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THE EXTERIOR DIRICHLET PROBLEM FOR THE HOMOGENEOUS

k-HESSIAN EQUATION

XINAN MA AND DEKAI ZHANG

Abstract. We study the exterior Dirichlet problem for the homogeneous k-Hessian equa-

tion. The prescribed asymptotic behavior at infinity of the solution is zero if k < n
2
, it is

log |x| + O(1) if k = n
2

and it is |x|
2k−n

n + O(1) if k > n
2
. By constructing smooth solutions

of approximating non-degenerate k-Hessian equations with uniform C1,1-estimates, we

prove the existence part. The uniqueness follows from the comparison theorem and thus

the C1,1 regularity of the solution of the homogeneous k-Hessian equation in the exte-

rior domain is proved. We also prove a uniform positive lower bound of the gradient.

As an application of the C1,1 estimates, we derive an almost monotonicity formula along

the level set of the approximating solution. In particular, we get an weighted geometric

inequality which is a natural generalization of the k = 1 case.

.
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1. Introduction

Let u be a C2 function and λ = (λ1, · · · , λn) be the eigenvalues of D2u, the k-Hessian

operator is defined by

S k(D
2u) := S k(λ) =

∑

1≤i1<···ik≤n

λi1 · · · λik ,(1.1)

where 1 ≤ k ≤ n. When k = 1, S 1(D2u) = ∆u. When k = n, S n(D2u) = det D2u.

Let Ω be a bounded smooth domain in Rn, the Dirichlet problem for the k-Hessian

equation is as follows


S k(D
2u) = f in Ω,

u =ϕ on ∂Ω,
(1.2)

where f and ϕ are given smooth functions. When k = 1, the k-Hessian equation is the

Poisson equation. When k = n, it is the well known Monge-Ampère equation.

1.1. Some known results. We briefly give some known results of the Dirichlet problem

for the k-Hessian equation in the nondegenerate case i.e. f > 0 and in the degenerate

cases i.e. f ≥ 0. In general, the k-Hessian equation is a fully nonlinear equation.

1.1.1. Results on bounded domains. If f > 0, Caffarelli-Nirenberg-Spruck [7] solved

(1.2) in a bounded (k − 1)-convex domain. Guan [14] solved (1.2) by only assuming the

existence of a subsolution. The advantage of Guan’s result is that there are no geometric

restriction on the domain.

The Dirichlet problem in bounded domains of degenerate fully nonlinear equations has

been studied extensively. For the Dirichlet problem of degenerate Monge-Ampère equa-

tion in bounded convex domain, Caffarelli-Nirenberg-Spruck [8] show the C1,1 regularity

for the homogeneous case i.e. f ≡ 0. If f satisfies f
1

n−1 ∈ C1,1, Guan-Trudinger-Wang [20]

proved the C1,1 regularity, which is optimal by Wang’s counterexample [33]. The C1,1

regularity problem of degenerate k-Hessian equation with Dirichlet boundary value in

bounded (k − 1)-convex domain was solved by Krylov [22, 23] and Ivochina-Trudinger-

Wang [21] (PDE’s proof) with the assumption f
1
k ∈ C1,1. Dong [12] studied the mixed

Hessian equations.
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1.1.2. Results on unbounded domains. The exterior Dirichlet problem for viscosity so-

lutions of nondegenerate fully nonlinear equations has been studied extensively. The C0

viscosity solution for the Monge-Ampère equation: det D2u = 1 with prescribed asymp-

totic behavior at infinity was solved by Caffarelli-Li [6]. The related problem for the

k-Hessian equation : S k(D
2u) = 1 was proved by Bao-Li-Li [4]. For the related results on

other type nondegenerate fully nonlinear equations, one can see [3, 25, 26, 28]. Note that

in these cases the regularity are only continuous.

Li-Wang [27] proved the global Ck+2,α regularity of the homogeneous Monge-Ampère

equation: det(ui j) = 0 in a strip region: Rn−1 × [0, 1] by assuming that the boundary

functions are locally uniformly convex and Ck,α. Moreover, they gave a counterexample

to show the necessity of the uniform convexity of the boundary functions.

1.2. Motivation. The motivation of this paper arises from proving geometric inequal-

ity by establishing certain monotonicity formula on the level set of solutions in exterior

domains. Another one comes from studying the regularity of extremal function of the

complex Monge-Ampère operator.

1.2.1. Geometric inequalities. One motivation for us to consider the exterior Dirichlet

problem for the homogeneous k-Hessian equation comes from the following geometric

inequalities:

(
Vn−l(Ω)

Vn−1−l(B)

) l
n−l

≤

(
Vn−k(Ω)

Vn−1−k(B)

) l
n−k

,(1.3)

where 0 ≤ l < k ≤ n, Vn−k(Ω) =
∫
∂Ω

Hk−1(κ)dA, V−1 := |Ω| and Hk is the k-Hessian

operator of the principal curvature κ = (κ1, · · · , κn−1) of ∂Ω. (1.3) are called Alexandrov-

Fenchel inequalities. An open question is whether (1.3) holds for (k − 1)-convex domain

Ω i.e. Hm > 0 for 1 ≤ m ≤ k − 1.

When Ω is (k − 1)-convex and starshaped, Guan-Li [19] proved (1.3) by the method

of inverse curvature flows. If Ω is k-convex, Chang-Wang [9], Qiu [29] proved the above

inequalities when l = 0 by the optimal transport method.

Very recently, by considering the exterior Dirichlet problem of the Laplace equation,

Agostiniani-Mazzieri [2] proved several geometric inequalities such as the Willmore in-

equality. By studying the the exterior Dirichlet problem of the p-Laplacian equation, Fo-

gagnolo and Mazzieri and Pinamonti [13] showed the volumetric Minkowski inequality

i.e. the Alexandrov-Fenchel inequality with l = 0 and k = 2 for smooth convex domains.

Later, Agostiniani-Fogagnolo-Mazzieri [1] removed the convexity assumption for the do-

main. The key point for them is to prove a monotonicity formula along the level set of the

solution of the exterior Dirichlet problem for the p-Laplace equation.

1.2.2. Regularity problems of extremal functions. P. F. Guan. [17, 18] proved the C1,1

regularity of the homogeneous complex Monge-Ampère equation in U := V0 \ V with

V = ∪N
i=1

Vi, where V0 and Vi are strongly pseudoconvex and bounded smooth domains
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in a complex manifold Mn, V is holomorphically convex subset of Ω1. Then he solved

a conjecture of Chern-Levine-Nirenberg on the extended intrinsic norms. B. Guan [15]

proved the C1,1 regularity of solutions of the exterior Dirichlet problem for the homo-

geneous complex Monge-Ampère equation in Cn \ V̄ with V = (∪N
i=1

Vi), where Vi are

strongly pseudoconvex and bounded smooth domains and V is a holomorphically convex

subset of V0. If V is strictly convex and smooth (analytic), the smooth (analytic) regularity

of this problem was proved by Lempert [24]

1.3. Our main results. In this paper, we consider the following exterior Dirichlet prob-

lem for the k-Hessian equation. For convenience, we always assume 0 ∈ Ω and there

exists positive constants r0,R0 such that Br0
⊂⊂ Ω ⊂ B R0

2

, where Br and B R0
2

are balls

centered at 0 with radius r and R0

2
respectively.

1.3.1. Case1: 1 ≤ k < n
2
. Since the Green function in this case is −|x|

2k−n
k , we consider

the k-Hessian equation when k < n
2

as follows

(1.4)



S k(D
2u) =0 in Ωc := Rn \Ω,

u = − 1 on ∂Ω,

lim
x→∞

u(x) =0.

Theorem 1.1. Assume 1 ≤ k < n
2
. Let Ω be a smoothly convex domain in Rn and strictly

(k− 1)-convex. There exists a unique k-convex solution u ∈ C1,1(Ωc) of the equation (1.4).

Moreover, there exists uniform constant C such that for any x ∈ Ωc the following holds


C−1|x|−
n−2k

k ≤ − u(x) ≤ C|x|−
n−2k

k ,

C−1|x|−
n−k

k ≤|Du|(x) ≤ C|x|−
n−k

k ,

|D2u|(x) ≤C|x|−
n
k ,

(1.5)

where the k-convex solution is defined in Section 2 and we use the notationΩ
c

:= Rn\Ω.

1.3.2. Case2: k > n
2
. Since the Green function in this case is |x|

2k−n
k , we consider the

k-Hessian equation when k > n
2

as follows

(1.6)



S k(D
2u) =0 in Ωc,

u =1 on ∂Ω,

u(x) =|x|
2k−n

k + O(1) as |x| → ∞.

Theorem 1.2. Assume k > n
2
. Let Ω be a smoothly convex domain in Rn and strictly

(k− 1)-convex. There exists a unique k-convex solution u ∈ C1,1(Ωc) of the equation (1.6).
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Moreover, there exists uniform constant C such that for any x ∈ Ωc the following holds


|u(x) − |x|
2k−n

k | ≤C,

C−1|x|
k−n

k ≤ |Du|(x) ≤C|x|
k−n

k ,

|D2u|(x) ≤C|x|−
n
k .

(1.7)

1.3.3. Case3: k = n
2
. Since the Green function in this case is log |x|, we consider the

k-Hessian equation when k = n
2

as follows

(1.8)



S n
2
(D2u) =0 in Ωc,

u =0 on ∂Ω,

u(x) = log |x| + O(1) as |x| → ∞.

Theorem 1.3. Assume k = n
2
. Let Ω be a smoothly convex domain in Rn and strictly

(k− 1)-convex. There exists a unique k-convex solution u ∈ C1,1(Ωc) of the equation (1.8).

Moreover, there exists uniform constant C such that for any x ∈ Ωc the following holds


|u(x) − log |x|| ≤C,

C−1|x|−1 ≤ |Du|(x) ≤C|x|−1,

|D2u|(x) ≤C|x|−2.

(1.9)

To solve the above problems, we consider the following approximating equation


S k(u
ε) = f ǫ in Ωc,

uε = − 1 if k <
n

2
, uε = 1 if k >

n

2
, uε = 0, if k =

n

2
on ∂Ω,

uε(x) →0 if k <
n

2
, uε(x) = |x|

2k−n
k + O(1) if k >

n

2
, uε(x) = log |x| + O(1) if k =

n

2
, |x| → ∞.

where f ε = cn,kε
2(|x|2 + ε2)−

n
2
−1 (see the precise value of cn,k in Section 4).

uε will be obtained by approximating solutions uε,R defined on bounded domains: ΩR :=

BR \ Ω(see Section 4 for precise definition of uε,R). The existence and uniqueness of the

k-convex solution of uε,R follows from B. Guan [14] if we can construct a subsolution,

which can be constructed since we assume Ω is convex.

The key point is to establish the uniform C2 estimates for uε,R.

1.4. Applications. As an application of our C2 estimates, we can prove an almost mono-

tonicity formula along the level set of uε (see Section 6). Consequently, we get geometric

inequalities of ∂Ω as follows.

Theorem 1.4. Let Ω be a smoothly convex domain in Rn and strictly (k − 1)-convex.

(i) Assume 1 ≤ k < n
2

and b ≥
k(n−k−1)

n−k
. Let u be the unique C1,1 solution in Theorem 1.1.

We have
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∫

∂Ω

|Du|b+1Hk−1 ≤
n − 2k

n − k

∫

∂Ω

|Du|bHk,(1.10)

where Hm is the m-Hessian operator of the principal curvature κ = (κ1, · · · , κn−1) of ∂Ω.

(ii) Assume k = n
2

and b > n
2
− 1. Let u be the unique C1,1 solution in Theorem 1.3.

We have ∫

∂Ω

|Du|b+1Hk−1 ≤

∫

∂Ω

|Du|bHk.(1.11)

Remark 1.5. When k = 1, (1.10) was proved by Agostiniani- Mazzieri [2].

In section 2, we give some preliminaries. In section 3, we solve the Dirichlet problem

of degenerate k-Hessian equation in a ring domain. Section 4 is the main part of this

paper. We show uniform C1,1 estimate of the solution which is the limit of the solutions

of nondegenerate k-Hessian equation. The key ingredient is to establish uniform gradient

estimates and uniform second order estimates. We use the idea of Chow-Wang [11] to

establish the uniform second order estimate. Theorem 1.1, Theorem 1.2 and Theorem 1.3

will be proved in Section 5. In section 6, we prove an almost monotonicity formula along

the level set of the approximating solution and thus prove Theorem 1.4.

Part of results in this paper has been reported by Xinan Ma at 21w5139-Interaction Be-

tween Partial Differential Equations and Convex Geometry on October 17th 2021 and by

Dekai Zhang at seminars at Xiamen University, on November 3th, 2021 and at Academy

of Mathematics and Systems Science, CAS, on July 6th, 2022.

Very recently (July 12th, 2022), when k < n
2
, Xiao [35] solved the exterior Dirichlet

problem for the homogenous k-Hessian equations in which Xiao assumed the domain

is strictly (k − 1)-convex and starshaped. For the case of k < n
2
, our proof is different

from Xiao’s. We directly prove the uniform C2 decay estimates for the approximating

solutions.

2. Preliminaries

2.1. k-convex solutions. In this section we give the definition of k-convex functions and

the definition of k-convex solutions.

The Γk-cone is defined by

Γk := {λ ∈ Rn|S i(λ) > 0, 1 ≤ i ≤ k}(2.1)

Recall S k(λ) :=
∑

1≤i1<···<ik≤n

λi1 · · ·λik .

One can find the concavity property of S
1
k

k
in [7].

Lemma 2.1. S
1
k

k
is a concave function in Γk. In particular, log S k is concave in Γk.
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For more properties of the k-Hessian operator, one can see the Lecture notes by Wang

[34]. We following the definition by Trudinger-Wang [31] to give the definition of k-

convex functions.

Definition 2.2. Let U be a domain in Rn.

(1). A function u ∈ C2(U) is called k-convex (strictly k-convex) if λ(D2u) ∈ Γk

(λ(D2u) ∈ Γk).

(2). A function u ∈ C0(U) is called k-convex in U if there exists a sequence of functions

{ui} ⊂ C2(U) such that in any bounded subdomain V ⊂⊂ U, ui is k-convex and converges

uniformly to u.

