"*(x) > w'* = (R + )% (|Ix? +
82)_"5_1?. Thus when k < 3, for any x € Q,

n—2k _n=2k
rot AT

n=2k n—2k
< —uR(x) < R X7 .



20 XINAN MA AND DEKAIZHANG

4.4.2. Case 2: k > 4. Firstly, we have for any x € Qg, u™*(x) > u>* > w>* = (x> +
) — (R; + &)™ + 1 and this gives the lower bound of u*%.
—-n M;n . . . —n
Since [x|°7" — r,© + 1is the upper barrier of u*® in Qg, we get u®F — Ix*F < C.

4.4.3. Case 3: k = 5. The proof is similar as that in Case 2.

4.5. Gradient estimates. In this subsection, we prove the global gradient estimate. The
key point is that the estimate here does not depend on € and R. We also prove that the
positive lower bound of the gradient of the solution and thus the level set of the solution
is compact.

4.5.1. Reducing global gradient estimates to boundary gradient estimates This part is
the key part of gradient estimates. The point in here is that the gradient estimate is inde-
pendent of the approximating process. This estimates is motivated by B. Guan [15].

Theorem 4.7. Let u be the solution of the approximating equation (4.3), (4.6) or (4.10).
Denote by
|Dul*e*, k=14,
4.14) P={ DuPus=, k>1,
2(n—k)
k<3

|Dul? (=)~ =x,

then we have the following gradient estimate

2uD1 3,12 P —n
maX{g%(el og f I),n}ix } k=%,

2%-n_T? 2k 2,612 n
(4.15) rgllﬁéP < max{[k(nH_k)] lgllfilé(l,ﬂk 7D log [~ ),rr%ixP s k>3,

2 2k
n—2k —11) " =% Le2 n
max{[k(n+1_k)] g}leé\lé [( u)"»=%|Dlog f1] ]’H%%XP}’ k<2,

where I'g := 0 (Bg \ Q).

Proof. For simplicity, we use f instead of f'¢, ¢ or f>* during the proof. Consider the
function G = log |Dul* + g(u).

|Dul? P
OZG,': l2+g,1/t,': 21+g,1/li
|Dul us
2141'
=— +g'u,.
Ui
Then we have
’
u; =0,i>2,4 =up = _g_u%.

2
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In the following, we will take g in three cases

2u, k=3,
(4.16) o(u) = f%%:’;;l{)log w, k>4,
=T log(—u), k < 3.

In these three cases, we always have g’ > 0. This implies 4; < 0 and thus (1|1) € T’
which is crucial during the proof.
Thus u;; is diagonal at x, and

0> FiG; = (;') lz‘z‘ Fi|IDup[* + " F'u? + g Fiu,
2, l;jlf””k””" — Pl + g + gu
:2F”ul.2i +u2%FiiM1M1ii 3 (g')zF“u% N g"F”u% + g Fiy,
=2u7(S1(D)f = (ke + DS (D) + unfi) + (87 = (€)°)S e (ADu; + kg f
=2u; (Slwf — (k+ DS 11 (D) + ur fi + %(g" — (€))S (A Dyu + gg'u%f)
=2u;” ( 1 = (e + DS (D) + i fi +2( (g,)2 — 1)S 1 (ADAT - kfal),
where we use A; = —%uf
Therefore
02 SUEFGy = S0 = (k+ DS )+ + 25 = Dsiaaing -k
= SIS = = DFA = (6 DS () + 255 = DS + i
Sine A1 S;_1 (A1) + Sx(11) = f, we have 4; = S,H];Au) - Siff/(l/llﬂ) We first manipulate the
term —(k — 1) fA;.
ke D= m k= by (Sk_ljgﬂ|1> ) SSkk%ﬁ))
(4.17) S WA LU LR

S -1 (A1) S
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Next we manipulate —(k + 1)S 4,1 (4).

—(k+ DS (D) = = (k+ DS (A1) = (k + 1S g1 (A1)

_ S
= (k+1)sku|1)(sk_l(ﬂ|l) Sk_l(au)) (k + 1S (A1)
_ SxAlD) Sy

(4.18) = (k+1)fSk_1(/l|1)+(k+1)Sk_1(/l|1) (k+ 1S i1 (A1)

’

At last, we manipulate the trouble term 2((5%)2 - 1)S —1(4] 1)/1%.

"

2~ DsL@ng

(g")?
g’ f SiAll) \2
= 2 -5 1 S — /1 1 -
(<g')2 )Siacal )(Sk_mu) S,Huu))
g’ 12 g’ S (A1) g" S2(Al1)
4.19 =2 -1 -4 -1 2 -1 .
(+19) (<g')2 )S/Huu) (<g')2 )/ S (<g'>2 )Sk_mu)

Substitute the above three equality into the original terms, we have

0 z%ufF”G,-,-
:(2(5;2 +k- 1)% — (k4 DS (D) +2(1 - éf;; )fSS:f?A'ji)
+ (2(5;2 — k- 1)%&1) +S1QAIDf +wfi
-2 (5)2 reo1- S 1))555%3) #2(1- <2gg';) SSkkfﬁlﬁﬁ)
(4.20) +(2(§:;2 —k- 1)%&1) +S1ADf + urfi,

where in the last inequality we use the Maclaurin inequality:

Sra(AUD/CY - SyAD/C)_,
SyAD/CEy T S (AD/C

Casel: k < 7,
Since the foundamental solution is —|x|>"% and its gradient is ~ |x|'"%. We take g(u) =

alog(—u), where a = _25211? < 0. 2% = —% = ’;‘—_213‘ Substituting it into (4.21), we have
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0 z%u%F”'G,-,- > (2 (5;2 +k—1- k("n_ X - 1))555%3)
77 ’” 2
+2(1- é‘?)z)fsi’_‘f?ji) + (2(;)2 — k- 1)#@1) +S1ADf +uifi
_ 2
:nz—kkfsil_{ﬂi) -k Z i K kskjuu) 5D +uf
zf(n f S - kngk/ll) + 1y f1(%)
4.21) zgkn Z 1 - k_ k("n+_12k k)fit; +uf,

where in (*), we use the same argument as the k > 7 case.

From this, we have u; < k("+12kk)(—u)|D log f|. Then we have

2
IDul(—u)* < i (-u)” < (-u)#7|D log 1.

-2k
k(n+1- k))
Case2: k > 7.

