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THE DIRICHLET PROBLEM OF THE HOMOGENEOUS k-HESSIAN
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EQUATION IN A PUNCTURED DOMAIN
ZHENGHUAN GAO, XI-NAN MA, AND DEKAI ZHANG

AsTtrACT. In this paper, we consider the Dirichlet problem for the homogeneous k-
Hessian equation with prescribed asymptotic behavior at 0 € Q where Q is a (k — 1)-
convex bounded domain in the Euclidean space. The prescribed asymptotic behavior at 0
of the solution is zero if k > 7, itis log|x| + O(1) if k = 5 and —|x|2kTﬂ1 +0()if k < 3.
To solve this problem, we consider the Dirichlet problem of the approximating k-Hessian
equation in Q\ B,(0) with r small. We firstly construct the subsolution of the approximat-
ing k-Hessian equation. Then we derive the pointwise C2-estimates of the approximating
equation based on new gradient and second order estimates established previously by the
second author and the third author. In addition, we prove a uniform positive lower bound
of the gradient if the domain is starshaped with respect to 0. As an application, we prove
an identity along the level set of the approximating solution and obtain a nearly mono-
tonicity formula. In particular, we get a weighted geometric inequality for smoothly and
strictly (k — 1)-convex starshaped closed hypersurface in R” with 5 < k < n.
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1. INTRODUCTION

Let Q be a bounded domain in R” and u € C*(Q). The k-Hessian operator Fy[u] is
defined by

(I.1) Filu] := S(Dw),
where S ;(D?u) is the sum of all principal k X k minors of D?*u. If A = (1;,--- , A,) are the
eigenvalues of D?u, one can see that S (D*u) = 31 c..ciien Aiy =+~ iy

Caffarelli-Nirenberg-Spruck [6] solved the following Dirichlet problem for the k-Hessian
equation

2 _ .
(12) {Sk(D u) =f in Q,

U= on 0Q,

where f > 0 and ¢ are given smooth functions. By assuming the existence of a subsolu-
tion, Guan [10, 13] solved (1.2).

For the degenerate case i.e. f > 0, Wang [30] solved the Dirichlet problem: S ;(D*u) =
f(x,u)in Q, u = 0 on 9Q and proved the Sobolev-type inequality for the related functional
|, uS ((D*uydx.

Wang-Chou [8] used the parabolic method to prove the existence of k-convex solutions
u to the problem S ((D*u) = f(x,u) in Q, u = 0 on AQ, where Q is strictly (k — 1)-convex.
In [8], Wang-Chou established the important Pogorelov type second order estimate for
the k-Hessian equation.

Krylov [17, 18] proved the C!! regularity of the problem: S (D*u) = f(x) in Q and
u = ¢ on 9Q by assuming ff € C"!', ¢ € C2 and (k — 1)-convexity of Q. Ivochina-
Trudinger-Wang [15] gave a new and simple proof. Li-Luc [21] studied the existence and
uniqueness of the Green’s function for the nonlinear Yamabe equation.

In the seminal papers [26-28], Trudinger-Wang studied systematically the Hessian
measure for the k-convex function in R” where they only assume that the function was
continuous, locally bounded and locally integrable respectively. Labutin [19] continued
to study the potential theory of the k-Hessian measure.

The fundamental solutions of the k-Hessian equation are as follows
n

b

—IxF if k<

(1.3) Gu(x) = { logld if k=

b

NIINIS

x>t if k> =.

In this paper, we want to study the regularity problem for the homogeneous k-Hessian
equation in Q \ 0.
In the complex Euclidean space, Klimek [16] introduced the extremal fucntion

80a(z,20) = sup{v € PSH(Q) : v < 0, v(z) < loglz — zol + O(1)}.
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ga(z, &) 1s called the pluricomplex Green function on Q C C" with a logarithminc pole
at zo. If Q is hyperconvex, Demailly [9] showed that u(z) = gq(z, zo) is continuous and
solves uniquely the following homogeneous complex Monge-Ampere equation

(dd‘u)" =0 in Q\ {zo},
(1.4) u=~0 on 092,

u(z) = loglz — zo| + O(1) as z — 2p.
If Q is strictly convex with smooth boundary, Lempert [20] proved the solution is smooth.
For the strongly pseudonconvex case, B. Guan [11] proved C'® regularity and later,
Blocki [4] showed the C"! regularity. The C!! regularity is optimal by the counterex-
amples by Bedford-Demailly [2], .

P. Guan [14] established the C'! regularity of the extremal function associated to in-
trinsic norms of Chen-Levine-Nirenberg [7] and Beford-Taylor [3] where the extremal
function solves

dd‘u)" =0 in Q) \ (UZ,Q)),
u=>0 onodQ;, i=1,---,n
u=1 on 0€.

1.1. Our main results. Motivated by Labutin’s work [19] and Guan’s work [11], we
consider the following Dirichlet problem for the homogeneous k-Hessian equation with
interior isolated singularities. For convenience, we assume the singularity is 0 € Q and
there exists positive constants ry, Ry such that B,, cC Q CC Bg,, where B, and Bg, are
balls centered at 0 with radius r and R, respectively.

We divide three cases to state our main results.

1.1.1. Casel: k > % In this case, since the fundamental solution of the homogeneous k-

Hessian equation is |x|>~% which tends to 0 as x — 0, we consider the following problem
S(D*u) =0 in Q\ {0},

(1.5) u=1 on 0Q,

li =0.
IXIILI}) u(x)

We prove the following uniqueness and existence result.

Theorem 1.1. Assume k > 3. Let Q be a smoothly convex domain in R" and strictly

(k —1)-convex. There exists a unique k-convex solution u € C 1’l(ﬁ) of the equation (1.5).
Moreover, there exists uniform constant C such that for any x € Q° the following holds

CV ™™ < u(x) <Clx| %",
(1.6) Dul(x) <Clx| T,
|D?u|(x) <C|x|"%.
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1.1.2. Case2: 1 < k < 5. We consider the following problem
SiD*u)=0 in Q\{0},
(1.7) u=-1 onoQ,
u(x) = —|x"F +O(1) asx — 0.

If we prescribe u = —Colx>"t + O(1) as x — 0 for some positive constant Cj, then
it =Cylu+ C,' — 1 solves (1.7).

Theorem 1.2. Assume 1 < k < 3. Let Q be a smoothly, strictly (k — 1)-convex domain

in R". There exists a unique k-convex solution u € Cl’l(ﬁ \ {0}) of the equation (1.7).

Moreover, there exists uniform constant C such that for any x € Q \ {0}, the following
holds

n=2k
u(x) —|x|” % | <C,

(1.8) \Dul(x) <Clx""F,
|D?ul(x) <C|x|°%.

