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THE DIRICHLET PROBLEM OF HOMOGENEOUS COMPLEX k-HESSIAN

EQUATION IN A (k − 1)-PSEUDOCONVEX DOMAIN WITH ISOLATED

SINGULARITY

ZHENGHUAN GAO, XINAN MA, AND DEKAI ZHANG

Abstract. In this paper, we consider the homogeneous complex k-Hessian equation in

Ω \ {0}. We prove the existence and uniqueness of the C1,α solution by constructing

approximating solutions. The key point for us is to construct the subsolution for approxi-

mating problem and establish uniform gradient estimates and complex Hessian estimates

which is independent of the approximation.

1. Introduction

Let Ω be a smooth bounded domain of Cn and k be an integer such that 1 ≤ k ≤ n. We

consider the homogeneous complex k-Hessian equations

(ddcu)k ∧ ωn−k
= 0 in Ω \ {0}.

Let u be a real C2 function in Cn and λ = (λ1, · · · , λn) be the eigenvalues of the complex

Hessian ( ∂
2u

∂zi∂z̄ j
), the complex k-Hessian operator is defined by

Hk[u] :=
∑

1≤i1<···ik≤n

λi1 · · ·λik ,

where 1 ≤ k ≤ n. Using the operators d = ∂ + ∂ and dc
=
√
−1(∂ − ∂), such that

ddc
= 2
√
−1∂∂, one gets

(ddcu)k ∧ ωn−k
= 4nk!(n − k)!Hk[u]dλ,

where ω = ddc|z|2 is the fundamental Kähler form and dλ is the volume form. When

k = 1, H1[u] = 1
4
∆u. When k = n, Hn[u] = det ui j̄ is the complex Monge-Ampère

operator.

1.1. Some known results and motivations. Let S k(D
2u) be the k-Hessian of a real C2

function u in Rn. When k > 1, the Hessian equations S k(D
2u) = f and Hk[u] = f are

both nonlinear. When f > 0, the Hessian equation is nondegenerate. When f vanishes

somewhere, the Hessian equation is degenerate.
1
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1.1.1. Results on bounded domain. For the Hessian equation on Rn, its Dirichlet problem

with positive f















S k(D
2u) = f in Ω,

u = ϕ on ∂Ω,

was studied by Ivochkina [21] for k = 1, 2, 3, n on convex domain with further assump-

tions on f and by Caffarelli-Nirenberg-Spruck [10] for general f > 0 and k = 1, 2, · · · , n
by assuming Ω is (k − 1)-convex. B. Guan [16] showed the geometric condition on Ω

could be removed by assumption of existence of a strict subsolution. In [35], Trudinger-

Wang developed a Hessian measure theory for Hessian operator. One can see a survey

in Wang [38] for more related topics. For the complex k-Hessian equation in Cn, Li [30]

solved its Dirichlet problem via the subsolution approach.

For Monge-Ampère equation in a bounded domain of Rn, when f = 0, Caffarelli-

Nirenberg-Spruck [11] proved the C1,1 regularity in a bounded convex domain. For gen-

eral f ≥ 0, Guan-Trudinger-Wang [20] proved the C1,1 regularity result when f
1

n−1 ∈ C1,1.

Due to the counterexample by Wang [37], C1,1 regularity is optimal. For k-Hessian equa-

tion in Rn, the C1,1 regularity is obtained by Krylov [24, 25] and Ivochkina-Trudinger-

Wang [22].

For complex Monge-Ampère equation, Lempert [26, 27] proved the Dirichlet problem

admits a smooth solution with a logarithm pole at the origin on a strictly convex punctured

domain Ω\{0} when f = 0. As for strongly pseudoconvex domain, Guan [17] and Błocki

[5] proved the solution is C1,1. In [19], Guan obtained the C1,1 regularity for the solution

on a ring domain. For general f ≥ 0, the optimal C1,1 regularity was in Caffarelli-Kohn-

Nirenberg-Spruck [8],Krylov [24, 25] for strongly pseudoconvex domain.

1.1.2. Results on unbounded domain. The viscosity solution to nondegenerate k-Hessian

equation on unbounded domain has been researched extensively. Caffarelli-Li [9] solved

the viscosity solution to the Monge-Ampère equation det D2u = 1 with prescribed asymp-

totic behavior at infinity. Bao-Li-Li [2] studied the k-Hessian equation case. For the re-

lated results on other type nondegenerate fully nonlinear equations, one can see [1,28,31].

In [29], Li-Wang consider the det D2u = 0 on a strip region Ω := Rn × [0, 1]. By

assuming two boundary functions are both strictly convex C1,1(Rn−1) functions, they ob-

tained the solutions is C1,1(Ω). If the boundary functions are locally uniformly convex

Ck+2,α(Rn−1) function, then u is the unique Ck+2,α(Ω) function.