We take g = alogu, where a =
we have

22(2:? (since the foudament solution is [x>~% ). By (4.21),

1 ..
0 ZEM%F”G,','

2g" S(A1) g’ 12

= 2 —k-1|———+ Sl

[ (g')Z]fSk 1u|1>+[ &7 ]Sk_mu)* @ADS + i
s 2P

:2(1 _)fSk (/”1) (1 + E + k)m + Sl(/lll)f + M1f1

2k S (A1) n+1-k f2
Sk s Tk seam P AN R
2k S (A1) n+1-k S (A1)
S saam ax f[ﬂ”Sk_l(Ml)
3 k(k+1—-n) S(11) B n+1-k
_f[SM“)J“ kS ok

k +1-k
>f S, - kK228,
n-— n—-k

2

uy
ch,kfg +uy fi,

+S1(ADf +ufi

Ai|+urh

+ ui fi

k _ knl—k
where ¢, = gkt = £l
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This gives
2k —n
<——ulD1 .
NS TP le]
Therefore we have
2k —n 2 %
2. a k—n 2
(4.22) \Dulu® = b’ < (m) u™|Dlog fI.
Case3d: k = 3

In this case, we must choose g(u#) = 2u (it is uniquely determined by the foundamental
solution log |x|), then from (4.20), we have

0>;u1F”G,,_Zf%—(g+1)#&|1)+51(ﬂ|1)f+u1f1
=f(S D) + % -G+ 1)#(%)”1]%
(s 1D+ 25 5 = G D+ )
=f(-G +ml+Sl<ﬁ|1)—(§—1)5kkf(ﬂ'jf)) i fi
> (5 + DAy + 2( 2) 1AD) + i fi

Zf(— + 1)1/!1 + I/tlfl.
—(log f)1 < |Dlog f]. Thus we have

|Dul*e® < uje® < e*|Dlog fI*.

This implies u; <

4.5.2. Boundary gradient estimates
We always assume R >> 100(1 + R;). To prove the boundary gradient estimates, we

will construct upper barriers on 9Q and dBy respectively.
Casel: k < 5

LetheC w(ﬁRO) be the unique solution of

Ah =0, in Qg,,
h=-1, on0Q,
n=2k n-2k
h=- I’Ok R()_T, on 8BRO.

By maximum principle, ¥ < u < h® in ﬁRO. Then for any x € 92

0> —79 = 7o, (x) = u"* (x) > u,(x) > hy (),
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where v is the outward normal of dQ% (inward normal of Q). Then

(4.23) 0 < 19 £ 19 max |Du| = max(—u,) < max |h,| < C.
0Q 0Q 0Q

This proves that P is uniformly bounded on 0.

Next we show P is uniformly bounded on dBg. Indeed, we consider

n=2k n=2k
(4.24) PR = —aS’RrO" X" * +a®f -1,

where a®® is defined as follows

\T B R + &%\ 55
R _ 120 ok
(4.25) a*f =1 (Ro) ((R2+52) +1)> L.
Then we have p*F = u on 0By and u'* < u < p*® in Qk. Then for any x € By
n—. - 2k n-2k n—. n—.
(4.26) CR™ 2™ (02 u,() > () = @™ —=r " R'% 2 R,
where C and ¢ are uniformly positive constants. Thus
(4.27) cR™"% < max |Du| = maxu, < CR™'F .
6BR OBR
Combing (4.23) with (4.27), we have
(4.28) clx'"% < |Dul < Clx|'""% on 0Q

This implies P is uniformly bounded on dBk. _
In conclusion, when k < 7, P is uniformly bounded in Q.

Case 2: k > 3
LetheC w(ﬁRO) be the unique solution of
Ah =0, in Qg,,
h =1, on 0Q),
2k=n 2k=n
h=R,* —r,* +1, on 0Bg,.

By maximum principle, u*¢ < u < h in ﬁRO. Then
(4.29) 0 <c<|Dul <C, ondQ

Thus we have P is uniformly bounded on 9€ .
We construct the upper barrier of u in {2 as follows

2k—=n

(4.30) P = o (W = )+ 1,

where a®® is defined by

-1
431) aF = (R”T'” it ) (R + 695 = (R} + &)%) > ag > 0,

25
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where ay > 0 is independent of € and R. Then we have p®f = u on By and u*® < u < p*f
in Qg. Thus

n—k n—k
(4.32) cR™ % <max|Du| = maxu, < CR * .
(’)BR {)BR

Combing (4.29) with (4.32), we have
(4.33) c|x|'"% < |Du| < C|x|'""% on 6Qg

This implies P is uniformly bounded on dBg. In conclusion, when k > 2, P is uniformly

bounded in ﬁR.
Case 3: k=3

LetheC w(ﬁRO) be the unique solution of
Ah =0, in Qg,,
h =0, on 012,
h =log Ry — log ry, on 0Bg,.

By maximum principle, #** < u < hin ﬁRO. Then
(4.34) 0 <c<|Dul <C, ondoQ
Thus P is uniformly bounded on Q2 .

We construct the upper barrier of u in {2 as follows

PR = a®R (log |x| - log ry),

where a*F is defined by

4 1. R +&
(4.35) a®® = (log R —log o)™ = log —2_ > 4y > 0,

2 R(2)+82

where aq > 0 is independent of € and R. Then we have p®f = u on By and u>* < u < p*f
in Q. Thus

(4.36) cR™' < max |Du| = maxu, < CR™".
0B OB

Combing (4.34) with (4.36), we have
(4.37) clx|™! < |Du| < Clx|™! on dQg

This implies P is uniformly bounded on dQg. In conclusion, when k = 2, P is uniformly
bounded in ﬁR.
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4.5.3. Positive lower bound of |Dul.

Lemma 4.8. Let u be the k-convex solution of the approximating equation (4.3), (4.6) or
(4.10). For sufficiently large R and sufficiently small g, there exists a uniform constant c
such that for any x € Qg

noo. n n
colx7F, ifk < = ork > =,

(4.38) x- Du(x) > 2 2
Co, lfk = 5
In particular,
coldl'E, ifk < g ork > g
(4.39) \Du(x)| > ’
colxl™', ifk = 3

Proof. Case 1: k < 3
We consider the function H := x - Du(x) + b;u. Recall F/ = #(log S (D*u)).
ij
Direct manipulation gives

(4.40) FUH;; = (2 + b))k + X fons
Recall f = log f, we have
(441) xmﬁn = —(}’l + 2)|X|2(|X|2 + 82)_1-

Then if b, < k~', we have
(4.42) FiH; =(x” + &7 (@ + bk = (0 +2))lxd” + 2 + by)ke?) < 0,

By maximum principle, H > minyo, H. By choosing b; sufficiently small, we can prove
minmR H > 0.
Indeed, for any x € 9€, since € is convex, we have

H(x) =x - Du(x) — by = (x - v(x))|Du(x)| — by
(4.43) > nélgizn(x -v(x))c — by > 0,
where the last term is positive if we choose b; < mingg(x - v(x))c and v(x) is the outward

unit normal vector of Q at x € 0Q2.
Indeed, for any x € B, we have

H(x) =x - Du(x) = by (R + )i (R + &%)
—Ruy — by (R + ) 12R? + £
>cR*T" = C,bRT"
(4.44) -0
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where we require b; < 5=. In conclusion, we prove H > 0 in Qf and thus we prove

26,
(4.38).