Remark 1.3. Assume 1 < k < 5. Labutin [19] proved if u is k-convex solving Si(D*u) =0
in Bx \ {0}, u < 0 and O is the singular point of u, there exists a positive constant Cy such
that u(x) = CoGy(x) + O(1) as x — 0. This is the reason why we prescribe the above
asymptotic behavior in (1.7).

1.1.3. Case3: k = 3. Since the Green function in this case is log|x|, we consider the

k-Hessian equation when k = 7 as follows

S:(D*u)=0 in Q\ {0},
(1.9) u=0 on 0Q,
u(x) =loglx| + O(1) as |x| — 0.

If we prescribe u = Cy log |x|+O(1) as x — 0 for some positive constant C, then it = Calu
solves (1.9).

Theorem 1.4. Assume k = 5. Let Q be a smoothly and strictly (k — 1)-convex domain

in R". There exists a unique k-convex solution u € Cl’l(ﬁ \ {0}) of the equation (1.9).

Moreover, there exists uniform constant C such that for any x € Q\ {0} the following
holds

lu(x) — log |x|| <C,
(1.10) |Dul(x) <Clx|™",
|D?u|(x) <Clx|™2.
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To solve the above problems, for example when k > 5 we will prove there exists a
smooth k-convex function u® solving

Siw®)=¢ in Q\ {0},
u®=1 on 0Q,

IBE}) u®(x) — 0.

Note that the right hand side of the above approximating equation is £ which is different
from the exterior Dirichlet problem case. To solve the above approximating equation,
we consider the approximating k-Hessian equation in Q, := Q \ B, and we will prove the
uniform C"!-estimates. We firstly construct a subsolution of the approximating k-Hessian
equation in €,. This follows from a key lemma due to P. F. Guan [14] by the (k — 1)-
convexity of the domain. Note that the second and third author have proved the global
gradient and second order estimate in [22]. Thus we only need to prove the boundary
estimates.

1.2. Applications to the starshaped (k— 1) convex domain. As an application of our C?
estimates for the approximating equation, we can prove an almost monotonicity formula
along the level set of u® when Q is additionally starshaped. Consequently, we get some
weighted geometric inequalities of 9Q when 5 < k < n.

Theorem 1.5. Let Q be a bounded smooth starshaped domain with respect to 0 in R" and
strictly (k — 1)-convex.

(i) Assume 5 <k <n. Assume b > % Let u be the unique C"' solution in Theorem

1.1. We have
2k —
(1.11) f \Dul H, > 2 f \Dul’H,,
aQ n—k Joa
where H,, is the m-Hessian operator of the principal curvature « = (ky, - - - , k,_1) of 0Q.
(ii) Assume k = 4 and b > 4 — 1. Let u be the unique C"' solution in Theorem 1.4.
We have
(1.12) \Dul”'Hy_y > | |Dul’H,.

0Q 0Q

Remark 1.6. If we assume Q is starshaped with respect to x, € Q, the above inequality
still holds for u which solves the homogeneous k-Hessian equation in Q \ {xo}.

Organization of this paper. In section 2, we firstly construct a subsolution for the
approximating equation by a lemma due to P. F. Guan [14]. Based on the new gradient
and second order estimates in [22], we show uniform C"! estimate of the approximating
solution. The positive lower bound of the gradient of the approximating solution is proved
if we also assume Q is starshaped. Theorem 1.1, Theorem 1.2 and Theorem 1.4 will be
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proved in Section 4. In section 5, we prove an almost monotonicity formula along the
level set of the approximating solution and then we show Theorem 1.5.

2. SOLVING THE APPROXIMATING EQUATION IN Q, := Q \ B,.

We need the following lemma by P. F. Gian [14] to construct the existence of the
subsolution of the k-Hessian equation in Q \ B,.

Lemma 2.1. Suppose that U is a bounded smooth domain in R". For h,g € C"(U),
m > 2, for all 6 > 0, there is an H € C"(U) such that

(1) H > max{h, g} and

[ R, if W) - g(0) > 6,
H(’“)‘{gm, if () — h(x) > 6:

(2) There exists |t(x)| < 1 such that

I+t -1
{Hiy(x)} = { Z(X)gij + %hﬁ} , forall x € {|g — h| < 6}.
By the convacity of S i, we can prove that H is k-convex if f and g are both k-convex.
Recall that we always assume B,, CC Q CC B(j_g, for some 7y € (0, %). Firstly we

state a useful fact for the strictly (k— 1)-convex domain, which can be found in [6, Section
3].

Lemma 2.2. Let Q be a smoothly and strictly (k — 1)-convex bounded domain. There
exists po > 0 small such that Q,,, := {x € Q : d(x) < 2u} is close to 0Q ,B,, CC {x € Q:

d(x) > 2u0} and d(x) is smooth in Q.. Moreover, @° := 15! (e™™ — 1) is smooth and
strictly k-convex and S (D*(®°)) > € in Qy,, for some uniform positive constants ty and
€.

2.1. Case 1: k > 3. Since the Green function in this case is |x|@, we want to solve the
k-Hessian equation as follows

Sy (D*u) =0 in Q,
2.1 u=1 ondQ,

lim u(x) =0.

x—0
2.1.1. The approximating equation. We will use the solution of a sequence of nonde-
genetare equations in €2, to approximate the solution of the homogeneous k-Hessian equa-
tion. The existence of the approximating solution can be obtained if we can construct a

smooth subsolution. We use the (k — 1)-convexity of dQ and the Lemma 2.1 by P. F.
Guan [14] to prove the existence of the subsolution.
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1 1
Denote w := %(M) '2)22 By the concavity of S,

1 | x| .o 1 1
SED*w) = Dz( ) —D?|x| (—1).
¢ ( 2R2 )=s “*RZ

Then we have
S(D*w) > CERy*.
Then we construct a smoothly and strictly k-convex function u by lemma (2.1) as follows.

Lemma 2.3. There exists a strictly k-convex function u € C% (Q,) satisfying

K@ + 1 ifd(x) < 1"14—(;

wifd(x) > po,
u > max fw, K@ + 1} if £ < d(x) < o,

2.2)

=
Il

S«(D*u) >€ := min{C:R,*, Ki&) in Q,

where Ky = —2%— and M, is determined by Ko(1 — e tOMO) = 196 with & := 3(1 — 79)*"*

1—e T—¢Fol0

Remark 2.4. This lemma tells us that u is Ko®° + 1 near 0Q and u is w outside Q.
Moreover, u is smooth and strictly k-convex. Although this lemma is elementary, it is
crucial for the proof of C'! estimates.

Proof. Applying Guan’s lemma for U = Qy,, := {x € Q : d(x) < 2u}, g = Ko®@° + 1,
h=wand§ = 1(1 — 79)*" %, we get a strictly and smoothly k-convex function u in Q.
In the following, we prove (2.2).