Recently, Xiao [39] and Ma-Zhang [34] proved the C1,1 regularity of Dirichlet fot the

homogeneous k-Hessian equation out of Ω ⊂ Rn, by assuming Ω is starshaped, (k −
1)-convex and and 1 ≤ k < n

2
or Ω is (k − 1)-convex and 1 ≤ k ≤ n respectively.

For homogeneous complex k-Hessian equation, Gao-Ma-Zhang [15] obtained the C1,1

regularity.
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1.1.3. Motivations. Our paper is motivated by the research on the regularity of extremal

function or Green function. In [23], Klimek introduced the following extremal fucntion

gΩ(z, ξ) = sup{v ∈ PSH(Ω) : v < 0, v(z) ≤ log |z − ξ| + O(1)}.

gΩ(z, ξ) is also call the pluricomplex Green function onΩ with a logarithminc pole at ξ. If

Ω is hyperconvex, Demailly [13] showed that u(z) = gΩ(z, ξ) is continuous and is a unique

solution to the homogeneous complex Monge-Ampére equation,























(ddcu)n
= 0 in Ω \ {ξ},

u = 0 on ∂Ω,

u(z) = log |z − ξ| + O(1) as z→ ξ.
(1.1)

If Ω is strictly convex domain in Cn with smooth boundary, Lempert [26] proved (1.1)

admits a unique plurisubharmonic solution which is smooth. In the strongly pseudoncon-

vex case, B. Guan [17] proved gΩ(z, ξ) ∈ C1,α(Ω \ {ξ}) and later, Błocki improved it to

C1,1(Ω \ {ξ}) in [5] and generalized it to several poles in [6]. Due to the counterexamples

found by Bedford-Demailly [3], C1,1 regularity is optimal.

P. Guan [19] established C1,1 regularity of extremal function associated to intrinsic

norms of Chen-Levine-Nirenberg [12] and Beford-Taylor [4] by considering























(ddcu)n
= 0 in Ω0 \ (∪m

i=1
Ωi),

u = 0 on ∂Ωi, i = 1, · · · , n
u = 1 on ∂Ω0.

Applying the techniques from [19], B. Guan proved the C1,1 regularity of pluricomplex

Green function for the union of a finite collection of strongly pseudonconvex domains in

C
n.

In [14], we considered the following homogeneous (real) k-Hessian equation in a punc-

tured domain

(1.2)























S k(D
2u) = 0 in Ω\{0},

u = ck on ∂Ω,

u(x) = hk(x) as x→ 0

where ck = 1 and hk(x) = 0 if k > n
2
, ck = −1 and hk(x) = −|x|2− n

k + O(1) if k < n
2
, ck = 0

and hk(x) = log |x| + O(1) if k = n
2
. Assume that Ω is (k − 1)-convex, we proved the ex-

istence and uniqueness of C1,1 solution to (1.2). Moreover the solution can be controlled

pointwisely by fundamental solutions of homogenous k-Hessian equations up to the sec-

ond order. If Ω is also starshaped with respect to the origin, we proved the positive lower

bound of the gradient of the solution and then we show a nearly monotonicity formula

along the level set of the approximating solution.



4 ZHENGHUAN GAO, XINAN MA, AND DEKAI ZHANG

1.2. Our result. In this section, we consider the following problem for complex k-Hessian

equation

(1.3)























(ddcu)k ∧ ωn−k
= 0 in Ω \ {0},

u = −1 on ∂Ω,

u(z) = −|z|2− 2n
k + O(1) as z→ 0.

Theorem 1.1. Assume 1 ≤ k < n. Let Ω be a smooth (k − 1)-pseudoconvex domain

containing the origin. Then there exists a unique k-subharmonic solution u of (1.3) in

C1,α(Ω \ {0}). Moreover, u satisfies the estimate

−C ≤ u + |z|2− 2n
k ≤ 0,(1.4)

|Du| + |z||∆u| ≤ C|z|1− 2n
k .(1.5)

Here k-subharmonic function and (k − 1)-pesudoconvex domain are introduced in Sec-

tion 2. We suppose Ω contains the origin and we use the notation Ωr = Ω \ Br(0). We

use Br instead of Br(0) for short. To prove Theorem 1.1, we consider the approximating

problem

(1.6)















Hk[u
ε,r] = ε in Ωr,

u = u on ∂Br,

where u is a subsolution constructed in Section 3. The solution u to (1.3) with be obtained

by approximating solution uε,r to (1.6). The existence of uε,r follows from subsolution

method in [30].

