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1. Introduction

In this paper, we study the following equation

−�Hnu = 2n2uq in Ω, (1.1)

where Ω is a domain in the Heisenberg group Hn, and u is a real, nonnegative and smooth 
function defined in Ω, while �Hnu =

∑n
α=1(uαα + uαα) is the Heisenberg Laplacian of 

u which will be introduced in section 2. Let Q = 2n + 2 be the homogeneous dimension 
of Hn. Denote q∗ = Q

Q−2 and q∗ = Q+2
Q−2 . Our main purpose in this paper is to present 

an entire Liouville type theorem and a pointwise estimate near the isolated singularity 
for solutions to (1.1) for the subcritical case 1 < q < q∗.

The equation (1.1) studied intensively by many authors in decades is connected to the 
CR Yamabe problem on Hn. Let Θ be the standard contact form on Hn, we consider 
another smooth contact form θ = u

2
n Θ, where u is a smooth positive function in Hn. 

Then the pseudo-Hermitian scalar curvature associated to the new contact form (Hn, 
θ) is R = 4n(n + 1)uq−q∗ while u satisfies the equation (1.1). The CR Yamabe problem 
is to find such a contact form θ so that the pseudo-Hermitian scalar curvature R is a 
constant (i.e. q = q∗). The number q∗ +1 = 2Q

Q−2 is the CR Sobolev embedding exponent 
[7]. For the equation (1.1) with q = q∗ = Q+2

Q−2 , by the splendid work [15] of D. Jerison 
and J.M. Lee, there are nontrivial solutions as follows

u(z, t) = C
∣∣t +

√
−1z · z + z · μ + λ

∣∣−n (1.2)

for some C > 0, λ ∈ C, Im(λ)> |μ|2/4, and μ ∈ Cn (where 
√
−1 denote the imaginary 

unit in the complex space C), which are the only extremals of the CR Sobolev inequality 
on Hn. The CR Yamabe problem had been studied by D. Jerison and J.M. Lee in 
a series of fundamental works (see [14–16]). For compact, strictly pseudovonvex CR 
manifold, the CR Yamabe problem had been solved in case of not locally CR equivalent 
to sphere S2n+1 by Jerison-Lee [16] for n ≥ 2 and Gamara [8] for n = 1, and in case 
of locally CR equivalent to S2n+1 by Gamara-Yacoub [9] for all n ≥ 1. One can see the 
more recent progress in Cheng-Malchiodi-Yang [6] for the CR Yamabe problem. Using 
the Jerison-Lee’s identity [15], Wang [21] obtained related result for a closed Einstein 
pseudohermitian manifold.

In fact, for the equation (1.1) with q = Q+2
Q−2 , Jerison-Lee [15] obtained the uniqueness 

of the solutions in case of finite volume, i.e., u ∈ L
2Q

Q−2 (Hn). Garofalo-Vassilev [10] also 
got a uniqueness result under the assumption of cylindrically symmetry on groups of 
Heisenberg type.

For the subcritical case 1 < q ≤ q∗, Birindelli-Dolcetta-Cutri [1] proved that the only 
nonnegative entire solution of (1.1) is the trivial one, where they also showed that q = q∗
is sharp for the nonexistence of the following differential inequality
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−�Hnu ≥ 2n2uq in Hn. (1.3)

There are some partial results for the subcritical case q∗ < q < q∗, such as the solutions 
are cylindrical symmetry or decay at infinity in [2], and as n > 1, q∗ < q ≤ q∗ −

1
(Q−2)(Q−1)2 in [22].

In this paper, we will extend the Liouville result to the whole interval of subcritical 
values of q. Precisely, we have

Theorem 1.1. Let Ω = Hn be the whole space and 1 < q < q∗, then the equation (1.1)
has no positive solution, namely, any nonnegative entire solution of (1.1) must be the 
trivial one.

Now we state a local estimate for the isolated singularity of solutions to the equation 
(1.1) in BR(0)\{0}.

Theorem 1.2. Let Ω = BR(0)\{0} be a punctured ball in Hn and 1 < q < q∗, then any 
positive solution u of (1.1) satisfies:

u(ξ) ≤ C|ξ|
−2
q−1 for 0 < |ξ| ≤ R

4 , (1.4)

with some positive constant C depending only on n and q.

The soul of the proofs of Theorem 1.1, Theorem 1.2 is an integral estimate as follows, 
which itself may be interesting. Let B4r(ξ0) ⊂ Ω be any ball centred at ξ0 with radius 
4r, then we can prove that any positive solution u of (1.1) with 1 < q < q∗ must satisfy:

∫

Br(ξ0)

u3q−q∗ ≤ C rQ−2× 3q−q∗
q−1 , (1.5)

where the positive constant C depends only on n and q.
For 1 < q < q∗, we have Q − 2 × 3q−q∗

q−1 < 0. So if u is a positive solution of (1.1) with 
Ω = Hn, taking r → +∞ in (1.5) we get

∫

Hn

u3q−q∗ = 0. (1.6)

This contradiction signifies directly the conclusion of Theorem 1.1. Also, we will prove 
Theorem 1.2 by using (1.5) combining with the Harnack inequality which was obtained 
by Capogna-Danielli-Garofalo (see Theorem 3.1 in [4]).