For any x € szo \Q,, =1{xe€ Q: Uo < d(x) < 2up}, since Ky = %, we have
g(x) < -1.
Then
(2.3) h—g>-g>1>6 inQy \ Q.

This implies u = w in Qy,, \ Q.

For any x € Q[/&_o ={xeQ:dx) < ‘ﬁ}, since  CC B(j_¢,r,, W€ have
0

x|

2k
_ _ 1 /x|
—h =K 0d) _ 1y 41— =
8 o Kole ) ( ) " 2R?

2 'Ry

>t Ko(e % — 1)+ 1— (1 —19)> ¥

(2.4) Z%(l - (1 -1y %) =4,
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where My is defined by Ko(1 — ¢ ™) = ro6. This implies u = Ko®” + 1 in Q.
0
At last, we define u = win Q, \ €. In Qﬂ—%’ by Lemma 2.2, S (D*u) = S (Ko@) >

1
Kfep. In Q,\ Qo Si(D*u) = Si(D*w) > CERG*. In Oy, \Q ., by the concavity of S¥,

1 1 1
S H(D*u) > #S,ﬁ(Dzw) + #S;(KODZQDO). The proof is complete. o
Now we consider the following approximating equation

S«(D*u)=¢ inQ\B,

u=1 onoQ,
(2.5)

If £ < €, uis a subsolution by the above lemma. By B. Guan [10] (see also [13]), equation

(2.5) has a strictly k-convex solution u®" € Cw(ﬁr). Our goal is to establish uniform C?
estimates of #®", which are independent of € and r.

o_n
We can check that iz := (%) * is a supersolution of the above approximating equation.

Indeed, i is smooth in Q, and S ;(D?*it) = 0.
On 0B,, we have

1 _n 2 _n _n
o~ E(RLO)Z Ly Zr_R% < (Lf < (1)2 3

On 0Q, since B,, CC €, we have

X\2-%
wr =1 < ()
r

Il
Ny}

where we use 2k > n. Thus by comparison principal, we have u < @ in Q,.
Our goal is to prove the following estimates.

Theorem 2.5. Assume k > 3. For sufficiently small € and r, u*" satisfies
2k=n 2k—n
C'xI™™ < u®(x) <Cla| T,

DU |(x) <Clx|'F
\D*u"|(x) <Clx|

where C is a uniform constant independent of € and r.
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2.2. Case 2: k < 5. Since the Green function in this case is —|x|2k77" , we want to solve the
following k-Hessian equation .

S«(D*u) =0 in Q\ {0},

(2.6) u=-1 on 0Q
u = —|x"F + O(1) as x — 0.
Denote w := —|x]> % + Ry2F — 1 + ao%. We choose ag = ((1 — 7o) E — I)Ri_% such
0

_n — 1
that w < —%((1 —19)% 7k — I)R(Z) * —1in Q. By the concavity of S/, we also have

Lo ot peny Q0 o0 o t 4o
SE(Dw) =S (D7 (=A75) + 2z )2 Si?

then
S(D*w) > ChagRy™.
Then we construct a smoothly and strictly k-convex function u by Lemma 2.1 as follows.

Lemma 2.6. There exists a strictly k-convex function u € C* (Q,) satisfying

. Ho
K@’ — 1 ifd(x) < ==,
_ 0 lf(x)_MO

wifd(x) > po,
u > max fw, Ko@° — 1] zf;;—(; < d(x) < o,

2.7)

IS

Si(D*u) >€ = min{CrafR;*, Kier) inQ,,
where Ky and M are uniform constants.
Proof. Applying Guan’s Lemma 2.1 for U = Q,,, g = Ko® -1, h = wand § =
i((l —79)>t — I)R(Z)_%, we get a strictly and smoothly k-convex function u in . In the

following, we prove 2.7). _
For any x € Qy,, \ Q,, :=={x € Q : yp < d(x) < 2up}, we have

|x?
2

2R
_ 2—% 2_% -1 _ ,toMo

Dl 1)) + RO + 1 Ko(1 —e )

(2.8) =R} %,

h—g=—|x>T+ R(Z)_% + ay — K, @°

2-1 —
k . . . .
where we use K, = % This implies u = w in y,, \ Q.
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For any x € Q:{_% ={xe Q: d(x) < 1";—‘;}, since Q CC B(j_¢,r,, We have

_n —n |x|2
Ch=x - R — g 4+ K@
8 | x| 0 OZR(Z) 0
1 " _n _ Ho
> (=70 F = )Ry 4 15 Ko(1 = &)

2—

(2.9) :%((1 —r) - )Ry f =6

where My is defined by Ko(1 — ¢ ™) = 2146. This implies u = Ko®° + 1 in Q.
0
Atlast, we define u = win Q,\ Q. In Qo , by Lemma 2.2, S ((D*u) = S (Ko®°) > K} €.
MO -
1
In Q,\Qyy,, Si(D*u) = S(D*w) > CiatRy*. In Qy,\Q w , by the concavity of S},
0

1 1 1
SHD*w) > 25 H(D*w) + 2 S F(KyD*@P). The proof is complete. O

We consider the approximating equation

S D2 &Yy — . Qr,
(2.10) {k( u?y=¢e in

u®" =u on 0Q,.

Then u is a strict subsolution of the above k-Hessian equation for any € small, by Guan

[10] (see also Guan [13]), equation (2.10) has a strictly k-convex solution u®" € C“(ﬁr).
By maximum principle and assmuing r is sufficiently small, #®" < —1 in Q,. We want
to derive uniform C? estimates of u#®", which are independent of & and r. We prove the
following

Theorem 2.7. Assume 1 < k < 5. For every sufficiently small € and r, u®" satisfies
n—2k n—2k
Cal™ T <—u(x) <Clx" T,
n—k
|Du™"|(x) <C|x|” %,
ID*u®|(x) <Clx|°F,
where C is a uniform constant independent of € and r.

2.3. Case 3: k = 3. Since the Green function in this case is log |x], we want to solve the
k-Hessian equation as follows

Sy(D’u)=0 in Q,
(2.11) u =0 on 0€,
u(x) =loglx| + O(1) as x — 0.
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2
2.3.1. The approximating equation. Denote w := log % +ao% where ay = % log 5 —170 >0
0

1
such that w < % log(1 — 7¢), By the concavity of S/, we also have

2 1 | x| ag L oag
S"(D*w) = SH(D?log — + —D?*|x) = S (—=1),
1(D°w) A ( ogR0 R |x1°) k(Rg)

then
S 4(D*w) > CialRy".
Then we construct a smoothly and strictly k-convex function u by Lemma 2.1 as follows.

Lemma 2.8. There exists a strictly k-convex function u € C* (Q,) satisfying

Ko ifd(x) < ]"14—(;
w o ifd(x) > po,

u > max {w, Ko@) if £ < d(x) < o,

u e

S«(D’u) € := min{Cia:Ry", K &) inQ,

(2.12)

(S
I

where K, and M are uniform constants.