Definition 2.3. Let Ω be a bounded domain in Rn and ϕ ∈ C0(∂Ω). A function u ∈ C0(Ωc)

is called a k-convex solution of the homogeneous k-Hessian equation


S k(D
2u) =0 in Ωc := Rn \Ω,

u =ϕ on ∂Ω,
(2.2)

if there exists a sequence of k-convex functions {um} ⊂ C2(Ωc) converging in C0(Ωc) to

u with {S k(D
2u)} converging in L1

loc
(Ωc) to 0 and u = ϕ on ∂Ω.

We need the following comparison principle by Wang-Trudinger [31] (see also [30,32])

to prove the uniqueness of our equations.

Lemma 2.4. Let u, v be k-convex functions in a bounded smooth domain U in Rn satisfy-

ing


S k(D
2u) ≥S k(D

2v) in U,

u ≤v on ∂U,
(2.3)

in the viscosity sense. Then u ≤ v in U.

2.2. The existence of the subsolution.

Definition 2.5. A C2 domain U is called (k − 1)-convex (strictly (k − 1)-convex) if for any

x ∈ ∂U, the principal curvature κ := (κ1, · · · , κ) of ∂U at x ∈ ∂U satisfies κ ∈ Γk (κ ∈ Γk).

Note that a C2 domain U is (n − 1)-convex if and only if U is convex.

Definition 2.6. Let U be a smoothly bounded domain inRn. Φ is called a defining function

of U if U = {x : Φ(x) < 0}, Φ|∂U = 0 and |DΦ||∂U = 1.

Caffarelli-Nirenberg-Spruck [7] proved the following.

Lemma 2.7. Let U be a smoothly and strictly (k−1)-convex bounded domain in Rn. There

exists a smoothly and strictly k-convex defining function Φ on U.

We need the following lemma by Guan [17] to construct the subsolution of the k-

Hessian equation in a ring.
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Lemma 2.8. Suppose that U is a bounded smooth domain in Rn. For h, g ∈ Cm(U),

m ≥ 2, for all δ > 0, there is an H ∈ Cm(U) such that

(1) H ≥ max{h, g} and

H(x) =

{
h(x), if h(x) − g(x) > δ,

g(x), if g(x) − h(x) > δ;

(2) There exists |t(x)| ≤ 1 such that

{
Hi j(x)

}
≥

{
1 + t(x)

2
gi j +

1 − t(x)

2
hi j

}
, for all x ∈ {|g − h| < δ} .

By Lemma 2.1, we see H is k-convex if f and g are both k-convex.

Lemma 2.9. Let Ω0 and Ω1 be smoothly and strictly (k − 1)-convex domain in Rn with

Ω0 ⊂⊂ Ω1 . Assume that Ω0 is convex. Then there exists a strictly k-convex function

u ∈ C∞(U) with U := Ω1 \Ω0 satisfying


S k(D
2u) ≥ǫ0, in U,

u =τ0Φ
0, near ∂Ω0,

u =1 + K1Φ
1, near ∂Ω1,

(2.4)

where Φi is the defining function of Ωi, τ0 and K1 are uniform constants.

Proof. If Ω0 is (k − 1)-convex and smooth, Caffarelli-Nirenberg-Spruck [7] constructed a

strictly k-convex defining function Φ0 ∈ C∞(Ω0) satisfying


S k(D
2Φ0) ≥ǫ0 on Ω0,

Φ0 =t−1
0

(
e−t0d(x) − 1

)
near ∂Ω0,

(2.5)

where ǫ0, t0 are positive constants and d(x) is the distance function from x to ∂Ω0.

Since we also assume that Ω0 is convex, d(x) is smooth in Ωc
0
. Then we can take Φ0(x) =

t−1
0

(
et0d(x) − 1

)
for any x ∈ Ωc

0
and we still have

S k(D
2Φ0) ≥ ǫ0 in Ωc

0.(2.6)

Let g = τ0Φ
0, h = 1+K1Φ

1. By Lemma 2.8 ( δ = 1
2
), for K1 > 0 sufficiently large, there

exists a smooth function u satisfying (2.4). Indeed, define Ωt1 = {x ∈ Ω1 : Φ1(x) < −t1}

with t1 > 0. Then for t1 small enough, Ω0 ⊂⊂ Ωt1 and dist(∂Ωt1 , ∂Ω0) > 1
2
dist(∂Ω1, ∂Ω0).

Let Ω t1
8
= {x ∈ Ω1 : Φ1(x) < − t1

8
}.

For any x ∈ Ωt1 \Ω0, by choosing K1 = 2t−1
1

large enough, we have

g(x) − h(x) ≥ −h(x) ≥ −1 + K1t1 = 1 >
1

2
.
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Then u = g = τ0Φ
0 in Ωt1 \Ω0.

For any x ∈ Ω1 \Ω t1
8
, by choosing τ0 small enough, we have

h − g ≥ 1 −
1

4
− τ0|Φ

0(x)| >
1

2
.

Then u = h = 1+2t−1
1
Φ1 inΩ1 \Ω t1

8
. Moreover, by Lemma 2.8, u is strictly k-convex. �

2.3. Level sets. For any function u on a domain U, we define the level set of u with

height t as follows

S t := {x ∈ U : u(x) = t}.(2.7)

Let Hm(x) be the m-Hessian operator of the principal curvature κ(x) = (κ1, · · · , κn−1) of

x ∈ S t. We have the following useful formula which can be founded in [5].

Lemma 2.10. Let u ∈ C2(U) and |Du| , 0. Then on S t, for 1 ≤ m ≤ n, we have

Hm−1 =
S

i j
m(D2u)uiu j

|Du|m+1
,

S m(D2u) =Hm|Du|m + S i j
muiulul j|Du|−2,

where S
i j
m :=

∂S k(D2u)

∂ui j
and the curvature is defined with respect to the upward normal as

in [5]. In particular, if u is k-convex (strictly k-convex), the level set S t is (k − 1)-convex

(strictly k-convex).

3. The Dirichlet problem for the homogeneous k-Hessian equations in the ring

In this section, we prove the existence of the Dirichlet problem of degenerate k-Hessian

equation in a smooth ring.


S k(D
2u) = 0, in U := Ω1 \Ω0,

u = 0, on ∂Ω0,

u = 1, on ∂Ω1.

(3.1)

We assume that Ω1 is smoothly and strictly (k − 1)-convex domain and Ω0 is a smoothly

strictly (k−1)-convex and convex domain. Using Lemma 2.9, there exists a smoothly and

strictly k-convex subsolution u satisfying


S k(D
2u) ≥ǫ0, in U,

u =τ0Φ
0, near ∂Ω0,

u =1 + K1Φ
1, near ∂Ω1,

(3.2)

where τ0,K1 are positive constants and Φi are defining functions of Ωi.

Theorem 3.1. Let Ω0,Ω1 be smooth (k−1)-convex domain and assume that Ω0 is convex.

There exists a unique solution u ∈ C1,1(U) of the equation (3.1).
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The uniqueness follows from the classical comparison theorem for k-convex solutions

of k-Hessian equations. Next, we prove the existence and regularity of k-convex solution

by approximation. Indeed, for every 0 < ǫ < ǫ0, we consider the following problem


S k(D
2uǫ) = ǫ, in Ω,

uǫ = 0, on ∂Ω0,

uǫ = 1, on ∂Ω1.

(3.3)

Since uǫ is a subsolution, by Guan [14], the above problem has a unique smooth solu-

tion uǫ .

Next, we want to show the C1,1 estimates are independent of ǫ. Firstly, by maximum

principal, uǫ1 ≥ uǫ2 for any ǫ1 ≤ ǫ2. Thus u0 := lim
ǫ→∞

uǫ exists. If we could prove uniform

C1,1 estimates, then u0 is the C1,1 solution of equation (3.1).

Theorem 3.2. Let uǫ be the smooth k-convex solution of (3.3). Then there exists a uniform

constant C independent of ε such that

|uε|C1,1(U) ≤C.

In the following subsections, for simplicity, we use u instead of uǫ .

3.1. C1-estimates.

Lemma 3.3. There exists a uniform constant C such that

|u|C1(U) ≤ C.(3.4)

Proof. Let h be the unique solution of the problem


∆h = 0, in U,

h = 0, on ∂Ω0,

h = 1, on ∂Ω1.

(3.5)

By the maximal principle, we have u ≤ u ≤ h. This gives the uniform C0 estimates.

Let F i j := ∂
∂ui j

log S k(D
2u). Since F i j(uξ)i j = 0 for any unit constant vector ξ, we have

max
U

|Du| = max
∂U
|Du|. Since u ≤ uε ≤ h in U and u = uε = h on ∂U, we have

hν ≤ uν ≤u
ν
< 0, on ∂Ω0

hν ≥ uν ≥u
ν
> 0, on ∂Ω1,

where ν is the unit normal vector of ∂U (inner normal vector of ∂Ω0). Thus we have

max
U

|Du| = max
∂U
|Du| ≤ C.(3.6)

�
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3.2. Second order estimates.

Lemma 3.4. There exists a uniform constant C such that

max
U

|D2u| ≤ C.(3.7)

Proof. Since F i juξξi j = −F i j,kluξi ju
ε
ξkl
≥ 0, we have max

Ω

uξξ ≤ max
∂Ω

uξξ. Thus we need

to prove the second order estimate on the boundary ∂U. Here we use the method by B.

Guan [14] and P. F. Guan [17] (see also [16]).

Tangential derivative estimates on ∂U

For any fixed x0 ∈ ∂U, we choose the coordinate such that x0 = 0, ∂U
⋂

Bδ(x0) =

(x′, ρ(x′)), ρ(0) = 0 and ∇ρ(0) = 0. Since u(x′, ρ(x′)) = 0, we have

0 =uα(x′, ρ(x′)) + un(x′, ρ(x′))ρα(x′),

0 =uαβ(0) + uαn(0)ρβ(0) + unβ(0)ρα(0) + unn(0)ρα(0)ρβ(0) + unβ(0)ραβ(0)

=uαβ(0) + un(0)ραβ(0).

Then we have |uαβ(0)| ≤ C max
∂Ω
|Du| ≤ C.

Tangential-normal derivative estimates on ∂U.

We use Guan’s method [14] (see slao [16]). Our barrier function here is simpler than

before since u is constant on the boundary and the right hand side of the approximating

equation is a sufficiently small constant ǫ.

For any fixed x0 ∈ ∂U, we choose the coordinate such that x0 = 0, ∂U
⋂

Bδ(x0) =

(x′, ρ(x′)),∇ρ(0) = 0 and ρ(x′) =
∑
α<n κα|xα|

2 + O(|x′|3). Consider the tangential operator

Tα = ∂α + κα(xα∂n − xn∂α).

We will prove w = A1(u − u) + A2|x|
2 ± Tαu ≥ 0 in Uδ := Bδ(0) ∩ U.

Since u − u = 0 and |Tαu| ≤ C|x′|2 on ∂U ∩ Bδ(0), we have

w|∂Ω∩Bδ(0) = A2|x|
2 −C|x|2 ≥ 0,

where we require A2 > C. Since |Tαu| ≤ C and u ≥ u, on U ∩ ∂Bδ(0), we have

w|Ω∩∂Bδ(0) = A2δ
2 −C > 0,

where A2 > 2Cδ−2. Thus we have w ≥ 0 on ∂Uδ.

Next we show F i jwi j < 0 in Uδ. Indeed, recall u is k-convex and S k(D
2u) ≥ ǫ0 > 0,

there exits τ0 > 0 sufficiently small depending only on ǫ0 and |u|C2 such that ũ := u−τ0|x|
2

is k-convex and S k(D
2ũ) ≥ ǫ0

2
.
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By the concavity of log S k, we have

F i j(ui j − ũ
i j

) ≤F(D2u) − F(D2u)

= log ǫ − log S k(D
2ũ)

≤ log ǫ − log
ǫ0

2
<0,

where we take 2ǫ < ǫ0. Thus we have

F i j(u − u)i j =F i j(ui j − ũ
i j

) − 2τ0F

< − 2τ0F ,

where F =
∑n

i=1 F ii. Then we have

F i jwi j =F i j(A1(u − u) + A2|x|
2 + Tαu)i j

=A1F i j(u − u)i j + 2A2F

≤ − 2A1τ0F + 2A2F

<0,

where we use F i j(Tαu)i j = 0 and we take A1 =
A2

2τ0
. Then we obtain w ≥ 0 in Uδ and

w(0) = 0. Namely we have

|Tαu| ≤A(u − u) + A2|x|
2 in Uδ,(3.8)

(Tαu)(0) =0.(3.9)

This gives |uαn(0)| ≤ C.

Double normal derivative estimates on ∂U

For any fixed x0 ∈ ∂U, we choose the coordinate such that x0 = 0, ∂U
⋂

Br(x0) =

(x′, ρ(x′)) and ∇ρ(0) = 0.

Case 1: x0 ∈ ∂Ω1

We have

uαβ(0) = −un(0)ραβ(0) = |Du|(0)ραβ(0).

Since |Du|(0) ≥ c > 0 on ∂Ω1 and Ω1 is (k − 1)-convex, we have

S k(uαβ(0)) ≥ ckS k(ραβ(0)) ≥ c1 > 0.(3.10)

Case 2: x0 ∈ ∂Ω0

Since ∂u
∂ν
≤
∂u

∂ν
= −|Du| < 0 on ∂Ω0, we have |Du| > |Du| > a0 > 0 and then there exists

a smooth function g such that u = gu near ∂Ω0. Since u ≥ u > 0 in U, we have g ≥ 1

near ∂Ω0. On the other hand, since u = 0 on ∂Ω0, we have for any 1 ≤ α, β ≤ n − 1,
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uα(0) = u
α
(0) = 0. Thus

uαβ(0) =gαβ(0)u(0) + gα(0)u
β
(0) + gβ(0)u

α
(0) + g(0)u

αβ
(0)

=g(0)τΦ0
αβ(0),

where we have used u = τ0Φ
0 near ∂Ω0. Therefore

S k−1(uαβ(0)) = gk−1(0)τk−1
0 S k−1

(
Φ0
αβ(0)

)
≥ τk−1

0 Ck−1
n C

k−1
k

n min
∂Ω0

S
k−1

k

k

(
D2Φ0

)
:= c2 > 0.