Now we compare (1.1) with the corresponding semilinear elliptic equation in Euclidean 
case,

−�u = uq in Rn. (1.7)
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For 1 < q < n+2
n−2 , Gidas-Spruck [11] proved that the above equation (1.7) has no positive 

entire solution. The method used in [11] is the integral estimate motivated from Obata 
[19]. They also gave the pointwise estimates near the isolated singularity. It was proved 
that for n

n−2 < q < n+2
n−2 , the positive solution of (1.7) in the punctured unit ball, with a 

nonremovable singularity at the origin, must satisfies

|x| 2
q−1u(x) → C0(n, q) as x → 0. (1.8)

In another paper, Caffarelli-Gidas-Spruck [3] classified all the entire solutions and the 
isolated singularity of (1.7) for the critical exponent q = n+2

n−2 via moving plane method. 
Later, Chen-Li [5] simplified the argument of Caffarelli-Gidas-Spruck and extended it to 
cover the case n = 2. One can also find a different proof by Li-Zhu [18] and Li-Zhang 
[17].

As in the Euclidean case [12], the Liouville type result in Theorem 1.1 would be useful 
to get the a priori boundedness in studying the semilinear equations via the blow-up 
analysis.

From the usual idea in [11], to get the integral estimate (1.5), there are usually two 
difficulties to be overcome in a noncompact domain. One is to find a suitable divergence 
identity, and the other is to estimate the “tail” terms after integrating by part on the 
divergence identity multiplied by suitable cut-off functions.

In Riemannian conformal geometry, Obata [19] found an identity to express some 
suitable nonnegative terms (usually with the associated geometry data) in a divergence 
form, and then obtained the following result: the only Riemannian metrics on the sphere 
that are conformal to the standard one and have constant scalar curvature are obtained 
from the standard metric by a conformal diffeomorphism of the sphere.

In CR conformal geometry, Jerison-Lee [15] had also found a magic identity which 
involved the derivative of torsion, and then got an Obata type theorem in CR geometry: 
if θ is a contact form associated with the standard CR structure on the sphere which has 
constant pseudohermitian scalar curvature, then θ is obtained from a constant multiple 
of the standard form θ̂ by a CR automorphism of the sphere. In the same paper, Jerison-
Lee [15] also got the related identity to classify the extremal functions of the Sobolev 
inequality on Heisenberg group.

In this paper, based on our new observation, we will give a generalization of the 
Jerison-Lee’s identity on Heisenberg group (see (4.2) for example in [15]) with a trans-
parent proof, so that we can deduce an entire Liouville theorem for the subcritical case 
of the equation (1.1). This is similar to the Gidas-Spruck’s [11] proof for equation (1.7)
from Obata [19] identity. But in our case the matter is much more complicate, since the 
Jerison-Lee’s identity involves extra torsion terms.

The paper is organized as follows. In section 2, we introduce some notations and give a 
generalization of the Jerison-Lee identity. Then, using this generalized identity, we prove 
the integral estimates (1.5) and Theorem 1.1 in section 3. The proof of Theorem 1.2 shall 
be presented in section 4.
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2. A generalization of Jerison-Lee’s identity

In this section we discuss the generalization of the remarkable Jerison-Lee’s identity 
((4.2) in [15]) on Heissenberg group Hn for solutions to equation (1.1) with general 
exponent. We adopt notations as in [15].

We shall first give a brief introduction to the Heissenberg group Hn and some nota-
tions. We consider Hn as the set Cn ×R with coordinates (z, t) and group law ◦:

(z, t) ◦ (w, s) =
(
z + w, t + s + 2Imzαwα

)
for ξ = (z, t), ζ = (w, s) ∈ Cn ×R,

where and in the sequel, we shall use the Einstein sum with the convention: the Greek 
indices 1 ≤ α, β, γ ≤ n. For ξ = (z, t) = (z1, z2, ..., zn, t) ∈ Cn × R as an element 
of Hn, the norm |ξ| is defined by |ξ|4 = |(z, t)|4 = |z|4 + t2, with associated distance 
function d(ξ, ζ) = |ζ−1 ◦ ξ|. We will use the notation Br(ξ) for the metric ball centred at 
ξ = (z, t) with radius r > 0. The Heisenberg group is a dilation group and the associated 
homogeneous dimension Q = 2n + 2 such that the volume |Br(ξ)| ≈ rQ.

The CR structure of Hn is given by the bundle H spanned by the left-invariant vector 
fields Zα = ∂/∂zα +

√
−1zα∂/∂t and Zᾱ = ∂/∂z̄α −

√
−1zα∂/∂t, α = 1, · · · , n. The 

standard (left-invariant) contact form on Hn is Θ = dt +
√
−1(zαdzα − zαdzα). With 

respect to the standard holomorphic frame {Zα} and dual admissible coframe {dzα}, 
the Levi forms hαβ = 2δαβ . Accordingly, for a smooth function f on Hn, denote its 
derivatives by fα = Zαf , fαβ = Zβ(Zαf), f0 = ∂f

∂t , f0α = Zα(∂f∂t ), etc. We would also 
indicate the derivatives of functions or vector fields with indices preceded by a comma, 
to avoid confusion. Then as in [15] we have the following commutation formulae:

fαβ − fβα = 0, fαβ − fβα = 2
√
−1δαβ f0, f0α − fα0 = 0,

fαβ0 − fα0β = 0, fαβγ − fαγβ = 2
√
−1δβγ fα0, · · · .