Proof. Applying Guan’s Lemma 2.1 for U = Q,,,, g = Ko®’, h = wand 6 = ilog 1_170 >

0, we get a strictly and smoothly k-convex function u in €. In the following, we prove
(2.12). B B
For any x € Q,, \ Q) :={x € Q: yy < d(x) < 2up}, we have

|x] x> 0
h—g=log— +ay— — Ko®@
Ry 2R(2)
> 1o To | -1 _ pHolo
> log +1, Ko(l —e )
Ry

1

R
=log = > log
o 1

(2.13) >0,

2t log 1:—0

0 and we use ry < (1 — 79)Ry.

where we choose Ky = v—i-
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For any x € Q:{_% ={xeQ:dx) < ‘ﬁ}, since  CC B(j_¢y)r,, We have

g—-h=Ky®" —w
S5 Koo B — 1) = tog B — g
2 e "o —1)—-log— —ay—
o o gRo OZR%

Holo

>151 Ko(e M0 — 1) — log(1 — 7g) — —

2
(2.14) =20 >0,

where we use ay = 26 = % log ﬁ > (0 and M, is determined by Ky(1 — e_%) = 1y0.
We finish the proof by defining u = w in Q, \ Q. O

Then we consider the following approximating equation

S«(D*u*)=¢ in Q,,
(2.15) {"( uv)=e

u=u on 0Q,.
We will prove the following pointwise estimates
Theorem 2.9. Assume k = 3. For every sufficiently small & and r, for any x € Q, ut"
satisfies
™" (x) — log || <C,
|Du"|(x) <Clxl™,
ID*u™|(x) <Clx|™?,

where C is a uniform constant which is independent of € and r.

In the next subsections, we will prove uniform C? estimates of solutions of equations
(2.5), (2.10) and (2.15). The key point is that these estimates are independent of € and r.

2.4. C° estimates. We first prove u®" is increasing with r. For any r > 7, we have u®" > u
in Q; and then
S (D*u’") = £ = S (D*u®") inQ,,
= u®" ondQ,

u®" =u <u®" ondB,.

Applying the maximum principle in €,, we have

(2.16) u®" < u® in Q,.
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Proposition 2.10. Let u®" be the k-convex solution of the approximating equation (2.5),
(2.10) or (2.15). For sufficiently small € and r, for any x € Q,, we have

1 n_»n _n n_2 _n .

SRS xP7E < ut(x) < IR ifk >
_ n=2k "*_kz’f or =2k %

X7 —r,f +1<—u ()< |x[F —R," +1

-

<
En
A

log |x| — log Ry < u®" < log|x| —log ry

N
bl

Il
NI IS

Proof. The lower bound of #*" holds since u*" > u.
Casel: k> 7

o_n
We can check that iz := (%) * is a supersolution of the above approximating equation.

Indeed, i is smooth in Q, and S ;(D?*i) = 0.

On 0B,, we have
2

1 o_n o_n o_n
=) ) ()

On 0Q, since B,, CC €, we have
Ix[\2-%
f=1<(— =1,
u (M -
where we use 2k > n. Thus we have
SUD ) = >0 =S¢ (D(ryT 1o F)) in @,
n—2k

== _n-2
uW=1<r,t X7 ondQ,

n—2k

n—2k
k

u =u<r,t |x” on 0B,.
By maximum principal, we have u®" < it in Q,.
Case2: k < 5
_ _n 2-7 . .
One can check it = —|x[>% + r, © — 1isasupersolution. Indeed, we have

SUDu) = &> 0 =85, (D*(-xP7F)) inQ,
W =-1<u onoQ,
u?' =u<u ondB,.
Applying the maximum principle in €2,, we have
(2.17) u®" < u.
Case3: k=3
Since u®" = u < log|x| —logry on dB,, u = 0 < log|x| — log ry on Q2 and S(D*u") =
e > 0= S (D*(log|x|), then we have u®" < log |x| — log ro. O
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2.5. Gradient estimates. In this subsection, we prove the global gradient estimate based
on our key estimate in [22]. If we further assume Q is starshaped, we can prove the
positive lower bound of the gradient and thus the level set of the approximating solution
is compact.

Motivated by B. Guan [12] where he proved the gradient estimate for the complex
Monge-Ampere equation, we proved the following gradient estimate for the k-Hessian
equation in [22].

Theorem 2.11. Let U C R” be a domain, uc C*(U) N C'(U) be a solution of the k-
Hessian equation S (D*u) = fin U andu < 0 ifk < sandu > 0 if k > 3. Denote
by

\DuPe’, k=34,
(2.18) P={ DuPus, k>1,
Dl (—u)~ 7, k< 1.

then we have the following gradient estimate

2u 2 _n
max {mglx(e |D log f1°), n;gx P} . k=3,

(2.19) max P < max ( 2k=n )2 max(u%mlo f1?), max P k>12
: ax = kn1-p ) A gJir),ma )

2
max {(k(::;lsz)) max ((—uy#=IDlog fP), max P} . k<t
Applying the above estimate in our setting i.e. we take U = Q, and f = &, we get the
following

Proposition 2.12. Ler u®"c C3(Q,) N C1(Q,) be a k-convex solution of the approximating
equation (2.5), (2.10) or (2.15). For sufficiently small & and r, we have

(2.20) max P < max P.
a, 09,

Proposition 2.13. Ler u®"c C3(Q,) N C1(Q,) be a k-convex solution of the approximating
equation (2.5), (2.10) or (2.15). For sufficiently small & and r, we have

(2.21) max P < C.
Q

Proof. We only need to prove boundary gradient estimates.
For simplicity, we use « instead of u*" during the proof.
We will construct upper barriers near 9€2 and dB, respectively.
Casel: k> %

_ - " 2
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LetheC E><>(ﬁm) be the unique solution of

Ah=0 inQ,,
h=1 onoQ,
1
h= 5 on 0B,,,

where 1| = 27 1. By maximum principle and the C° estimate of u, u < u < h in ﬁro.
Then for any x € 0Q

O0<co<h <u(x)<u((x)<C,
where v is the outward normal of Q. Then

(2.22) 0 < ¢ < max |Du| = max(u,) < C.
0Q 0Q

This proves that P is uniformly bounded on 9.

Next we show P is uniformly bounded on dB,. We consider ii(y) := ri 2u(x) and
i(y) == ri-?u(x) fory := 2 € B, \ By. ii satisfies
S«(D%*i)=r"e inB,\ B,

i=w ondB,

(2.23) {

where W(y) = ri 2w(x) and recall u = w in Q, C Q,.
By the CY estimate of u, we have

Ryt Iy < it <yt

Then i is uniformly bounded in B, \ B;. Let 7z(y) be the smooth function solving
Ah=0 inB,\B,
n_p

- R}
(2.24) h=w= OT

il = }"()%_22%_2 on 8B2

apg
+ —21"" on 8B1,
2 0

Then / is uniformly C? bounded in B, \ B,. By maximum principal, we have

(2.25) w<ia<h.
Then
(2.26) W, < ii, < h, < C ondBj.