The rest of the paper is organized as follows. In Section 2, we first give the definition

and some notations. Then we recall some new gradient estimates and complex Hessian

estimates in [15] motivated by B. Guan [18], which will be used in the proof of (1.5).

In Section 3, we establish uniform gradient estimates and complex Hessian estimates.

Theorem 1.1 will be proved in the last section.

2. Preliminaries

2.1. Elementary symmetric functions. For any k = 1, · · · , n and λ = (λ1, · · · , λn) ∈ Rn,

the k-th elementary symmetric function on λ is defined by

S k(λ) :=
∑

1≤i1<···<ik≤n

λi1 · · · λik .

Let S k(λ|i) be the symmetric function with λi = 0. Let A = (ai j) ∈ Rn×n be an n × n

matrix. Let S k(A) be the k-th elementary symmetric function on A, which is the sum

of k × k principal minors of A. We use the convention that S 0(A) = 1. It is clear that

S k(A) = S k(λ(A)), where λ(A) are the eigenvalues of A.
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The elementary symmetric functions have the following simple properties from [32].

S k(λ) = S k(λ|i) + λiS k−1(λ|i),(2.1)

and

n
∑

i=1

S k(λ|i) = (n − k)S k(λ).(2.2)

Recall the Γk-cone is defined by

Γk := {λ ∈ Rn | S i(λ) > 0, 1 ≤ i ≤ k}

For λ ∈ Γk and 1 ≤ l ≤ k, the well-known MacLaurin inequality (see [32]) says

(

S k(λ)

Ck
n

)
1
k

≤
(

S l(λ)

Cl
n

)
1
l

.

One can find the concavity property of S
1
k

k
in [10].

Proposition 2.1. S
1
k

k
is a concave function in Γk.

2.2. k-subharmonic solutions. In this section we give the definition of k-subharmonic

functions and definition of k-pseudoconvex domains. One can see the lecture notes by

Wang [38] for more properties of the k-Hessian operator, and see Błocki [7] for those of

the complex k-Hessian operator. We following the definition by Błocki [7] to give the

definition of k-subharmonic functions.

Definition 2.2. Let α be a real (1, 1)-form in U, a domain ofCn. We say that α is k-positive

in U if the following inequalities hold

α j ∧ ωn− j ≥ 0,∀ j = 1, · · · , k.

Definition 2.3. Let U be a domain in Cn.

(1). A function u : U → R ∪ {−∞} is called k-subharmonic if it is subharmonic and for

all k-positive real (1, 1)-form α1, · · · , αk−1 in U,

ddcu ∧ α1 ∧ · · · ∧ αk−1 ∧ ωn−k ≥ 0.

The class of all k-subharmonic functions in U will be denoted by SHk(U).

(2). A function u ∈ C2(U) is called k-subharmonic (strictly k-subharmonic) if λ
( ∂2u
∂zi∂z̄ j

) ∈
Γk (λ

( ∂2u
∂zi∂z̄ j

) ∈ Γk).

If u ∈ SHk(U)∩C(U), (ddcu)k∧ωn−k is well defined in pluripotential theory by Błocki

[7]. We need the following comparison principle by Błocki [7] to prove the uniqueness of

the continuous solution of the problem (1.3).
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Lemma 2.4. Let U be a bounded domain in Cn, u, v ∈ SHk(U) ∩C(U) satisfy














(ddcu)k ∧ ωn−k ≥ (ddcv)k ∧ ωn−k in U,

u ≤ v on ∂U.

Then u ≤ v in U.

2.3. Gradient estimates and complex Hessian estimates. Motivated by [18], we proved

the following new gradient estimates and complex Hessian estimates in [15].

Theorem 2.5. Let u ∈ C3(U) ∩ C1(U) ∩ SHk(U) be a negative solution to Hk[u] = f in

U, where f ∈ C1(U) is positive. Denote by

P = |Du|2(−u)−
2n−k
n−k .

Then

max
U

P ≤ max

{

max
∂U

P,max
U

(

2(n − k)

k(2n − k)

)2

(−u)−
k

n−k |D log f |2
}

(2.3)

Theorem 2.6. Let u ∈ C4(U) ∩ C2(U) ∩ SHk(U) be a negative solution to Hk[u] = f in

U, where f ∈ C2(U) is positive. Assume that P = |Du|2(−u)−
2n−k
n−k , (−u)−

k
n−k |D log f |2 and

(−u)−
k

n−k |D2 log f | are bounded. Denote by

H = uξξ̄(−u)−
n

n−k (M − P)−σ,

where M = 2 max
U

P + 1, σ ≤ n(n−k)

8(2n−k)2 . Then we have

max
U

H ≤ C +max
∂U

H,(2.4)

where C is a positive constant depending only on n, k, P, (−u)−
k

n−k |D log f |2 and (−u)−
k

n−k |D2 log f |.