Case 2: k> 3

We consider the function H := x - Du(x) — b,(u — 1) — a,, where b, and a, are positive
constants to be determined later with a, < b—22

For any x € 0Q, since u(x) = 1, we have H(x) = x - Du(x) —ay > c¢(x - v(x)) —a, > 0 if
a, < mingg(x - v(x))c is small enough.

For any x € 0By, recall the upper barrier o in (4.30) and a®® in (4.31), we have

H(x) =Ru, — b, ((R2 - 82)% — (R5 + 82)% - 1) —as
>RpR — bz(R2 + 82)%
2k~ M oeRpEE bz(R2 +82)2’§—Z”

k

—n Zk - Lo
—R*F" ( e b2(1 + ng—Z) * ) .

If we take b, = 22 — L > 0 (since 2k —n > 1), the above is positive since a®* is close to
1 for R sufficiently large. For such b,, we have

FiHy; =(Ix + )7 ((@ = bk = (n + 2)) x> + 2 = by)ke?)
< + )7 (= 3P + (n + D?)
(4.45) <0,

where we assume £ small enough (note that |x| > r( for x € Q°).
By maximum principle, we have H > mingq, H > 0. Thus we get for any x € Qg,

x - Du(x) 2by(u—1) + a,
ay |x| 21{]:" ’

a
>—Uu =
2 4(1+C)

where we use u > max{|x|# -C,1}.
Case 3: k=3
We consider H = x - Du(x) — by which is positive on the boundary of Qy if we take b5
small enough. Since FH;; = (|xI* + £*)' (—=2|x|* + ne®) < 0 for & small enough, we have
H = x-Du(x) — b3z >0in ﬁR and we can get the desired estimate.
O

4.6. Second order estimates. We will prove the second order estimate of the approxi-
mating equations.
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4.6.1. The global second order estimate can be reduced to the boundary second order
estimate.

Theorem 4.9. Let u be the k-convex solution of (4.3) or (4.6) or (4.10) and consider

G = ugep(P)h(u), then we have

(4.46) max G < C + max G.
Br\Q I'r

where I'g := 0 (Bg \ Q), ¢(t) and h are defined by

(M —-1)",k <n,
(4.47) (1) = { | k=n

where M := 2max P + 1 and 7 is a uniform positive constant determined in (4.74) (if
k # 3) and (4.75) (if k = 3). h is defined by

eZu, k =
h(u) =3 us, k>
s <

Proof. For simplicity, we write f instead of f¢, > or f>¢ during the proof.
We rewrite the equation as

F(D*u) = log S (D*u) = f,
where f = log f satisfying

(4.48) IDfI> + 1D f] < Clx>.
Now we are ready to prove the second order estimate, we first recall
|Dul*e?", k=13,
P = Dufg(u) :={ |Dufu, k> 1,

2n—k)

|Dul>(—u)~ "=, k < 2.

Direct manipulation shows that

2, k=13,
(logh) = Zkz_nu-l, 1 k > 5
(W k<3,
(4.49) h((log h))™" <C|x*,
moreover,
(4.50) g = cuih(loghy’,
where ¢, = 2 when k = 5 and ¢, = m when k # 7.

Assume G attains its maximum at x, € Qg along the direction &. We choose the
coordinate at x, € Qg such that D*u(xy) = {4;5; ;}. Then one can check & = (1,0---,0).
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Then G = log u;; + log ¢(P) + log h(u) attains its maximum at x.
Our goal is to prove the uniform upper bound of A, h.
All the calculations are at xy, fisrtly, we have

i i hi
0=G;= LU AL
Z38] ® h

i ¢ ’
=+ —P; +

Ui ® h

From the above, we have
4.51) 2o L p-
(4.52) —m:——;—ia.
Differentiating G twice, we have
(4.53) Gn_fﬁﬂ-(Eﬂﬂ2+fﬁm+(f:—(fdjuﬂ2+ﬁ;m+(ﬁz—(”f)m|
Uy Ui ® % ® h h h

Then we have

i 2 2 2
y F'uqq; .. ; o " / y h . h' h ..
0> F”Gii :ﬁ - F" (ui) + gF”P,’,’ + (Qp_ - (g) )F”|Pi|2 + —F”I/lii + (7 - (z) )F”|Mi|2
Y

U Ui ® ¥ h
— FiSy ; 2 ¢ o\ " N
(f)ll Jj1%rs1 _ZFU(MH ) _FU(ZPI +—M1) +(¢——(£) F”|Pi|2
Ui Un ¢ h ¢ 4
hu /% 2 h
QO F”P” + F”|u |2 + —F”u”
o o\ h

224 ZSk 2Dy —ZF”(”“;)Z
( ( ))ZF”IPI +(——(—))ZF”|%

17 h/l h/ 2
+ "0__3 g F11|P1|2+ — 3= F11|M1|2
©® ® h h

+ £ Fiip,
¢

where we use the concavity property of log S .

(4.54)
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We fist deal with the easy case: k = n. Note that in this case ¢ = 1, h = wand F" = A;'.
From (4.54), we have

(4.55) 0> FiGy > nu™" =227 uud — A7 (H)ui.
Multiply A,u? in the above inequality, we have
(4.56) i <208+ (H <G,

where we use |Du| < C, u < Cl|x| and |D? f] < C|x|™? (see (4.48)). Thus we finish the proof
when k = n.

In the remaining proof, we always assume k < n.