Note that on 0B;, we have

w, = r%_lwxiyi > (1- i)R
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where we use k > g Thus we have
¢ < |Dii| < C on 0B;.
Therefore, we get
clx'"% < |Du| < C|x|'"% on 8B,.

This implies P is uniformly bounded on 9B, .
In conclusion, when k > 7, P is uniformly bounded in €2,.
Case2: k < 3
The gradient estimate on 0€ is similar as case 1. We only prove the gradient estimate on
dB;. We consider ii(y) := ri~2u(x) and Ww(y) := ri2w(x) for y := £ € B, \ By. ii satisfies
S«(D%*i)=r"e inB,\ B,
2.27) k( )~ é 2\ B
ii=w onodB,.
By the CY estimate of u and assuming r is small enough, we have
1 n n
Elyl27 < —it <2k

Then i is uniformly bounded in B, \ B;. Let /(y) be the smooth function solving
Ah=0 inB,\B,

(228) il =w 0n 531,

(2.29) w<i<h
Then
(2.30) W, <ii, <h,
where v(y) = y is the outward normal to dB;. Note that
~ n ag n n
w, = z—2+R—(2)rk > z—2>00naBl,

where we choose r small enough and use k < 5. Thus we have
(2.31) ¢ < |Dit| < C on 0B;.

Therefore, we get
clx|'"t < |Du| < C|x|'"t on 8B,.

Thus P is uniformly bounded on 9B, . B
In conclusion, when k < 3, P is uniformly bounded in €,.
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Case3d: k=1%
I =5
The gradient estimate on €2 is similar as case 1. We will prove the gradient estimate on
OB, . Define ii(y) = u(x) withy = < € B, \ By, we have
S.(D*i) = r'"e in B, )\ By,
(2.32) k( : ) 2\ B
it =logr on0B;.

By the C? estimate of u:
log|y| —logRy < it — logr < log|y| — log ry.
Let h(y) be the smooth function solving
Ah=0 inB,\ By,
(2.33) h=w ondB,

2
h=logr+log— ondB,.
ro

We have |Dh| < C in B, \ B;. By comparison, we have w < i < h. Recall w = it = 1 on
0B, we get

(2.34) 0<c<Ww, <it,<h,<C ondB,

where ¢ and C are uniform positive constants. Then we have

(2.35) c<|Di|=ia,<C ondB

Therefore

(2.36) cr' <|Dul =10, <Cr' ondB,

Thus P is uniformly bounded on Q,. O

2.5.1. Positive lower bound of |Du| when Q is strictly (k — 1) convex and starshaped.

Lemma 2.14. Let Q be strictly (k — 1) convex and starshaped. Let u be the k-convex
solution of the approximating equation (2.5), (2.10) or (2.15). For sufficiently small & and
r, there exists a uniform constant c such that for any x € Q,

(2.37) x - Du(x) >colx>°%.
In particular,
(2.38) |Du(x)| > colx|'%.

Proof. Recall F'/ = a%j(log S «(D?*u)). By Maclaurin inequality, we have

(2.39) F=(m-k+ 1)% > k(Ch)ES
k

k

1 1
K> ke,
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We first prove the positive lower bound of x - Du(x) on 9€,. In fact, since |Du| > ¢ on
0Q and Q is starshaped, we have

(2.40) x-Du:x~v|Du|2cr51£i2nx~v:: c, > 0.

On 0B,, since Du = |Dulv = |Dul3, we have

(2.41) x-Du = r|Du| > ¢r*t.
Then for any x € 0Q),, we have

(2.42) x - Du > colx* .
Case 1: k<3

. ) > . 21
We consider the function H := x-Du(x)—bnu—blz% with by, = Fr, “and by, = <.

0 k
4R,

Since u < rt *|xf, by (2.42), we have

2
2-n | x|

HZ %|x|2_% _bllu+%|x| —b127 >O on aﬂr.

On the other hand, we have
FYH;j = (2 = by)k — by F
(2.43) < 2k — bpoket <0,

k
assume ¢ € (0, gg) with gy < (}%) .
By maximum principle,

H >minH > 0.
90,

Case 2: k < 5. Consider the function H := x - Du(x) + byjayu — b%l)dz. Our goal is
to show H is positive in Q,. Indeed, By (2.42) and —u < C|x|*"%, for by := 1C'ag and
by = C—O%, for any x € 9Q,, we have

2R/

1 b
H ZEx-Du — %lsz

Z%|x|2_%(co - bzzR(%)
(2.44) z%xﬁ—% >0 ondQ,.
On the other hand, we have
FUH;; = (2 + bya)k — b F
(2.45) < (2 + bay)k — byke ™t <0,
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k
where we use (2.39) and we assume € € (0, gy) with gy < (2(111—2}2)21)) . By maximum
principle,
H>minH > 0.
0Q,
In conclusion, we prove H > 0 in ﬁr and thus (2.37) is obtained.

By maximum principle, we have H > mingo H > 0.

Case 3: k = ﬂg

We consider H = x - Du(x) — b3 — b32% which is positive on the boundary of 5, if we
take b3; and b3, small enough. Since FVH;; < ket (et — by,) < 0 for & small enough, we

2 _— . .
have H = x - Du(x) — b3; — b32% > (0 in Q, and we can get the desired estimate.
O

2.6. Second order estimates. By the uniform gradient estimate, we have proved that P
is uniformly bounded in Q,. We will prove the second order estimate of the approximating
equations based on the following second order estimate in [22] by the second author and
the third author.

2.6.1. The global second order estimate can be reduced to the boundary second order
estimate.

Theorem 2.15. Let u € C*Q,) N CX(Q,) be a k-convex solution of (2.5) or (2.10) or
(2.15). Define G = ugep(P)h(u), then we have

(2.46) max G < C + maxG.
Q, 00,
where h is defined by
u¥=, k> %
h(u) ={ (-u) ==, k < 2.
e*, k=14,
and ¢ is defined by

M-t",k<n,
(2.47) w(t) = {

1, k=n,
where M := 2max P + 1, 7 is a uniform positive constant

2.6.2. Second order estimate on the boundary 0C),. . The second order estimate on 0Q
is the same as [6] (see also [22]). Here we only need prove the second order estimate on
0B,.