(3.11)

Let c0 = min{c1, c2} (see (3.10) and (3.11)), we have

unnc0 ≤ unn(0)S k−1(uαβ(0)) =S k(D
2u(0)) − S k(uαβ(0)) +

n−1∑

i=1

u2
inS k−2(uαβ)

≤C.

Then we obtain

unn(0) ≤ C,

where C is a uniform constant. On the other hand, unn(0) ≥
n−1∑
i=1

uαα(0) ≥ −C. In conclu-

sion, we have |unn(0)| ≤ C.

In conclusion, we get the uniform C2 estimate. �

3.3. Proof of Theorem 3.1. The uniqueness follows from the comparison principal for

k-convex solutions of k-Hessian equations in Lemma 2.4 by Wang-Trudinger [31] (see

also [30, 32])..

For the existence part, since uǫ is increasing on ǫ, u0 := lim
ǫ→0

uǫ exits. Since |uǫ |C2(U) ≤ C,

there exists a subsequence uǫi converges to u0 in C1,α on U and u0 ∈ C1,1(U).

4. Solving the approximating equation in ΩR := BR \Ω.

We always assume Ω is a smoothly convex domain and strictly (k − 1)-convex. Recall

that we always assume Br ⊂⊂ Ω ⊂⊂ B R0
2

.

4.1. Case 1: k < n
2
. Since the Green function in this case is −|x|

2k−n
k , we want to solve the

following k-Hessian equation .

(4.1)



S k(D
2u) =0 in Ωc := Rn \Ω,

u = − 1 on ∂Ω,

lim
x→∞

u(x) =0.
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Define w1,ε := −
(
R2

0 + ε
2
) n−2k

2k
(
|x|2 + ε2

)− n−2k
2k

. We have

f 1,ε := S k(D
2w1,ε) =Ck

n

(
k

n − 2k

)k

(R2
0 + ε

2)
n−2k

2 (|x|2 + ε2)−
n
2−1ε2.

For ε small enough, we can construct a smoothly strictly k-convex function u1,ε as follows

Lemma 4.1. For any ε ∈ (0, R0

3
) small enough, there exists a strictly k-convex function

u1,ǫ ∈ C∞(Rn \Ω) satisfying

u1,ε =


τ0(ed(x) − 1) − 1, in B 2

3
R0
\Ω,

w1,ε in Bc
2R0
,

(4.2)

u1,ε ≥max
{
w1,ε, τ0(ed(x) − 1) − 1

}
in B2R0

\ B 2
3

R0
,

S k(D
2u1,ε) ≥ f 1,ε, in Ωc,

where τ0 = 2−
n
2k

2
n−2k

2k −1

e3R0−1
> 0 since k < n

2
.

Proof. We apply Lemma 2.8 by taking U = B3R0
\ Ω, h = w1,ε, g = τ0(ed(x) − 1) − 1 and

δ = 2−
n
2k (2

n−2k
2k − 1) to get a function u1,ε ∈ C∞(U) which is strictly k-convex and satisfies

u1,ε ≥max
{
w1,ε, τ0(ed(x) − 1) − 1

}
in B2R0

\ B 2
3

R0

S k(D
2u1,ε) ≥ f 1,ε in U.

Next we prove (4.2). When x ∈ B3R0
\ B2R0

, for ε < R0,

h(x) − g(x) =w1,ε(x) − τ0(ed(x) − 1) + 1

≥ −
(
R2

0 + ε
2
) n−2k

2k
(
4R2

0 + ε
2
)− n−2k

2k
− τ0(e3R0 − 1) + 1

>1 − 2−
n−2k

2k − τ0(e3R0 − 1)

>
1

2
(1 − 2−

n−2k
2k )

=:δ > 0,

where δ > 0 since k < n
2
.

When x ∈ B 2
3

R0
\Ω, since ε < R0

3
, we have

g(x) − h(x) ≥ − w1,ε(x) − 1

≥
(
R2

0 + ε
2
) n−2k

2k

(
4

9
R2

0 + ε
2

)− n−2k
2k

− 1

≥2
n−2k

2k − 1 > δ.
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We can finish the proof by extending the domain of u1,ǫ to Ωc by taking u1,ǫ = w1,ǫ in

Bc
3R0

. �

Now for any ε ∈ (0, ε0) and R ∈ (K0(R0 + 1),+∞) with ε0 small enough and K0 large

enough, we consider the approximating equation

(4.3)



S k(D
2u) = f 1,ε in ΩR = BR \Ω,

u = − 1 on ∂Ω,

u(x) =u1,ε on ∂BR.

Since u1,ε is a subsolution, by Guan [14], equation (4.3) has a strictly k-convex solution

uε,R ∈ C∞(ΩR). Our goal is to establish uniform C2 estimates of uε,R, which are indepen-

dent of ε and R. We prove the following

Theorem 4.2. Assume 1 ≤ k < n
2
. For every sufficiently small ε and sufficiently large R,

uε,R satisfies



C−1|x|−
n−2k

k ≤ − uε,R(x) ≤ C|x|−
n−2k

k ,

C−1|x|−
n−k

k ≤ |Duε,R|(x) ≤C|x|−
n−k

k ,

|D2uε,R|(x) ≤C|x|−
n
k ,

where C is a uniform constant which is independent of ε and R.

4.2. Case 2: k > n
2
. Since the Green function in this case is |x|

2k−n
k , we want to solve the

k-Hessian equation as follows

(4.4)



S k(D
2u) =0 in Ωc,

u =1 on ∂Ω,

u(x) =|x|
2k−n

k + O(1) as x→ ∞.

4.2.1. The approximating equation. Define w2,ε :=
(
|x|2 + ε2

) 2k−n
2k
−

(
R2

0
+ ε2

) 2k−n
2k
+ 1 and

we have

f 2,ε := S k(D
2w2,ε) =Ck

n

(
k

2k − n

)k

(|x|2 + ε2)−
n
2
−1ε2.

We construct a smoothly and strictly k-convex function u2,ε as follows
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Lemma 4.3. For any ε ∈ (0, R0

3
) small enough, there exists a strictly k-convex function

u2,ε ∈ C∞(Rn \Ω) satisfying

u2,ǫ =


τ0(ed(x) − 1) + 1, in B 2

3
R0
\Ω,

w2,ε in Bc
2R0
,

(4.5)

u2,ε ≥max
{
w2,ε, τ0(ed(x) − 1) + 1

}
in B2R0

\ B 2
3

R0
,

S k(D
2u2,ǫ) ≥ f 2,ε, in Ωc,

where τ0 =
1
2
R

2k−n
k

0
2

2k−n
2k −1

e3R0−1
> 0 since k > n

2
.

Proof. We apply Lemma 2.8 by taking U = B3R0
\ Ω, h = w2,ε, g = τ0(ed(x) − 1) − 1 and

δ = 1
2
R

2k−n
k

0
(2

2k−n
2k −1) to get a function u2,ε ∈ C∞(U) which is strictly k-convex and satisfies

u2,ε ≥max
{
w2,ε, τ0(ed(x) − 1) − 1

}
in B2R0

\ B 2
3

R0

S k(D
2u2,ε) ≥ f 2,ε in U.

Next we prove (4.5). When x ∈ B3R0
\ B2R0

, for ε < R0,

h(x) − g(x) =w2,ε(x) − τ0(ed(x) − 1) − 1

≥
(
4R2

0 + ε
2
) 2k−n

2k
−

(
R2

0 + ε
2
) n−2k

2k
− τ0(e3R0 − 1)

>R
2k−n

k

0
(2

2k−n
2k − 1) − τ0(e3R0 − 1)

>
1

2
R

2k−n
k

0
(2

2k−n
2k − 1)

=:δ > 0,

where we choose τ0 =
1
2
R

2k−n
k

0
2

2k−n
2k −1

e3R0−1
> 0 and δ > 0 since k > n

2
.

When x ∈ B 2
3

R0
\Ω,

g(x) − h(x) ≥ − w2,ε(x) − 1

≥(R2
0 + ε

2)
2k−n

2k − (
4

9
R2

0 + ε
2)

2k−n
2k

≥2−
2k−n

2k R
2k−n

k

0
(2

2k−n
2k − 1) > δ.

Then we finish the proof by extending the domain of u2,ǫ to Ωc by taking u2,ǫ = w2,ǫ in

Bc
3R0

. �

We consider the approximating equation as follows
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S k(D
2u) = f 2,ε, in BR \Ω,

u = 1, on ∂Ω,

u = u2,ε, on ∂BR.

(4.6)

Since u2,ε is a subsolution, by Guan [14], equation (4.6) has a strictly k-convex solution

uε,R ∈ C∞(ΩR). Our goal is to establish uniform C2 estimates of uε,R, which are indepen-

dent of ε and R.

We prove the following

Theorem 4.4. Assume k > n
2
. For every sufficiently small ε and sufficiently large R, uε,R

satisfying


|uε,R(x) − |x|
2k−n

k | ≤ C,

C−1|x|
k−n

k ≤ |Duε,R|(x) ≤C|x|
k−n

k ,

|D2uε,R|(x) ≤C|x|−
n
k ,

where C is a uniform constant which is independent of ε and R.

4.3. Case 3: k = n
2
. Since the Green function in this case is log |x|, we want to solve the

k-Hessian equation as follows

(4.7)



S n
2
(D2u) =0 in Ωc,

u =0 on ∂Ω,

u(x) = log |x| + O(1) as x→ ∞.

4.3.1. The approximating equation. Define w3,ε := 1
2

log |x|
2+ε2

R2
0
+ε2

and we have

f 3,ε := S k(D
2w3,ε) = 2k+1C

n
2
−1

n−1
ε2(|x|2 + ε2)−

n
2
−1(4.8)

We construct a smoothly and strictly k-convex function u3,ε as follows

Lemma 4.5. For any ε ∈ (0, R0

3
), there exists a strictly k-convex function u3,ε ∈ C∞(Rn \Ω)

satisfying

u3,ε =


τ0(ed(x) − 1) in B 2

3
R0
\Ω,

w3,ε in Bc
2R0
,

(4.9)

u3,ε ≥max
{
w3,ε, τ0(ed(x) − 1)

}
in B2R0

\ B 2
3

R0
,

S k(D
2u3,ε) ≥ f 3,ε in Ωc,

where τ0 =
1
4

log 2

e3R0−1
.
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Proof. We apply Lemma 2.8 by taking U = B3R0
\ Ω, h = w2,ε, g = τ0(ed(x) − 1) and

δ = 1
4

log 2 to get a function u2,ε ∈ C∞(U) which is strictly k-convex and satisfies

u3,ε ≥max
{
w3,ε, τ0(ed(x) − 1)

}
in B2R0

\ B 2
3

R0

S k(D
2u3,ε) ≥ f 3,ε in U.

Next we prove (4.9). When x ∈ B3R0
\ B2R0

,

h(x) − g(x) =w3,ε(x) − τ0(ed(x) − 1)

≥
1

2
log

4R2
0
+ ε2

R2
0
+ ε2

− τ0(e3R0 − 1)

>
1

2
log 2 − τ0(e3R0 − 1)

>
1

4
log 2 =: δ,

where we use ε < R0 and we choose τ0 =
1
4

log 2

e3R0−1
.

When x ∈ B 2
3

R0
\Ω, since ε < 1

3
R0, we have

g(x) − h(x) ≥ − w2,ε(x)

≥
1

2
log

R2
0
+ ε2

4
9
R2

0
+ ε2

≥
1

2
log 2 > δ.

Then we finish the proof by extending the domain of u2,ǫ to Ωc by taking u2,ǫ = w2,ǫ in

Bc
3R0

. �

We consider the approximating equation as follows



S k(D
2u) = f 3,ε, in BR \Ω,

u = 0, on ∂Ω,

u = u3,ε, on ∂BR.

(4.10)

Since u3,ε is a subsolution, by Guan [14], equation (4.6) has a strictly k-convex solution

uε,R ∈ C∞(ΩR).

We prove the following
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Theorem 4.6. Assume k = n
2
. For every sufficiently small ε and sufficiently large R, uε,R

satisfies


|uε,R(x) − log |x|| ≤C,

C−1|x|−1 ≤ |Duε,R|(x) ≤C|x|−1,

|D2uε,R|(x) ≤C|x|−2,

where C is a uniform constant which is independent of ε and R.

In the next subsections, we will prove uniform C2-estimates of solutions of equations

(4.3), (4.6) and (4.10). The key point is that these estimates are independent of ε and R.

4.4. C0 estimates.

4.4.1. Case 1: k < n
2
. We fisrt prove uǫ,R is increasing with R. Indeed, since for any

R̃ > R ≥ 100(R0 + 1), we have



S k(D
2uε,R) =S k(D

2uε,R̃) = f 1,ε in ΩR

uε,R =uε,R̃ = −1 on ∂Ω,

uε,R =uε ≤ uε,R̃ on ∂BR

Applying the maximum principle in ΩR, we have

uε,R ≤ uε,R̃.(4.11)

Since 

S k(D
2uε,R) = f 1,ε > 0 = S k

(
D2

(
r

n−2k
k

0
|x|−

n−2k
k

))
, in ΩR̃

uε,R̃ = −1 < −r
n−2k

k

0
|x|−

n−2k
k , on ∂Ω (For Br0

⊂⊂ Ω),

uε,R̃ = −

(
R2

0
+ ε2

R̃2 + ε2

) n−2k
2k

< −r
n−2k

k

0
R̃−

n−2k
k , on ∂BR̃

Applying the maximum principle in ΩR̃, we have

uε,R̃ < −r
n−2k

k

0
|x|−

n−2k
k in ΩR̃.(4.12)

Then by (4.11) and (4.12), for any R̃ > R ≥ 100(R0 + 1),

uε,R ≤ uε,R̃ < −r
n−2k

k

0
|x|−

n−2k
k in ΩR.(4.13)

On the other hand, for any x ∈ ΩR, we have uε,R(x) ≥ u1,ε(x) ≥ w1,ε = −(R2
0 + ε

2)
n−2k

2k (|x|2 +

ε2)−
n−2k

2k . Thus when k < n
2
, for any x ∈ ΩR,

r
n−2k

k

0
|x|−

n−2k
k ≤ −uε,R(x) ≤ R

n−2k
k

0
|x|−

n−2k
k .
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4.4.2. Case 2: k > n
2
. Firstly, we have for any x ∈ ΩR, uε,R(x) ≥ u2,ε ≥ w2,ε = (|x|2 +

ε2)
2k−n

2k − (R2
0
+ ε2)

2k−n
2k + 1 and this gives the lower bound of uε,R.