We need the following lemma by P. Guan [19] to construct the subsolution of the com-

plex k-Hessian equation in a ring domain.

Lemma 2.7. Suppose that U is a bounded smooth domain in Cn. For h, g ∈ Cm(U),

m ≥ 2, for all δ > 0, there is an H ∈ Cm(U) such that

(1) H ≥ max{h, g} and

H(z) =

{

h(z), if h(z) − g(z) > δ,

g(z), if g(z) − h(z) > δ;

(2) There exists |t(z)| ≤ 1 such that

{

Hi j̄(z)
}

≥
{

1 + t(z)

2
gi j̄ +

1 − t(z)

2
hi j̄

}

, for all x ∈ {|g − h| < δ} .
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We can prove that H is k-subharmonic if f and g are both k-subharmonic by the con-

cavity of S
1
k in Proposition 2.1.

At the last of this subsection, we recall the definition of (k − 1)-pseudoconvex domain.

Definition 2.8. A C2 domain U is called (k − 1)-pseudoconvex if there is CU > 0, such

that λ(−di j̄ +CU(d2)i j̄) ∈ Γk on ∂U, where d(z) = dist(z, ∂U) is the distance function from

z to ∂U.

3. Solving the approximating problem in Ω \ Br

In this section, we will solve the approximating problem by a-priori estimates and the

subsolution method. Before this, we make an assumption on Ω.

Assumption 3.1. Assume Ω contains the origin and Br0
⊂⊂ Ω ⊂⊂ B(1−τ0)R0

for some

τ0 ∈ (0, 1
2
).

Denote by Ωµ = {z ∈ Ω : d(z) < µ}. In this section, we use C and c with subscript to

denote some positve constant which are independent of ε and r.

The following lemma about (k − 1)-pesudoconvex domain in Cn is a parallel version to

(k − 1)-convex domain in Rn with can be found in [10, Section 3]. It plays an important

roles in constructing the subsolution.

Lemma 3.2. Let Ω be a smooth (k− 1)-pseudoconvex bounded domain. There exists µ0 ∈
(0, 1

2CΩ
) small enough such that Br0

⊂⊂ {z ∈ Ω : d(z) > 2µ0}. Moreover ρ := −d +CΩd2 is

smooth and strictly k-subharmonic and Hk[ρ] ≥ ǫ0 in Ω2µ0 for some ǫ0 > 0.

3.1. The approximating equation. We will approximate the solution to the homoge-

neous complex k-Hessian equation in Ω\{0} by solutions to a sequence of nongenerate

equation in Ωr. The existance of approximating solution can be obtained if we can con-

struct a smooth subsolution. In the following, we use the technique from P. Guan [19] to

construct a subsolution.

Denote w := −|z|2− 2n
k + R

2− 2n
k

0
− 1 + a0

|z|2
R2

0

, where a0 =
1
2

(

(1 − τ0)2− 2n
k − 1

)

R
2− 2n

k

0
. Then by

Ω ⊂ B(1−τ0)R0
, we have

w ≤ −1

2

(

(1 − τ0)2− 2n
k − 1

)

R
2− 2n

k

0
− 1 in Ω.

By Proposition 2.1, we have

H
1
k

k
[w] ≥ H

1
k

k
[−|z|2− 2n

k ] + H
1
k

k
[a0

|z|2
R2

0

] = (Ck
n)

1
k a0R−2

0 in Ω.

Then by Lemma 2.7, we can construct a smooth and strictly k-subharmonic function u

from w and ρ.
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Lemma 3.3. There is a strictly k-subharmonic function u ∈ C∞(Ωr) satisfying

u(z) =















K0ρ(z) − 1 if d(z) ≤ µ0

M0
,

w(z) if d(z) > µ0,

u(z) ≥ max{K0ρ(z) − 1,w(z)} if
µ0

M0

≤ d(z) ≤ µ0,

Hk[u] ≥ ǫ1 := min{Ck
nak

0R−2k
0 ,K

k
0ǫ0} in Ω,

where K0 and M0 are uniform constants.