Now we are at the point to give the generalized identity for positive solution of the 
equation (1.1). Let u > 0 be a solution of (1.1). Take ef = u

1
n and q = q∗ + p

n , then 
the subcritical exponent 1 < q < q∗ is corresponding to −2 < p < 0. It follows that f
satisfies the following equation

−�Hnf = 2n|∂f |2 + 2ne(2+p)f , (2.1)

where |∂f |2 = fαfα.
As in [15], we define the tensors

Dαβ =fαβ − 2fαfβ , Dα = Dαβfβ ,

Eαβ =fαβ − 1
n
fγγδαβ , Eα = Eαβfβ ,

G =
√
−1f −

√
−1f f + e(2+p)ff + |∂f |2f .

(2.2)
α 0α 0 α α α
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The above Jerison-Lee’s tensors are also of course important in our argument, one can 
see [15] for the reason to introduce them.

Introduce the function g = |∂f |2 + e(2+p)f −
√
−1f0. Then the equation (2.1) can be 

rewritten as

fαα = −ng. (2.3)

Moreover, we observe that

Eαβ = fαβ + gδαβ , Eα = fαβfβ + gfα,

Dα = fαβfβ − 2|∂f |2fα, Gα =
√
−1f0α + gfα,

(2.4)

and by

(|∂f |2),α =fβfβα + fβαfβ

=fβfβα + (fαβ + 2
√
−1δβαf0)fβ

=Dα + 2|∂f |2fα + Eα − gfα + 2
√
−1f0fα

=Dα + Eα + gfα − 2fαe(2+p)f ,

(2.5)

we find

gα =Dα + Eα + Gα + pfαe
(2+p)f . (2.6)

Taking conjugation one also has

gα =Dα + Eα + Gα + pfαe
(2+p)f . (2.7)

In view of the above observations, now we give the crucial identity as follows.

Proposition 2.1.

M =ReZα

{
e2(n−1)f

[(
g + 3

√
−1f0

)
Eα

+
(
g −

√
−1f0

)
Dα − 3

√
−1f0Gα − p

4fα|∂f |
4
]} (2.8)

with

M = e(2n+p)f(|Eαβ |2 + |Dαβ |2
)

+e2(n−1)f(|Gα|2 + |Gα + Dα|2 + |Gα −Eα|2 + |Dαβfγ + Eαγfβ |2
)

+e2(n−1)f(pe(2+p)f − p |∂f |2
)
Re

(
fαDα + fαEα

)

2
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−p(2n− 1)|∂f |2e2(n+1+p)f − p

4(7n− 6)|∂f |4e(2n+p)f

−p

4n|∂f |
6e2(n−1)f − 3np|f0|2e(2n+p)f .

Remark 2.2. Note that for p = 0, then (2.8) is exactly the remarkable identity found by 
Jerison and Lee (see (4.2) in [15]). For −2 < p < 0, the subcritical case, we will show 
by elementary computations in section 3 that the function M is also nonnegative. The 
observation (2.6) plays key role in our proof of the identity. We hope that it is helpful 
to find the “explanation” for the existence of such divergence identities, as expected by 
Jerison and Lee [15].

Proof of Proposition 2.1. Denote

L = L1 + L2 + L3 + L4,

with

L1 = Zα

{(
g + 3

√
−1f0

)
Eαe

2(n−1)f
}
, L2 = Zα

{(
g −

√
−1f0

)
Dαe

2(n−1)f
}
,

L3 = Zα

{
− 3

√
−1f0Gαe

2(n−1)f
}
, L4 = Zα

{
− p

4fα|∂f |
4e2(n−1)f

}
.

(2.9)

First we compute L3. We have, by (2.4) and the commutation formulae,

Gα,α =
√
−1f0αα + gαfα + gfαα

=
√
−1fαα0 + gαfα + g(fαα + 2n

√
−1f0)

= fαgα − n
√
−1g0 − n|g|2 + 2n

√
−1f0g.

(2.10)

So we get

e−2(n−1)fL3 = e−2(n−1)fZα

{
− 3

√
−1f0Gαe

2(n−1)f
}

= − 3
√
−1f0Gα,α − 3

√
−1f0αGα − 6(n− 1)

√
−1f0fαGα

= − 3
√
−1f0

(
fαgα − n

√
−1g0 − n|g|2 + 2n

√
−1f0g

)
+ 3(Gα − gfα)Gα − 6(n− 1)

√
−1f0fαGα

=3|Gα|2 − 3(g + 2(n− 1)
√
−1f0)fαGα

√ √ 2 2

(2.11)
− 3 −1f0fαgα − 3nf0g0 + 3n −1f0|g| + 6n|f0| g.
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Next we compute L1. Also by (2.4) and the commutation formulae,

Eα,α = fαβαfβ + fαβfβα + gαfα + gfαα

= fααβfβ + fαβ(fαβ + 2
√
−1f0δβα) + gαfα + gfαα

= − ngβfβ + fαβfαβ + 2
√
−1f0fαα + gαfα + gfαα

=(1 − n)fαgα + (Eαβ − gδαβ)(Eαβ − gδαβ) − n|g|2

= |Eαβ |2 + (1 − n)fαgα.