Tangential second derivatives estimates




20 ZHENGHUAN GAO, XI-NAN MA, AND DEKAI ZHANG

For any xy € 0B,, we choose the coordinate such that x, = (0,---,0, r), then near x,
8B, is locally represented by x, = (r2—|x'|*)? and ai;;ﬁ (x0) = r '8 with 1 < @, < n—1.
Since ulyp, = constant, we have

9 x, 1
o = — Uy =1 u, 5(2
u ,B(Xo) u (xO)Gxaaxﬁ(XO) r u,(Xo) B
(2.48) =r""14,(X0)up-

Since we have the boundary gradient estimate on 0B,
Cr'T > u,(x) > cr‘nk;k,
then by (2.48), we have
(2.49) lUap(x0)] <Cr%
(2.50) {tap(x0)} =™ {S,p).

Tangential-normal derivative estimates 0Q,
For any xy, € dB,, choose the coordinate such that x, = (0,---,0,r), 0B, N B 1 A(x0) 18
represented by

4 4 l
X, = p(x') = (1 = [X]H)2,

Consider the tangential operator 7, = (x,0, — x,0,),1 < @ < n — 1. Since u(x’, p(x")) is
constant, we have

0 =tty + UpPyo = Uy — Xop 'ty
Then on 4B, N B:(xo), we have
T u = x,u, — pu, = 0.
We consider the function
w=Ai(1 —r"'x,) = 7T Touin B, N By (xo),

where A, is positive large constant. Since xy = (0---,0,r) and T,u = 0 on dB,, we have
w(xp) = 0. Since T,u = 0 on 0B, N B:(xo), we have Wlag,ng, (x) = 0.
2

. n—2k n—2k .
Since on B, N Byy,), ' % |Teu| < Cir'% |x||Dul < C and x, < %, choosing A; > 16C, we
have

1
(2.51) WZ§A1—C>C>O on BlﬂaB%,(yo).

Observe that F/w;; = +F'Tou = To(F"u;;) = 0. By maximum principle, w attains its
minimum O at x,. Then we have

n—k
0>w,(x) = —Alr_1 + 7 F Ug(Xp).
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Then |ug,(x0)| < Ar~'|Du(xy)| < Cr % and thus we have the uniform tangential-normal
derivative estimates on 0Bgp.

Double normal derivative estimates 0C2,
We can choose the coordinate at xq such that u,(xo) = [Du| and {uap(x0)}1<ap<n—1 18 diago-
nal.

For any x, € 0B,, by (2.50), we have

n(k=1)

n—1
nCor™ T < (30)S k1 (1t (30)) =S (D*u(x0)) = S (1tap(X0)) + D 13,8 12 (ttp)
i=1

<e+Cr"<2Cr ™.

This gives u,, < Cr7%. On the other hand, u,, > — 3 u; > —cr t. Then we have

|unn(-x0)| < Cl"_%.
In conclusion, we obtain |D?u(x)| < C|x|"% on the boundary dQ, and thus |D?u|(x) <
C|x|"% for any x € Q,.

3. Proor oF THEOREM 1.1, THEOREM 1.2 AND THEOREM 1.4

3.1. Uniqueness. The uniqueness follows from the comparison principle for k-convex
solutions of the k-Hessian equation in bounded domains by Wang-Trudinger [26] (see
also [25,29]). See [22] for the detailed argument.

3.2. Existence and C'!-estimates. The existence follows from the uniform C>-estimates
for u®".

For any fixed sufficiently small € > 0 and compact subset K cc Q \ {0}, there exist
ro sufficiently small such that K cc Q,, |l/l8’r|cz(gr0) < C(e,K) for any r < ry. By Evans-
Krylov theory, [u®"|c20(x) < C(€, K,m). Then there exists a subsequence u®'* converging
in C*#-norm (B < @) to a strictly k-convex u® in K and u® € C>*(K) satisfies
{Sk(Dzu‘g) =& in Q\ {0},

3.1
G- u® =1 on 0Q.

Moreover, by Theorem 2.7, we have the following estimate

n=2k n=2k
ClUxI™ ™ <—uP(x) < Clx|~ 7,

\Duf|(x) <Clx|~"7
ID*u|(x) <Clx|E,

Thus there exits a subsequence u“ converges to u in C }of such thatu € C 1’1(5 \ {0}) is the
k-convex solution of the k-Hessian equation (1.7) and satisfies the estimates (1.8).
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Case2: k< 3
Similar as case 1, there exists a subsequence u®"* converging smoothly to a strictly k-
convex u° in K and u® € C>*(Q \ {0}) satisfies

2.&\ _ .
32) {Sk(D u’) =& in Q\ {0},
u® =-1, on 0Q.

Moreover, by Theorem 2.5, we get
Ju*(x) — 121 °7°] <C,
|Duf|(x) <Clad T,
ID*uf|(x) <Clx|"%,
Thus there exits a subsequence u converges to u in C zlof such that u € C “(ﬁ \ {0}) is the
k-convex solution of the k-Hessian equation (1.5) and satisfies the estimates (1.6).
Case3: k=7

Similar as case 1, there exists a subsequence u®"* converging smoothly to a strictly k-
convex u° in K and u® € C*(Q \ {0}) satisfies

SiD*u)=¢  in Q\ {0},
(3-3) { ‘ )u‘9 =0, on\ j?(i
Moreover, by Theorem 2.9, we get
u®(x) — log x| <C,
|Du|(x) <Clxl™,
ID*u?|(x) <Clx,

Thus there exits a subsequence u“ converges to u in C zlof such that u € CH1(Q \ {0}) is the
k-convex solution of the k-Hessian equation (1.9) and satisfies the estimates (1.10).

4. A MONOTONICITY FORMULA ALONG THE LEVEL SET OF THE APPROXIMATING SOLUTION

Agostiniani-Mazzieri [1] proved an monotonicity formula along the level set of the
solution of the following problem

Au =01in Q°
“.1) u=-1on0oQ

lim u(x) = 0.

|x|—00
Since the solution of the homogeneous k-Hessian equation is only C!!, we consider the
level set of u®. In [22], we prove an monotonicity formula along the level set of the
solution of the exterior Dirichlet problem of the approximating k-Hessian equation. As
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an application of our uniform C!! estimates of u* and the positive lower bound of [Du?|,
we prove an interior version of [22].
We firstly estimate the area of the level set S, = {x € Q\ {0} : u®(x) =1}.

Lemma 4.1. There exits uniform constant C such that

k(n—1

Ct = Vee (0,1] ifk> g,

4.2) IS, <dClU " Vi€ (—o0,—1] ifk<g,
Ce™™ D Vit € (=00, 0] ifk:g.

Proof. For any fixed t, assume r > 0 sufficiently small, we have

Du?
IS;| = 10B,| = f div dx.
t {u<t)\B, (|Du‘9|)

Casel: k > 3
For any x € {x : u(x) < t}, since |D*u?|(x) < C|x|"% and |Du?| > c|x|'"%, we have

E ,€,,€

LA s

“Due|  |DueP

Du? )

‘div( D]

\ < D2\ < Clxf ™.