Proof. Since Br0
⊂ {z ∈ Ω : d(z) > 2µ0}, by choosing K0 =

r
2− 2n

k
0

CΩµ
2
0
−µ0

, we find ∀ z ∈
Ω2µ0 \Ωµ0 , there holds

w − (K0ρ − 1) = − |z|2− 2n
k + R

2− 2n
k

0
+ a0

|z|2
R2

0

− K0ρ

≥ − r
2− 2n

k

0
+ R

2− 2n
k

0
− K0(−µ0 +CΩµ

2
0)

≥R
2− 2n

k

0
,

For any z ∈ Ω µ0
M0

:= {z ∈ Ω : d(z) ≤ µ0

M0
}, there also holds

(K0ρ − 1) − w ≥ 1

2

(

(1 − τ0)2− 2n
k − 1)

)

R
2− 2n

k

0
+ K0

(

− µ0

M0

+ CΩ(
µ0

M0

)2
)

≥ 1

4

(

(1 − τ0)2− 2n
k − 1

)

R
2− 2n

k

0
,

provided that M0 is a positive solution to

K0(− µ0

M0

+ CΩ(
µ0

M0

)2) ≥ −1

4
((1 − τ0)2− 2n

k − 1)R
2− 2n

k

0
(3.1)

In fact, we can choose τ0 small enough such that (3.1) holds if M0 > 1.

Take δ := min{ 1
4

(

(1−τ0)2− 2n
k −1
)

R
2− 2n

k

0
,R

2− 2n
k

0
} and we apply Lemma 2.7 with g = K0ρ−1,

h = w and δ on Ω2µ0 , we obtain a smooth and strictly k-subharmonic function u in Ω2µ0 .

Moreover u = K0ρ− 1 in Ω
µ0
M0 , and u = w in Ω2µ0 \Ωµ0 . At last, we set u = w in Ωr \Ω2µ0 .

By Lemma 2.7, we have

Hk[u] ≥ min{Hk[w],Hk[K0ρ]} ≥ min{Ck
nak

0R−2k
0 ,K

k
0ǫ0}.

�

We now consider the approximating equation














Hk[u] = ε in Ωr,

u = u on ∂Ωr

(3.2)
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Then u is a strictly subharmonic solution of above equation for any ε < ǫ1. By Li [30],

(3.2) admits a strictly k-subharmonic solution uε,r ∈ C∞(Ωr). Let r1 = min{2 2k
2k−n R0,

(2a0

R2
0

)− k
2n },

∀ r ≤ r1, since u = −1 on ∂Ω and u = −r2− 2n
k + R

2− 2n
k

0
− 1 + a0

r2

R2
0

on ∂Br, we have

u |∂Ωr
≤ −1.By maximum principle, we have uε.r ≤ −1 when r ≤ r1, ε ≤ ǫ1.

In the following, we want to derive a (ε, r)-independent uniform C2 estimate for uε,r.

We prove the following

Theorem 3.4. Suppose Ω be a smooth (k − 1)-pseudoconvex bounded domain. Assume

that Ω satisfies Assumption 3.1. For sufficient small r > 0 and ε > 0, (3.2) admits a

k-subharmonic solution uε,r, where u is constructed above. Moreover, uε,r satisfies the

following estimates,

−|z|2− 2n
k + R

2− 2n
k

0
− 1 + a0

|z|2
R2

0

≤ uε,r ≤ −|z|2− 2n
k + r

2− 2n
k

0
− 1,(3.3)

|Duε,r| ≤ C|z|1− 2n
k ,(3.4)

|∂∂̄uε,r| ≤ C|z|− 2n
k ,(3.5)

where C is a uniform positive constant which is independent of ε and r.

In addition, if Ω is starshaped with respect to the origin, there is a uniform positive

constant c independent of ε and r such that

(3.6) |Duε,r| ≥ c0|z|1−
2n
k .

3.2. C0 estimate. Since u is a subsolution to (3.2), we obtain that

uε,r ≥ u in Ωr.(3.7)

Let

u = −|z|2− 2n
k + r

2− 2n
k

0
− 1.

By taking r ≤ min{r1, r2}, where r2 = R0(r
2− 2n

k

0
− R

2− 2n
k

0
)

1
2 a
− 1

2

0
, we have

uε,r ≤ u on ∂Ωr.

Note that Hk[u
ε,r] = ε > 0 = Hk[u] in Ωr, it follows that

uε,r ≤ u in Ωr.(3.8)

By (3.7) and (3.8), we obtain

−|z|2− 2n
k + R

2− 2n
k

0
− 1 + a0

|z|2
R2

0

≤ uε,r ≤ −|z|2− 2n
k + r

2− 2n
k

0
− 1.

This gives the C0 estimate (3.3).

3.3. Gradient estimates. Base on the key estimate (2.3), we can prove the global gradi-

ent estimate in this subsection.
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3.3.1. Reducing global gradient estimates to boundary gradient estimates. Since

uε,r < 0, f = ε, by Theorem 2.5, we have

max
Ωr

P = max
∂Ωr

P.

3.3.2. Boundary gradient estimates. To prove boundary gradient estimates, we will

construct barriers near ∂Ω and ∂Br respectively.