(2.12)

It follows that

e−2(n−1)fL1 = e−2(n−1)fZα

{(
g + 3

√
−1f0

)
Eαe

2(n−1)f
}

=
(
g + 3

√
−1f0

)
Eα,α

+
(
gα + 3

√
−1f0α

)
Eα + 2(n− 1)

(
g + 3

√
−1f0

)
fαEα

=
(
g + 3

√
−1f0

)(
|Eαβ |2 + (1 − n)fαgα

)
+ gαEα + 3

(
−Gα + gfα

)
Eα + 2(n− 1)

(
g + 3

√
−1f0

)
fαEα

=
(
g + 3

√
−1f0

)
|Eαβ |2 +

(
gα − 3Gα

)
Eα

+
(
3g + 2(n− 1)(g + 3

√
−1f0)

)
fαEα

+ (1 − n)(g + 3
√
−1f0)fαgα.

(2.13)

Now we compute L2. Using the commutation formulae, we compute

fαβα = fααβ + 2
√
−1f0αδβα

= (fαα + 2n
√
−1f0)β + 2

√
−1f0β

= − ngβ + 2(n + 1)(Gβ − gfβ)

= 2(n + 1)Gβ − ngβ − 2(n + 1)fβg.

(2.14)

By this and (2.4), (2.5), it follows that

Dα,α = fαβαfβ + fαβfβα − 2(|∂f |2)αfα − 2|∂f |2fαα
=
(
2(n + 1)Gβ − ngβ − 2(n + 1)fβg

)
fβ

+ (Dαβ + 2fαfβ)(Dαβ + 2fαfβ)

− 2
(
Dα + Eα + gfα − 2fαe(2+p)f)fα + 2n|∂f |2g

= |Dαβ |2 + 2fαDα − 2fαEα + 2(n + 1)fαGα − nfαgα.

(2.15)

So we have
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e−2(n−1)fL2

= e−2(n−1)fZα

{(
g −

√
−1f0

)
Dαe

2(n−1)f
}

=
(
g −

√
−1f0

)
Dα,α

+
(
gα −

√
−1f0α

)
Dα + 2(n− 1)

(
g −

√
−1f0

)
fαDα

=
(
g −

√
−1f0

)(
|Dαβ |2 + 2fαDα − 2fαEα + 2(n + 1)fαGα − nfαgα

)
+

(
gα + Gα − gfα

)
Dα + 2(n− 1)

(
g −

√
−1f0

)
fαDα

=
(
g −

√
−1f0

)
|Dαβ |2 + (gα + Gα)Dα

+ (2ng − g − 2n
√
−1f0)fαDα − 2(g −

√
−1f0)fαEα

+ 2(n + 1)(g −
√
−1f0)fαGα − n(g −

√
−1f0)fαgα.

(2.16)

Finally, for L4, by (2.3) and (2.5), a direct computation shows

e−2(n−1)fL4 =e−2(n−1)fZα

{
− p

4fα|∂f |
4e2(n−1)f

}

= − p

2
(
Eα + Dα

)
fα|∂f |2

− p

4n|∂f |
6 + p

4(n + 2)|∂f |4e(2+p)f − p

4(n + 2)
√
−1f0|∂f |4.

(2.17)

By (2.11), (2.13), (2.16) and (2.17), noticing fαEα = fαEα (this also implies it’s real), 
we obtain

e−2(n−1)f (L1 + L2 + L3 + L4)

=
(
g −

√
−1f0

)
|Dαβ |2 +

(
g + 3

√
−1f0

)
|Eαβ |2 + 3|Gα|2

+ (gα + Gα)Dα +
(
gα − 3Gα

)
Eα

+
(
2ng − g − 2n

√
−1f0

)
fαDα − p

2 |∂f |
2Dαfα

+
(
2(n− 2)g + 3g − p

2 |∂f |
2 + (6n− 4)

√
−1f0)

)
fαEα

+
(
2(n + 1)g − 3g − (8n− 4)

√
−1f0

)
fαGα

−
(
(n− 1)g + 3n

√
−1f0

)
fαgα − n(g −

√
−1f0)fαgα − 3nf0g0

+ 3n
√
−1f0|g|2 + 6n|f0|2g

− p

4n|∂f |
6 + p

4(n + 2)|∂f |4e(2+p)f − p

4(n + 2)
√
−1f0|∂f |4.

(2.18)

Straight calculations show

g0 =
√
−1fαGα −

√
−1fαGα

+ 2f0|∂f |2 + (2 + p)f0e
(2+p)f −

√
−1f00.

(2.19)

By this and virtue of (2.6)-(2.7), we finally reach
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e−2(n−1)f (L1 + L2 + L3 + L4)

=
(
g −

√
−1f0

)
|Dαβ |2 +

(
g + 3

√
−1f0

)
|Eαβ |2 + 3|Gα|2

+ (Dα + Eα + 2Gα)Dα +
(
Dα + Eα − 2Gα

)
Eα

+ fαDα

(
(n− 1)g − (n + 2)

√
−1f0 + pe(2+p)f)

− fαDα

(
(n− 1)g + 3n

√
−1f0 + p

2 |∂f |
2)

+ fαEα

(
(4n + 2)

√
−1f0 −

p

2 |∂f |
2 + pe(2+p)f)

+ fαGα

(
(n− 1)g − (4n + 2)

√
−1f0

)
+ fαGα

(
(1 − n)g − 6n

√
−1f0

)