Combining the above estimate with {u < t} C BCZ S, We have

0<|S,|- 0B, <C f Ix|"dx

B

(4.3) < Vs,
Taking r — 0, we have
S < Clal" V.

Case2: k < 3. Similar argument shows that

Clt|” 2n—%
IS,| - 10B,| <C f s"2ds
0

4.4) < Clef~ Dz,
Case3: k = 7.
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We have
Ce!
1S, - 10B,| < C f "2ds
0

4.5) < Ce"

Similar as the exterior case in [22], we consider the following quantity

(4.6) s = [ GODEP S J DA,
Sy
where g(u®) is defined by
@), k> 5,
2
@7) g = (-uH Tk < 3,
& n
‘L k=
¢ 2

We choose a = b — k + 1 and one can see that /,,;,(¢) is uniformly bounded due to the C 2
estimates of u#® and the positive lower bound of |Du®|. We define

(4.8) Jarao k(1 10) 2= §“ (D, 1 (1) — % (o)1, 1,1 (10).

We prove the following useful equality along the level set of u°.

Proposition 4.2. Let u® be the solution of the approximating k-Hessian equation with
a=>b—k+ 1. We have the following identity

Jasaypi(ts 1)) = — ba f f “+“°|Du |p=k= 1 )dAds+ (b+1) f f atao=l o\ Dy|P7kS )dAds

+(b+1) f g“+“°|Du8|h-’<sk)dA—(b+1) f (8 Du"S )dA
St Sro

!
+a f f g \Du "™ H (coicHE — (k + 1)Hy_ Hyy )dAd's
fo Ss

! !
+a f f g\ Duf"™ £ dAds — ab f f g7\ Duf "2 M dAds,
fo s 1) S

where H,, is the m-th order fundamental symmetric function of principal curvatures m-

4.9)

Hessian operator of the level set S of u®, ay,b,c,; = % and the functions L are
chosen as follows
(i) If 1 < k < 3, we require -0 < th <t < -1, ay = —2”n__2kk and L = (b —

Cn k)( n—2k |D log u8| )2 .
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2
(ii) Ifk =%, we require —oco <t < ty < 0, ao—OandL—a(IDusl—i).

Hy—y
2
(iii) Ifk > g, we require 0 < t < to < 1, ag = 2%, £ = (b — ¢, )(2kIDlogu| - 72 .
and
H, H?
(4.10) Mi=8p - Hkk |Du®|S  + #lDu‘glk“ — Hy|Dul! < 0.
-1 -1

Proof. For simplicity, we use u instead of u° and S intead of S (D?u*) during the
proof. _

We use the notation €, := {x € Q\ {0} : u(x) > t} and we define Q,, := Q, \ Q, for any
h <t

By the divergence theorem and the divergence free property of the k-Hessian operator

ie. ZDS” 0, we have

ahk(t) ahk(to)_ij(ga|DM|h+1—kSijui)

Qi
:af a-1 /lDu|b+l kSl]u iU
Q

10!

+(b+1 —k)f ¢|Dult 'S uuluu+kf g°|DulP s,
tot Q

101

:af a-1 /lDu|b+l kSl]u iU
Q

101

~(b+1 —k)f DUl ™Sy + (b + 1)[ g [Dul"*' s,
tot tot

_affg“ Lo’ |Dulb~ ks’fuu, (b - k+1)ffg|Du|bszk+1uuj
4.11) +(b+1) f f g |Dul"*S .,

where we use S uuuy; = |Dul*S . — Sk+1u u; and the coarea formula.
Then

L 4 (1) :afga_lg'|DM|h_kSij”iuj
4.12) St
—b+1-k f UL i + Eag s (1),

where E, (1) = (b+ 1) [, g|Dul"*S,.
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Then we have
Ja+ag,b,k(t’ tO) - ao(t)l, b, k(t) ao(to)ll b, k(tO)

:af D (ga+a0 1 /lDulb k+ISUu)
Q

101

(4.13) = a(Lusap s 1461(0) = Lasagp1401(10)) + Earar o) = Earappit0),

where we use a = b — k + 1. We will compute the terms in (4.13).
Firstly we have

f D (ga+tl0 1 /|Du|b k+ISl]u )d.x
Q

101

!
:f f ((g“”“‘lg’) |Du|b_kS;{]u,-ujdAds
to SS

t
+(b—k+1) f f ) ¢\ DulP 28 Yuuguy;)dAd's + k f f @l o'\ Dul’™S  )dAdss
Ty Ss

!
= f f (g™~ gy |Dul"™S Juu;)dAdss

~(b- k+1)ff arao=l of| Dy|P 2 1uuj)dAds+(b+l)ff w0l '|Dul" ™S )dAd:s

= f f (g™~ g"y |Dul"*' Hyy )dAds — (b — k + 1) f f -1 ¢'|Dul’ Hy )dAds
Iy S 4] S

(4.14)
!
+(b+ 1) f f w1 ¢/ |Dul’™ S )dAds,
fo SS
where we use the identity H,,,_ 1|Du|erl = S,’;;u ujforme{1,2,--- ,n} (seee.g.[5,23,24]).

For the term 1,14, p—1k+1() = Ly+ay.p-14+1(f0), similar as the mampulatlon of (4.11), we
have

Lavag.p-14+1(t0)=Latag p-1,k+1(2)

f
:(a+a0)ff arao=l o) Dy P~k szHu u;dAds

—(b-1-k) f f g\ DulP S Y uu,
(4.15) +b f f g Dul" 28 1.
fo Ss
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Next we deal with the above term invglving Si+1. Choose the coordinate such that
un(x0) = [Dul(xo) and {u;(x0)}1<i,j<n-1 = {Ai0ijhi<i j<n—1 1s diagonal, we have

n—1

St =tS i)+ S (D = > i (Ui
i=1

n—1

Sk =S 1) + Su D) = > S,

i=1

where A = (1, -, A,_;) and recall we use the notation S; = S (D*u). Then we get

k(/l) SHA) . "Zi 3 IS KADS 12 (i) = ST, (AlD)

4.16 Sie1 = =
(16) - S = S“(ﬂ) S S i1 ()

+ 851 ().

i=

Noting that S ,,(1) = |Du|~ 284 matittj = Hy|Dul™ is globally defined, we obtain

Hy Hi o e =l SHAUDS k(A — S 2, (i)
S kst = =——|DUIS g + = |Du[**! — Hy o IDUl* = Y i, SRR L
. Hk—1| Sk Hk—1| | alDu ; " Sk-1(A)

This proves (4.10) Inserting (4.16) into (4.15) and noting that S,,(1) = |Du|™%S Jﬂu uj =
H,,|Du|™ is globally defined , then we have

Lovagp-14+1() = Lavag p-14+1(t0)