We manipulate P;; directly.

n
P =2% )y + |Dul’g u;,
=1
n
P; =28 i+ 2813 + 48w + |\Dul*g’u? + |\Dul’g u;
ii 8 Uil glxl” guuul urg I/tl up-g uj
=1

Thus we have

F'P; =23 Z Fu +4g’ Z Flluu? + |Dul*g” Z F'u? + kg'|Dul* + 23 Z u;f;
i=1 i=1 i=1 i=1
>z > Fiud - 457 @7 Y Flul +1Dullg’| Y Fiu? = 2g|Dul| D]
i=1 i=1 i=1

>3 Z F'u?: — C((log h))*|Dul*g Z F''u? — 2¢, th(log h) |Du||Df]
i=1

i=1

(4.57)  2cuh(ogh) Y F'ul — C((loghy)*P y" F'u} — CP*(log hy,
i=1

i=1

where we have used P = |Dul*g, § = c,,h(logh)’ and g%IDfI < C(log h)’ which follows
from |Df| < Clx™! (see (4.48)) and h((log h)')~' < C|x|*(see (4.49)).

Similar as Chou-Wang [CPAM, 2001], we now divide two cases to obtain the upper
bound of A;A(u).

Casel: A; > 64,
Since A, > 04, there exists a constant § such that S;_;(1k) > 6S _;(1), we have

u —

D UF 2R > 0F7S (D,
i=1

>620f 'S (VAT = 0 7S 1 (D)A.
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Then by (4.57), we have

(4.58)

FiPy >cpih(log hY 0 'S 1(1)A% = C((log h))*PS s (DIDul® — CP* (log h
=%cn,kh(10g hYOf 'S 1 (D)AT — C((log h)')* PS -1 ()| Dul*
+ %c,,,kh(log hYOf 'S 1 ()A2 = CP?(log h)
>h™'(log h)’f‘lsk_l(ﬂxécn,ké(hﬂl)z - CP?)
+ (log h)’(%cn,kéf_lsk—l/ll(h/ll) - CP?)
>(log h)’(%cn,kéf‘lS 11 (hd,) = CPY)

1 -

>(log h)/4_cn,k9f_15 k-1d1(hdy)
n

=: co(log h)/f_lsk—l/ll(h/ll),

where we use the following Maclaurin inequality in (4.58)

S () < n—k+1
Si1(D) — nk

S1(),

and we have assumed

(4.59)
(4.60)

(A1h)* >4c,,07'CP* =: Cy,
~ 1
Ak 28¢,407'CPY = C1.

In this case, inserting (4.51) into (4.54), we have

(4.61)

n n

0= 16,25 3(E)) 3 e+ (5 ~3(5)) 3 Pt
=1 =1
+ %F""Pﬁ + % =7 (D

h/l h ’

2(7 - 3([)2) ; Flluf + %Fﬁpii + % -4 (P
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Combining (4.61) with (4.58) and note that |h7 — 3(%)2| < C((log h)')?, we have

. hr/ hr 2 n . ’ B
0>F"G; > (7 -3 (ﬁ) ) D Fiuf + co%(log hY f7'S a1 di(hady) + k(log hY — A7 (P
i=1

i
M—P
(A h): — CP) _ATf

> — Cf7'S i1 (DIDul*((log hY')* + co (logh) f7'S 1 i (A1h) — /11_1]?11
coT

M-P

=h~'(log h) f~'S (-1 () (
(4.62)

1 _ , T o
Zih '(logh) f 1Sk-l(/l)coM — P(/hh)2 -7 fun,
where we have assumed
(4.63) (Ah)* = 2¢;'t7 (M — P)CP =: C;.

Since $48 < 1HLG (1), by (4.62), we have

(4.64) (A1h)* < Ch((og hY) ' fi1.

In conclusion, by (4.59), (4.60), (4.63) and (4.64), we obtain an upper bound of 1,u” as
follows

(4.65) (Lub)? <Cy + Cr + C3 + Ch((logh)) ' fi; < C,

where we use [D? f] < Clx|2 (see (4.48)) and h((log h)')~" < Clx|* (see (4.49)).
Case2: A, < 64,
Since Ay + gy + -+ A, =S 1(A44]12...,k—=1) > 0, we have —A,, < (n — k)A; < ndd;, thus
|/ll| < nod;,i = k+1,...,n.
Inserting (4.57) into (4.54), we obtain

n n 2
02F"Gy 2 227" 7' " Sia(Aliluy i = )" F (”i)
i=2 i=2

Uil

‘;DN Q@l 2 n h// h/ 2 n
+| = —& F""|P,-|2+(——(—)) Flul*
(so (90) )g‘ h\h Z‘
2 2
17 ’ h/l h/
Ay e
® ® h h

(4.66)

+ L, ihlloghy " Fiid - C=((loghY PP Y Fiu? = CZPH(loghy — 47 (.
¢ i=1 ¢ i=1 ¢
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Claim: We claim that for sufficiently small T > 0, there exists sufficiently small 56 > 0
such that the following holds

7

n n 2 A2\ n
£ =20 ST S U - F""(@) +(""——(£)) Fiilp,?
(+) lf;kz I 22 ol I e 9022
4.67)  + (logh)” Z Filu? — ¢ ((log hy 2P Z Fiu?
- @ -
=2 =2

>0.

We will prove the estimate of A,/ based on the claim above. Indeed, by (4.67) and (4.66),
we have

0 >F"P; > (log¢)'c,zh(loghy > F'u

i=1

— C(log ) ((log h))*F''ui — C(log ) (log h)’ — 47" fiy
17 (log ) (log b F'! (%(M)z — Ch(log h)'uf)

+ Cn, N i / r_ -7
+(logg) —~hlogh)' ) F'ui; = Cllog ¢)' (logh) ~ &7 fi
i=1

>h~!(log ) (log hy F'! (%(ﬁlh)2 - CP)
+ co(log @) (log h)' (1) — Clog Y (log h)’ = A7 fiy

1 _
(4.68) cho(log @) (log h)' (A1h) — A7 fil,

where we use the Maclaurin inequality and assume A,/ is sufficiently large. From (4.68),
we obtain

(4.69) (A1h)* < Ch((ogh)) ' fi1 < C,
where we use |D? f] < Clx|™2 (see (4.48)) and |h((log h)')™" < x]* (see (4.49)).
Now we prove the Claim (4.67).
Proof of the Claim (4.67): By Pagel037 (3.5) in Chou-Wang [11], for any sufficiently

small g > 0, there exists 6 > 0 such that

(470) 2/115k—2(/1|11) - (2 - GO)Sk_l(/”l') > 0.
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Now we use (4.70) to prove the claim by choosing appropriate €, and 6. Firstly, by (4.52),
we have

D Fll(og ) = Z |ﬂ + (logo)if
i=2

Uiy -
(4.71) > - 22 =P =2 ) ldog o)
i= 1 i=2

Subcase 1: k < gorg <k<n.