− p(2n− 1)|∂f |2e2(2+p)f − p

4(7n− 6)|∂f |4e(2+p)f

− p

4n|∂f |
6 − 3np|f0|2e(2+p)f

− p

4(n + 2)
√
−1f0|∂f |4 − p

√
−1f0|∂f |2e(2+p)f

+ 3n
√
−1f0|g|2 − 6n

√
−1f0|f0|2 + 3n

√
−1f0f00,

(2.20)

where the linear terms of the tensors also can be rewritten as

fαDα

(
(n− 1)g − (n + 2)

√
−1f0 + pe(2+p)f)

− fαDα

(
(n− 1)g + 3n

√
−1f0 + p

2 |∂f |
2)

+ fαEα

(
(4n + 2)

√
−1f0 −

p

2 |∂f |
2 + pe(2+p)f)

+ fαGα

(
(n− 1)g − (4n + 2)

√
−1f0

)
+ fαGα

(
(1 − n)g − 6n

√
−1f0

)

=
(
pe(2+p)f − p

2 |∂f |
2)(fαDα + fαEα)

+
(
(n− 1)e(2+p)f + (n− 1 + p

2)|∂f |2
)
(fαDα − fαDα)

− (2n + 1)
√
−1f0(fαDα + fαDα) − (4n + 2)

√
−1f0fαEα

+ (n− 1)
(
e(2+p)f + |∂f |2

)
(fαGα − fαGα) − (5n + 1)

√
−1f0(fαGα + fαGα).

(2.21)

From this one can check (2.8) easily and complete the proof of Proposition 2.1. �
3. Proof of Theorem 1.1

Let’s give a sketch for the proof of Theorem 1.1. We first rewrite the function M
in (2.8) as (3.3), then we make some computation for (3.3) to get (3.6) such that all 
the coefficients in (3.6) are positive for −2 < p < 0. We choose the cut off function η
as in Birindelli-Dolcetta-Cutri ((3.3), [1]). Since all the coefficients of M in (3.6) are 
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positive, multiplying ηs and integrating over Ω, we first get immediately the following 
key inequality

∫

Ω

ηs|∂f |2e2(n+1+p)f ≤ C(n, p)
∫

Ω

ηsM, (3.1)

where C(n, p) is a positive constant. Next, multiplying ηs on both sides of (2.8) and 
using the Cauchy inequality we obtain the inequality (3.11). Then we utilize another 
inequality (3.12) in Lemma 3.1 to treat (3.11), and we obtain (3.18) via the Young’s 
inequality. Combining (3.1) and (3.18) with another Lemma 3.2, we obtain the proof of 
integral estimates (1.5), and hence the proof of Theorem 1.1. At the end of this section, 
we prove the Lemma 3.1 and Lemma 3.2.

Proof of Theorem 1.1. Let f satisfy the equation (2.3) and hence the identity (2.8). Then 
by q = q∗ + p

n , the subcritical exponent 1 < q < q∗ is corresponding to −2 < p < 0, and 

hence Q − 2 × 3q−q∗

q−1 = 2n + 2 − 2 × 2n+4+3p
2+p = −2 + 2(n−1)p

2+p ≤ −2. In order to complete 
the proof of (1.5) and hence Theorem 1.1, we only need to prove the following inequality

∫

Br(ξ0)

e(2n+4+3p)f ≤ Cr2n+2−2× 2n+4+3p
2+p . (3.2)

Now we rewrite the function M in (2.8) as

M =
(
|Eαβ |2 + |Dαβ |2

)
e(2n+p)f +

(
|Gα|2 + |Dαβfγ + Eαγfβ |2

)
e2(n−1)f

+ s0

(
|Gα + Dα|2 + |Gα − Eα|2

)
e2(n−1)f

+ (1 − s0)
(
|Gα + Dα|2 + |Gα − Eα|2

)
e2(n−1)f

+ pe2(n−1)fRe[fα(Gα + Dα)]
(
e(2+p)f − 1

2 |∂f |
2)

+ pe2(n−1)fRe[fα(Eα −Gα)]
(
e(2+p)f − 1

2 |∂f |
2)

− p(2n− 1)|∂f |2e2(n+1+p)f − p

4(7n− 6)|∂f |4e(2n+p)f

− p

4n|∂f |
6e2(n−1)f − 3np|f0|2e(2n+p)f .

(3.3)

Next, we will express M in suitable nonnegative terms such that all the coefficients are 
positive for −2 < p < 0. In fact, we will do it by completing a square of a binomial for 
the last five lines in (3.3) with suitable choice of s0. So, first we have
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M =
(
|Eαβ |2 + |Dαβ |2

)
e(2n+p)f +

(
|Gα|2 + |Dαβfγ + Eαγfβ |2

)
e2(n−1)f

+ s0

(
|Gα + Dα|2 + |Gα − Eα|2

)
e2(n−1)f

+ e2(n−1)f
∣∣∣√1 − s0(Gα + Dα) + p

2
√

1 − s0
fα

(
e(2+p)f − 1

2 |∂f |
2)∣∣∣2

+ e2(n−1)f
∣∣∣√1 − s0(Eα −Gα) + p

2
√

1 − s0
fα

(
e(2+p)f − 1

2 |∂f |
2)∣∣∣2

− p2

2(1 − s0)
e2(n−1)f |∂f |2

(
e2(2+p)f + 1

4 |∂f |
4 − e(2+p)f |∂f |2

)

− p(2n− 1)|∂f |2e2(n+1+p)f − p

4(7n− 6)|∂f |4e(2n+p)f

− p

4n|∂f |
6e2(n−1)f − 3np|f0|2e(2n+p)f .