:(a"‘ao)ff arao~1 o'\ Du|” HidAd's
To s

!
+(k+1) f f g Dul" Hy1dAds

—bff “”’OIDulbl Hy dAds+bff g Duylb~ “ S (dAds
H?
4.17) +b f f g4 | Dyt 2(

k+1 Hk+ |Du|k+1)
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Inserting (4.14) and (4.15) into (4.13), we obtain
Jarao o k(t, o) = — ba f f g | Dul"~* 1 SdAds

+b+1) f g“+“°|Du|b_kSde—(b+1) f g | DulP* S (A
S

!
+ af f g“”"lDulb_lH,:_ll(cn,kH,f —(k+ l)Hk_lHkH)dAds
1 s

!
+a f f g\ DulP " H,_, LdAds
I0) Ss

! H H2
(4.18) —ab f f g4 | Dul"™* 2(5,(+1 - H—lDulSk + H—lDulk“ Hpr|Dufc'|.
s k-1 k—

where the function £ is defined by

Hy
=b - cpi)l— 2a + ap)(1 Du|—
L=(b-c ,k>(Hk_1) ~ (2a +ap)(log g)' ”'H -
(4.19) +((log g)” + (@ + ag)((log g))?) | Dul’.
Now we divide two cases to prove the £ > 0 under some restrictions on a and b.
Casel: k< Zand 5 <k <n.
We choose ¢, = % Then we have

- k
(log )" + (a + ao)((log g)')* =——u™ + (a+ ao)( —0u
_on—k , o, n-2k
G (n—k at )
(4.20) =~ e P,

2t and we use a = b — k + 1. We also have

where we choose ayp = —22=

(4.21) —(Q2a + ap)(logg) = ZL(b - c,,,k)u_1
n—2k

Then we have

H k \2
(4.22) L=(b- c,,k)( — k|D log u| — Hk_l) .
Consequently, we obtain the desired identity.
Case 2: k =

5
Wehave ¢,y =5—-1>0. Werequireb>3-1l,a=b-5+1=b—-c, 20anday = 0.
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Since g = ¢“ and thus (a + ap) ' (g**)” = (a + ay)g*+*. We obtain

(4.23) £=a(ipul - If" ),

k-1

H? . .. ..
At last we prove M := S, — %IDMIS;( + W’;IDuI"Jrl — Hy.1|Dul**! is non-positive similar
as that in Ma-Zhang [22].
O

From the above formula, we have the following almost monotonicity formula along the
level set of #® and we prove the first part of Theorem 1.5.

Proposition 4.3. Let u® be the solution of the approximating k-Hessian equation. Assume
% <k<nandb>c,; = % and b # k — 1, then for any t € (0, 1], we have

nk
d > —Cet®" ifa > 0,
(4.24) — 1 (1) oy
dt < Celt|* " ifa < 0.
In particular, we have the following weighted inequality
2k —
(4.25) f Dult H_y > = f \Dul’H,
file) n—k Ja

where u is the unique C"! solution of the homogeneous k-Hessian equation (1.7).

Proof. We divide two cases.
Casel: a > 0
By Proposition 4.2, forany 0 < 7y <t < 1, we have

2 2
t I:Lb,k(t) - toI:;,b,k(tO) :Ja+a0,b,k(t) - Ja+a0,b,k(t0)

n—k — Hk
> _abf (l/ls)aZk’"+2|DM8|a I_Sk
Qto\ﬁt Hk—l

(4.26) —(b+1) f ()T 2 Dt o1 S
Sh

.o . H C”; H._
By the MacLaurin inequality: Wkl < o ( o
- n—1 n—1

also use |Du?| > c|x|'~ %), for any x € Qf, we have

)m and the uniform C?-estimates of u® (we

3+ -1 = 1 R
(ue)azkfﬁ |Du8|a 7 SC(MS)azk*”_F |Du8|" H]f_ll

Sc|x|a"—;k+2Lk_" |x|(a—1)k_T” |X|_1

=C|x|*"% < C1,
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then

n(k=1)+2k

n—k H
f ()22 DUl ——8, < Cet n .
0,\0, Hy_

Similarly, we have

5 . n(k=1)+2k
(u) Bt |Du|*"" Sy < Cety ™,

Ko=)
where we use |S, | < C1,"" (see Lemma 4.1).

Thus we get

(k- 1)+2k n(k=1)+2k

(4.27) 2L, () = 21, (10) > —Cat“ T — Cety ™ .

By the uniform C? estimates for u® and |Du®| > c|x|'~%, we have for any ¢, € (0, 1]

(4.28)

2

Let ¢y tend to O in (4.27), we have

(4.29) I, (t) > —Cerdta!,
In particular, taking = 1 we have
(4.30) I, (1) > —Ce.

On the other hand, by (4.12), we have

n-—2k

4.31) [, ()<a \Du’|""" Hy_ — a f \Du’|’Hy + Ce.
o o0 o0

Consequently, we get

(4.32) 2 T PH — | IDUfPH, = —a ' Ce
oQ

Since |Du?| converges to |Du| on 0Q, we finish the proof of (4.25) by taking € — 0 in
(4.32).

Case2: a <0

Similar as case 1, we have
(4.33) I, (1) < Cerd!,
On the other hand, we have
(4.34) I, () = a— Du" He_y —a | \DuPH,.

n—2k Jso oQ

Then the desired inequality follows. O

Next we prove the second part of Theorem 1.5.
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Lemma 4.4. Assume k = g and b > g — 1. We have
(4.35) Ié’l,b,k(t) 2 _Csent,

In particular, we have

(4.36) \Dul’"'H_y > | |Dul’Hy,
0Q 0Q

where u is the unigue C"' solution the homogeneous k-Hessian equation (1.9).

Proof. By Proposition 4.2 and similar as the argument in Proposition 4.3, for any —co <
th < s <t<0,wehave

Ly (O =1, (s) = —Cee™.
Integrating the above from 7, to 7, we have
Lop (D) = Lipi(ty) < (I;,b,k(z) + Cse'”)(t — 1),
Then

(£, 40 + Cae™)(=tt3" + 1) 2 —15" Uupa(®) = Lipiato)) = Cty.

let #, tend to O and note that I,,(¢) is uniformly bounded which follows from the C?-
estimates of u° and |Du?| > c|x|'"%, we obtain

Ié’l,b,k(t) 2 —Cé‘em.

On the other hand, we have
L,,.(0) <a f DU’ Hy_y — a f |Duf’Hy + Ce.
o oQ 0Q
Combining the above two inequalities and noting that |Du®| — |Du|, we get

(4.37) |Dul’*'H,_, > |Dul’ H,.
oQ oQ

When k < 2, we have the following inequality.

Lemma 4.5. Let u® be the solution of the approximating k-Hessian equation. Assume
k <3, and b > c,, then for any —co <ty <t < —1, we have

(4.38) 2L, (0 = B, (1) > —Celf 757",
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