Since |x|
2k−n

k − r
2k−n

k

0
+ 1 is the upper barrier of uε,R in ΩR, we get uε,R − |x|

2k−n
k ≤ C.

4.4.3. Case 3: k = n
2
. The proof is similar as that in Case 2.

4.5. Gradient estimates. In this subsection, we prove the global gradient estimate. The

key point is that the estimate here does not depend on ε and R. We also prove that the

positive lower bound of the gradient of the solution and thus the level set of the solution

is compact.

4.5.1. Reducing global gradient estimates to boundary gradient estimates This part is

the key part of gradient estimates. The point in here is that the gradient estimate is inde-

pendent of the approximating process. This estimates is motivated by B. Guan [15].

Theorem 4.7. Let u be the solution of the approximating equation (4.3), (4.6) or (4.10).

Denote by

P =



|Du|2e2u, k = n
2
,

|Du|2u
2(n−k)
2k−n , k > n

2
,

|Du|2(−u)−
2(n−k)
n−2k , k < n

2
.

(4.14)

then we have the following gradient estimate

max
BR\Ω

P ≤



max

{
max
BR\Ω

(e2u|D log f 3,ε|2),max
ΓR

P

}
, k = n

2
,

max

{[
2k−n

k(n+1−k)

]2
max
BR\Ω

(u
2k

2k−n |D log f 2,ε|2),max
ΓR

P

}
, k > n

2
,

max

{[
n−2k

k(n+1−k)

]2
max
BR\Ω

[
(−u)−

2k
n−2k |D log f 1,ε|2

]
,max
ΓR

P

}
, k < n

2
,

(4.15)

where ΓR := ∂ (BR \Ω).

Proof. For simplicity, we use f instead of f 1,ε, f 2,ε or f 3,ε during the proof. Consider the

function G = log |Du|2 + g(u).

0 = Gi =
|Du|2

i

|Du|2
+ g′ui =

2ukuki

u2
1

+ g′ui

=
2u1i

u1

+ g′ui.

Then we have

u1i = 0, i ≥ 2, λ1 = u11 = −
g′

2
u2

1.
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In the following, we will take g in three cases

g(u) =



2u, k = n
2
,

2(n−k)

(2k−n)
log u, k > n

2
,

−
2(n−k)

(n−2k)
log(−u), k < n

2
.

(4.16)

In these three cases, we always have g′ > 0. This implies λ1 < 0 and thus (λ|1) ∈ Γk

which is crucial during the proof.

Thus ui j is diagonal at x0 and

0 ≥ F iiGii =
F ii|Du|2ii

|Du|2
− F ii

∣∣∣|Du|2i

∣∣∣2 + g′′F iiu2
i + g′F iiuii

=
2F iiu2

ki
+ 2F iiukukii

|Du|2
− F ii(g′)2u2

i + g′′u2
i + g′uii

=
2F iiu2

ii + 2F iiu1u1ii

u2
1

− (g′)2F11u2
1 + g′′F11u2

1 + g′F iiuii

=2u−2
1

(
S 1(λ) f − (k + 1)S k+1(λ) + u1 f1

)
+

(
g′′ − (g′)2

)
S k−1(λ|1)u2

1 + kg′ f

=2u−2
1

(
S 1(λ) f − (k + 1)S k+1(λ) + u1 f1 +

1

2

(
g′′ − (g′)2

)
S k−1(λ|1)u4

1 +
k

2
g′u2

1 f

)

=2u−2
1

(
S 1(λ) f − (k + 1)S k+1(λ) + u1 f1 + 2

( g′′

(g′)2
− 1

)
S k−1(λ|1)λ2

1 − k fλ1

)
,

where we use λ1 = −
g′

2
u2

1
.

Therefore

0 ≥
1

2
u2

1F iiGii = S 1(λ) f − (k + 1)S k+1(λ) + u1 f1 + 2
( g′′

(g′)2
− 1

)
S k−1(λ|1)λ2

1 − k fλ1

= S 1(λ|1) f − (k − 1) fλ1 − (k + 1)S k+1(λ) + 2
( g′′

(g′)2
− 1

)
S k−1(λ|1)λ2

1 + u1 f1.

Sine λ1S k−1(λ|1) + S k(λ|1) = f , we have λ1 =
f

S k−1(λ|1)
−

S k(λ|1)

S k−1(λ|1)
. We first manipulate the

term −(k − 1) fλ1.

−(k − 1) fλ1 = − (k − 1) f
( f

S k−1(λ|1)
−

S k(λ|1)

S k−1(λ|1)

)

= − (k − 1)
f 2

S k−1(λ|1)
+ (k − 1) f

S k(λ|1)

S k−1(λ|1)
.(4.17)
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Next we manipulate −(k + 1)S k+1(λ).

−(k + 1)S k+1(λ) = − (k + 1)λ1S k(λ|1) − (k + 1)S k+1(λ|1)

= − (k + 1)S k(λ|1)
( f

S k−1(λ|1)
−

S k(λ|1)

S k−1(λ|1)

)
− (k + 1)S k+1(λ|1)

= − (k + 1) f
S k(λ|1)

S k−1(λ|1)
+ (k + 1)

S 2
k
(λ|1)

S k−1(λ|1)
− (k + 1)S k+1(λ|1)(4.18)

At last, we manipulate the trouble term 2
(

g′′

(g′)2 − 1
)
S k−1(λ|1)λ2

1.

2
( g′′

(g′)2
− 1

)
S k−1(λ|1)λ2

1

= 2
( g′′

(g′)2
− 1

)
S k−1(λ|1)

( f

S k−1(λ|1)
−

S k(λ|1)

S k−1(λ|1)

)2

=2
( g′′

(g′)2
− 1

) f 2

S k−1(λ|1)
− 4

( g′′

(g′)2
− 1

)
f

S k(λ|1)

S k−1(λ|1)
+ 2

( g′′

(g′)2
− 1

) S 2
k
(λ|1)

S k−1(λ|1)
.(4.19)

Substitute the above three equality into the original terms, we have

0 ≥
1

2
u2

1F iiGii

=
(
2

g′′

(g′)2
+ k − 1

) S 2
k
(λ|1)

S k−1(λ|1)
− (k + 1)S k+1(λ|1) + 2

(
1 −

2g′′

(g′)2

)
f

S k(λ|1)

S k−1(λ|1)

+
(
2

g′′

(g′)2
− k − 1

) f 2

S k−1(λ|1)
+ S 1(λ|1) f + u1 f1

≥
(
2

g′′

(g′)2
+ k − 1 −

k(n − k − 1)

n − k

) S 2
k
(λ|1)

S k−1(λ|1)
+ 2

(
1 −

2g′′

(g′)2

)
f

S k(λ|1)

S k−1(λ|1)

+
(
2

g′′

(g′)2
− k − 1

) f 2

S k−1(λ|1)
+ S 1(λ|1) f + u1 f1,(4.20)

where in the last inequality we use the Maclaurin inequality:

S k+1(λ|1)/Ck+1
n−1

S k(λ|1)/Ck
n−1

≤
S k(λ|1)/Ck

n−1

S k−1(λ|1)/Ck−1
n−1

.

Case1: k < n
2
,

Since the foundamental solution is −|x|2−
n
k and its gradient is ∼ |x|1−

n
k . We take g(u) =

a log(−u), where a = −
2(n−k)

n−2k
< 0. 2

g′′

(g′)2 = −
2
a
= n−2k

n−k
. Substituting it into (4.21), we have
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0 ≥
1

2
u2

1F iiGii ≥
(
2

g′′

(g′)2
+ k − 1 −

k(n − k − 1)

n − k

) S 2
k
(λ|1)

S k−1(λ|1)

+ 2
(
1 −

2g′′

(g′)2

)
f

S k(λ|1)

S k−1(λ|1)
+

(
2

g′′

(g′)2
− k − 1

) f 2

S k−1(λ|1)
+ S 1(λ|1) f + u1 f1

=
2k

n − k
f

S k(λ|1)

S k−1(λ|1)
− k

n + 1 − k

n − k

f 2

S k−1(λ|1)
+ S 1(λ|1) f + u1 f1

≥ f
( k

n − 1
S 1(λ|1) − k

n + 1 − k

n − k
λ1

)
+ u1 f1(∗)

≥
a

2
k

n + 1 − k

n − k
=

k(n + 1 − k)

n − 2k
f

u2
1

−u
+ u1 f1,(4.21)

where in (*), we use the same argument as the k > n
2

case.

From this, we have u1 ≤
n−2k

k(n+1−k)
(−u)|D log f |. Then we have

|Du|2(−u)a ≤ u2
1(−u)a ≤

( n − 2k

k(n + 1 − k)

)2

(−u)
2k

2k−n |D log f |2.

Case2: k > n
2
.

We take g = a log u, where a =
2(n−k)

2k−n
(since the foudament solution is |x|2−

n
k ). By (4.21),

we have

0 ≥
1

2
u2

1F iiGii

=2

[
1 −

2g′′

(g′)2

]
f

S k(λ|1)

S k−1(λ|1)
+

[
2

g′′

(g′)2
− k − 1

]
f 2

S k−1(λ|1)
+ S 1(λ|1) f + u1 f1

=2(1 +
2

a
) f

S k(λ|1)

S k−1(λ|1)
− (1 +

2

a
+ k)

f 2

S k−1(λ|1)
+ S 1(λ|1) f + u1 f1

=
2k

n − k
f

S k(λ|1)

S k−1(λ|1)
− k

n + 1 − k

n − k

f 2

S k−1(λ|1)
+ S 1(λ|1) f + u1 f1

=
2k

n − k
f

S k(λ|1)

S k−1(λ|1)
− k

n + 1 − k

n − k
f

[
λ1 +

S k(λ|1)

S k−1(λ|1)

]
+ S 1(λ|1) f + u1 f1

= f

[
S 1(λ|1) +

k(k + 1 − n)

n − k

S k(λ|1)

S k−1(λ|1)
− k

n + 1 − k

n − k
λ1

]
+ u1 f1

≥ f

[
k

n − 1
S 1(λ|1) − k

n + 1 − k

n − k
λ1

]
+ u1 f1

≥cn,k f
u2

1

u
+ u1 f1,

where cn,k =
a
2
k n+1−k

n−k
=

k(n+1−k)

2k−n
> 0.
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This gives

u1 ≤
2k − n

k(n + 1 − k)
u|D log f |.

Therefore we have

|Du|2ua = u2
1ua ≤

( 2k − n

k(n + 1 − k)

)2

u
2k

2k−n |D log f |2.(4.22)

Case3: k = n
2
,

In this case, we must choose g(u) = 2u (it is uniquely determined by the foundamental

solution log |x|), then from (4.20), we have

0 ≥
1

2
u2

1F iiGii ≥ 2 f
S k(λ|1)

S k−1(λ|1)
− (

n

2
+ 1)

f 2

S k−1(λ|1)
+ S 1(λ|1) f + u1 f1

= f
(
S 1(λ|1) + 2

S k(λ|1)

S k−1(λ|1)
− (

n

2
+ 1)

f

S k−1(λ|1)

)
+ u1 f1

= f
(
S 1(λ|1) + 2

S k(λ|1)

S k−1(λ|1)
− (

n

2
+ 1)

(
λ1 +

S k(λ|1)

S k−1(λ|1)

))
+ u1 f1

= f
(
− (

n

2
+ 1)λ1 + S 1(λ|1) − (

n

2
− 1)

S k(λ|1)

S k−1(λ|1)

)
+ u1 f1

≥ f
(
(
n

2
+ 1)λ1 +

n − 2

2(n − 1)
S 1(λ|1)

)
+ u1 f1

≥ f (
n

2
+ 1)u2

1 + u1 f1.

This implies u1 ≤ −(log f )1 ≤ |D log f |. Thus we have

|Du|2e2u ≤ u2
1e2u ≤ e2u|D log f |2.

�

4.5.2. Boundary gradient estimates

We always assume R >> 100(1 + R0). To prove the boundary gradient estimates, we

will construct upper barriers on ∂Ω and ∂BR respectively.

Case1: k < n
2

Let h ∈ C∞(ΩR0
) be the unique solution of



∆h =0, in ΩR0
,

h = − 1, on ∂Ω,

h = − r
n−2k

k

0
R0
− n−2k

k , on ∂BR0
.

By maximum principle, u1,ε ≤ u ≤ hR in ΩR0
. Then for any x ∈ ∂Ω

0 > −τ0 = τ0Φν(x) = u1,ε
ν
(x) ≥ uν(x) ≥ hν(x),
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where ν is the outward normal of ∂ΩR (inward normal of ∂Ω). Then

0 < τ0 ≤ τ0 max
∂Ω
|Du| = max

∂Ω
(−uν) ≤ max

∂Ω
|hν| ≤ C.(4.23)

This proves that P is uniformly bounded on ∂Ω.

Next we show P is uniformly bounded on ∂BR. Indeed, we consider

ρε,R = −aε,Rr
n−2k

k

0
|x|−

n−2k
k + aε,R − 1,(4.24)

where aε,R is defined as follows

aε,R =

1 −
(

r0

R0

) n−2k
k



−1 ((R2
0 + ε

2

R2 + ε2

) n−2k
2k
+ 1

)
> 1.(4.25)

Then we have ρε,R = u on ∂BR and u1,ε ≤ u ≤ ρε,R in ΩR. Then for any x ∈ ∂BR

CR−
n−k

k ≥ u1,ε
ν
(x) ≥ uν(x) ≥ ρε,Rν (x) = aε,R

n − 2k

k
r

n−2k
k

0
R−

n−k
k ≥ cR−

n−k
k ,(4.26)

where C and c are uniformly positive constants. Thus

cR−
n−k

k ≤ max
∂BR

|Du| = max
∂BR

uν ≤ CR−
n−k

k .(4.27)

Combing (4.23) with (4.27), we have

c|x|1−
n
k ≤ |Du| ≤ C|x|1−

n
k on ∂ΩR(4.28)

This implies P is uniformly bounded on ∂BR.