(3.4)

Then we treat the terms in the last three lines and get

M =
(
|Eαβ |2 + |Dαβ |2

)
e(2n+p)f +

(
|Gα|2 + |Dαβfγ + Eαγfβ |2

)
e2(n−1)f

+ s0

(
|Gα + Dα|2 + |Gα −Eα|2

)
e2(n−1)f

+ e2(n−1)f
∣∣∣√1 − s0(Gα + Dα) + p

2
√

1 − s0
fα

(
e(2+p)f − 1

2 |∂f |
2)∣∣∣2

+ e2(n−1)f
∣∣∣√1 − s0(Eα −Gα) + p

2
√

1 − s0
fα

(
e(2+p)f − 1

2 |∂f |
2)∣∣∣2

− p
(n

4 + p

8(1 − s0)

)
|∂f |6e2(n−1)f − p

4

(
7n− 6 − 2p

1 − s0

)
|∂f |4e(2n+p)f

− p
(
2n− 1 + p

2(1 − s0)

)
|∂f |2e2(n+1+p)f − 3np|f0|2e(2n+p)f .

(3.5)

Now we take 0 < s0 = 1
2 + p

4n < 1, then

M =
(
|Eαβ |2 + |Dαβ |2

)
e(2n+p)f +

(
|Gα|2 + |Dαβfγ + Eαγfβ |2

)
e2(n−1)f

+ s0

(
|Gα + Dα|2 + |Gα − Eα|2

)
e2(n−1)f

+ e2(n−1)f
∣∣∣√1 − s0(Gα + Dα) + p

2
√

1 − s0
fα

(
e(2+p)f − 1

2 |∂f |
2)∣∣∣2

+ e2(n−1)f
∣∣∣√1 − s0(Eα −Gα) + p

2
√

1 − s0
fα

(
e(2+p)f − 1

2 |∂f |
2)∣∣∣2

− p
n(2n + p)
4(2n− p) |∂f |

6e2(n−1)f − p

4

(
7n− 6 − 8np

2n− p

)
|∂f |4e(2n+p)f

− p
4n2 − 2n + p |∂f |2e2(n+1+p)f − 3np|f0|2e(2n+p)f .

(3.6)
2n− p
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Clearly all the coefficients in above are positive for −2 < p < 0 and hence M ≥ 0.
Since B4r ⊂ Ω, we can take a real smooth cut off function η such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η ≡ 1 in Br,

0 ≤ η ≤ 1 in B2r,

η ≡ 0 in Ω\B2r,

|∂η| � 1
r in Ω,

(3.7)

where we use “�”, “∼=” to replace “≤” and “=” respectively, to drop out some positive 
constants independent of r and f .

Take a real s > 0 big enough. Multiplying ηs on both sides of (2.8) and integrating 
over Ω give

∫

Ω

ηsM

=
∫

Ω

ηsReZα

{[(
Dα + Eα)(|∂f |2 + e(2+p)f )

−
√
−1f0

(
2Dα − 2Eα + 3Gα

)
− p

4fα|∂f |
4]e2(n−1)f

}
.

(3.8)

Integrating by part and using (3.7) we get

∫

Ω

ηsM

= − s

∫

Ω

ηs−1Reηα
{[(

Dα + Eα)(|∂f |2 + e(2+p)f )

−
√
−1f0

(
2Dα − 2Eα + 3Gα

)
− p

4fα|∂f |
4]e2(n−1)f

}

�1
r

∫

Ω

ηs−1
{
|Dα + Eα|(|∂f |2 + e(2+p)f )e2(n−1)f

+ |f0|
∣∣2Dα − 2Eα + 3Gα

∣∣e2(n−1)f + |∂f |5e2(n−1)f
}

(3.9)

Since

|Dα + Eα| ≤ |Dα + Gα| + |Eα −Gα|,
∣∣2Dα − 2Eα + 3Gα

∣∣ ≤ 2|Dα + Gα| + 2|Eα −Gα| + |Gα|,
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using the Young’s inequality ab ≤ εa2 + 1
ε b

2 in (3.9) we obtain
∫

Ω

ηsM �ε

∫

Ω

ηs
(
|Dα + Gα|2 + |Eα −Gα|2 + |Gα|2

)
e2(n−1)f

+ 1
εr2

∫

Ω

ηs−2(|∂f |4 + e2(2+p)f + |f0|2
)
e2(n−1)f

+ 1
r

∫

Ω

ηs−1|∂f |5e2(n−1)f .

(3.10)

Note that in (3.6), the coefficients of all the terms of M are positive. By taking ε small, 
it follows that

∫

Ω

ηsM � 1
r2

∫

Ω

ηs−2(|∂f |4 + e2(2+p)f + |f0|2
)
e2(n−1)f

+ 1
r

∫

Ω

ηs−1|∂f |5e2(n−1)f .

(3.11)

To deal with the term containing |f0|2 on the right hand side of (3.11), we need the 
following Lemma 3.1, which will be proved at the end of this section.

Lemma 3.1.
∫

Ω

ηs−2|f0|2e2(n−1)f � εr2
∫

Ω

ηsM +
∫

Ω

ηs−2|∂f |4e2(n−1)f

+
∫

Ω

ηs−2|∂f |2e(2n+p)f + 1
r2

∫

Ω

ηs−4|∂f |2e2(n−1)f .