Since uε,r = u = −1 on ∂Ω and uε,r ≥ u in Ωr, we have

|Duε,r| = uε,rν ≤ u
ν

on ∂Ω,(3.9)

where ν is the unit outer normal to ∂Ω. Let r3 ≤ min{r1, r2, 1} and h1 be the harmonic

function h1 in Ω \ Br3
with h1 = −1 on ∂Ω and h1 = −r

2− 2n
k

3
+ r

2− 2n
k

0
− 1 on ∂Br3

. Then we

have h1 ≥ uε,r on ∂Ωr3
. So h1 ≥ uε,r in Ωr3

, and it follows that

uε,rν ≥ h1,ν > 0 on ∂Ω,(3.10)

That is there exist a positive constant C such that

0 < C−1 ≤ uε,rν ≤ C on ∂Ω.(3.11)

Let h2 be a harmonic function with h2 = u on ∂Br and h2 = u = −1
2
|z|2− 2n

k on ∂B2r. Let

h̃2(z) = r
2n
k
−2(h2(rz) + r2− 2n

k ) = r
2n
k
−2h2(rz) + 1.

Then h̃2 is a harmonic function in B2 \ B1 with h̃2 = a0r
2n
k R−2

0 + r
2n
k
−2(R

2− 2n
k

0
− 1) on ∂B1

and h̃2 = −21− 2n
k on ∂B2. Let

ũ = r
2n
k
−2uε,r(rz) + 1,(3.12)

and

ũ = r
2n
k
−2u(rz) + 1.(3.13)

By maximum principle, we have

ũ ≤ ũ ≤ h̃2 in B2 \ B1.

Note that

ũ = ũ = h̃2 = a0r
2n
k R−2

0 + r
2n
k
−2(R

2− 2n
k

0
− 1) in ∂B1.

We obtain

D′ũ = D′ũ = D′h̃2 = 0 on ∂B1,

and

0 < c(n, k) ≤ ũ
ν
≤ ũν ≤ h̃2,ν ≤ C̃ on ∂B1,

where ν is the unit outer normal to ∂B1, C̃ is independent of r and ε. So we obtain

C−1 ≤ |Dũ| ≤ C on ∂B1.



THE HOMOGENEOUS COMPLEX K-HESSIAN EQUATION 11

By (3.3), we have

|Duε,r| ≤ Cr1− 2n
k = C|z|1− 2n

k ≤ C(−uε,r)a on ∂Br,(3.14)

and

|Duε,r| ≥ C−1r1− 2n
k on ∂Br.(3.15)

By (2.3), (3.3), (3.9) and (3.14), we obtain

|Duε,r| ≤ C(−uε,r)a ≤ C(|z|2− 2n
k − R

2− 2n
k

0
+ 1 − a0

|z|2
R2

0

) ≤ C|z|1− 2n
k in Ωr.

3.3.3. Positive lower bound of |Duε,r|. Since ∂Ω is starshaped with respect to the origin,

we have t · ν > 0 on ∂Ω, where ν is the unit outer normal to ∂Ω, t = (t1, · · · , t2n) =

(y1, · · · , yn, x1, · · · , xn), zi =
1√
2
(xi +

√
−1yi). By (3.11), |Du| ≥ c for some uniform c on

∂Ω. Then we have

n
∑

l=1

(zlu
ε,r

l
+ z̄lu

ε,r

l̄
) =

2n
∑

l=1

tlu
ε,r
tl
= t · ν|Duε,r| ≥ c min

∂Ω
t · ν := c1 > 0.

Let F i j̄
=

∂
∂u
ε,r

i j̄

(log Hk[u
ε,r]), L = F i j̄∂i j̄. Consider the function

G := 2Re{zlu
ε,r

l
} + Auε,r − B|z|2,

where A, B are constants to be determined later. By calculation, we have

F :=

n
∑

l=1

F iī
=

n
∑

l=1

S ll̄
k
({uε,r

i j̄
}1≤i, j≤n)

S k({uε,ri j̄
}1≤i, j≤n)

= (n − k + 1)
S k−1({uε,r

i j̄
}1≤i, j≤n)

S k({uε,ri j̄
}1≤i, j≤n)

≥k(Ck
n)

1
k S
− 1

k

k
({uε,r

i j̄
}1≤i, j≤n) = k(Ck

n)
1
k ε−

1
k .

On ∂Br, we have Duε,r = |Duε,r|ν = |Duε,r| t
r
. It follows by (3.15) that

t · Duε,r = r|Duε,r| ≥ c2r2− 2n
k on ∂Br.