In conclusion, when k < n
2
, P is uniformly bounded in ΩR.

Case 2: k > n
2

Let h ∈ C∞(ΩR0
) be the unique solution of



∆h =0, in ΩR0
,

h =1, on ∂Ω,

h =R
2k−n

k

0
− r

2k−n
k

0
+ 1, on ∂BR0

.

By maximum principle, u2,ε ≤ u ≤ h in ΩR0
. Then

0 < c ≤ |Du| ≤ C, on ∂Ω(4.29)

Thus we have P is uniformly bounded on ∂Ω .

We construct the upper barrier of u in ΩR as follows

ρε,R = aε,R
(
|x|

2k−n
k − r

2k−n
k

0

)
+ 1,(4.30)

where aε,R is defined by

aε,R =

(
R

2k−n
k − r

2k−n
k

0

)−1 (
(R2 + ε2)1− n

2k − (R2
0 + ε

2)1− n
2k

)
> a0 > 0,(4.31)
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where a0 > 0 is independent of ε and R. Then we have ρε,R = u on ∂BR and u2,ε ≤ u ≤ ρε,R

in ΩR. Thus

cR−
n−k

k ≤ max
∂BR

|Du| = max
∂BR

uν ≤ CR−
n−k

k .(4.32)

Combing (4.29) with (4.32), we have

c|x|1−
n
k ≤ |Du| ≤ C|x|1−

n
k on ∂ΩR(4.33)

This implies P is uniformly bounded on ∂BR. In conclusion, when k > n
2
, P is uniformly

bounded in ΩR.

Case 3: k = n
2

Let h ∈ C∞(ΩR0
) be the unique solution of



∆h =0, in ΩR0
,

h =0, on ∂Ω,

h = log R0 − log r0, on ∂BR0
.

By maximum principle, u3,ε ≤ u ≤ h in ΩR0
. Then

0 < c ≤ |Du| ≤ C, on ∂Ω(4.34)

Thus P is uniformly bounded on ∂Ω .

We construct the upper barrier of u in ΩR as follows

ρε,R = aε,R
(
log |x| − log r0

)
,

where aε,R is defined by

aε,R =
(
log R − log r0

)−1 1

2
log

R2 + ε2

R2
0
+ ε2

> a0 > 0,(4.35)

where a0 > 0 is independent of ε and R. Then we have ρε,R = u on ∂BR and u3,ε ≤ u ≤ ρε,R

in ΩR. Thus

cR−1 ≤ max
∂BR

|Du| = max
∂BR

uν ≤ CR−1.(4.36)

Combing (4.34) with (4.36), we have

c|x|−1 ≤ |Du| ≤ C|x|−1 on ∂ΩR(4.37)

This implies P is uniformly bounded on ∂ΩR. In conclusion, when k = n
2
, P is uniformly

bounded in ΩR.
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4.5.3. Positive lower bound of |Du|.

Lemma 4.8. Let u be the k-convex solution of the approximating equation (4.3), (4.6) or

(4.10). For sufficiently large R and sufficiently small ε, there exists a uniform constant c0

such that for any x ∈ ΩR

x · Du(x) ≥



c0|x|
2− n

k , if k <
n

2
or k >

n

2
,

c0, if k =
n

2
.

(4.38)

In particular,

|Du(x)| ≥



c0|x|
1− n

k , if k <
n

2
or k >

n

2
,

c0|x|
−1, if k =

n

2
.

(4.39)

Proof. Case 1: k < n
2

We consider the function H := x · Du(x) + b1u. Recall F i j = ∂
∂ui j

(log S k(D
2u)).

Direct manipulation gives

F i jHi j = (2 + b1)k + xm f̃m,(4.40)

Recall f̃ = log f , we have

xm f̃m = −(n + 2)|x|2(|x|2 + ε2)−1.(4.41)

Then if b1 < k−1, we have

F i jHi j =(|x|2 + ε2)−1
((

(2 + b1)k − (n + 2)
)
|x|2 + (2 + b1)kε2

)
< 0,(4.42)

By maximum principle, H ≥ min∂ΩR
H. By choosing b1 sufficiently small, we can prove

min∂ΩR
H > 0.

Indeed, for any x ∈ ∂Ω, since Ω is convex, we have

H(x) =x · Du(x) − b1 = (x · ν(x))|Du(x)| − b1

≥min
∂Ω

(x · ν(x))c − b1 > 0,(4.43)

where the last term is positive if we choose b1 < min∂Ω(x · ν(x))c and ν(x) is the outward

unit normal vector of Ω at x ∈ ∂Ω.

Indeed, for any x ∈ ∂BR, we have

H(x) =x · Du(x) − b1(R2
0 + ε

2)
n
k
−2(R2 + ε2)2− n

k

=Ruν − b1(R2
0 + ε

2)
n
k
−2(R2 + ε2)

2k−n
2k

≥cR
2k−n

k −C1b1R
2k−n

k

>0,(4.44)
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where we require b1 <
c

2C1
. In conclusion, we prove H > 0 in ΩR and thus we prove

(4.38).

Case 2: k > n
2

We consider the function H := x · Du(x) − b2(u − 1) − a2, where b2 and a2 are positive

constants to be determined later with a2 <
b2

2

For any x ∈ ∂Ω, since u(x) = 1, we have H(x) = x · Du(x) − a2 ≥ c(x · ν(x)) − a2 > 0 if

a2 < min∂Ω(x · ν(x))c is small enough.

For any x ∈ ∂BR, recall the upper barrier ρε,R in (4.30) and aε,R in (4.31), we have

H(x) =Ruν − b2

((
R2 + ε2

) 2k−n
2k
−

(
R2

0 + ε
2
) 2k−n

2k
− 1

)
− a2

≥Rρε,Rν − b2

(
R2 + ε2

) 2k−n
2k

=
2k − n

k
aε,RR

2k−n
k − b2

(
R2 + ε2

) 2k−n
2k

=R
2k−n

k

(
2k − n

k
aε,R − b2

(
1 + ε2R−2

) 2k−n
2k

)
.

If we take b2 =
2k−n

k
− 1

2k
> 0 (since 2k − n ≥ 1), the above is positive since aε,R is close to

1 for R sufficiently large. For such b2, we have

F i jHi j =(|x|2 + ε2)−1
((

(2 − b2)k − (n + 2)
)
|x|2 + (2 − b2)kε2

)

≤(|x|2 + ε2)−1
(
− |x|2 + (n + 1)ε2

)

<0,(4.45)

where we assume ε small enough (note that |x| ≥ r0 for x ∈ Ωc).

By maximum principle, we have H > min∂ΩR
H > 0. Thus we get for any x ∈ ΩR,

x · Du(x) ≥b2(u − 1) + a2

≥
a2

2
u ≥

a2

4(1 +C)
|x|

2k−n
k ,

where we use u ≥ max{|x|
2k−n

k −C, 1}.

Case 3: k = n
2

We consider H = x · Du(x) − b3 which is positive on the boundary of ΩR if we take b3

small enough. Since F i jHi j = (|x|2 + ε2)−1(−2|x|2 + nε2) < 0 for ε small enough, we have

H = x · Du(x) − b3 > 0 in ΩR and we can get the desired estimate.

�

4.6. Second order estimates. We will prove the second order estimate of the approxi-

mating equations.
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4.6.1. The global second order estimate can be reduced to the boundary second order

estimate.

Theorem 4.9. Let u be the k-convex solution of (4.3) or (4.6) or (4.10) and consider

G̃ = uξξϕ(P)h(u), then we have

max
BR\Ω

G̃ ≤ C +max
ΓR

G̃.(4.46)

where ΓR := ∂ (BR \Ω), ϕ(t) and h are defined by

ϕ(t) =

{
(M − t)−τ, k < n,

1, k = n,
(4.47)

where M := 2 max P + 1 and τ is a uniform positive constant determined in (4.74) (if

k , n
2
) and (4.75) (if k = n

2
). h is defined by

h(u) =



e2u, k = n
2
,

u
n

2k−n , k > n
2
,

(−u)−
n

n−2k , k < n
2
.

Proof. For simplicity, we write f instead of f 1,ε, f 2,ε or f 3,ε during the proof.

We rewrite the equation as

F(D2u) = log S k(D
2u) = f̃ ,

where f̃ = log f satisfying

|D f̃ |2 + |D2 f̃ | ≤ C|x|−2.(4.48)

Now we are ready to prove the second order estimate, we first recall

P = |Du|2g̃(u) :=



|Du|2e2u, k = n
2
,

|Du|2u
2(n−k)
2k−n , k > n

2
,

|Du|2(−u)−
2(n−k)
n−2k , k < n

2
.

Direct manipulation shows that

(log h)′ =



2, k = n
2
,

n
2k−n

u−1, k > n
2
,

n
n−2k

(−u)−1, k < n
2
,

h((log h)′)−1 ≤C|x|2,(4.49)

moreover,

g̃ = cn,kh(log h)′,(4.50)

where cn,k = 2 when k = n
2

and cn,k =
n

|n−2k|
when k , n

2
.

Assume G̃ attains its maximum at x0 ∈ ΩR along the direction ξ0. We choose the

coordinate at x0 ∈ ΩR such that D2u(x0) = {λiδi j}. Then one can check ξ0 = (1, 0 · · · , 0).
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Then G = log u11 + logϕ(P) + log h(u) attains its maximum at x0.

Our goal is to prove the uniform upper bound of λ1h.

All the calculations are at x0, fisrtly, we have

0 = Gi =
u11i

u11

+
ϕi

ϕ
+

hi

h

=
u11i

u11

+
ϕ′

ϕ
Pi +

h′

h
ui.

From the above, we have

u11i

u11

= −
ϕ′

ϕ
Pi −

h′

h
ui,(4.51)

h′

h
ui = −

u11i

u11

−
ϕ′

ϕ
Pi.(4.52)

Differentiating G twice, we have

Gii =
u11ii

u11

−

(
u11i

u11

)2

+
ϕ′

ϕ
Pii +


ϕ′′

ϕ
−

(
ϕ′

ϕ

)2 |Pi|
2 +

h′′

h
uii +


h′′

h
−

(
h′

h

)2 |ui|
2.(4.53)

Then we have

0 ≥ F iiGii =
F iiu11ii

u11

− F ii

(
u11i

u11

)2

+
ϕ′

ϕ
F iiPii +


ϕ′′

ϕ
−

(
ϕ′

ϕ

)2 F ii|Pi|
2 +

h′′

h
F iiuii +


h′′

h
−

(
h′

h

)2 F ii|ui|
2

=
( f̃ )11 − F i j,rsui j1urs1

u11

−

n∑

i=2

F ii

(
u11i

u11

)2

− F11

(
ϕ′

ϕ
P1 +

h′

h
u1

)2

+


ϕ′′

ϕ
−

(
ϕ′

ϕ

)2 F ii|Pi|
2

+
ϕ′

ϕ
F iiPii +


h′′

h
−

(
h′

h

)2 F ii|ui|
2 +

h′

h
F iiuii

≥2λ−1
1 f −1

n∑

i=2

S k−2(λ|1i)|u11i|
2 −

n∑

i=2

F ii

(
u11i

u11

)2

+


ϕ′′

ϕ
−

(
ϕ′

ϕ

)2
n∑

i=2

F ii|Pi|
2 +


h′′

h
−

(
h′

h

)2
n∑

i=2

F ii|ui|
2

+


ϕ′′

ϕ
− 3

(
ϕ′

ϕ

)2 F11|P1|
2 +


h′′

h
− 3

(
h′

h

)2 F11|u1|
2

+
ϕ′

ϕ
F iiPii +

kh′

h
− λ−1

1 ( f̃ )11,

(4.54)

where we use the concavity property of log S k.
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We fist deal with the easy case: k = n. Note that in this case ϕ = 1, h = u and F ii = λ−1
i .

From (4.54), we have

0 ≥ F iiGii ≥ nu−1 − 2λ−1
1 u−2u2

1 − λ
−1
1 ( f̃ )11.(4.55)

Multiply λ1u2 in the above inequality, we have

λ1u ≤ 2u2
1 + u2( f̃ )11 ≤ C,(4.56)

where we use |Du| ≤ C, u ≤ C|x| and |D2 f̃ | ≤ C|x|−2 (see (4.48)). Thus we finish the proof

when k = n.

In the remaining proof, we always assume k < n.

We manipulate Pii directly.

Pi =2g̃

n∑

l=1

ululi + |Du|2g̃′ui,

Pii =2g̃

n∑

l=1

ululii + 2g̃u2
ii + 4g̃′uiiu

2
i + |Du|2g̃′′u2

i + |Du|2g̃′uii

Thus we have

F iiPii =2g̃

n∑

i=1

F iiu2
ii + 4g′

n∑

i=1

F iiuiiu
2
i + |Du|2g̃′′

n∑

i=1

F iiu2
i + kg̃′|Du|2 + 2g̃

n∑

i=1

ui f̃i

≥g̃

n∑

i=1

F iiu2
ii − 4g̃−1(g̃′)2

n∑

i=1

F iiu4
i + |Du|2|g̃′′|

n∑

i=1

F iiu2
i − 2g̃|Du||D f̃ |

≥g̃

n∑

i=1

F iiu2
ii − C((log h)′)2|Du|2g̃

n∑

i=1

F iiu2
i − 2cn,kh(log h)′|Du||D f̃ |

≥cn,kh(log h)′
n∑

i=1

F iiu2
ii − C((log h)′)2P

n∑

i=1

F iiu2
i − CP

1
2 (log h)′,(4.57)

where we have used P = |Du|2g̃, g̃ = cn,kh(log h)′ and g̃
1
2 |D f̃ | ≤ C(log h)′ which follows

from |D f̃ | ≤ C|x|−1 (see (4.48)) and h((log h)′)−1 ≤ C|x|2(see (4.49)).

Similar as Chou-Wang [CPAM, 2001], we now divide two cases to obtain the upper

bound of λ1h(u).