(3.12)

Now plugging (3.12) into (3.11) with small ε we get
∫

Ω

ηsM � 1
r2

∫

Ω

ηs−2e2(n+1+p)f

+ 1
r2

∫

Ω

ηs−2|∂f |4e2(n−1)f + 1
r2

∫

Ω

ηs−2|∂f |2e(2n+p)f

+ 1
r4

∫

Ω

ηs−4|∂f |2e2(n−1)f + 1
r

∫

Ω

ηs−1|∂f |5e2(n−1)f .

(3.13)

For the last term in above, using Young’s inequality one gets

1
r

∫
ηs−1|∂f |5e2(n−1)f �ε

∫
ηs|∂f |6e2(n−1)f + 1

r6

∫
ηs−6e2(n−1)f . (3.14)
Ω Ω Ω
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Similarly, one has

1
r2

∫

Ω

ηs−2|∂f |4e2(n−1)f �ε

∫

Ω

ηs|∂f |6e2(n−1)f + 1
r6

∫

Ω

ηs−6e2(n−1)f , (3.15)

1
r2

∫

Ω

ηs−2|∂f |2e(2n+p)f �ε

∫

Ω

ηs|∂f |4e(2n+p)f + 1
r4

∫

Ω

ηs−4e(2n+p)f , (3.16)

and

1
r4

∫

Ω

ηs−4|∂f |2e2(n−1)f �ε

∫

Ω

ηs|∂f |6e2(n−1)f + 1
r6

∫

Ω

ηs−6e2(n−1)f . (3.17)

Inserting these into (3.13) and taking ε small yield

∫

Ω

ηsM � 1
r2

∫

Ω

ηs−2e2(n+1+p)f

+ 1
r4

∫

Ω

ηs−4e(2n+p)f + 1
r6

∫

Ω

ηs−6e2(n−1)f .

(3.18)

To get the left of (3.2) to complete this proof, we need the following lemma, which 
will be proved also at the end of this section.

Lemma 3.2.

∫

Ω

ηse(2n+4+3p)f �
∫

Ω

ηs|∂f |2e2(n+1+p)f + 1
r2

∫

Ω

ηs−2e(2n+2+2p)f . (3.19)

Now since all the coefficients in (3.6) are positive for −2 < p < 0, it follows that

∫
ηs|∂f |2e2(n+1+p)f ≤ C(n, p)

∫
ηsM. (3.20)
Ω Ω
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Combining (3.20) with (3.18)-(3.19), we have
∫

Ω

ηse(2n+4+3p)f

�
∫

Ω

ηs|∂f |2e2(n+1+p)f + 1
r2

∫

Ω

ηs−2e(2n+2+2p)f

�
∫

Ω

ηsM + 1
r2

∫

Ω

ηs−2e(2n+2+2p)f

� 1
r2

∫

Ω

ηs−2e2(n+1+p)f

+ 1
r4

∫

Ω

ηs−4e(2n+p)f + 1
r6

∫

Ω

ηs−6e2(n−1)f

�ε

∫

Ω

ηse(2n+4+3p)f + r−2× 2n+4+3p
2+p

∫

Ω

ηs−2× 2n+4+3p
2+p ,

(3.21)

where in the last step, the Young’s inequality has been used three times with different 
exponent pairs. Note that 0 ≤ η ≤ 1 in B2r(ξ0) ⊂ Ω and η = 1 in Br(ξ0). Therefore, by 
choosing s > 0 big enough and ε small, we finally obtain

∫

Br(ξ0)

e(2n+4+3p)f � r2n+2−2× 2n+4+3p
2+p . (3.22)

This is (3.2), and hence Theorem 1.1 is proved. �
To complete this section, now we give the proofs of Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1. Since f satisfies the equation (2.3), a straight calculation shows

e−kfReZα

(√
−1f0fαe

kf
)

= −ReGαfα − n|f0|2 + |∂f |4 + |∂f |2e(2+p)f . (3.23)

Multiply both sides of (3.23) by ηs−2ekf with k = 2(n − 1) and integrate over Ω we 
have

∫

Ω

ηs−2ReZα

(√
−1f0fαe

2(n−1)f
)

=
∫

Ω

ηs−2
(
− ReGαfα − n|f0|2 + |∂f |4 + |∂f |2e(2+p)f

)
e2(n−1)f .

(3.24)

Integrating by part, using (3.7) and arranging the terms yield
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n

∫

Ω

ηs−2|f0|2e2(n−1)f =
∫

Ω

ηs−2(|∂f |4 + |∂f |2e(2+p)f)e2(n−1)f

−
∫

Ω

ηs−2ReGαfαe
2(n−1)f

+ (s− 2)
∫

Ω

ηs−3Reηα
(√

−1f0fαe
2(n−1)f

)

�
∫

Ω

ηs−2(|∂f |4 + |∂f |2e(2+p)f)e2(n−1)f

+
∫

Ω

ηs−2|Gα||∂f |e2(n−1)f

+ 1
r

∫

Ω

ηs−3|f0||∂f |e2(n−1)f .

(3.25)

For the above last two terms, Young’s inequality implies

∫

Ω

ηs−2|Gα||∂f |e2(n−1)f + 1
r

∫

Ω

ηs−3|f0||∂f |e2(n−1)f

≤ εr2
∫

Ω

ηs|Gα|2e2(n−1)f + ε

∫

Ω

ηs−2|f0|2e2(n−1)f

+ C

εr2

∫

Ω

ηs−4|∂f |2e2(n−1)f .