By taking r4 = min{4 2k
2k−2n R0, (

4a0

R2
0

)−
k

2n }, we have

u ≤ −1

2
r2− 2n

k on ∂Br.

It follows that if we take A ≤ min{ c1

2
, c2}, B ≤ c1

2R2
0

, ε < min{ǫ1, ǫ2}, r ≤ min{r3, r4, r5},

where ǫ2 :=
Ck

nBk

(2+A)k , r5 = ( c2

2B
)

k
2n , then there holds

G ≥ c1 − A − BR2
0 ≥ 0 on ∂Ω,

G ≥ (c2 −
A

2
)r2− 2n

k − Br2 ≥ 0 on ∂Br.
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and

LG = (2 + A)k − BF = (2 + A)k − Bk(Ck
n)

1
k ε−

1
k < 0 in Ωr.

By maximum principle,

G ≥ min
∂Ωr

G > 0.

Thus we prove G > 0 in Ωr and (3.6) is obtained.

3.4. Second order estimates. Base on the key estimate (2.4), we can prove the global

second order estimate in this subsection.

3.4.1. The global second order estimates can be reduced to the boundary second

order estimates. By Theorem 2.6, we have

max
Ωr

H = max
∂Ωr

H + C.

So

uε,r
ξξ̄

(−u)−
n

n−k ≤ C(max
∂Ωr

H +C) ≤ C(max
∂Ωr

|∂∂̄uε,r(−uε,r)−
n

n−k | + 1).(3.16)

On the other hand, let Dτ =
2n
∑

i=1

ai
∂
∂ti

, with
2n
∑

i=1

a2
i
= 1, from Luε,rττ ≥ 0, we obtain

uε,rττ ≤ max
∂Ωr

|D2uε,r| in Ωr.

Since u is subharmonic, we have

−(2n − 1) max
∂Ωr

|D2uε,r| ≤ utiti ≤ max
∂Ωr

|D2uε,r| in Ωr.

Take τ = 1√
2
( ∂
∂ti
± ∂
∂t j

), we get

|uε,rtit j
| ≤ C max

∂Ωr

|D2uε,r| in Ωr.

Hence

|D2uε,r| ≤ C max
∂Ωr

|D2uε,r| in Ωr.

3.4.2. Second order estimates on the boundary ∂Ωr. The second order estimate on

∂Ω is almost the same as in [15]. So we only need to prove the second order estimate on

∂Br.

Step 1. Pure tangential derivatives estimates

Near p ∈ ∂Br, we may assume p = (0, · · · , 0, r). Near p̃ = (0, · · · , 0, 1), ∂B1 can be

represented as a graph

xn = ρ(t
′) =
(

1 −
2n−1
∑

i=1

t2
i

)
1
2

,

where t′ = (1, · · · , t2n−1).
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Let ũ and ũ be the functions defined in (3.12) and (3.13). Since ũ is equal to some

constant on ∂B1, we have

ũtit j
(p̃) = ũxn

(p̃)δi j.

It follows

|ũtit j
(p̃)| ≤ C.

Hence

|uε,rtit j
(p)| ≤ Cr−

2n
k .

Furthermore, we have

ũi j̄(p̃) = ũxn
(p̃)δi j.(3.17)

Step 2. Tangential-normal derivatives estimates

To estimate the tangential-normal second order derivatives on ∂Br, we just estimate

ũtαxn
(p̃) for α = 1, · · · , 2n− 1. Note that F i j̄ and ũi j̄ are both Hermitian matrix, and can be

diagonalized by a same unitrary matrix, F ik̄u jk̄ is also an Hermitian matrix. It follows that

F i j̄(zrũs − z̄sũr̄)i j̄ = 0.

Now we estimate the mixed tangential-normal derivative ũtixn
(p̃) for p̃ ∈ ∂B1. Since

ũ(t′, ρ(t′)) is constant on ∂B1(0), we have

0 = ũtα + ũt2n
ρtα = ũtα −

tα

ρ
ũt2n
, α = 1, · · · , 2n − 1.

That is on ∂B1 ∩ B 1
2
(p̃),

xnũxi
− xiũxn

= 0 i = 1, · · · , n − 1 and xnũyi
− yiũxn

= 0 i = 1 · · · , n.
It follows that

ynũxi
− xiũyn

= 0 i = 1, · · · , n − 1 and ynũyi
− yiũyn

= 0 i = 1, · · · , n.
To estimate ũxi xn

(p̃) for i = 1, · · · , n − 1, set

g1
= 2Re(ziũn − z̄nũi) = xiũxn

− xnũxi
+ yiũyn

− ynũyi
.

Note that

F i j̄gi j̄ =F i j̄(ziũn − z̄nũi)i j̄ + F i j̄(z̄iũn̄ − znũi)i j̄ = 0.