Case1: λk ≥ δλ1,

Since λk ≥ δλ1, there exists a constant θ such that S k−1(λ|k) ≥ θS k−1(λ), we have

n∑

i=1

F iiu2
ii ≥Fkku2

kk ≥ θ f −1S k−1(λ)u2
kk

≥δ2θ f −1S k−1(λ)λ2
1 = θ̃ f −1S k−1(λ)λ2

1.
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Then by (4.57), we have

F iiPii ≥cn,kh(log h)′θ̃ f −1S k−1(λ)λ2
1 −C((log h)′)2PS k−1(λ)|Du|2 − CP

1
2 (log h)′

=
1

2
cn,kh(log h)′θ̃ f −1S k−1(λ)λ2

1 −C((log h)′)2PS k−1(λ)|Du|2

+
1

2
cn,kh(log h)′θ̃ f −1S k−1(λ)λ2

1 − CP
1
2 (log h)′

≥h−1(log h)′ f −1S k−1(λ)(
1

2
cn,kθ̃(hλ1)2 −CP2)

+ (log h)′(
1

2
cn,kθ̃ f −1S k−1λ1(hλ1) −CP

1
2 )

≥(log h)′(
1

2
cn,kθ̃ f −1S k−1λ1(hλ1) − CP

1
2 )

≥(log h)′
1

4n
cn,kθ̃ f −1S k−1λ1(hλ1)(4.58)

= : c0(log h)′ f −1S k−1λ1(hλ1),

where we use the following Maclaurin inequality in (4.58)

S k(λ)

S k−1(λ)
≤

n − k + 1

nk
S 1(λ),

and we have assumed

(λ1h)2 >4c−1
n,kθ̃
−1CP2 =: C1,(4.59)

λ1h ≥8c−1
n,kθ̃
−1CP

1
2 := C

1
2

2
.(4.60)

In this case, inserting (4.51) into (4.54), we have

0 ≥ F iiGii ≥
(ϕ′′
ϕ
− 3

(ϕ′
ϕ

)2) n∑

i=1

F ii|Pi|
2 +

(h′′

h
− 3

(h′

h

)2) n∑

i=1

F ii|ui|
2

+
ϕ′

ϕ
F iiPii +

kh′

h
− λ−1

1 ( f̃ )11

≥
(h′′

h
− 3

(h′

h

)2) n∑

i=1

F ii|ui|
2 +
ϕ′

ϕ
F iiPii +

kh′

h
− λ−1

1 ( f̃ )11.(4.61)
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Combining (4.61) with (4.58) and note that
∣∣∣h′′

h
− 3(h′

h
)2
∣∣∣ ≤ C((log h)′)2, we have

0 ≥F iiGii ≥


h′′

h
− 3

(
h′

h

)2
n∑

i=1

F ii|ui|
2 + c0

ϕ′

ϕ
(log h)′ f −1S k−1λ1(hλ1) + k(log h)′ − λ−1

1 ( f̃ )11

≥ − C f −1S k−1(λ)|Du|2((log h)′)2 + c0

τ

M − P
(log h)′ f −1S k−1λ1(λ1h) − λ−1

1 f̃11

=h−1(log h)′ f −1S k−1(λ)

(
c0τ

M − P
(λ1h)2 −CP

)
− λ−1

1 f̃11

≥
1

2
h−1(log h)′ f −1S k−1(λ)c0

τ

M − P
(λ1h)2 − λ−1

1 f̃11,

(4.62)

where we have assumed

(λ1h)2 ≥ 2c−1
0 τ
−1(M − P)CP =: C3.(4.63)

Since
S k(λ)

S k−1(λ)
≤ n−k+1

nk
S 1(λ), by (4.62), we have

(λ1h)2 ≤ Ch((log h)′)−1 f̃11.(4.64)

In conclusion, by (4.59), (4.60), (4.63) and (4.64), we obtain an upper bound of λ1ub as

follows

(λ1ub)2 ≤C1 +C2 + C3 +Ch((log h)′)−1 f̃11 ≤ C̃,(4.65)

where we use |D2 f̃ | ≤ C|x|−2 (see (4.48)) and h((log h)′)−1 ≤ C|x|2 (see (4.49)).

Case2: λk ≤ δλ1,

Since λk + λk+1 + · · · λn = S 1(λ1|12 . . . , k − 1) > 0, we have −λn ≤ (n − k)λk < nδλ1, thus

|λi| < nδλ1, i = k + 1, . . . , n.

Inserting (4.57) into (4.54), we obtain

0 ≥F iiGii ≥ 2λ−1
1 f −1

n∑

i=2

S k−2(λ|1i)|u11i|
2 −

n∑

i=2

F ii

(
u11i

u11

)2

+


ϕ′′

ϕ
−

(
ϕ′

ϕ

)2
n∑

i=2

F ii|Pi|
2 +


h′′

h
−

(
h′

h

)2
n∑

i=2

F ii|ui|
2

+


ϕ′′

ϕ
− 3

(
ϕ′

ϕ

)2 F11|P1|
2 +


h′′

h
− 3

(
h′

h

)2 F11|u1|
2

+
ϕ′

ϕ
cn,kh(log h)′

n∑

i=1

F iiu2
ii − C

ϕ′

ϕ
((log h)′)2P

n∑

i=1

F iiu2
i − C

ϕ′

ϕ
P

1
2 (log h)′ − λ−1

1 ( f̃ )11.

(4.66)
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Claim: We claim that for sufficiently small τ > 0, there exists sufficiently small δ > 0

such that the following holds

(∗) := 2λ−1
1 f −1

n∑

i=2

S k−2(λ|1i)|u11i|
2 −

n∑

i=2

F ii

(
u11i

u11

)2

+


ϕ′′

ϕ
−

(
ϕ′

ϕ

)2
n∑

i=2

F ii|Pi|
2

+ (log h)′′
n∑

i=2

F ii|ui|
2 − C

ϕ′

ϕ
((log h)′)2P

n∑

i=2

F iiu2
i(4.67)

≥0.

We will prove the estimate of λ1h based on the claim above. Indeed, by (4.67) and (4.66),

we have

0 ≥F iiPii ≥ (logϕ)′cn,kh(log h)′
n∑

i=1

F iiu2
ii

−C(log ϕ)′((log h)′)2F11u2
1 − C(log ϕ)′(log h)′ − λ−1

1 f̃11

≥h−1(logϕ)′(log h)′F11

(
cn,k

2
(λ1h)2 − Ch(log h)′u2

1

)

+ (logϕ)′
cn,k

2
h(log h)′

n∑

i=1

F iiu2
ii −C(log ϕ)′(log h)′ − λ−1

1 f̃11

≥h−1(logϕ)′(log h)′F11
(
cn,k

2
(λ1h)2 − CP

)

+ c0(logϕ)′(log h)′(λ1h) −C(log ϕ)′(log h)′ − λ−1
1 f̃11

≥
1

2
c0(logϕ)′(log h)′(λ1h) − λ−1

1 f̃11,(4.68)

where we use the Maclaurin inequality and assume λ1h is sufficiently large. From (4.68),

we obtain

(λ1h)2 ≤ Ch((log h)′)−1 f̃11 ≤ C̃,(4.69)

where we use |D2 f̃ | ≤ C|x|−2 (see (4.48)) and |h((log h)′)−1 ≤ x|2 (see (4.49)).

Now we prove the Claim (4.67).

Proof of the Claim (4.67): By Page1037 (3.5) in Chou-Wang [11], for any sufficiently

small ǫ0 > 0, there exists δ > 0 such that

2λ1S k−2(λ|1i) − (2 − ǫ0)S k−1(λ|i) > 0.(4.70)
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Now we use (4.70) to prove the claim by choosing appropriate ǫ0 and δ. Firstly, by (4.52),

we have

n∑

i=2

F ii|(log h)i|
2 = −

n∑

i=2

|
u11i

u11

+ (logϕ)i|
2

≥ − 2

n∑

i=2

|
u11i

u11

|2 − 2

n∑

i=2

|(logϕ)i|
2.(4.71)

Subcase 1: k < n
2

or n
2
< k < n.

We deal with the term (log h)′′
n∑

i=2

F iiu2
i

as follows

(log h)′′
n∑

i=2

F iiu2
i = (log h)′′((log h)′)−2

n∑

i=2

|
u11i

u11

+ (logϕ)i|
2 = −

|n − 2k|

n

n∑

i=2

|
u11i

u11

+ (logϕ)i|
2

≥ −(1 + τ1)
|n − 2k|

n

n∑

i=2

|
u11i

u11

|2 − (1 + τ−1
1 )
|n − 2k|

n

n∑

i=2

|(logϕ)i|
2,(4.72)

where τ1 > 0 is a sufficiently small constant.

Inserting (4.71) and (4.72) into (4.67), we have

(∗) ≥

(
1 − ǫ0 − (1 + τ1)

|n − 2k|

n
− 2τCP(M − P)−1

)
|
u11i

u11

|2

+

(
ϕ′′

ϕ
−

(
1 + (1 + τ−1

1 )
|n − 2k|

n
+ 2τCP(M − P)−1

)
((logϕ)′)2

)
F ii|Pi|

2

≥

(
1 − ǫ0 − (1 + τ1)

|n − 2k|

n
− 2Cτ

)
|
u11i

u11

|2

+

(
ϕ′′

ϕ
−

(
1 + (1 + τ−1

1 )
|n − 2k|

n
+ 2Cτ

)
((log ϕ)′)2

)
F ii|Pi|

2.(4.73)

Since |n − 2k| < n, we can choose τ1 such that b = (1 + τ1) |n−2k|

n
< 1 and then we choose

ǫ0 =
1−b

2
and M > 2C1

1−b
such that the first term of (4.73) is nonnegative. At last, since

ϕ′′

ϕ
= (1 + τ−1)((log ϕ)′)2, the second term of (4.73) is nonnegative if we choose positive

small constant τ as follows

τ < min
{1 − b

4C
,

n

(1 + τ−1
1

)|n − 2k| + 2nC

}
.(4.74)
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Subcase 2: k = n
2
.

In this case (log h)′′ = 0, inserting (4.71) into (4.67) and using (4.70) with ǫ0 =
1
2
, we have

(∗) ≥

(
1

2
− 2τCP(M − P)−1

)
|
u11i

u11

|2 +

(
ϕ′′

ϕ
− (1 + 2τCP(M − P)−1)((logϕ)′)2

)
F ii|Pi|

2

≥0,

where we choose the positive small constant τ satisfying

τ <
1

4C + 4
.(4.75)

Then we finish the proof of the Claim.

Combining (4.65) with (4.69), we get the estimate of λ1h.

�

4.6.2. Second order estimate on the boundary ∂ΩR. .

Step1: tangential derivative estimates.

We first prove the tangential derivative estimate on ∂Ω. For any x0 ∈ ∂Ω, we choose

the coordinate such that x0 = 0, ∂Ω
⋂

Bδ(0) = (x′, ρ(x′)), ρ(0) = 0 and ∇ρ(0) = 0. Since

u(x′, ρ(x′)) is constant, we have

|uαβ(0)| =|unραβ(0)| ≤ C|Du|(0) ≤ C.

Next we can prove S k−1(uαβ(0)) ≥ c1 > 0 as that in Section 3 (see (3.11))

For any x0 ∈ ∂BR, we choose the coordinate such that x0 = (0, · · · , 0,−R), then near x0,

∂BR is locally represented by xn = −(R2 − |x′|2)
1
2 .

Since u|∂BR
= constant, we have

uαβ(x0) = − un(x0)
∂2xn

∂xα∂xβ
(x0) = −R−1un(x0)δαβ

=R−1uν(x0)δαβ.(4.76)

Since we have the boundary gradient estimate on ∂BR (see (4.26), (4.32) and (4.36)),

CR−
n−k

k ≥ uν(x) ≥ cR−
n−k

k ,

then by (4.76), we have

|uαβ(x0)| ≤CR−
n
k(4.77)

{uαβ(x0)} ≥cR−
n
k {δαβ}.(4.78)

Step2: tangential-normal derivative estimates ∂ΩR

For any x0 ∈ ∂BR, choose the coordinate such that y0 = (0, · · · , 0,−R), ∂BR ∩ B 1
2

R(y0)

is represented by

xn = ρ(x′) = −(R2 − |x′|2)
1
2 ,
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Consider the tangential operator Tα = (xα∂n − xn∂α),1 ≤ α ≤ n − 1. Since u(x′, ρ(x′)) is

constant, we have

0 =uα + unρα = uα − xαρ
−1un

Then on ∂B1 ∩ Bδ(y0), we have

Tαu = xαun − ρuα = 0.

We consider the function

w = A1(R
n−2k

k (u − u|∂BR
) − 2vR) + A1R−2|x − x0|

2 ± R
n−2k

k Tαu in BR ∩ B R
2
(x0),

where vR(x) = |x|2

R2 − 1. Obviously, w(x0) = 0. Since Tαu = 0 on BR \ B 1
2
(x0), we have

w|BR\B 1
2

(x0) ≥ 0.

Since R
n−2k

k |Tαu| ≤ C1R
n−2k

k |x||Du| ≤ C, choosing A1 > 4C, we have

w ≥
1

4
A1 −C > 0 on ∂(B1 ∩ B 1

2
R(y0))(4.79)

Next we show F i jwi j < 0 if we choose ε is small enough. Indeed, firstly, recall f̃ =

log f = −(n
2
+ 1) log(|x|2 + ε) +C, then we have

F i j(Tαu)i j = xα f̃n − xn f̃α = 0.(4.80)

By the concavity of log S k, we have

F i j
(
R

n−2k
k u − vR

)
i j
≤F(R

n−2k
k D2u) − F(D2vR)

≤2 log ε − (2k + 1) log R +C + 2k log R

=2 log ε − k log R + C

<0,

where we require ε small enough. Thus we have

F i jwi j =A1F i j
(
R

n−2k
k u − vR

)
i j
− A1F i jvR

i j + A1R−2F i j(|x − x0|
2)i j

=A1F i j
(
R

n−2k
k u − vR

)
i j

<0.

By maximum principle, w attains its minimum 0 at x0. Then we have

0 ≥ wn(x0) = A1(R
n−2k

k un(x0) + 4R−1) ± R
n−k

k uαn(x0).

Then |uαn(x0)| ≤ A1R−1|Du(x0)| ≤ CR−
n
k and thus we have the uniform tangential-normal

derivative estimates on ∂BR.