We deal with the term (log k)" Y, F'u? as follows
i=

i -2k Ui
<logh>"ZF”u2—aogh)"(aogh)) Z| UL+ tog ) = 'Z| W4 (log )
4.72) z—(lm)”‘”"i&ﬁ—(l i 'Z|<log<,o)|,

ooz i

where 7; > 0 is a sufficiently small constant.
Inserting (4.71) and (4.72) into (4.67), we have

|n — 2k
n

(*)z(l—eo—(l+rl) —21CP(M - Py )|le11|

’” _ 2 ..
£ -1 a2 acron - b oeer? ) e

~ 2k ,
2(1—60—(1+71)|n |—2c)|”i|2
Ui
’7 _ 2k B
(4.73) + (‘”— - (1 (147! In =2k, 2CT) ((log go)')z) Filp,P.
()0 n

Since |n — 2k| < n, we can choose 7, such that b = (1 + Tl)@ < 1 and then we choose

€ = % and M > % such that the first term of (4.73) is nonnegative. At last, since

%/ = (1 + 7" ((log ¢)’)?, the second term of (4.73) is nonnegative if we choose positive

small constant T as follows

4.74) T < min

{l—b n }
(I+7] Dn - 2k| + 2nC
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Subcase 2: k = 3.
In this case (log h)” = 0, inserting (4.71) into (4.67) and using (4.70) with ¢ = %, we have

1 ; 77 .
() > (E — 2tCP(M - P)—l) 2P (‘p— — (1 +27CP(M - P)™")((log 90)')2) FilPP
U ¥
>0,
where we choose the positive small constant 7 satisfying
1
4.7 :
*47) " iCc+a

Then we finish the proof of the Claim.
Combining (4.65) with (4.69), we get the estimate of A, A.

4.6.2. Second order estimate on the boundary 0Qy. .
Stepl: tangential derivative estimates.

We first prove the tangential derivative estimate on 0€2. For any x, € dQ2, we choose
the coordinate such that x, = 0, 9Q () B5(0) = (¥, p(x")), p(0) = 0 and Vp(0) = 0. Since
u(x’, p(x")) is constant, we have

|ttap(0)] =[1t,00p(0)| < C|Dul(0) < C.
Next we can prove S ;_;(u3(0)) > ¢; > 0 as that in Section 3 (see (3.11))

For any x, € 0Bg, we choose the coordinate such that xo = (0, - - - , 0, —R), then near x,
OB is locally represented by x, = —(R* — |'[*)?.

Since ulyp, = constant, we have
& x,
0x,0xg
(4.76) =R"'1,(x0)3p-
Since we have the boundary gradient estimate on dBy (see (4.26), (4.32) and (4.36)),

CR™'T > u,(x) > cR_%,

Uap(Xo) = — uy(Xo) (x0) = =R 10,,(x0)Sap

then by (4.76), we have
4.77) lutop(x0)| <CR™*
(4.78) {tap(x0)} 2CR™H{85).

Step2: tangential-normal derivative estimates 0Qr
For any xy € dBg, choose the coordinate such that yy = (0,---,0,—-R), 0Bg N B 1 200)
is represented by

X, = p(x¥') = —R* - X,
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Consider the tangential operator 7, = (x,0, — x,0,),1 < @ < n — 1. Since u(x’, p(x’)) is
constant, we have

0 =uy + u,po = Uy — x(,p_lu,,
Then on 0B N Bs(yp), we have
T u = x.u, — puy = 0.
We consider the function

W= A RT (U= o) — 20%) + A\R|x — o £ R*T T, in By N Ba(xo),

where vR(x) = ';—'22 — 1. Obviously, w(xy) = 0. Since T,u = 0 on By \ B%(xo), we have

W|BR\B%(XO) > 0.

Since R"_TZ’(|Tau| < ClR"_TZk|x||Du| < C, choosing A; > 4C, we have
1
4.79) w > ZAl -C>0 on dBN B%R(yo))

Next we show Fw;; < 0 if we choose ¢ is small enough. Indeed, firstly, recall f=
log f = —(4 + 1) log(IxI* + £) + C, then we have

(4.80) FU(Tou)i; = Xofy = Xufa = 0.

By the concavity of log S, we have
FI (R u - VR)U <F(R"T D*u) — F(D*F)
<2loge—- (2k+1)logR + C + 2klogR
=2loge —klogR+ C
<0,

where we require £ small enough. Thus we have

n=2k

Fiiwy =AF7 (R'T u - vR)ij — A FIVE 4 A RT2FI(|x = xo),

=A FU(R*T u - VR)U

<0.

By maximum principle, w attains its minimum O at xy. Then we have
0> wa(xo) = Aj(R'T 1,(x0) + 4R ") = R'T 110 (x0).

Then |1y, (xo)] < A;R™'|Du(xy)] < CR™* and thus we have the uniform tangential-normal
derivative estimates on dBgp.

For any x,, since S;(D*u"*) > & > 0 near dQ, we can prove the tangential-normal
derivative estimates on d€2 similar as that in Section 3.
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Step3: double normal derivative estimates 0Qy
We can choose the coordinate at xq such that u,,(xo) = [Du| and {uap(x0)}1<ap<n—1 1 diago-
nal.

If xy € 0Bg, we have

n—1

_nk-1)
nCOR™ <ty (X0)S 1 (g (X0)) =S e(Du(x0)) = S lttap(X0)) + Y 17, k-2 (1)
i=1

<f+C M5 ML,R™
<CR™.

n—1
This gives u,, < CR™%. On the other hand, u,, > — 3 u; > —(n — 1)M, R™%. Then we
i=1

have |u,,(x0)] < CR%.

If xo € 09, since S j_1(ua5(x0)) > ¢ which can be proved similar as that in Section 3,
then we have |u,,,(xy)| < C.

In conclusion, we obtain |D?u(x)| < C|x|"% on the boundary 0Q and thus [D?u|(x) <
Clx|"t for any x € Q.

5. ProoF oF THEOREM 1.1, THEOREM 1.2 AND THEOREM 1.3

5.1. Uniqueness. The uniqueness follows from the comparison principle for k-convex
solutions of the k-Hessian equation in bounded domains in Lemma 2.4 by Wang-Trudinger
[31] (see also [30,32]).

Casel: k < 3
Let u;, u, be solutions of the k-Hessian equation. For any x, € Q°, we want to prove
u1(xp) > ua(xp). Indeed, since limj, o #; = 0, for any € > 0, there esists sufficiently large
R such that xy € Bg(0) and u; > u, — € on dBr(0). Note we also have u; = u, = 0 on 9Q,
by comparison theorem in Qg, we then have u; > u, — € in Q. Let € go to 0, we have
uy(xo) > uy(xp) and thus u; > u, in Q°. Similarly, we can prove u, > u; in Q°. Then we
have u; = u, in Q° and thus prove the uniqueness part.