On ∂B1(0) ∩ B 1
2
(p̃), consider the barrier function

Φ = A(1 − xn) ± g1.

Since g1 is bounded on ∂B1(0)∩ B 1
2
(p̃), 1− xn is bounded from below on ∂B 1

2
(p̃)∩ B1(0),

we can choose a postive A such that Φ ≥ 0 on ∂(∂B1(0) ∩ B 1
2
(p̃)). It follows

|g1
xn

(p̃)| ≤ C.
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However, at p̃, we have

g1
xn
= −ũxi

− ũxi xn
.

Thus

ũxixn
(p̃) ≤ C, i = 1, · · · , n − 1.

To estimate ũyi xn
(p̃) for i = 1, · · · , n, set

g2
=2Im(ziũn − z̄nũi) = yiũxn

− xnũyi
+ ynũxi

− xiũyn
.

Proceeding similarly, we obtain

|ũyi xn
(p̃)| ≤ C, i = 1, · · · , n.

Step 3. Double normal derivative estimate

By pure tangential derivative estimate on ∂B1, we have

|ũynyn
(p)| ≤ C.

To estimate ũxn xn
(p̃), it is suffices to estimate ũnn̄(p̃). By rotating {z1, · · · , zn−1}, we may

assume {ũi j̄(p̃)}1≤i, j≤n−1 is diagonal. Then

r2nε = Hk[ũ] = ũnn̄S k−1({ũi j̄}1≤i, j≤n−1) −
n−1
∑

β=1

|ũβn|2S k−2({ũi j̄}1≤i, j≤n−1).

By (3.17), we obtain

S k−1({ũi j̄}1≤i, j≤n−1) =S k−1({ũ
i j̄
}1≤i, j≤n−1 +

1

2
(ũ − ũ)xn

In−1)

≥S k−1({ũ
i j̄
}1≤i, j≤n−1)

≥Ck−1
n (Ck

n)
1−k

k min
∂Ω

H
k−1

k

k
[ũ] := c1.

So

ũnn̄(p) ≤ C.

Combining these three cases together, and noting that ũ is sunharmonic, we obtain

|∂∂̄ũ| ≤ C on ∂B1.

Hence

|∂∂̄uε,r| ≤ Cr−
2n
k on ∂Br.

By (3.16) and C0 estimate, we have

|∂∂̄uε,r| ≤ C|z|− 2n
k in Ωr.
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4. Proof of Theorem 1.1

4.1. Uniqueness. The uniqueness follows from comparison theorem 2.4.

Let u, v be two solutions to (1.3) in Ω \ {0}. For any z0 ∈ Ω \ {0}, we first show

u(z0) ≤ v(z0). In fact, for any t ∈ (0, 1), since u − tv = −(1 − t)|z|2− 2n
k + C, there exists r

sufficiently small such that z0 ∈ Ω \ Br and u < tv on ∂Br. Note that u = −1 < −t = tv

on ∂Ω. By comparison theorem 2.4, we get u < tv in Ω \ Br. Therefore u(z0) ≤ tv(z0). Let

t → 1, we obtain u(z0) ≤ v(z0). Hence u ≤ v in Ω \ {0}. Similarly, we obtain u ≥ v in

Ω \ {0}. Therefore u = v in Ω \ {0}.
4.2. Existence. The existence follows from the uniform C2-estimates for uε,r.

For K = Ω \ Br0
, for the solution to (3.2), by the estimate (3.3), we have

|uε,r|C1(K) + |∆uε,r| ≤ C(K).

By Evans-Krylov theory, we obtain for any 0 < α < 1,

|uε,r|C2,α(K) ≤ C(K, ε).

By compactness, we can find a sequence ri → 0 such that

uε,ri → uε in C2(K).

where uε satisfies














Hk[uε] = ε in K,

u = −1 on ∂Ω,

and

(4.1)

−C − |z|2− 2n
k ≤ uε(z) ≤ −|z|2− 2n

k ,

|Duε(z)| ≤ C|z|1− 2n
k ,

|∂∂̄uε(z)| ≤ C|z|− 2n
k .

Moreover,

|uε|C2,α(K) ≤ C(K, ε).

By the classical Schauder theory, uε is smooth.

By above estimates (4.1) for uε, for any sequence ε j → 0, there is a subsequence of

{uε j} converging to a function u in C1,α norm on any compact subset of Ω \ {0}. Thus

u ∈ C1,α(Ω \ {0}) and satisfies the estimates (1.4) and (1.5). By the convergence theorem

of the complex k-Hessian operator proved by Trudinger-Zhang [36] (see also Lu [33]), u

is a solution to (1.3).
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