For any x0, since S k(D
2ui,ε) ≥ ǫ0 > 0 near ∂Ω, we can prove the tangential-normal

derivative estimates on ∂Ω similar as that in Section 3.



38 XINAN MA AND DEKAI ZHANG

Step3: double normal derivative estimates ∂ΩR

We can choose the coordinate at x0 such that un(x0) = |Du| and {uαβ(x0)}1≤α,β≤n−1 is diago-

nal.

If x0 ∈ ∂BR, we have

unnc0R−
n(k−1)

k ≤ unn(x0)S k−1(uαβ(x0)) =S k(D
2u(x0)) − S k(uαβ(x0)) +

n−1∑

i=1

u2
inS k−2(uαβ)

≤ f +Ck−2
n−2Mk−2

21 M2
22R−n

≤CR−n.

This gives unn ≤ CR−
n
k . On the other hand, unn ≥ −

n−1∑
i=1

uii ≥ −(n − 1)M21R−
n
k . Then we

have |unn(x0)| ≤ CR−
n
k .

If x0 ∈ ∂Ω, since S k−1(uαβ(x0)) ≥ c1 which can be proved similar as that in Section 3,

then we have |unn(x0)| ≤ C.

In conclusion, we obtain |D2u(x)| ≤ C|x|−
n
k on the boundary ∂ΩR and thus |D2u|(x) ≤

C|x|−
n
k for any x ∈ ΩR.

5. Proof of Theorem 1.1, Theorem 1.2 and Theorem 1.3

5.1. Uniqueness. The uniqueness follows from the comparison principle for k-convex

solutions of the k-Hessian equation in bounded domains in Lemma 2.4 by Wang-Trudinger

[31] (see also [30, 32]).

Case1: k < n
2

Let u1, u2 be solutions of the k-Hessian equation. For any x0 ∈ Ω
c, we want to prove

u1(x0) ≥ u2(x0). Indeed, since lim|x|→∞ ui = 0, for any ǫ > 0, there esists sufficiently large

R such that x0 ∈ BR(0) and u1 ≥ u2 − ǫ on ∂BR(0). Note we also have u1 = u2 = 0 on ∂Ω,

by comparison theorem in ΩR, we then have u1 ≥ u2 − ǫ in ΩR. Let ǫ go to 0, we have

u1(x0) ≥ u2(x0) and thus u1 ≥ u2 in Ωc. Similarly, we can prove u2 ≥ u1 in Ωc. Then we

have u1 = u2 in Ωc and thus prove the uniqueness part.

Case 2: k > n
2

For any x0 ∈ Ω
c, we want to prove u1(x0) ≥ u2(x0). Indeed, for any t ∈ (0, 1), since

u1 − tu2 = (1 − t)|x|
2k−n

k + O(1) when |x| → ∞, there exists sufficiently large R such that

x0 ∈ BR(0) and u1 > tu2 on ∂BR(0)(5.1)

Note that we also have u1 = 1 > tu2 on ∂Ω. By comparison theorem, we then have

u1 ≥ tu2 in ΩR. In particular u1(x0) ≥ tu2(x0). Let t tend to 1, we have u1(x0) ≥ u2(x0) and

thus u1 ≥ u2 in Ωc.
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Similarly, we have u2 ≥ u1. Then we have u1 = u2 in Ωc and thus prove the uniqueness

part.

Case 3: k = n
2

Let x0 ∈ Ω
c. For any t ∈ (0, 1), since u1 − tu2 = (1 − t) log |x| + O(1) when |x| → ∞, there

exists sufficiently large R such that

x0 ∈ BR(0) and u1 > tu2 on ∂BR(0)(5.2)

Since u1 = tu2 = 0 on ∂Ω, by comparison theorem, we then have u1 ≥ tu2 in BR(0). In

particular u1(x0) ≥ tu2(x0). Let t tend to 1, we have u1(x0) ≥ u2(x0) and thus u1 ≥ u2 in

Ωc.

Similarly, we have u2 ≥ u1. Then we have u1 = u2 in Ωc and thus prove the uniqueness

part.

5.2. Existence and C1,1-estimates. The existence follows from the uniform C2-estimates

for uε,R.

Case 1: k < n
2

For any fixed sufficiently small ε > 0, by Guan [14], |uε,R|Cm(ΩK0
) ≤ C(ǫ,K0,m) for any

K0 > R0 and m ≥ 0 (we always assume Ω ⊂⊂ B R0
2

). Then there exists a subsequence uε,Ri

converging smoothly to a strictly k-convex uε in K and u∞ ∈ C∞(Ωc) satisfies


S k(D

2uε) = f 1,ε in Ωc,

uε = −1, on ∂Ω.
(5.3)

Moreover, by Theorem 4.2, we get



C−1|x|−
n−2k

k ≤ − uε(x) ≤ C|x|−
n−2k

k ,

C−1|x|−
n−k

k ≤ |Duε|(x) ≤C|x|−
n−k

k ,

|D2uε|(x) ≤C|x|−
n
k ,

Thus there exits a subsequence uǫi converges to u in C
1,α

loc
such that u ∈ C1,1(Ωc) is the

k-convex solution of the k-Hessian equation (1.4) and satisfies the estimates (1.5).

Case 2: k > n
2

For any fixed sufficiently small ε > 0, by Guan [14], |uε,R|Cm(ΩK0
) ≤ C(ǫ,K0,m) for any

K0 > R0 and m ≥ 0 . Then there exists a subsequence uε,Ri converging smoothly to a

strictly k-convex uε in K and uε ∈ C∞(Ωc) satisfies


S k(D

2uε) = f 2,ε in Ωc,

uε = 1, on ∂Ω.
(5.4)
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Moreover, by Theorem 4.4, we get


|uε(x) − |x|
2k−n

k | ≤C,

C−1|x|−
n−k

k |Duε|(x) ≤C|x|−
n−k

k ,

|D2uε|(x) ≤C|x|−
n
k ,

Thus there exits a subsequence uǫi converges to u in C1,α

loc
such that u ∈ C1,1(Ωc) is the

k-convex solution of the k-Hessian equation (1.6) and satisfies the estimates (1.7).

Case 3: k = n
2

For any fixed sufficiently small ε > 0, by Guan [14], |uε,R|Cm(ΩK0
) ≤ C(ǫ,K0,m) for any

K0 > R0 and m ≥ 0 . Then there exists a subsequence uε,Ri converging smoothly to a

strictly k-convex uε in K and uε ∈ C∞(Ωc) satisfies


S k(D
2uε) = f 3,ε in Ωc,

uε = 0, on ∂Ω.
(5.5)

Moreover, by Theorem 4.6, we get


|uε(x) − log |x|| ≤C,

C−1|x|−1 ≤ |Duε|(x) ≤C|x|−1,

|D2uε|(x) ≤C|x|−2,

Thus there exits a subsequence uǫi converges to u in C
1,α

loc
such that u ∈ C1,1(Ωc) is the

k-convex solution of the k-Hessian equation (1.8) and satisfies the estimates (1.9).

6. Almost monotonicity formula along the level set of the approximating solution

Agostiniani-Mazzieri [2] proved an monotonicity formula along the level set of the

solution of the following problem


∆u = 0 in Ωc

u = −1 on ∂Ω

lim
|x|→∞

u(x) = 0.

(6.1)

In our setting, note that u is only C1,1, we consider similar quantity on the level set of uε

since uε is smooth and |Duε| ≡ |x|1−
n
k .

Firstly, as an application of the C0 estimates of uǫ , we prove the following property.

Lemma 6.1. Assume k < n
2
.

lim
ǫ→0

∫

Rn\Ω̄

S
i j

k
(D2uǫ)uǫi u

ǫ
j =

∫

∂Ω

|Du|kHk−1(κ)dA,(6.2)

Remark 6.2. We may call
∫
∂Ω
|Du|kS k−1(κ)dA as the k-Capacity of Ω, since when k = 1,

Cap(Ω) =
∫
∂Ω
|Du|dA. The left hand side may be∞ when k ≥ n

2
.
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Proof. Let Ωt := {x ∈ Ωc : uε < t} and S t = {x ∈ Ω
c : uε(x) = t} with t ∈ [−1, 0).

Since |Duε| > 0, the level set S t := {uε = t} with t ∈ [−1, 0) is a smooth closed

hypersurface. Let ν be the outward unit normal vector of S t and then we have ν = Du
|Du|

. By

the divergence free property of the k-Hessian operator: DiS
i j = 0, we have,

∫

∂Ωt

S
i j

k
(D2uε)uεjνi −

∫

∂Ω

S
i j

k
(D2uε)uεjνi

=

∫

Ωt\Ω̄

Di

(
S

i j

k
(D2uε)uεj

)
dx =

∫

Ωt\Ω̄

S
i j

k
(D2uε)uεi jdx

=

∫

S t\Ω̄

kS k(D
2uε)dx = kcn,kε

2

∫

Ωt\Ω̄

(
|x|2 + ε2

)− n
2
−1
.(6.3)

Since C−1|x|−
n−2k

k ≤ |uε| ≤ C|x|−
n−2k

k in Ωc, for any t ∈ [−1, 0),

B
C−1t

− k
n−2k
⊂ Ωt ⊂ B

Ct
− k

n−2k
,(6.4)

then we have ∣∣∣∣∣∣

∫

S t

S
i j

k
(D2u)uεjνi −

∫

∂Ω

S
i j

k
(D2uε)uεjνi

∣∣∣∣∣∣ ≤ Cε2(r−2
0 − |t|

2k
n−2k ).(6.5)

Thus for any t ∈ [−1, 0), we have
∫

S t

S
i j

k
(D2uε)uεjνi =

∫

∂Ω

S
i j

k
(D2uε)uεjνi + O(ε2)(r−2

0 − |t|
2k

n−2k ).(6.6)

Then by the coarea formula, we have
∫

Rn\Ω̄

S
i j

k
(D2uε)uεi uεj

=

∫ 0

−1

∫

S t

S
i j

k
(D2uε)uεj

uε
i

|Duǫ |
dA(t)dt (Coarea Formula)

=

∫

{u=−1}=∂Ω

S
i j

k
(D2uε)uεj

uε
i

|Duε|
dA + O(ε2)(By (6.6))

=

∫

∂Ω

|Duε|kHk−1(κ)dA + O(ε2),(6.7)

where we use Hk−1(κ) = |Duε|−k−1S
i j

k
(D2uε)uε

i
uε

j
.

Let ε tend to 0 and note that |Duε| tends to |Du|, we have

lim
ε→0

∫

Rn\Ω̄

S
i j

k
(D2uε)uεi uǫj =

∫

∂Ω

|Du|kHk−1(κ)dA.

�

By the uniform C2 estimates and positive lower bound of uǫ , we can estimate |S t|, where

S t = {x ∈ R
n \Ω : u(x) = t}.
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Lemma 6.3. There exits uniform constant C such that

|S t| ≤



C|t|−
k(n−1)
n−2k for any t ∈ (0,−1] if k <

n

2
,

C|t|
k(n−1)
2k−n for any t ∈ [1,∞) if k >

n

2
,

Ce(n−1)t for any t ∈ [0,∞) if k =
n

2
.

(6.8)

Proof. Since

|S t| − |∂Ω| =

∫

Ωt

div
( uε

i

|Duε|

)
dx

By the uniform C2-estimates and the uniform lower bound of uε, we finish the proof. �

We define the following quantity

Ia,b,k(t) :=

∫

S t

ga(uε)|Duε|b−kS
i j

k
(D2uε)uεi uεj ,(6.9)

where g(u) s defined by

g(u) =



(−u)
n−k
2k−n , k <

n

2
,

u
n−k
2k−n , k >

n

2
,

eu, k =
n

2
.

(6.10)

We choose a = b − k + 1 and one can see that Ia,b,k(t) is uniformly bounded from the C2

estimates of uε and the lower bound of |Duε|.

When k = 1 and a = b, Ia,b,k(t) is exactly the one in [2].

We define

Ja+a0 ,b,k(t, t0) := −ga0(t)I′a,b,k(t) + ga0(t0)I′a,b,k(t0)(6.11)

. We prove the following useful inequalities along the level set of uε.

Lemma 6.4. Let uε be the solution of the approximating k-Hessian equation with a =

b − k + 1. We have the following inequalities

Ja+a0 ,b,k(t, t0) ≥ − ba

∫ t0

t

∫

S s

ga+a0 |Duε|b−k−1 Hk

Hk−1

S kdAds − (b + 1)

∫

S t

(
ga+a0 |Duε|b−kS k

)
dA

+ a

∫ t0

t

∫

S s

ga+a0 |Duε|b−1H−1
k−1

(
cn,kH2

k − (k + 1)Hk−1Hk+1

)
dAds

+ a

∫ t0

t

∫

S s

ga+a0 |Duε|b−1L.(6.12)
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where a0, b, cn,k =
k(n−k−1)

n−k
and the functions L are choosing as follows

(i) If 1 ≤ k < n
2
, we require −1 ≤ t < t0 < 0, a0 = −2 n−2k

n−k
, b ≥ cn,k and L = (b −

cn,k)
(

n−k
n−2k
|D log uε| − Hk

Hk−1

)2

(ii) If k = n
2
, we require 0 ≤ t < t0 < ∞, a0 = 0 b ≥ n

2
− 1 and L = a

(
|Duε| − Hk

Hk−1

)2

.

(iii) If n > k > n
2
, we require 1 ≤ t < t0 < ∞ and a0 = 2 2k−n

n−k
, b ≥ k − 1 and L =

(b − cn,k)
(

n−k
n−2k
|D log uε| − Hk

Hk−1

)2
.

Proof. For simplicity, we use u instead of uε and S k intead of S k(D
2uε) during the

proof.