Case2: k> 7
For any x, € Q°, we want to prove u;(xy) > uy(xp). Indeed, for any ¢ € (0, 1), since
Uy —tup = (1 - t)lxlzk% + O(1) when |x| — oo, there exists sufficiently large R such that

(5.1) Xo € Bp(0) and wu; >tu, on 0Br(0)

Note that we also have u; = 1 > tu, on 9Q. By comparison theorem, we then have
uy > tup in Q. In particular u;(xg) > tur(xp). Let ¢ tend to 1, we have u;(xy) > u(xo) and
thus u; > u, in Q°.
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Similarly, we have u, > u;. Then we have u; = u, in Q¢ and thus prove the uniqueness
part.

Case3: k=7
Let xo € Q°. For any ¢ € (0, 1), since u; — tu, = (1 — t)log|x] + O(1) when |x| — oo, there
exists sufficiently large R such that

(5.2) X0 € Bp(0) and wu; >tu, on O0Br(0)

Since u; = tu, = 0 on 9Q2, by comparison theorem, we then have u; > tu; in Bg(0). In
particular u;(xy) > tu(xp). Let ¢ tend to 1, we have u;(xy) > uy(xo) and thus u; > u, in
Q°,

Similarly, we have u, > u;. Then we have u; = u, in Q¢ and thus prove the uniqueness
part.

5.2. Existence and C'!-estimates. The existence follows from the uniform C>-estimates
for u®k.

Casel: k < 3
For any fixed sufficiently small € > 0, by Guan [14], |u8’R|Cm(QK0) < C(e, Ky, m) for any
Ky > Ry and m > 0 (we always assume Q CC Bx,). Then there exists a subsequence 1%
converging smoothly to a strictly k-convex u® in K and u® € C *(Q°) satisfies

2. 8\ _ rle . c
(53) {Sk(D u?)y = f in Q°,

u® = -1, on 0Q.
Moreover, by Theorem 4.2, we get
C'I™F < —uf(x) < Clx[ T,
CT™F < 1Dufl(x) <CRI™'T,

ID*uf|(x) <Clx| "%,

Thus there exits a subsequence u“ converges to u in Cll(;g such that u € CH1(Q°) is the

k-convex solution of the k-Hessian equation (1.4) and satisfies the estimates (1.5).
Case2: k>

For any fixed sufficiently small € > 0, by Guan [14], |u8’R|Cm(QK0) < C(e, Ky, m) for any

Ky > Ry and m > 0O . Then there exists a subsequence u®® converging smoothly to a

strictly k-convex u® in K and u® € C*(€)°) satisfies
Sy(D*u’) = f>*  in QF,
5.4) { K(Du’) = f

u? =1, on 0Q.
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Moreover, by Theorem 4.4, we get
" (x) = 12 7] <C,
C™' ™ |Dufl () <Clad T
\D*u®|(x) <Clx|°F,

Thus there exits a subsequence u“ converges to u in C }02’ such that u € C"'(Q°) is the
k-convex solution of the k-Hessian equation (1.6) and satisfies the estimates (1.7).

Case3: k=7
For any fixed sufficiently small € > 0, by Guan [14], |u8’R|Cm(QK0) < C(e, Ky, m) for any

Ky > Ry and m > 0. Then there exists a subsequence u®f converging smoothly to a

strictly k-convex u® in K and u® € C*(€)°) satisfies
Sy(D*ufy = £  in QF,
(5.5) KW(Du’) = f
u® =0, on 0Q.
Moreover, by Theorem 4.6, we get
|u®(x) — log || <C,
Cx™ < 1Du’|(x) <Clx™,
ID*u°|(x) <Clx|7%,
Thus there exits a subsequence u converges to u in C 110? such that u € CH1(Q°) is the
k-convex solution of the k-Hessian equation (1.8) and satisfies the estimates (1.9).

6. ALMOST MONOTONICITY FORMULA ALONG THE LEVEL SET OF THE APPROXIMATING SOLUTION
Agostiniani-Mazzieri [2] proved an monotonicity formula along the level set of the
solution of the following problem
Au = 0in Q°
(6.1) u=—1ondQ

Iim u(x) = 0.

[x]—00

In our setting, note that u is only C'*!, we consider similar quantity on the level set of u®
since ©® is smooth and |Du?| = |x|'"%.
Firstly, as an application of the C” estimates of u€, we prove the following property.

Lemma 6.1. Assume k < %.
(6.2) lim [ SUD*uuius = f |Dul*Hy_; (k)dA,
0 Jpna aQ
Remark 6.2. We may call fﬁg |DulkS 1 (k)dA as the k-Capacity of Q, since when k = 1,
Cap(Q) = fag |DuldA. The left hand side may be oo when k > 5.
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Proof. Let Q, :={xe Q°:u® <tland S, = {x € Q° : u®(x) = t} with t € [-1,0).

Since |Du®| > 0, the level set S, := {u® = t} with t € [-1,0) is a smooth closed
hypersurface. Let v be the outward unit normal vector of S, and then we have v = ﬁ. By
the divergence free property of the k-Hessian operator: D;S”/ = 0, we have,

f S;{j(D2u‘9)u§vi —f S;{j(D2u‘9)ujvi
o0 0Q

= f D; (S /(D yus)dx = f S V(D u®yuf dx
Q\Q

Q\Q
_n_q
(6.3) = f kS ((D*u®)dx = keyie’ f (I + &%)
SAQ Q\Q
Since C‘llxl‘% < |uf| < Clxl‘% in Q¢ for any t € [-1,0),
(6.4) BC*lfn—ka C Qt - Bcfn—kzk’

then we have

(6.5) < CE(ry? — |17 ).

f SY (D uyy; - f S (D u sy,
S 0Q

Thus for any ¢ € [-1,0), we have

(6.6) f S (D u sy, = f SUD U e, + O(E)(rg? - 11)7°%),
S, oQ
Then by the coarea formula, we have
f S ;;j (D2u8)ufuj
RMNQ
0 B ut
= f f S;](Dzu‘g)us-—ldA(t)dt (Coarea Formula)
1 Js, | Due|