(3.26)

Submitting this into (3.25) with small ε we get

∫

Ω

ηs−2|f0|2e2(n−1)f � εr2
∫

Ω

ηsM +
∫

Ω

ηs−2|∂f |4e2(n−1)f

+
∫

Ω

ηs−2|∂f |2e(2n+p)f + 1
r2

∫

Ω

ηs−4|∂f |2e2(n−1)f .

(3.27)

This is just (3.12). �
The proof of Lemma 3.2 is similar to that of Lemma 3.1.

Proof of Lemma 3.2. Multiplying both sides of the equation (2.3) by −ηse2(n+1+p)f and 
integrating over Ω give
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n

∫

Ω

ηsge2(n+1+p)f = −
∫

Ω

ηsfααe
2(n+1+p)f

=2(n + 1 + p)
∫

Ω

ηs|∂f |2e2(n+1+p)f

+ s

∫

Ω

ηs−1ηαfαe
2(n+1+p)f .

(3.28)

Taking the real parts in (3.28) we get

n

∫

Ω

ηs
(
|∂f |2 + e(2+p)f)e2(n+1+p)f =2(n + 1 + p)

∫

Ω

ηs|∂f |2e2(n+1+p)f

+ s

∫

Ω

ηs−1Reηαfαe2(n+1+p)f .

(3.29)

Using (3.7) and arranging the terms yield
∫

Ω

ηse(2n+4+3p)f �
∫

Ω

ηs|∂f |2e2(n+1+p)f + 1
r

∫

Ω

ηs−1|∂f |e2(n+1+p)f

�
∫

Ω

ηs|∂f |2e2(n+1+p)f + 1
r2

∫

Ω

ηs−2e2(n+1+p)f ,

(3.30)

where in the last step, the Cauchy-Schwarz inequality has been used, and this is (3.19)
as desired. �
4. Proof of Theorem 1.2

In the proof of Theorem 1.2, we use the similar method as in Euclidean case (see 
Theorem 3.11 in Veron [20]). Note that the dilation of the coordinates (z, t) ∈ Cn×R in 
Heisenberg group is defined by (δz, δ2t) (δ > 0), meanwhile the equation (1.1) and the 
estimates (1.4) are both invariant under the transformation u(z, t) −→ δ

2
q−1u(δz, δ2t), 

so we can assume R = 1.
We first state the following Harnack inequality, which is a special case of that given 

by Capogna-Danielli-Garofalo (see Theorem 3.1 in [4]). While Capogna-Danielli-Garofalo 
stated the Harnack inequality with the constant C0 depending on ||h(ξ)||Ls

loc(Ω) in their 
original paper, we present it here with a slight change, since one can use the similar 
scaling technique as in the Euclidean case (see for example page 74-75 in the book by 
Han-Lin [13]).

Lemma 4.1. [4] Let 0 ≤ u ∈ C2(Ω) satisfy

�Hnu + h(ξ)u = 0 in Ω, (4.1)
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with h(ξ) ∈ Ls
loc(Ω) for some s > Q

2 . Then for any ball Br(ξ0) with B4r(ξ0) ⊂ Ω, there 

exists a constant C0 > 0 depending only on n, s and r2−Q
s ||h(ξ)||Ls(B4r(ξ0)), such that

max
Br(ξ0)

u ≤ C0 min
Br(ξ0)

u. (4.2)

Proof of Theorem 1.2. Rewrite the equation (1.1) as

�Hnu + h(ξ)u = 0 in B1(0)\{0}, (4.3)

with h(ξ) = 2n2uq−1. For any ξ0 ∈ B 1
2
\{0}, take r = 1

16 |ξ0|. Denote 
∣∣Br(ξ0)

∣∣ the volume 
of the ball Br(ξ0). Using the estimate (1.5) we have

∫

Br(ξ0)

hs = (2n2)s
∫

Br(ξ0)

u3q−q∗ ≤ C(n, q) rQ−2× 3q−q∗
q−1 , (4.4)

with s = 3q−q∗

q−1 > Q
2 for 1 < q < q∗ = Q+2

Q−2 . This implies h(ξ) ∈ Ls
loc(Ω) for some s > Q

2
and hence u satisfies the Harnack inequality (4.2). Moreover, using (4.4) with Br(ξ0)
replaced by B4r(ξ0), we also have

r2−Q
s ||h(ξ)||Ls(B4r(ξ0)) ≤ C(n, q)r2−Q

s [rQ−2× 3q−q∗
q−1 ] 1

s ≤ C(n, q)r2−Q
s [rQ−2s] 1

s = C(n, q).
(4.5)

The estimate (4.5) implies that in the Harnack inequality (4.2) for u satisfying (4.3), the 
constant C0 depends only on n and q. So combining this Harnack inequality with (1.5)
we finally obtain

1
C
rQu(ξ0)3q−q∗ ≤ |Br(ξ0)|

[u(ξ0)
C0

]3q−q∗

≤
∫

Br(ξ0)

u3q−q∗ ≤ C rQ−2× 3q−q∗
q−1 . (4.6)

This implies

u(ξ) ≤ C|ξ|
−2
q−1 for 0 < |ξ| ≤ 1

4 , (4.7)

and the proof of Theorem 1.2 is completed. �
As in [11], one is interesting the exact asymptotic behaviour of the solution u near 

the isolated singularity.
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