By the divergence theorem and the divergence free property of the k-Hessian operator

i.e.
n∑

j=1

D jS
i j

k
= 0, we have

Ia,b,k(t0) − Ia,b,k(t) =

∫

Ωt0
\Ωt

D j

(
ga|Du|b+1−kS

i j

k
ui

)

=a

∫

Ωt0
\Ω

ga−1g′|Du|b+1−kS
i j

k
uiu j

+ (b + 1 − k)

∫

Ωt0
\Ω

ga|Du|b−k−1S
i j

k
uiului j + k

∫

Ωt0
\Ω

ga|Du|b+1−kS k

=a

∫

Ωt0
\Ω

ga−1g′|Du|b+1−kS
i j

k
uiu j

− (b + 1 − k)

∫

Ωt0
\Ω

ga|Du|b−k−1S
i j

k+1
uiu j + (b + 1)

∫

Ωt0
\Ω

ga|Du|b+1−kS k

=a

∫ t0

t

∫

S s

ga−1g′|Du|b−kS
i j

k
uiu j − (b + 1 − k)

∫ t0

t

∫

S s

ga|Du|b−k−2S
i j

k+1
uiu j

+ (b + 1)

∫ t0

t

∫

S s

ga|Du|b−kS k,(6.13)

where we use S
i j

k
uiulul j = |Du|2S k − S

i j

k+1
uiu j and the coarea formula.

Then

The derivative of Ia,b,k(t) is

(6.14)

I′a,b,k(t) =a

∫

S t

ga−1g′|Du|b−kS
i j

k
uiu j

− (b + 1 − k)

∫

S t

ga|Du|b−k−2S
i j

k+1
uiu j + Ea,b,k(t),
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where Ea,b,k(t) = (b + 1)
∫

S t
ga|Du|b−kS k.

Then we have

Ja,b,k(t, t0) := −ga0(t)I′a,b,k(t) + ga0(t0)I′a,b,k(t0)

=a

∫

Ωt0
\Ωt

D j

(
ga+a0−1g′|Du|b−k+1S

i j

k
ui

)

− (b − k + 1)(Ia+a0 ,b−1,k+1(t0) − Ia+a0 ,b−1,k+1(t)) + Ea+a0 ,b,k(t0) − Ea+a0 ,b,k(t)(6.15)

Firstly we have

∫

Ωt0
\Ωt

D j

(
ga+a0−1g′|Du|b−k+1S

i j

k
ui

)
dx

=

∫ t0

t

∫

S s

(
(ga+a0−1g′

)′
|Du|b−kS

i j

k
uiu jdAds

+ (b − k + 1)

∫ t0

t

∫

S s

(
ga+a0−1g′|Du|b−k−2S

i j

k
uiulul j

)
dAds + k

∫ t0

t

∫

S s

(
ga+a0−1g′|Du|b−kS k

)
dAds

=

∫ t0

t

∫

S s

(
(ga+a0−1g′)′|Du|b−kS

i j

k
uiu j

)
dAds

− (b − k + 1)

∫ t0

t

∫

S s

(
ga+a0−1g′|Du|b−k−2S

i j

k+1
uiu j

)
dAds + (b + 1)

∫ t0

t

∫

S s

(
ga+a0−1g′|Du|b−kS k

)
dAds

=

∫ t0

t

∫

S s

(
(ga+a0−1g′)′|Du|b+1Hk−1

)
dAds − (b − k + 1)

∫ t0

t

∫

S s

(
ga+a0−1g′|Du|bHk

)
dAds

+ (b + 1)

∫ t0

t

∫

S s

(
ga+a0−1g′|Du|b−kS k

)
dAds,

(6.16)

where we use the identity Hm−1|Du|m+1 = S
i j
muiu j for m ∈ {1, 2, · · · , n}(see Lemma 2.10).

For the term Ia+a0 ,b−1,k+1(t0)− Ia+a0 ,b−1,k+1(t), similar as the calculation of (6.13), we have

Ia+a0 ,b−1,k+1(t0)−Ia+a0 ,b−1,k+1(t)

=(a + a0)

∫ t0

t

∫

S s

ga+a0−1g′|Du|b−k−2S
i j

k+1
uiu jdAds

− (b − 1 − k)

∫ t0

t

∫

S s

ga+a0 |Du|b−k−4S
i j

k+2
uiu j

+ b

∫ t0

t

∫

S s

ga+a0 |Du|b−k−2S k+1.(6.17)
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Next we deal with the term involving S k+1. Choose the coordinate such that un(x0) =

|Du|(x0) and {ui j(x0))}1≤i, j≤n−1 = {λ̃iδi j}1≤i, j≤n−1 is diagonal, we have

S k+1 =unnS k(λ̃) + S k+1(λ̃) −

n−1∑

i=1

S k−1(λ̃|i)u2
ni

S k =unnS k−1(λ̃) + S k(λ̃) −

n−1∑

i=1

S k−2(λ̃|i)u2
ni,

where λ̃ = (λ̃1, · · · , λ̃n−1) and recall we use the notation S k = S k(D
2u). Then we get

S k+1 =
S k (̃λ)

S k−1(̃λ)
S k −

S 2
k
(̃λ)

S k−1(λ̃)
+

n−1∑

i=1

u2
ni

S k(λ̃|i)S k−2(λ̃|i) − S 2
k−1

(λ̃|i)

S k−1(λ̃)
+ S k+1(λ̃)

≤
S k(λ̃)

S k−1(̃λ)
S k −

S 2
k
(̃λ)

S k−1(λ̃)
+ S k+1(λ̃),(6.18)

where we use the Newton’s inequality (one can see the proof in [10]).

Inserting (6.18) into (6.19) and noting that S m(λ̃) = |Du|−2S
i j

m+1
uiu j = Hm|Du|m is a global

defined function, then we have

Ia+a0 ,b−1,k+1(t0) − Ia+a0 ,b−1,k+1(t)

≤(a + a0)

∫ t0

t

∫

S s

ga+a0−1g′|Du|bHkdAds

+ (k + 1)

∫ t0

t

∫

S s

ga+a0 |Du|b−1Hk+1dAds

− b

∫ t0

t

∫

S s

ga+a0 |Du|b−1
H2

k

Hk−1

dAds + b

∫ t0

t

∫

S s

ga+a0 |Du|b−k−1 Hk

Hk−1

S kdAds.(6.19)

Inserting (6.16) and (6.19) into (6.15), if a = b − k + 1 ≥ 0, we obtain

Ja+a0 ,b,k(t, t0) ≥ − ba

∫ t0

t

∫

S s

ga+a0 |Du|b−k−1 Hk

Hk−1

S kdAds − (b + 1)

∫

S t

(
ga+a0 |Du|b−kS k

)
dA

+ a

∫ t0

t

∫

S s

ga+a0 |Du|b−1H−1
k−1

(
cn,kH2

k − (k + 1)Hk−1Hk+1

)
dAds

+ a

∫ t0

t

∫

S s

ga+a0 |Du|b−1Hk−1LdAds,(6.20)
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where the function L is defined by

L =(b − cn,k)
( Hk

Hk−1

)2

− (2a + a0)(log g)′|Du|
Hk

Hk−1

+
(
(log g)′′ + (a + a0)((log g)′)2

)
|Du|2.(6.21)

Now we divide two cases to prove the L ≥ 0 under some restrictions on a and b.

Case1: k < n
2

and n
2
< k < n.

We choose cn,k =
k(n−k−1)

n−k
.

Note that log g = n−k
2k−n

log(−u), then

(log g)′′ + (a + a0)((log g)′)2 =
n − k

n − 2k
u−2 + (a + a0)(

n − k

n − 2k
)2u−2

=(
n − k

n − 2k
)2u−2(

n − 2k

n − k
+ a + a0)

=(b − cn,k)(
n − k

n − 2k
)2u−2,(6.22)

where we choose a0 = −2 n−2k
n−k

and we use a = b − k + 1. We also have

−(2a + a0)(log g)′ = 2
n − k

n − 2k
(b − cn,k)u

−1.(6.23)

By direct manipulation, we have

L =(b − cn,k)
( n − k

n − 2k
|D log u| −

Hk

Hk−1

)2
.(6.24)

Consequently, we obtain

Ja+a0 ,b,k(t, t0) ≥ − ba

∫ t0

t

∫

S s

ga+a0 |Du|b−k−1 Hk

Hk−1

S kdAds −

∫

S t

(
ga+a0 |Du|b−kS k

)
dA

+ a

∫ t0

t

∫

S s

ga+a0 |Du|b−1H−1
k−1

(
cn,kH2

k − (k + 1)Hk−1Hk+1

)
dAds

+ a(b − cn,k)

∫ t0

t

∫

S s

ga+a0 |Du|b−1
( n − k

n − 2k
|D log u| −

Hk

Hk−1

)2

(6.25)

Case 2: k = n
2
.

We have cn,k =
n
2
− 1 > 0. We require b ≥ n

2
− 1, a = b − n

2
+ 1 = b − cn,k ≥ 0 and a0 = 0.

Since g = eu and thus (a + a0)−1(ga+a0)′′ = (a + a0)ga+a0 . We obtain

L = a
(
|Du| −

Hk

Hk−1

)2

.(6.26)

�
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From the above formula, we have the following almost monotonicity formula along the

level set of uε and we prove the first part of Theorem 1.4.

Lemma 6.5. Let uε be the solution of the approximating k-Hessian equation. Assume

k < n
2

and b ≥
k(n−k−1)

n−k
, then for any t ∈ [−1, 0), we have

d

dt
Ia,b,k(t) ≤ Cε2|t|

2k
n−2k
−1.(6.27)

Consequently, for any −1 ≤ t ≤ s < 0,

Ia,b,k(s) − Ia,b,k(t) ≤ Cε2.(6.28)

In particular, we have the following weighted inequality∫

∂Ω

|Du|b+1Hk−1 ≤
n − 2k

n − k

∫

∂Ω

|Du|bHk,(6.29)

where u is the unique C1,1 solution of the homogeneous k-Hessian equation (1.4).

Remark 6.6. When k = 1, (6.29) was proved by Agostiniani- Mazzieri [2].

Proof. By the Lemma 6.4, for any −1 ≤ t < t0 < 0, we have

−t2I′a,b,k(t) + t2
0I′a,b,k(t0)

≥ − ab

∫

Ωt0
\Ωt

(−uε)a n−k
2k−n
+2|Duε|a−1 Hk

Hk−1

S k

− (b + 1)

∫

S t

(−uε)a n−k
2k−n
+2|Duε|a−1S k.(6.30)

By the MacLaurin inequality: Hk

Hk−1
≤

Ck
n−1

Ck−1
n−1

(
Hk−1

Ck−1
n−1

) 1
k−1

and the uniform C2-estimates of uε (we

also use |Duε| ≥ c|x|1−
n
k ), for any x ∈ Ωc

t , we have

(−uε)a n−k
2k−n
+2|Duε|a−1 Hk

Hk−1

S k ≤C(−uε)a n−k
2k−n
+2|Duε|a−1H

1
k−1

k−1
|x|−n−2

≤C|x|a
n−k

k
+2 2k−n

k |x|(a−1) k−n
k |x|−1|x|−n−2

=C|x|−n− n
k ,

then ∫

Ωt0
\Ωt

(−uε)a n−k
2k−n
+2|Duε|a−2 Hk

Hk−1

S k ≤ Cε2|t|
n

n−2k .

Similarly, we have ∫

S t

(−uε)a n−k
2k−n
+2|Duε|a−1S k ≤ Cε2|t|

n
n−2k ,

where we use |S t| ≤ C|t|
−

k(n−1)
n−2k (see Lemma 6.3).
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Thus we get

−t2I′a,b,k(t) + t2
0I′a,b,k(t0) ≥ −Cε2|t|

n
n−2k .(6.31)

By the uniform C2 estimates for uε and |Duε| ≥ c|x|1−
n
k , we have for any t0 ∈ [−1, 0)

t2
0|I
′
a,b,k(t0)|

∣∣∣∣ ≤ C|t0|.(6.32)

Let t0 tend to 0 in (6.31), we have

I′a,b,k(t) ≤ Cε2|t|
2k

n−2k
−1.(6.33)

In particular, taking t = −1, we have

I′a,b,k(−1) ≤ Cε2.(6.34)

On the other hand, by (6.14), we have

Ia,b,k(−1) ≥ a
n − k

n − 2k

∫

∂Ω

|Duε|b+1Hk−1 − a

∫

∂Ω

|Duε|bHk.(6.35)

Consequently, we get

n − k

n − 2k

∫

∂Ω

|Duε|b+1Hk−1 −

∫

∂Ω

|Duε|bHk ≤ Cε2(6.36)

Since |Duε| converges to |Du| on ∂Ω, we finish the proof of (6.29) by taking ε → 0 in

(6.36). �

Next we prove the second part of Theorem 1.4.

Lemma 6.7. Assume k = n
2

and b > n
2
− 1. We have

I′a,b,k(t) ≤ Cε2e−2t,(6.37)

In particular, we have ∫

∂Ω

|Du|b+1Hk−1 ≤

∫

∂Ω

|Du|bHk,(6.38)

where u is the unique C1,1 solution the homogeneous k-Hessian equation (1.8).

Proof. By Lemma 6.4 and similar as the proof in the above lemma, for any 0 ≤ t < t0, we

have

I′a,b,k(t0) ≥ I′a,b,k(t) −Cε2e−2t.

By integrating the above form t to t0, we have

Ia,b,k(t0) − Ia,b,k(t) ≥ (I′a,b,k(t) − Cε2e−2t)(t0 − t),

Since Ia,b,k(t) is uniformly bounded which follows from the C2-estimates of uε and |Duε| ≥

c|x|1−
n
k , we have

(
I′a,b,k(t) −Cε2e−2t

)
(1 − tt−1

0 ) ≤ t−1
0 (Ia,b,k(t0) − Ia,b,k(t)) ≤ Ct−1

0 .



THE HOMOGENEOUS K-HESSIAN EQUATION 49

Let t0 tend to 0, we obtain

I′a,b,k(t) ≤ Cε2e−2t.

On the other hand, we have

I′a,b,k(0) ≥a

∫

∂Ω

|Duε|b+1Hk−1 − a

∫

∂Ω

|Duε|bHk.

Combining the above two inequalities and noting that |Duε| → |Du|, we get
∫

∂Ω

|Du|b+1Hk−1 ≤

∫

∂Ω

|Du|bHk(6.39)

�

When n
2
< k < n, we have the following inequality.

Lemma 6.8. Let uε be the solution of the approximating k-Hessian equation. Assume

k > n
2
, and b ≥ −k + 1, then for any 1 ≤ t ≤ t0 < ∞, we have

t2I′a,b,k(t) − t2
0I′a,b,k(t0) ≤ Cε2|t|

2k
n−2k
−1.(6.40)
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