&
i

= f S (DY dA + O(s*)(By (6.6))
{u=-1}=0Q |Due|

6.7) :f \Du|*Hy_ 1 ()dA + O(?),
a0

where we use Hy_; (k) = |Du8|‘k‘lSij(D2us)ufu§.
Let £ tend to 0 and note that [Du?| tends to |Du|, we have
lim SUD e yus = | |Dul*Hy-i (k)dA.
&0 Jrm\0 ! oQ
O

By the uniform C? estimates and positive lower bound of u€, we can estimate |S,|, where
S, ={xeR"\Q:ulx)=1t}.
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Lemma 6.3. There exits uniform constant C such that

Clt™ " forany te(0,-1]ifk <=,

(6.8) IS1<{  ClFF forany te(l,o0)ifk >

NIS[\JI&[\)

Ce" ™V forany t € [0, ) ifk =

Proof. Since

1S, — 109 = f div( u Jdx
Q |Du?|

By the uniform C?-estimates and the uniform lower bound of u®, we finish the proof. O

We define the following quantity

6.9) s = [ GODE S FDAE e,
Sy
where g(u) s defined by
n
ik ,
( M)Zk < = >
(6.10) o) = dubs, k> g
n
" k=—.
¢ 2

We choose a = b — k + 1 and one can see that I, ,,(¢) is uniformly bounded from the C?
estimates of u® and the lower bound of |Du?®|.

When k = 1 and a = b, 1,,,,(¢) is exactly the one in [2].

We define

(6.11) Jarap bt 10) 1= =8 (DI}, (1) + % (1)1, 1 (10)
. We prove the following useful inequalities along the level set of u®.

Lemma 6.4. Let u® be the solution of the approximating k-Hessian equation with a =
b —k + 1. We have the following inequalities

Jasaypi(ts10) = — ba g4 | Duf|P* 1 SdAds — (b + 1) “+“°|Du IP7%S . JdA
0 _

+a f f g“+“°|Du8|h-1H,;_11(c,,,kH,§—(k+1)Hk_1Hk+1)dAds
t s

0]
(6.12) +a f f g\ DufP L.
t s
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_ k(n—k-1)
n—k

(i) If 1 <k <3, we requlre -1 <t<ty <0 ay= —Z”n_zkk,b > cppand L = (b —

eo)(2ID Tog ) — )
(ii) Ifk =15, werequire) <t <fy<oo,ay=0b2>7% —1and£—a(|Du8|—m)2-
(iii) If n > k > &,
(b - co)(2EID og ] - Y

where ay, b, ¢ = and the functions L are choosing as follows

werequirel t<t0<ooanda0—22k"b >k—-1and L =

Proof. For simplicity, we use u instead of u° and S intead of S (D*v®) during the
proof.
By the divergence theorem and the divergence free property of the k-Hessian operator

ie. ZDS” 0, we have

Lopi(to) = Lapi(?) = f D; (g“lDuIb”_kSijui)

0\

—a f _ga_lg,|DI/l|b+1_kS§(juiuj
0\
+(b+1-k f DUl S i + k f _ g°|Dultt 1S,
to\Q tO\Q
—a f _ga_lg,|DI/l|b+1_kS§(juiuj
Q,\Q

—(b+1—k)f g“|Dul"™ 1Sk+1uuj+(b+l)f _ &'|Dul"*' s,
to\Q

to\Q
—af f g7 |Dul S Vuu; — (b + 1 —k)f f DU’ 28w,
(6.13) +(b+1) f f g IDul’*S ¢,
t S
where we use S u; iy = = |Dul*S; - 1uiu ; and the coarea formula.
Then

The derivative of 1, (¢) is

I, (1) :af “Le'|Dul" ™S uu;
(6.14) >
~(b+1-k) f UDulP 28w + Eqpa(t),
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where Ep.(f) = (b+ 1) [, g|Dul"*S,.
Then we have

Japi(t, o) 1= —g“ O, () + g )L, (t0)

:af D (ga+a0 1 I|Du|h k+lSlju)
o0\
(6.15) — (b =k + 1)Ugsag p-1k+10) = Lavag p-14+1() + Eqrag b i(t0) = Egiagpi(t)

Firstly we have

f Dj(ga+a0_lg/|Du|b_k+lsZjui)dx
Q,\&,

10 ’ ..
B f f (g™ ') 1Dul"™*S Juu,dAds
t S

10 - 10
+(b-k+1) f f (g“”“‘lg'lDulb_k_zS ;{ju,-ululj)dAds + kf f (g“+“°_1g'|Du|b_kS k)dAds
1 Sy t Sy

10 A
:f f ( a+ap—1 /) |Du|b kSUu I/tj)dAdS
t Ss

7o
—(b—k+1)f f(g“+a°_1g'| P+ ZS”qu])dAds+(b+l)f f =l o'\ Dul’™S  )dAd's
t Ss
10
- f f ((g“*“"‘lg’)’|Du|h“Hk_1)dAds—(b—k+1) f f atap-1 ’|Du|th)dAds
t S 1 S

(6.16)

0]
+(b+1) f f ara=1 o/ Dy kS )a’Ads
t s

where we use the identity H,,_;|Dul™" = S5uiu/ form € {1,2,--- ,n}(see Lemma 2.10).
For the term 1,4, p—1.k+1(t0) = La+ay p—1.4+1(2), similar as the calculation of (6.13), we have

Lavag.p-11+1(t0)=Lavag p-1,k+1(2)

70
:(a+a0)f f arao=l o) Dy P~k szHu u;dAds

—(b-1-k) f f g DUl S Y uu,
(6.17) +b f f g Dul’ 28 1.
t S
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Next we deal with the term involving S.;. Choose the coordinate such that u,(xy) =
|Dul(xo) and {u;(xo)}1<i j<n-1 = {Ai6ij}1<i j<n-1 18 diagonal, we have

n—1

Skt =S () + S (D) = " S (Ui
i=1
n—1

Sk =tpnS k-1 (AD) + S () — Z Sk (i),

i=1

where A = (1, -, A,_;) and recall we use the notation S; = S (D*u). Then we get

1 S G, SIS (L) - S, (i) <
et = Sid) + >y N 4 S
S - 1(/1) Sk D & S (D
Sk S7( ~

(6.18) S . "(2 + Sk (),

Sk_l(/l) Sk—l (/l)
where we use the Newton’s inequality (one can see the proof in [10]).
Inserting (6.18) into (6.19) and noting that S (D) = |Dul” 25m+1u u; = H,,|Du|™ is a global

defined function, then we have

Lovag.p—1.k+1(0) = Lasvag p—1,4+1(1)

10
<(a + ap) f f a+a~l o'\ Dul’ H dAd's
t s

10
+(k+1) f f g | Dul’ " Hy, dAds

_bf f a+a0|Du|b 1 k dAdS'i‘bf f a+a0|Du|b —k— 1

Inserting (6.16) and (6.19) into (6.15),ifa = b —k + 1 > 0, we obtain

bk~ 1
Jarag b i(t, 10) = — baf f g“"|Dul

+ af f g””“lDuIb_lH,:_ll(cn,kH,f —(k+ 1)Hk_1Hk+1)dAds
t s

7o
+af fg“+a°|Du|b_1Hk—1£dAds,
t Ss

(6.19) SidAds.

SidAds — (b + 1) f g Dul’ S )d ) A

(6.20)
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where the function £ is defined by

H; \2 H,
L= =en(z—) — Qa+ap)ogg)|Dulz=

k—1
(6.21) +((logg)” + (a + ap)((log g)')? )| Dul’.

Now we divide two cases to prove the £ > 0 under some restrictions on a and b.

Casel: k < Jand § <k <n.
We choose ¢, x = k("_—_kk_l)

Note that log g = 2=~ Jog(—u), then

k
(log )" + (a +ao)((log g)')* =——u™ + (a+ ao)( —0u
_on—k , ,n-2k
_(n—Zk u( " +a +ap)
k
(6.22) =(b—cy k)( — 2k)zbt_2,

n—2k

where we choose ap = —2°=" and we use a = b — k + 1. We also have

(6.23) —(Q2a + ap)(logg) = Zn—_k(b - c,,,k)u_1
n-—2k

By direct manipulation, we have

H, \2
(6.24) L=(b- c,,k)( |Dlog ul - K)

Consequently, we obtain

10 H
Jararwi(ts 1o) = — ba f f g | DulP ' —L 5 dAds - f (8“*IDul"*S )dA
t : Hy s,

10
+ af f g“”"lDuIb_lH,:_ll(cn,kH,f —(k + l)Hk_lHkH)dAds

H, \2
(6.25) +a(b = cup) f f g\ Dul"!( |D10gu| —
Hy_
Case 2: k =
Wehave ¢,y =5 —-1>0. Werequireb >3 -1, a=b—-5+1=b-c,; 20andag =0.
Since g = " and thus (a + ap) ' (") = (a + ay)g***. We obtain

SIS
.

(6.26) £ = a(|Dul - %)2
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From the above formula, we have the following almost monotonicity formula along the
level set of u® and we prove the first part of Theorem 1.4.

Lemma 6.5. Let u® be the solution of the approximating k-Hessian equation. Assume
k<% andb > % then for any t € [—1,0), we have

d

(6.27) Tlans(®) < C&ltjra",
Consequently, forany —1 <t < s <0,

(6.28) Lipi(s) = Lipi(t) < C&.

In particular, we have the following weighted inequality

-2k
(6.29) f Dul"* Hy_y < = f \Dul’H,
0 n—k Ja

where u is the unique C"' solution of the homogeneous k-Hessian equation (1.4).
Remark 6.6. When k = 1, (6.29) was proved by Agostiniani- Mazzieri [2].
Proof. By the Lemma 6.4, for any —1 < ¢ <ty < 0, we have

2 2

= H
> — abf (—uf Y32 Dy g,
Qro\ﬁr Hk—l
(6.30) —(b+ 1) | (U EIDU S
S
ini o He o Coy (Hie
By the MacLaurin inequality: 7% < c’;;; (C’Eil:

also use |[Du?| > c|x|'"%), for any x € Q°, we have

1
)H and the uniform C?-estimates of u® (we

- H - 1
(_u‘s‘)a{’k—i+2|Dusla—l k Sk SC(_MS)a%+2|Du8|a—1Hk:1 |x|—n—2
Hk | k-1

Sc|x|a%+22kk_" |x|(a—1)k_7” |X|_1 |x|—n—2

—_p-n
=C|x|™"" %,

then

n-k _ Hk _n_
f (—u®) 22| Dy 2 S < CEt|7=.
Qro\ﬁr Hk—l

Similarly, we have
n—k n
f (—u Y F DS < el
S

kn-1)
n—2k

where we use |S,| < Clt| (see Lemma 6.3).
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Thus we get
(6.31) —L, () + BT, (tg) > —CE&|t| 7.

By the uniform C? estimates for u® and |Du?| > c|x|'~%, we have for any ¢, € [~1,0)

(6.32) I, (to)l| < Cltol.
Let 7 tend to 0 in (6.31), we have
(6.33) I, (t) < Cera.
In particular, taking t = —1, we have
(6.34) L, (-1) < Cée.
On the other hand, by (6.14), we have
(6.35) Lops(=1) = a5 [ Duep e - a f \Du P H,.
n-— oQ 0

Consequently, we get

-k
(6.36) & \Du’|" H_, f |Duf|’H; < Cé?
n—2k Jsa 0
Since |Du?| converges to |Du| on 0, we finish the proof of (6.29) by taking € — 0 in
(6.36). O

Next we prove the second part of Theorem 1.4.

Lemma 6.7. Assume k = % and b > % — 1. We have

(6.37) L, (< Cee™,
In particular, we have

(6.38) |Dul”"'H,_, < \Dul’H,,
oQ oQ

where u is the unique C"! solution the homogeneous k-Hessian equation (1.8).

Proof. By Lemma 6.4 and similar as the proof in the above lemma, for any 0 < 7 < 1y, we
have

Il’l,b,k(t()) Z Il’l,b,k(t) - C826_2t.
By integrating the above form z to #,, we have
Lipi(to) = Lop (1) > (I, (1) = C&%e ™" )(to — 1),

Since I,;,4(¢) is uniformly bounded which follows from the C*-estimates of u® and |Du?| >
clx'"t, we have

(1,40 = C2e™)(1 = 115" < 15" Uupit0) = Lopa(1)) < Cty.



THE HOMOGENEOUS K-HESSIAN EQUATION 49

Let ¢, tend to 0, we obtain
L, (1) <C&e™.

On the other hand, we have

1,.(0) >a f \DuI""'H,_| —a f \Duf|”H,.
o o0 a0
Combining the above two inequalities and noting that |Du?| — |Dul|, we get

(6.39) |Dul’"'H,_, < f \Dul’H,
0Q 0Q

When 5 < k < n, we have the following inequality.

Lemma 6.8. Let u® be the solution of the approximating k-Hessian equation. Assume
k>3, and b > —k + 1, then for any 1 <t < fy < oo, we have

(6.40) 1,0 = B, (o) < Celrl7a.
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